Abstract

We numerically and experimentally investigate a broadband, polarization-independent and wide-incident-angle metamaterial perfect absorber (MPA) based on conductive polymer. By optimizing the electrical conductivity of the polymer, a 16.7 GHz broadband MPA is observed with the absorptivity greater than 80% for both transverse magnetic and electric polarization. The measurement results performed in the range 8-18 GHz show a diametrical concatenation with simulation results and theoretical analysis. The absorption mechanism is explained by demonstrating the influence of polymer conductivity on the dissipated power, the equivalent impedance, and the induced electric field. Our work may contribute to further studies on broadband MPA using for various applications.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Polarization-insensitive, ultra-broadband, and compact metamaterial-inspired optical absorber via wide-angle and highly efficient performances

Mohammad Mehrabi, Hamid Rajabalipanah, Ali Abdolali, and Majid Tayarani
Appl. Opt. 57(14) 3693-3703 (2018)

Triple-broadband infrared metamaterial absorber with polarization-independent and wide-angle absorption

Chang Liu, Limei Qi, and Mingjing Wu
Opt. Mater. Express 8(8) 2439-2448 (2018)

Polarization-independent and angle-insensitive broadband absorber with a target-patterned graphene layer in the terahertz regime

Xin Huang, Wei He, Fan Yang, Jia Ran, Bing Gao, and Wei-Li Zhang
Opt. Express 26(20) 25558-25566 (2018)

References

  • View by:
  • |
  • |
  • |

  1. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
    [Crossref] [PubMed]
  2. S. A. Ramakrishna and T. M. Grzegorczyk, “Physics and Applications of Negative refractive index materials,” Taylor & Francis Group (2008).
  3. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
    [Crossref] [PubMed]
  4. Z. Duan, B.-I. Wu, S. Xi, H. Chen, and M. Chen, “Research progress in reversed Cherenkov radiation in double-negative Metamaterials,” Prog. Electromagnetics Res. 90, 75–87 (2009).
    [Crossref]
  5. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [Crossref] [PubMed]
  6. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
    [Crossref] [PubMed]
  7. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [Crossref] [PubMed]
  8. J. Grant, M. Kenney, Y. D. Shah, I. Escorcia-Carranza, and D. R. S. Cumming, “CMOS compatible metamaterial absorbers for hyperspectral medium wave infrared imaging and sensing applications,” Opt. Express 26(8), 10408–10420 (2018).
    [Crossref] [PubMed]
  9. C. Zhang, W. Zhou, S. Sun, N. Yi, Q. Song, and S. Xiao, “Absorption enhancement in thin-film organic solar cells through electric and magnetic resonances in optical metamaterial,” Opt. Mater. Express 5(9), 1954–1961 (2015).
    [Crossref]
  10. A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
    [Crossref] [PubMed]
  11. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  12. X. Liu, K. Bi, B. Li, Q. Zhao, and J. Zhou, “Metamaterial perfect absorber based on artificial dielectric “atoms”,” Opt. Express 24(18), 20454–20460 (2016).
    [Crossref] [PubMed]
  13. L. D. Hai, V. D. Qui, T. D. Hong, P. Hai, T. T. Giang, T. M. Cuong, B. S. Tung, and V. D. Lam, “Dual-band perfect absorption by breaking the symmetry of metamaterial structure,” J. Electron. Mater. 46(6), 3757–3763 (2017).
    [Crossref]
  14. L. Lei, S. Li, H. Huang, K. Tao, and P. Xu, “Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial,” Opt. Express 26(5), 5686–5693 (2018).
    [Crossref] [PubMed]
  15. D. T. Viet, N. T. Hien, P. V. Tuong, N. Q. Minh, P. T. Trangm, L. N. Lea, Y. P. Lee, and V. D. Lam, “Perfect absorber metamaterials: peak, multi-peak and broadband absorption,” Opt. Commun. 322, 209–213 (2014).
    [Crossref]
  16. B. X. Wang, L. L. Wang, G. Z. Wang, W. Q. Huang, X. F. Li, and X. Zhai, “Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber,” IEEE Photonics Technol. Lett. 26(2), 111–114 (2013).
    [Crossref]
  17. A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, and E. Ozbay, “Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture,” Sci. Rep. 7(1), 4755 (2017).
    [Crossref] [PubMed]
  18. C. Gong, M. Zhan, J. Yang, Z. Wang, H. Liu, Y. Zhao, and W. Liu, “Broadband terahertz metamaterial absorber based on sectional asymmetric structures,” Sci. Rep. 6(1), 32466 (2016).
    [Crossref] [PubMed]
  19. F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. I. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6(1), 39445 (2016).
    [Crossref] [PubMed]
  20. F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
    [Crossref]
  21. Y. Lin, Y. Cui, F. Dinh, K. H. Fung, T. Ji, D. Li, and Y. Hao, “Tungsten based anisotropic metamaterial as an ultra-broadband absorber,” Opt. Mater. Express 7(2), 606–617 (2017).
    [Crossref]
  22. J. Wu, “Broadband light absorption by tapered metal-dielectric multilayered grating structures,” Opt. Commun. 365, 93–98 (2016).
    [Crossref]
  23. D. Lee, H. Jeong, and S. Lim, “Electronically switchable broadband metamaterial absorber,” Sci. Rep. 7(1), 4891 (2017).
    [Crossref] [PubMed]
  24. H. Zhu, F. Yi, and E. Cubukcu, “Plasmonic metamaterial absorber for broadband manipulation of mechanical resonances,” Nat. Photonics 10(11), 709–714 (2016).
    [Crossref]
  25. W. Zhu, F. Xiao, I. D. Rukhlenko, J. Geng, X. Liang, M. Premaratne, and R. Jin, “Wideband visible-light absorption in an ultrathin silicon nanostructure,” Opt. Express 25(5), 5781–5786 (2017).
    [Crossref] [PubMed]
  26. W. Zhu, F. Xiao, M. Kang, and M. Premaratne, “Coherent perfect absorption in an all-dielectric metasurface,” Appl. Phys. Lett. 108(12), 121901 (2016).
    [Crossref]
  27. Y. J. Yoo, S. Ju, S. Y. Park, Y. Ju Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial absorber for electromagnetic waves in periodic water droplets,” Sci. Rep. 5(1), 14018 (2015).
    [Crossref] [PubMed]
  28. J. Xie, W. Zhu, I. D. Rukhlenko, F. Xiao, C. He, J. Geng, X. Liang, R. Jin, and M. Premaratne, “Water metamaterial for ultra-broadband and wide-angle absorption,” Opt. Express 26(4), 5052–5059 (2018).
    [Crossref] [PubMed]
  29. W. Zhu, I. D. Rukhlenko, F. Xiao, C. He, J. Geng, X. Liang, M. Premaratne, and R. Jin, “Multiband coherent perfect absorption in a water-based metasurface,” Opt. Express 25(14), 15737–15745 (2017).
    [Crossref] [PubMed]
  30. B. X. Wang, L. L. Wang, G. Z. Wang, W. Q. Huang, X. D. Li, and X. Zhai, “Metamaterial-Based Low-Conductivity Alloy Perfect Absorber,” J. Lit. Technol. 32, 2293–2298 (2014).
  31. P. Sengodu and A. D. Deshmukh, “Conducting polymers and their inorganic composites for advanced Li-ion batteries: a review,” RSC Advances 5(52), 42109–42130 (2015).
    [Crossref]
  32. A. Bhardwaj, A. A. Pal, K. Chatterjee, T. H. Rana, G. Bhattacharya, S. S. Roy, P. Chowdhury, G. D. Sharma, and S. Biswas, “Significant enhancement of power conversion efficiency of dye-sensitized solar cells by the incorporation of TiO2-Au nanocomposite in TiO2 photoanode,” J. Mater. Sci. 35, 8460–8473 (2018).
  33. H. Wang, K. Zheng, X. Zhang, Y. Wang, C. Xiao, L. Chen, and X. Tian, “Hollow microsphere-infused porous poly(vinylidene fluoride)/multiwall carbon nanotube composites with excellent electromagnetic shielding and low thermal transport,” J. Mater. Sci. 53(8), 6042–6052 (2018).
    [Crossref]
  34. J. W. Huh, Y. M. Kim, Y. W. Pack, C. J. Hwan, J. W. Lee, J. W. Lee, J. W. Yang, S. H. Ju, K. K. Paek, and B. K. Ju, “Characteristics of organic light-emitting diodes with conducting polymer anodes on plastic substrates,” J. Appl. Phys. 103(4), 044502 (2008).
    [Crossref]
  35. X. Kong, J. Xu, J. J. Mo, and S. Liu, “Broadband and conformal metamaterial absorber,” Front Optoelectron. 10(2), 124–131 (2017).
    [Crossref]
  36. L. Zhao, H. Liu, Z. He, and S. Dong, “Theoretical design of twelve-band infrared metamaterial perfect absorber by combining the dipole, quadrupole, and octopole plasmon resonance modes of four different ring-strip resonators,” Opt. Express 26(10), 12838–12851 (2018).
    [Crossref] [PubMed]
  37. F. Costa, S. Genovesi, A. Monorchio, and G. Manara, “A circuit-based model for the interpretation of perfect metamaterial absorbers,” IEEE Trans. Antenn. Propag. 61(3), 1201–1209 (2013).
    [Crossref]
  38. T. T. Nguyen and S. Lim, “Design of metamaterial absorber using Eight-Resistive-Arm cell for simultaneous broadband and wide-incidence-angle absorption,” Sci. Rep. 8(1), 6633 (2018).
    [Crossref] [PubMed]
  39. R. Deng, M. Li, B. Muneer, Q. Zhu, Z. Shi, L. Song, and T. Zhang, “Theoretical analysis and design of Ultrathin broadband optically transparent microwave metamaterial absorbers,” Materials (Basel) 11(1), 107 (2018).
    [Crossref] [PubMed]
  40. CST Computer Simulation Technology 3D EM Field Simulation. http://www.cst.com/ .
  41. B. M. Abu-Zied, M. A. Hussein, and A. M. Asiri, “Characterization, in situ electrical conductivity and thermal behavior of immobilized PEG on MCM-41,” Int. J. Electrochem. Sci. 10(6), 4873–4887 (2015).
  42. L. Rani and N. Singh, “Dynamical electrical conductivity of graphene,” J. Phys. Condens. Matter 29(25), 255602 (2017).
    [Crossref] [PubMed]
  43. D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
    [Crossref] [PubMed]
  44. H. T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20(7), 7165–7172 (2012).
    [Crossref] [PubMed]
  45. X. Huang, H. Yang, D. Wang, S. Yu, Y. Lou, and L. Guo, “Calculations of a wideband metamaterial absorber using equivalent medium theory,” J. Phys. D Appl. Phys. 49(32), 325101 (2016).
    [Crossref]
  46. W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
    [Crossref] [PubMed]
  47. D. M. Pozar, Microwave Engineering 4th Ed. (J. Wiley, 2011).
  48. C. A. Dirdal and J. Skaar, “Diamagnetism and the dispersion of the magnetic permeability,” Eur. Phys. J. B 91(6), 131 (2018).
    [Crossref]
  49. G. Duan, J. Schalch, X. Zhao, J. Zhang, R. D. Averitt, and X. Zhang, “Analysis of the thickness dependence of metamaterial absorbers at terahertz frequencies,” Opt. Express 26(3), 2242–2251 (2018).
    [Crossref] [PubMed]
  50. C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial Electromagnetic Wave Absorbers,” Adv. Mater. 24(23), OP98 (2012).
    [PubMed]

2018 (10)

J. Grant, M. Kenney, Y. D. Shah, I. Escorcia-Carranza, and D. R. S. Cumming, “CMOS compatible metamaterial absorbers for hyperspectral medium wave infrared imaging and sensing applications,” Opt. Express 26(8), 10408–10420 (2018).
[Crossref] [PubMed]

L. Lei, S. Li, H. Huang, K. Tao, and P. Xu, “Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial,” Opt. Express 26(5), 5686–5693 (2018).
[Crossref] [PubMed]

J. Xie, W. Zhu, I. D. Rukhlenko, F. Xiao, C. He, J. Geng, X. Liang, R. Jin, and M. Premaratne, “Water metamaterial for ultra-broadband and wide-angle absorption,” Opt. Express 26(4), 5052–5059 (2018).
[Crossref] [PubMed]

A. Bhardwaj, A. A. Pal, K. Chatterjee, T. H. Rana, G. Bhattacharya, S. S. Roy, P. Chowdhury, G. D. Sharma, and S. Biswas, “Significant enhancement of power conversion efficiency of dye-sensitized solar cells by the incorporation of TiO2-Au nanocomposite in TiO2 photoanode,” J. Mater. Sci. 35, 8460–8473 (2018).

H. Wang, K. Zheng, X. Zhang, Y. Wang, C. Xiao, L. Chen, and X. Tian, “Hollow microsphere-infused porous poly(vinylidene fluoride)/multiwall carbon nanotube composites with excellent electromagnetic shielding and low thermal transport,” J. Mater. Sci. 53(8), 6042–6052 (2018).
[Crossref]

L. Zhao, H. Liu, Z. He, and S. Dong, “Theoretical design of twelve-band infrared metamaterial perfect absorber by combining the dipole, quadrupole, and octopole plasmon resonance modes of four different ring-strip resonators,” Opt. Express 26(10), 12838–12851 (2018).
[Crossref] [PubMed]

T. T. Nguyen and S. Lim, “Design of metamaterial absorber using Eight-Resistive-Arm cell for simultaneous broadband and wide-incidence-angle absorption,” Sci. Rep. 8(1), 6633 (2018).
[Crossref] [PubMed]

R. Deng, M. Li, B. Muneer, Q. Zhu, Z. Shi, L. Song, and T. Zhang, “Theoretical analysis and design of Ultrathin broadband optically transparent microwave metamaterial absorbers,” Materials (Basel) 11(1), 107 (2018).
[Crossref] [PubMed]

C. A. Dirdal and J. Skaar, “Diamagnetism and the dispersion of the magnetic permeability,” Eur. Phys. J. B 91(6), 131 (2018).
[Crossref]

G. Duan, J. Schalch, X. Zhao, J. Zhang, R. D. Averitt, and X. Zhang, “Analysis of the thickness dependence of metamaterial absorbers at terahertz frequencies,” Opt. Express 26(3), 2242–2251 (2018).
[Crossref] [PubMed]

2017 (8)

L. Rani and N. Singh, “Dynamical electrical conductivity of graphene,” J. Phys. Condens. Matter 29(25), 255602 (2017).
[Crossref] [PubMed]

X. Kong, J. Xu, J. J. Mo, and S. Liu, “Broadband and conformal metamaterial absorber,” Front Optoelectron. 10(2), 124–131 (2017).
[Crossref]

W. Zhu, I. D. Rukhlenko, F. Xiao, C. He, J. Geng, X. Liang, M. Premaratne, and R. Jin, “Multiband coherent perfect absorption in a water-based metasurface,” Opt. Express 25(14), 15737–15745 (2017).
[Crossref] [PubMed]

Y. Lin, Y. Cui, F. Dinh, K. H. Fung, T. Ji, D. Li, and Y. Hao, “Tungsten based anisotropic metamaterial as an ultra-broadband absorber,” Opt. Mater. Express 7(2), 606–617 (2017).
[Crossref]

D. Lee, H. Jeong, and S. Lim, “Electronically switchable broadband metamaterial absorber,” Sci. Rep. 7(1), 4891 (2017).
[Crossref] [PubMed]

W. Zhu, F. Xiao, I. D. Rukhlenko, J. Geng, X. Liang, M. Premaratne, and R. Jin, “Wideband visible-light absorption in an ultrathin silicon nanostructure,” Opt. Express 25(5), 5781–5786 (2017).
[Crossref] [PubMed]

L. D. Hai, V. D. Qui, T. D. Hong, P. Hai, T. T. Giang, T. M. Cuong, B. S. Tung, and V. D. Lam, “Dual-band perfect absorption by breaking the symmetry of metamaterial structure,” J. Electron. Mater. 46(6), 3757–3763 (2017).
[Crossref]

A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, and E. Ozbay, “Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture,” Sci. Rep. 7(1), 4755 (2017).
[Crossref] [PubMed]

2016 (7)

C. Gong, M. Zhan, J. Yang, Z. Wang, H. Liu, Y. Zhao, and W. Liu, “Broadband terahertz metamaterial absorber based on sectional asymmetric structures,” Sci. Rep. 6(1), 32466 (2016).
[Crossref] [PubMed]

F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. I. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6(1), 39445 (2016).
[Crossref] [PubMed]

X. Liu, K. Bi, B. Li, Q. Zhao, and J. Zhou, “Metamaterial perfect absorber based on artificial dielectric “atoms”,” Opt. Express 24(18), 20454–20460 (2016).
[Crossref] [PubMed]

W. Zhu, F. Xiao, M. Kang, and M. Premaratne, “Coherent perfect absorption in an all-dielectric metasurface,” Appl. Phys. Lett. 108(12), 121901 (2016).
[Crossref]

H. Zhu, F. Yi, and E. Cubukcu, “Plasmonic metamaterial absorber for broadband manipulation of mechanical resonances,” Nat. Photonics 10(11), 709–714 (2016).
[Crossref]

J. Wu, “Broadband light absorption by tapered metal-dielectric multilayered grating structures,” Opt. Commun. 365, 93–98 (2016).
[Crossref]

X. Huang, H. Yang, D. Wang, S. Yu, Y. Lou, and L. Guo, “Calculations of a wideband metamaterial absorber using equivalent medium theory,” J. Phys. D Appl. Phys. 49(32), 325101 (2016).
[Crossref]

2015 (4)

B. M. Abu-Zied, M. A. Hussein, and A. M. Asiri, “Characterization, in situ electrical conductivity and thermal behavior of immobilized PEG on MCM-41,” Int. J. Electrochem. Sci. 10(6), 4873–4887 (2015).

Y. J. Yoo, S. Ju, S. Y. Park, Y. Ju Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial absorber for electromagnetic waves in periodic water droplets,” Sci. Rep. 5(1), 14018 (2015).
[Crossref] [PubMed]

P. Sengodu and A. D. Deshmukh, “Conducting polymers and their inorganic composites for advanced Li-ion batteries: a review,” RSC Advances 5(52), 42109–42130 (2015).
[Crossref]

C. Zhang, W. Zhou, S. Sun, N. Yi, Q. Song, and S. Xiao, “Absorption enhancement in thin-film organic solar cells through electric and magnetic resonances in optical metamaterial,” Opt. Mater. Express 5(9), 1954–1961 (2015).
[Crossref]

2014 (3)

B. X. Wang, L. L. Wang, G. Z. Wang, W. Q. Huang, X. D. Li, and X. Zhai, “Metamaterial-Based Low-Conductivity Alloy Perfect Absorber,” J. Lit. Technol. 32, 2293–2298 (2014).

D. T. Viet, N. T. Hien, P. V. Tuong, N. Q. Minh, P. T. Trangm, L. N. Lea, Y. P. Lee, and V. D. Lam, “Perfect absorber metamaterials: peak, multi-peak and broadband absorption,” Opt. Commun. 322, 209–213 (2014).
[Crossref]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

2013 (2)

B. X. Wang, L. L. Wang, G. Z. Wang, W. Q. Huang, X. F. Li, and X. Zhai, “Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber,” IEEE Photonics Technol. Lett. 26(2), 111–114 (2013).
[Crossref]

F. Costa, S. Genovesi, A. Monorchio, and G. Manara, “A circuit-based model for the interpretation of perfect metamaterial absorbers,” IEEE Trans. Antenn. Propag. 61(3), 1201–1209 (2013).
[Crossref]

2012 (4)

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[Crossref] [PubMed]

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial Electromagnetic Wave Absorbers,” Adv. Mater. 24(23), OP98 (2012).
[PubMed]

H. T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20(7), 7165–7172 (2012).
[Crossref] [PubMed]

2009 (1)

Z. Duan, B.-I. Wu, S. Xi, H. Chen, and M. Chen, “Research progress in reversed Cherenkov radiation in double-negative Metamaterials,” Prog. Electromagnetics Res. 90, 75–87 (2009).
[Crossref]

2008 (3)

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

J. W. Huh, Y. M. Kim, Y. W. Pack, C. J. Hwan, J. W. Lee, J. W. Lee, J. W. Yang, S. H. Ju, K. K. Paek, and B. K. Ju, “Characteristics of organic light-emitting diodes with conducting polymer anodes on plastic substrates,” J. Appl. Phys. 103(4), 044502 (2008).
[Crossref]

2006 (1)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

2005 (2)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

2000 (2)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Abu-Zied, B. M.

B. M. Abu-Zied, M. A. Hussein, and A. M. Asiri, “Characterization, in situ electrical conductivity and thermal behavior of immobilized PEG on MCM-41,” Int. J. Electrochem. Sci. 10(6), 4873–4887 (2015).

Asiri, A. M.

B. M. Abu-Zied, M. A. Hussein, and A. M. Asiri, “Characterization, in situ electrical conductivity and thermal behavior of immobilized PEG on MCM-41,” Int. J. Electrochem. Sci. 10(6), 4873–4887 (2015).

Averitt, R. D.

Bhardwaj, A.

A. Bhardwaj, A. A. Pal, K. Chatterjee, T. H. Rana, G. Bhattacharya, S. S. Roy, P. Chowdhury, G. D. Sharma, and S. Biswas, “Significant enhancement of power conversion efficiency of dye-sensitized solar cells by the incorporation of TiO2-Au nanocomposite in TiO2 photoanode,” J. Mater. Sci. 35, 8460–8473 (2018).

Bhattacharya, G.

A. Bhardwaj, A. A. Pal, K. Chatterjee, T. H. Rana, G. Bhattacharya, S. S. Roy, P. Chowdhury, G. D. Sharma, and S. Biswas, “Significant enhancement of power conversion efficiency of dye-sensitized solar cells by the incorporation of TiO2-Au nanocomposite in TiO2 photoanode,” J. Mater. Sci. 35, 8460–8473 (2018).

Bi, K.

Biswas, S.

A. Bhardwaj, A. A. Pal, K. Chatterjee, T. H. Rana, G. Bhattacharya, S. S. Roy, P. Chowdhury, G. D. Sharma, and S. Biswas, “Significant enhancement of power conversion efficiency of dye-sensitized solar cells by the incorporation of TiO2-Au nanocomposite in TiO2 photoanode,” J. Mater. Sci. 35, 8460–8473 (2018).

Boltasseva, A.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Bong, J.

Y. J. Yoo, S. Ju, S. Y. Park, Y. Ju Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial absorber for electromagnetic waves in periodic water droplets,” Sci. Rep. 5(1), 14018 (2015).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. I. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6(1), 39445 (2016).
[Crossref] [PubMed]

Bozok, B.

A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, and E. Ozbay, “Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture,” Sci. Rep. 7(1), 4755 (2017).
[Crossref] [PubMed]

Butun, B.

A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, and E. Ozbay, “Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture,” Sci. Rep. 7(1), 4755 (2017).
[Crossref] [PubMed]

Chatterjee, K.

A. Bhardwaj, A. A. Pal, K. Chatterjee, T. H. Rana, G. Bhattacharya, S. S. Roy, P. Chowdhury, G. D. Sharma, and S. Biswas, “Significant enhancement of power conversion efficiency of dye-sensitized solar cells by the incorporation of TiO2-Au nanocomposite in TiO2 photoanode,” J. Mater. Sci. 35, 8460–8473 (2018).

Chen, H.

Z. Duan, B.-I. Wu, S. Xi, H. Chen, and M. Chen, “Research progress in reversed Cherenkov radiation in double-negative Metamaterials,” Prog. Electromagnetics Res. 90, 75–87 (2009).
[Crossref]

Chen, H. T.

Chen, L.

H. Wang, K. Zheng, X. Zhang, Y. Wang, C. Xiao, L. Chen, and X. Tian, “Hollow microsphere-infused porous poly(vinylidene fluoride)/multiwall carbon nanotube composites with excellent electromagnetic shielding and low thermal transport,” J. Mater. Sci. 53(8), 6042–6052 (2018).
[Crossref]

Chen, M.

Z. Duan, B.-I. Wu, S. Xi, H. Chen, and M. Chen, “Research progress in reversed Cherenkov radiation in double-negative Metamaterials,” Prog. Electromagnetics Res. 90, 75–87 (2009).
[Crossref]

Chen, Y.

F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. I. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6(1), 39445 (2016).
[Crossref] [PubMed]

Chilkoti, A.

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[Crossref] [PubMed]

Chowdhury, P.

A. Bhardwaj, A. A. Pal, K. Chatterjee, T. H. Rana, G. Bhattacharya, S. S. Roy, P. Chowdhury, G. D. Sharma, and S. Biswas, “Significant enhancement of power conversion efficiency of dye-sensitized solar cells by the incorporation of TiO2-Au nanocomposite in TiO2 photoanode,” J. Mater. Sci. 35, 8460–8473 (2018).

Ciracì, C.

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[Crossref] [PubMed]

Costa, F.

F. Costa, S. Genovesi, A. Monorchio, and G. Manara, “A circuit-based model for the interpretation of perfect metamaterial absorbers,” IEEE Trans. Antenn. Propag. 61(3), 1201–1209 (2013).
[Crossref]

Cubukcu, E.

H. Zhu, F. Yi, and E. Cubukcu, “Plasmonic metamaterial absorber for broadband manipulation of mechanical resonances,” Nat. Photonics 10(11), 709–714 (2016).
[Crossref]

Cui, Y.

Y. Lin, Y. Cui, F. Dinh, K. H. Fung, T. Ji, D. Li, and Y. Hao, “Tungsten based anisotropic metamaterial as an ultra-broadband absorber,” Opt. Mater. Express 7(2), 606–617 (2017).
[Crossref]

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Cumming, D. R. S.

Cuong, T. M.

L. D. Hai, V. D. Qui, T. D. Hong, P. Hai, T. T. Giang, T. M. Cuong, B. S. Tung, and V. D. Lam, “Dual-band perfect absorption by breaking the symmetry of metamaterial structure,” J. Electron. Mater. 46(6), 3757–3763 (2017).
[Crossref]

Dai, J.

F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. I. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6(1), 39445 (2016).
[Crossref] [PubMed]

Deng, R.

R. Deng, M. Li, B. Muneer, Q. Zhu, Z. Shi, L. Song, and T. Zhang, “Theoretical analysis and design of Ultrathin broadband optically transparent microwave metamaterial absorbers,” Materials (Basel) 11(1), 107 (2018).
[Crossref] [PubMed]

Dereshgi, S. A.

A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, and E. Ozbay, “Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture,” Sci. Rep. 7(1), 4755 (2017).
[Crossref] [PubMed]

Deshmukh, A. D.

P. Sengodu and A. D. Deshmukh, “Conducting polymers and their inorganic composites for advanced Li-ion batteries: a review,” RSC Advances 5(52), 42109–42130 (2015).
[Crossref]

Ding, F.

F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. I. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6(1), 39445 (2016).
[Crossref] [PubMed]

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Dinh, F.

Dirdal, C. A.

C. A. Dirdal and J. Skaar, “Diamagnetism and the dispersion of the magnetic permeability,” Eur. Phys. J. B 91(6), 131 (2018).
[Crossref]

Dong, S.

Duan, G.

Duan, Z.

Z. Duan, B.-I. Wu, S. Xi, H. Chen, and M. Chen, “Research progress in reversed Cherenkov radiation in double-negative Metamaterials,” Prog. Electromagnetics Res. 90, 75–87 (2009).
[Crossref]

Escorcia-Carranza, I.

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Fung, K. H.

Ge, X.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Geng, J.

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Genovesi, S.

F. Costa, S. Genovesi, A. Monorchio, and G. Manara, “A circuit-based model for the interpretation of perfect metamaterial absorbers,” IEEE Trans. Antenn. Propag. 61(3), 1201–1209 (2013).
[Crossref]

Ghobadi, A.

A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, and E. Ozbay, “Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture,” Sci. Rep. 7(1), 4755 (2017).
[Crossref] [PubMed]

Giang, T. T.

L. D. Hai, V. D. Qui, T. D. Hong, P. Hai, T. T. Giang, T. M. Cuong, B. S. Tung, and V. D. Lam, “Dual-band perfect absorption by breaking the symmetry of metamaterial structure,” J. Electron. Mater. 46(6), 3757–3763 (2017).
[Crossref]

Gong, C.

C. Gong, M. Zhan, J. Yang, Z. Wang, H. Liu, Y. Zhao, and W. Liu, “Broadband terahertz metamaterial absorber based on sectional asymmetric structures,” Sci. Rep. 6(1), 32466 (2016).
[Crossref] [PubMed]

Grant, J.

Guan, J.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Guler, U.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Guo, L.

X. Huang, H. Yang, D. Wang, S. Yu, Y. Lou, and L. Guo, “Calculations of a wideband metamaterial absorber using equivalent medium theory,” J. Phys. D Appl. Phys. 49(32), 325101 (2016).
[Crossref]

Hai, L. D.

L. D. Hai, V. D. Qui, T. D. Hong, P. Hai, T. T. Giang, T. M. Cuong, B. S. Tung, and V. D. Lam, “Dual-band perfect absorption by breaking the symmetry of metamaterial structure,” J. Electron. Mater. 46(6), 3757–3763 (2017).
[Crossref]

Hai, P.

L. D. Hai, V. D. Qui, T. D. Hong, P. Hai, T. T. Giang, T. M. Cuong, B. S. Tung, and V. D. Lam, “Dual-band perfect absorption by breaking the symmetry of metamaterial structure,” J. Electron. Mater. 46(6), 3757–3763 (2017).
[Crossref]

Hajian, H.

A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, and E. Ozbay, “Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture,” Sci. Rep. 7(1), 4755 (2017).
[Crossref] [PubMed]

Hao, Y.

He, C.

He, S.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

He, Z.

Hien, N. T.

D. T. Viet, N. T. Hien, P. V. Tuong, N. Q. Minh, P. T. Trangm, L. N. Lea, Y. P. Lee, and V. D. Lam, “Perfect absorber metamaterials: peak, multi-peak and broadband absorption,” Opt. Commun. 322, 209–213 (2014).
[Crossref]

Hill, R. T.

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[Crossref] [PubMed]

Hong, T. D.

L. D. Hai, V. D. Qui, T. D. Hong, P. Hai, T. T. Giang, T. M. Cuong, B. S. Tung, and V. D. Lam, “Dual-band perfect absorption by breaking the symmetry of metamaterial structure,” J. Electron. Mater. 46(6), 3757–3763 (2017).
[Crossref]

Huang, H.

Huang, W. Q.

B. X. Wang, L. L. Wang, G. Z. Wang, W. Q. Huang, X. D. Li, and X. Zhai, “Metamaterial-Based Low-Conductivity Alloy Perfect Absorber,” J. Lit. Technol. 32, 2293–2298 (2014).

B. X. Wang, L. L. Wang, G. Z. Wang, W. Q. Huang, X. F. Li, and X. Zhai, “Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber,” IEEE Photonics Technol. Lett. 26(2), 111–114 (2013).
[Crossref]

Huang, X.

X. Huang, H. Yang, D. Wang, S. Yu, Y. Lou, and L. Guo, “Calculations of a wideband metamaterial absorber using equivalent medium theory,” J. Phys. D Appl. Phys. 49(32), 325101 (2016).
[Crossref]

Huh, J. W.

J. W. Huh, Y. M. Kim, Y. W. Pack, C. J. Hwan, J. W. Lee, J. W. Lee, J. W. Yang, S. H. Ju, K. K. Paek, and B. K. Ju, “Characteristics of organic light-emitting diodes with conducting polymer anodes on plastic substrates,” J. Appl. Phys. 103(4), 044502 (2008).
[Crossref]

Hussein, M. A.

B. M. Abu-Zied, M. A. Hussein, and A. M. Asiri, “Characterization, in situ electrical conductivity and thermal behavior of immobilized PEG on MCM-41,” Int. J. Electrochem. Sci. 10(6), 4873–4887 (2015).

Hwan, C. J.

J. W. Huh, Y. M. Kim, Y. W. Pack, C. J. Hwan, J. W. Lee, J. W. Lee, J. W. Yang, S. H. Ju, K. K. Paek, and B. K. Ju, “Characteristics of organic light-emitting diodes with conducting polymer anodes on plastic substrates,” J. Appl. Phys. 103(4), 044502 (2008).
[Crossref]

Jeong, H.

D. Lee, H. Jeong, and S. Lim, “Electronically switchable broadband metamaterial absorber,” Sci. Rep. 7(1), 4891 (2017).
[Crossref] [PubMed]

Ji, T.

Jin, R.

Jin, Y.

F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. I. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6(1), 39445 (2016).
[Crossref] [PubMed]

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Ju, B. K.

J. W. Huh, Y. M. Kim, Y. W. Pack, C. J. Hwan, J. W. Lee, J. W. Lee, J. W. Yang, S. H. Ju, K. K. Paek, and B. K. Ju, “Characteristics of organic light-emitting diodes with conducting polymer anodes on plastic substrates,” J. Appl. Phys. 103(4), 044502 (2008).
[Crossref]

Ju, S.

Y. J. Yoo, S. Ju, S. Y. Park, Y. Ju Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial absorber for electromagnetic waves in periodic water droplets,” Sci. Rep. 5(1), 14018 (2015).
[Crossref] [PubMed]

Ju, S. H.

J. W. Huh, Y. M. Kim, Y. W. Pack, C. J. Hwan, J. W. Lee, J. W. Lee, J. W. Yang, S. H. Ju, K. K. Paek, and B. K. Ju, “Characteristics of organic light-emitting diodes with conducting polymer anodes on plastic substrates,” J. Appl. Phys. 103(4), 044502 (2008).
[Crossref]

Ju Kim, Y.

Y. J. Yoo, S. Ju, S. Y. Park, Y. Ju Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial absorber for electromagnetic waves in periodic water droplets,” Sci. Rep. 5(1), 14018 (2015).
[Crossref] [PubMed]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Kang, M.

W. Zhu, F. Xiao, M. Kang, and M. Premaratne, “Coherent perfect absorption in an all-dielectric metasurface,” Appl. Phys. Lett. 108(12), 121901 (2016).
[Crossref]

Kenney, M.

Kildishev, A. V.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Kim, K. W.

Y. J. Yoo, S. Ju, S. Y. Park, Y. Ju Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial absorber for electromagnetic waves in periodic water droplets,” Sci. Rep. 5(1), 14018 (2015).
[Crossref] [PubMed]

Kim, Y. M.

J. W. Huh, Y. M. Kim, Y. W. Pack, C. J. Hwan, J. W. Lee, J. W. Lee, J. W. Yang, S. H. Ju, K. K. Paek, and B. K. Ju, “Characteristics of organic light-emitting diodes with conducting polymer anodes on plastic substrates,” J. Appl. Phys. 103(4), 044502 (2008).
[Crossref]

Kinsey, N.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Kong, X.

X. Kong, J. Xu, J. J. Mo, and S. Liu, “Broadband and conformal metamaterial absorber,” Front Optoelectron. 10(2), 124–131 (2017).
[Crossref]

Koschny, T.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

Lam, V. D.

L. D. Hai, V. D. Qui, T. D. Hong, P. Hai, T. T. Giang, T. M. Cuong, B. S. Tung, and V. D. Lam, “Dual-band perfect absorption by breaking the symmetry of metamaterial structure,” J. Electron. Mater. 46(6), 3757–3763 (2017).
[Crossref]

D. T. Viet, N. T. Hien, P. V. Tuong, N. Q. Minh, P. T. Trangm, L. N. Lea, Y. P. Lee, and V. D. Lam, “Perfect absorber metamaterials: peak, multi-peak and broadband absorption,” Opt. Commun. 322, 209–213 (2014).
[Crossref]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Lea, L. N.

D. T. Viet, N. T. Hien, P. V. Tuong, N. Q. Minh, P. T. Trangm, L. N. Lea, Y. P. Lee, and V. D. Lam, “Perfect absorber metamaterials: peak, multi-peak and broadband absorption,” Opt. Commun. 322, 209–213 (2014).
[Crossref]

Lee, D.

D. Lee, H. Jeong, and S. Lim, “Electronically switchable broadband metamaterial absorber,” Sci. Rep. 7(1), 4891 (2017).
[Crossref] [PubMed]

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Lee, J. W.

J. W. Huh, Y. M. Kim, Y. W. Pack, C. J. Hwan, J. W. Lee, J. W. Lee, J. W. Yang, S. H. Ju, K. K. Paek, and B. K. Ju, “Characteristics of organic light-emitting diodes with conducting polymer anodes on plastic substrates,” J. Appl. Phys. 103(4), 044502 (2008).
[Crossref]

J. W. Huh, Y. M. Kim, Y. W. Pack, C. J. Hwan, J. W. Lee, J. W. Lee, J. W. Yang, S. H. Ju, K. K. Paek, and B. K. Ju, “Characteristics of organic light-emitting diodes with conducting polymer anodes on plastic substrates,” J. Appl. Phys. 103(4), 044502 (2008).
[Crossref]

Lee, Y.

Y. J. Yoo, S. Ju, S. Y. Park, Y. Ju Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial absorber for electromagnetic waves in periodic water droplets,” Sci. Rep. 5(1), 14018 (2015).
[Crossref] [PubMed]

Lee, Y. P.

D. T. Viet, N. T. Hien, P. V. Tuong, N. Q. Minh, P. T. Trangm, L. N. Lea, Y. P. Lee, and V. D. Lam, “Perfect absorber metamaterials: peak, multi-peak and broadband absorption,” Opt. Commun. 322, 209–213 (2014).
[Crossref]

Lei, L.

Li, B.

Li, D.

Li, M.

R. Deng, M. Li, B. Muneer, Q. Zhu, Z. Shi, L. Song, and T. Zhang, “Theoretical analysis and design of Ultrathin broadband optically transparent microwave metamaterial absorbers,” Materials (Basel) 11(1), 107 (2018).
[Crossref] [PubMed]

Li, S.

Li, W.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Li, X. D.

B. X. Wang, L. L. Wang, G. Z. Wang, W. Q. Huang, X. D. Li, and X. Zhai, “Metamaterial-Based Low-Conductivity Alloy Perfect Absorber,” J. Lit. Technol. 32, 2293–2298 (2014).

Li, X. F.

B. X. Wang, L. L. Wang, G. Z. Wang, W. Q. Huang, X. F. Li, and X. Zhai, “Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber,” IEEE Photonics Technol. Lett. 26(2), 111–114 (2013).
[Crossref]

Liang, X.

Lim, S.

T. T. Nguyen and S. Lim, “Design of metamaterial absorber using Eight-Resistive-Arm cell for simultaneous broadband and wide-incidence-angle absorption,” Sci. Rep. 8(1), 6633 (2018).
[Crossref] [PubMed]

D. Lee, H. Jeong, and S. Lim, “Electronically switchable broadband metamaterial absorber,” Sci. Rep. 7(1), 4891 (2017).
[Crossref] [PubMed]

Lim, T.

Y. J. Yoo, S. Ju, S. Y. Park, Y. Ju Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial absorber for electromagnetic waves in periodic water droplets,” Sci. Rep. 5(1), 14018 (2015).
[Crossref] [PubMed]

Lin, Y.

Liu, H.

Liu, M.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Liu, S.

X. Kong, J. Xu, J. J. Mo, and S. Liu, “Broadband and conformal metamaterial absorber,” Front Optoelectron. 10(2), 124–131 (2017).
[Crossref]

Liu, W.

C. Gong, M. Zhan, J. Yang, Z. Wang, H. Liu, Y. Zhao, and W. Liu, “Broadband terahertz metamaterial absorber based on sectional asymmetric structures,” Sci. Rep. 6(1), 32466 (2016).
[Crossref] [PubMed]

Liu, X.

Lou, Y.

X. Huang, H. Yang, D. Wang, S. Yu, Y. Lou, and L. Guo, “Calculations of a wideband metamaterial absorber using equivalent medium theory,” J. Phys. D Appl. Phys. 49(32), 325101 (2016).
[Crossref]

Manara, G.

F. Costa, S. Genovesi, A. Monorchio, and G. Manara, “A circuit-based model for the interpretation of perfect metamaterial absorbers,” IEEE Trans. Antenn. Propag. 61(3), 1201–1209 (2013).
[Crossref]

Minh, N. Q.

D. T. Viet, N. T. Hien, P. V. Tuong, N. Q. Minh, P. T. Trangm, L. N. Lea, Y. P. Lee, and V. D. Lam, “Perfect absorber metamaterials: peak, multi-peak and broadband absorption,” Opt. Commun. 322, 209–213 (2014).
[Crossref]

Mo, J. J.

X. Kong, J. Xu, J. J. Mo, and S. Liu, “Broadband and conformal metamaterial absorber,” Front Optoelectron. 10(2), 124–131 (2017).
[Crossref]

Mock, J. J.

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Monorchio, A.

F. Costa, S. Genovesi, A. Monorchio, and G. Manara, “A circuit-based model for the interpretation of perfect metamaterial absorbers,” IEEE Trans. Antenn. Propag. 61(3), 1201–1209 (2013).
[Crossref]

Moreau, A.

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[Crossref] [PubMed]

Muneer, B.

R. Deng, M. Li, B. Muneer, Q. Zhu, Z. Shi, L. Song, and T. Zhang, “Theoretical analysis and design of Ultrathin broadband optically transparent microwave metamaterial absorbers,” Materials (Basel) 11(1), 107 (2018).
[Crossref] [PubMed]

Naik, G. V.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Nguyen, T. T.

T. T. Nguyen and S. Lim, “Design of metamaterial absorber using Eight-Resistive-Arm cell for simultaneous broadband and wide-incidence-angle absorption,” Sci. Rep. 8(1), 6633 (2018).
[Crossref] [PubMed]

Ozbay, E.

A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, and E. Ozbay, “Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture,” Sci. Rep. 7(1), 4755 (2017).
[Crossref] [PubMed]

Pack, Y. W.

J. W. Huh, Y. M. Kim, Y. W. Pack, C. J. Hwan, J. W. Lee, J. W. Lee, J. W. Yang, S. H. Ju, K. K. Paek, and B. K. Ju, “Characteristics of organic light-emitting diodes with conducting polymer anodes on plastic substrates,” J. Appl. Phys. 103(4), 044502 (2008).
[Crossref]

Padilla, W. J.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial Electromagnetic Wave Absorbers,” Adv. Mater. 24(23), OP98 (2012).
[PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Paek, K. K.

J. W. Huh, Y. M. Kim, Y. W. Pack, C. J. Hwan, J. W. Lee, J. W. Lee, J. W. Yang, S. H. Ju, K. K. Paek, and B. K. Ju, “Characteristics of organic light-emitting diodes with conducting polymer anodes on plastic substrates,” J. Appl. Phys. 103(4), 044502 (2008).
[Crossref]

Pal, A. A.

A. Bhardwaj, A. A. Pal, K. Chatterjee, T. H. Rana, G. Bhattacharya, S. S. Roy, P. Chowdhury, G. D. Sharma, and S. Biswas, “Significant enhancement of power conversion efficiency of dye-sensitized solar cells by the incorporation of TiO2-Au nanocomposite in TiO2 photoanode,” J. Mater. Sci. 35, 8460–8473 (2018).

Park, S. Y.

Y. J. Yoo, S. Ju, S. Y. Park, Y. Ju Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial absorber for electromagnetic waves in periodic water droplets,” Sci. Rep. 5(1), 14018 (2015).
[Crossref] [PubMed]

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Premaratne, M.

Qui, V. D.

L. D. Hai, V. D. Qui, T. D. Hong, P. Hai, T. T. Giang, T. M. Cuong, B. S. Tung, and V. D. Lam, “Dual-band perfect absorption by breaking the symmetry of metamaterial structure,” J. Electron. Mater. 46(6), 3757–3763 (2017).
[Crossref]

Rana, T. H.

A. Bhardwaj, A. A. Pal, K. Chatterjee, T. H. Rana, G. Bhattacharya, S. S. Roy, P. Chowdhury, G. D. Sharma, and S. Biswas, “Significant enhancement of power conversion efficiency of dye-sensitized solar cells by the incorporation of TiO2-Au nanocomposite in TiO2 photoanode,” J. Mater. Sci. 35, 8460–8473 (2018).

Rani, L.

L. Rani and N. Singh, “Dynamical electrical conductivity of graphene,” J. Phys. Condens. Matter 29(25), 255602 (2017).
[Crossref] [PubMed]

Rhee, J. Y.

Y. J. Yoo, S. Ju, S. Y. Park, Y. Ju Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial absorber for electromagnetic waves in periodic water droplets,” Sci. Rep. 5(1), 14018 (2015).
[Crossref] [PubMed]

Roy, S. S.

A. Bhardwaj, A. A. Pal, K. Chatterjee, T. H. Rana, G. Bhattacharya, S. S. Roy, P. Chowdhury, G. D. Sharma, and S. Biswas, “Significant enhancement of power conversion efficiency of dye-sensitized solar cells by the incorporation of TiO2-Au nanocomposite in TiO2 photoanode,” J. Mater. Sci. 35, 8460–8473 (2018).

Rukhlenko, I. D.

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Schalch, J.

Schultz, S.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Sengodu, P.

P. Sengodu and A. D. Deshmukh, “Conducting polymers and their inorganic composites for advanced Li-ion batteries: a review,” RSC Advances 5(52), 42109–42130 (2015).
[Crossref]

Shah, Y. D.

Shalaev, V. M.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Sharma, G. D.

A. Bhardwaj, A. A. Pal, K. Chatterjee, T. H. Rana, G. Bhattacharya, S. S. Roy, P. Chowdhury, G. D. Sharma, and S. Biswas, “Significant enhancement of power conversion efficiency of dye-sensitized solar cells by the incorporation of TiO2-Au nanocomposite in TiO2 photoanode,” J. Mater. Sci. 35, 8460–8473 (2018).

Shi, Z.

R. Deng, M. Li, B. Muneer, Q. Zhu, Z. Shi, L. Song, and T. Zhang, “Theoretical analysis and design of Ultrathin broadband optically transparent microwave metamaterial absorbers,” Materials (Basel) 11(1), 107 (2018).
[Crossref] [PubMed]

Singh, N.

L. Rani and N. Singh, “Dynamical electrical conductivity of graphene,” J. Phys. Condens. Matter 29(25), 255602 (2017).
[Crossref] [PubMed]

Skaar, J.

C. A. Dirdal and J. Skaar, “Diamagnetism and the dispersion of the magnetic permeability,” Eur. Phys. J. B 91(6), 131 (2018).
[Crossref]

Smith, D. R.

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Song, L.

R. Deng, M. Li, B. Muneer, Q. Zhu, Z. Shi, L. Song, and T. Zhang, “Theoretical analysis and design of Ultrathin broadband optically transparent microwave metamaterial absorbers,” Materials (Basel) 11(1), 107 (2018).
[Crossref] [PubMed]

Song, Q.

Soukoulis, C. M.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Sun, C.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Sun, S.

Tao, K.

Tian, X.

H. Wang, K. Zheng, X. Zhang, Y. Wang, C. Xiao, L. Chen, and X. Tian, “Hollow microsphere-infused porous poly(vinylidene fluoride)/multiwall carbon nanotube composites with excellent electromagnetic shielding and low thermal transport,” J. Mater. Sci. 53(8), 6042–6052 (2018).
[Crossref]

Trangm, P. T.

D. T. Viet, N. T. Hien, P. V. Tuong, N. Q. Minh, P. T. Trangm, L. N. Lea, Y. P. Lee, and V. D. Lam, “Perfect absorber metamaterials: peak, multi-peak and broadband absorption,” Opt. Commun. 322, 209–213 (2014).
[Crossref]

Tung, B. S.

L. D. Hai, V. D. Qui, T. D. Hong, P. Hai, T. T. Giang, T. M. Cuong, B. S. Tung, and V. D. Lam, “Dual-band perfect absorption by breaking the symmetry of metamaterial structure,” J. Electron. Mater. 46(6), 3757–3763 (2017).
[Crossref]

Tuong, P. V.

D. T. Viet, N. T. Hien, P. V. Tuong, N. Q. Minh, P. T. Trangm, L. N. Lea, Y. P. Lee, and V. D. Lam, “Perfect absorber metamaterials: peak, multi-peak and broadband absorption,” Opt. Commun. 322, 209–213 (2014).
[Crossref]

Vier, D. C.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Viet, D. T.

D. T. Viet, N. T. Hien, P. V. Tuong, N. Q. Minh, P. T. Trangm, L. N. Lea, Y. P. Lee, and V. D. Lam, “Perfect absorber metamaterials: peak, multi-peak and broadband absorption,” Opt. Commun. 322, 209–213 (2014).
[Crossref]

Wang, B. X.

B. X. Wang, L. L. Wang, G. Z. Wang, W. Q. Huang, X. D. Li, and X. Zhai, “Metamaterial-Based Low-Conductivity Alloy Perfect Absorber,” J. Lit. Technol. 32, 2293–2298 (2014).

B. X. Wang, L. L. Wang, G. Z. Wang, W. Q. Huang, X. F. Li, and X. Zhai, “Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber,” IEEE Photonics Technol. Lett. 26(2), 111–114 (2013).
[Crossref]

Wang, D.

X. Huang, H. Yang, D. Wang, S. Yu, Y. Lou, and L. Guo, “Calculations of a wideband metamaterial absorber using equivalent medium theory,” J. Phys. D Appl. Phys. 49(32), 325101 (2016).
[Crossref]

Wang, G. Z.

B. X. Wang, L. L. Wang, G. Z. Wang, W. Q. Huang, X. D. Li, and X. Zhai, “Metamaterial-Based Low-Conductivity Alloy Perfect Absorber,” J. Lit. Technol. 32, 2293–2298 (2014).

B. X. Wang, L. L. Wang, G. Z. Wang, W. Q. Huang, X. F. Li, and X. Zhai, “Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber,” IEEE Photonics Technol. Lett. 26(2), 111–114 (2013).
[Crossref]

Wang, H.

H. Wang, K. Zheng, X. Zhang, Y. Wang, C. Xiao, L. Chen, and X. Tian, “Hollow microsphere-infused porous poly(vinylidene fluoride)/multiwall carbon nanotube composites with excellent electromagnetic shielding and low thermal transport,” J. Mater. Sci. 53(8), 6042–6052 (2018).
[Crossref]

Wang, L. L.

B. X. Wang, L. L. Wang, G. Z. Wang, W. Q. Huang, X. D. Li, and X. Zhai, “Metamaterial-Based Low-Conductivity Alloy Perfect Absorber,” J. Lit. Technol. 32, 2293–2298 (2014).

B. X. Wang, L. L. Wang, G. Z. Wang, W. Q. Huang, X. F. Li, and X. Zhai, “Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber,” IEEE Photonics Technol. Lett. 26(2), 111–114 (2013).
[Crossref]

Wang, Q.

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[Crossref] [PubMed]

Wang, Y.

H. Wang, K. Zheng, X. Zhang, Y. Wang, C. Xiao, L. Chen, and X. Tian, “Hollow microsphere-infused porous poly(vinylidene fluoride)/multiwall carbon nanotube composites with excellent electromagnetic shielding and low thermal transport,” J. Mater. Sci. 53(8), 6042–6052 (2018).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Wang, Z.

C. Gong, M. Zhan, J. Yang, Z. Wang, H. Liu, Y. Zhao, and W. Liu, “Broadband terahertz metamaterial absorber based on sectional asymmetric structures,” Sci. Rep. 6(1), 32466 (2016).
[Crossref] [PubMed]

Watts, C. M.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial Electromagnetic Wave Absorbers,” Adv. Mater. 24(23), OP98 (2012).
[PubMed]

Wiley, B. J.

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[Crossref] [PubMed]

Wu, B.-I.

Z. Duan, B.-I. Wu, S. Xi, H. Chen, and M. Chen, “Research progress in reversed Cherenkov radiation in double-negative Metamaterials,” Prog. Electromagnetics Res. 90, 75–87 (2009).
[Crossref]

Wu, J.

J. Wu, “Broadband light absorption by tapered metal-dielectric multilayered grating structures,” Opt. Commun. 365, 93–98 (2016).
[Crossref]

Xi, S.

Z. Duan, B.-I. Wu, S. Xi, H. Chen, and M. Chen, “Research progress in reversed Cherenkov radiation in double-negative Metamaterials,” Prog. Electromagnetics Res. 90, 75–87 (2009).
[Crossref]

Xiao, C.

H. Wang, K. Zheng, X. Zhang, Y. Wang, C. Xiao, L. Chen, and X. Tian, “Hollow microsphere-infused porous poly(vinylidene fluoride)/multiwall carbon nanotube composites with excellent electromagnetic shielding and low thermal transport,” J. Mater. Sci. 53(8), 6042–6052 (2018).
[Crossref]

Xiao, F.

Xiao, S.

Xie, J.

Xu, J.

X. Kong, J. Xu, J. J. Mo, and S. Liu, “Broadband and conformal metamaterial absorber,” Front Optoelectron. 10(2), 124–131 (2017).
[Crossref]

Xu, P.

Yang, H.

X. Huang, H. Yang, D. Wang, S. Yu, Y. Lou, and L. Guo, “Calculations of a wideband metamaterial absorber using equivalent medium theory,” J. Phys. D Appl. Phys. 49(32), 325101 (2016).
[Crossref]

Yang, J.

C. Gong, M. Zhan, J. Yang, Z. Wang, H. Liu, Y. Zhao, and W. Liu, “Broadband terahertz metamaterial absorber based on sectional asymmetric structures,” Sci. Rep. 6(1), 32466 (2016).
[Crossref] [PubMed]

Yang, J. W.

J. W. Huh, Y. M. Kim, Y. W. Pack, C. J. Hwan, J. W. Lee, J. W. Lee, J. W. Yang, S. H. Ju, K. K. Paek, and B. K. Ju, “Characteristics of organic light-emitting diodes with conducting polymer anodes on plastic substrates,” J. Appl. Phys. 103(4), 044502 (2008).
[Crossref]

Yi, F.

H. Zhu, F. Yi, and E. Cubukcu, “Plasmonic metamaterial absorber for broadband manipulation of mechanical resonances,” Nat. Photonics 10(11), 709–714 (2016).
[Crossref]

Yi, N.

Yoo, Y. J.

Y. J. Yoo, S. Ju, S. Y. Park, Y. Ju Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial absorber for electromagnetic waves in periodic water droplets,” Sci. Rep. 5(1), 14018 (2015).
[Crossref] [PubMed]

Yu, S.

X. Huang, H. Yang, D. Wang, S. Yu, Y. Lou, and L. Guo, “Calculations of a wideband metamaterial absorber using equivalent medium theory,” J. Phys. D Appl. Phys. 49(32), 325101 (2016).
[Crossref]

Zhai, X.

B. X. Wang, L. L. Wang, G. Z. Wang, W. Q. Huang, X. D. Li, and X. Zhai, “Metamaterial-Based Low-Conductivity Alloy Perfect Absorber,” J. Lit. Technol. 32, 2293–2298 (2014).

B. X. Wang, L. L. Wang, G. Z. Wang, W. Q. Huang, X. F. Li, and X. Zhai, “Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber,” IEEE Photonics Technol. Lett. 26(2), 111–114 (2013).
[Crossref]

Zhan, M.

C. Gong, M. Zhan, J. Yang, Z. Wang, H. Liu, Y. Zhao, and W. Liu, “Broadband terahertz metamaterial absorber based on sectional asymmetric structures,” Sci. Rep. 6(1), 32466 (2016).
[Crossref] [PubMed]

Zhang, C.

Zhang, J.

Zhang, S.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Zhang, T.

R. Deng, M. Li, B. Muneer, Q. Zhu, Z. Shi, L. Song, and T. Zhang, “Theoretical analysis and design of Ultrathin broadband optically transparent microwave metamaterial absorbers,” Materials (Basel) 11(1), 107 (2018).
[Crossref] [PubMed]

Zhang, X.

H. Wang, K. Zheng, X. Zhang, Y. Wang, C. Xiao, L. Chen, and X. Tian, “Hollow microsphere-infused porous poly(vinylidene fluoride)/multiwall carbon nanotube composites with excellent electromagnetic shielding and low thermal transport,” J. Mater. Sci. 53(8), 6042–6052 (2018).
[Crossref]

G. Duan, J. Schalch, X. Zhao, J. Zhang, R. D. Averitt, and X. Zhang, “Analysis of the thickness dependence of metamaterial absorbers at terahertz frequencies,” Opt. Express 26(3), 2242–2251 (2018).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Zhao, L.

Zhao, Q.

Zhao, X.

Zhao, Y.

C. Gong, M. Zhan, J. Yang, Z. Wang, H. Liu, Y. Zhao, and W. Liu, “Broadband terahertz metamaterial absorber based on sectional asymmetric structures,” Sci. Rep. 6(1), 32466 (2016).
[Crossref] [PubMed]

Zheng, K.

H. Wang, K. Zheng, X. Zhang, Y. Wang, C. Xiao, L. Chen, and X. Tian, “Hollow microsphere-infused porous poly(vinylidene fluoride)/multiwall carbon nanotube composites with excellent electromagnetic shielding and low thermal transport,” J. Mater. Sci. 53(8), 6042–6052 (2018).
[Crossref]

Zhou, J.

Zhou, W.

Zhu, H.

H. Zhu, F. Yi, and E. Cubukcu, “Plasmonic metamaterial absorber for broadband manipulation of mechanical resonances,” Nat. Photonics 10(11), 709–714 (2016).
[Crossref]

Zhu, J.

F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. I. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6(1), 39445 (2016).
[Crossref] [PubMed]

Zhu, Q.

R. Deng, M. Li, B. Muneer, Q. Zhu, Z. Shi, L. Song, and T. Zhang, “Theoretical analysis and design of Ultrathin broadband optically transparent microwave metamaterial absorbers,” Materials (Basel) 11(1), 107 (2018).
[Crossref] [PubMed]

Zhu, W.

Adv. Mater. (2)

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial Electromagnetic Wave Absorbers,” Adv. Mater. 24(23), OP98 (2012).
[PubMed]

Appl. Phys. Lett. (2)

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

W. Zhu, F. Xiao, M. Kang, and M. Premaratne, “Coherent perfect absorption in an all-dielectric metasurface,” Appl. Phys. Lett. 108(12), 121901 (2016).
[Crossref]

Eur. Phys. J. B (1)

C. A. Dirdal and J. Skaar, “Diamagnetism and the dispersion of the magnetic permeability,” Eur. Phys. J. B 91(6), 131 (2018).
[Crossref]

Front Optoelectron. (1)

X. Kong, J. Xu, J. J. Mo, and S. Liu, “Broadband and conformal metamaterial absorber,” Front Optoelectron. 10(2), 124–131 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (1)

B. X. Wang, L. L. Wang, G. Z. Wang, W. Q. Huang, X. F. Li, and X. Zhai, “Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber,” IEEE Photonics Technol. Lett. 26(2), 111–114 (2013).
[Crossref]

IEEE Trans. Antenn. Propag. (1)

F. Costa, S. Genovesi, A. Monorchio, and G. Manara, “A circuit-based model for the interpretation of perfect metamaterial absorbers,” IEEE Trans. Antenn. Propag. 61(3), 1201–1209 (2013).
[Crossref]

Int. J. Electrochem. Sci. (1)

B. M. Abu-Zied, M. A. Hussein, and A. M. Asiri, “Characterization, in situ electrical conductivity and thermal behavior of immobilized PEG on MCM-41,” Int. J. Electrochem. Sci. 10(6), 4873–4887 (2015).

J. Appl. Phys. (1)

J. W. Huh, Y. M. Kim, Y. W. Pack, C. J. Hwan, J. W. Lee, J. W. Lee, J. W. Yang, S. H. Ju, K. K. Paek, and B. K. Ju, “Characteristics of organic light-emitting diodes with conducting polymer anodes on plastic substrates,” J. Appl. Phys. 103(4), 044502 (2008).
[Crossref]

J. Electron. Mater. (1)

L. D. Hai, V. D. Qui, T. D. Hong, P. Hai, T. T. Giang, T. M. Cuong, B. S. Tung, and V. D. Lam, “Dual-band perfect absorption by breaking the symmetry of metamaterial structure,” J. Electron. Mater. 46(6), 3757–3763 (2017).
[Crossref]

J. Lit. Technol. (1)

B. X. Wang, L. L. Wang, G. Z. Wang, W. Q. Huang, X. D. Li, and X. Zhai, “Metamaterial-Based Low-Conductivity Alloy Perfect Absorber,” J. Lit. Technol. 32, 2293–2298 (2014).

J. Mater. Sci. (2)

A. Bhardwaj, A. A. Pal, K. Chatterjee, T. H. Rana, G. Bhattacharya, S. S. Roy, P. Chowdhury, G. D. Sharma, and S. Biswas, “Significant enhancement of power conversion efficiency of dye-sensitized solar cells by the incorporation of TiO2-Au nanocomposite in TiO2 photoanode,” J. Mater. Sci. 35, 8460–8473 (2018).

H. Wang, K. Zheng, X. Zhang, Y. Wang, C. Xiao, L. Chen, and X. Tian, “Hollow microsphere-infused porous poly(vinylidene fluoride)/multiwall carbon nanotube composites with excellent electromagnetic shielding and low thermal transport,” J. Mater. Sci. 53(8), 6042–6052 (2018).
[Crossref]

J. Phys. Condens. Matter (1)

L. Rani and N. Singh, “Dynamical electrical conductivity of graphene,” J. Phys. Condens. Matter 29(25), 255602 (2017).
[Crossref] [PubMed]

J. Phys. D Appl. Phys. (1)

X. Huang, H. Yang, D. Wang, S. Yu, Y. Lou, and L. Guo, “Calculations of a wideband metamaterial absorber using equivalent medium theory,” J. Phys. D Appl. Phys. 49(32), 325101 (2016).
[Crossref]

Materials (Basel) (1)

R. Deng, M. Li, B. Muneer, Q. Zhu, Z. Shi, L. Song, and T. Zhang, “Theoretical analysis and design of Ultrathin broadband optically transparent microwave metamaterial absorbers,” Materials (Basel) 11(1), 107 (2018).
[Crossref] [PubMed]

Nat. Photonics (1)

H. Zhu, F. Yi, and E. Cubukcu, “Plasmonic metamaterial absorber for broadband manipulation of mechanical resonances,” Nat. Photonics 10(11), 709–714 (2016).
[Crossref]

Nature (1)

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[Crossref] [PubMed]

Opt. Commun. (2)

D. T. Viet, N. T. Hien, P. V. Tuong, N. Q. Minh, P. T. Trangm, L. N. Lea, Y. P. Lee, and V. D. Lam, “Perfect absorber metamaterials: peak, multi-peak and broadband absorption,” Opt. Commun. 322, 209–213 (2014).
[Crossref]

J. Wu, “Broadband light absorption by tapered metal-dielectric multilayered grating structures,” Opt. Commun. 365, 93–98 (2016).
[Crossref]

Opt. Express (9)

X. Liu, K. Bi, B. Li, Q. Zhao, and J. Zhou, “Metamaterial perfect absorber based on artificial dielectric “atoms”,” Opt. Express 24(18), 20454–20460 (2016).
[Crossref] [PubMed]

H. T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20(7), 7165–7172 (2012).
[Crossref] [PubMed]

W. Zhu, F. Xiao, I. D. Rukhlenko, J. Geng, X. Liang, M. Premaratne, and R. Jin, “Wideband visible-light absorption in an ultrathin silicon nanostructure,” Opt. Express 25(5), 5781–5786 (2017).
[Crossref] [PubMed]

W. Zhu, I. D. Rukhlenko, F. Xiao, C. He, J. Geng, X. Liang, M. Premaratne, and R. Jin, “Multiband coherent perfect absorption in a water-based metasurface,” Opt. Express 25(14), 15737–15745 (2017).
[Crossref] [PubMed]

G. Duan, J. Schalch, X. Zhao, J. Zhang, R. D. Averitt, and X. Zhang, “Analysis of the thickness dependence of metamaterial absorbers at terahertz frequencies,” Opt. Express 26(3), 2242–2251 (2018).
[Crossref] [PubMed]

J. Xie, W. Zhu, I. D. Rukhlenko, F. Xiao, C. He, J. Geng, X. Liang, R. Jin, and M. Premaratne, “Water metamaterial for ultra-broadband and wide-angle absorption,” Opt. Express 26(4), 5052–5059 (2018).
[Crossref] [PubMed]

L. Lei, S. Li, H. Huang, K. Tao, and P. Xu, “Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial,” Opt. Express 26(5), 5686–5693 (2018).
[Crossref] [PubMed]

J. Grant, M. Kenney, Y. D. Shah, I. Escorcia-Carranza, and D. R. S. Cumming, “CMOS compatible metamaterial absorbers for hyperspectral medium wave infrared imaging and sensing applications,” Opt. Express 26(8), 10408–10420 (2018).
[Crossref] [PubMed]

L. Zhao, H. Liu, Z. He, and S. Dong, “Theoretical design of twelve-band infrared metamaterial perfect absorber by combining the dipole, quadrupole, and octopole plasmon resonance modes of four different ring-strip resonators,” Opt. Express 26(10), 12838–12851 (2018).
[Crossref] [PubMed]

Opt. Mater. Express (2)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

Phys. Rev. Lett. (4)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Prog. Electromagnetics Res. (1)

Z. Duan, B.-I. Wu, S. Xi, H. Chen, and M. Chen, “Research progress in reversed Cherenkov radiation in double-negative Metamaterials,” Prog. Electromagnetics Res. 90, 75–87 (2009).
[Crossref]

RSC Advances (1)

P. Sengodu and A. D. Deshmukh, “Conducting polymers and their inorganic composites for advanced Li-ion batteries: a review,” RSC Advances 5(52), 42109–42130 (2015).
[Crossref]

Sci. Rep. (6)

T. T. Nguyen and S. Lim, “Design of metamaterial absorber using Eight-Resistive-Arm cell for simultaneous broadband and wide-incidence-angle absorption,” Sci. Rep. 8(1), 6633 (2018).
[Crossref] [PubMed]

Y. J. Yoo, S. Ju, S. Y. Park, Y. Ju Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial absorber for electromagnetic waves in periodic water droplets,” Sci. Rep. 5(1), 14018 (2015).
[Crossref] [PubMed]

D. Lee, H. Jeong, and S. Lim, “Electronically switchable broadband metamaterial absorber,” Sci. Rep. 7(1), 4891 (2017).
[Crossref] [PubMed]

A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, and E. Ozbay, “Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture,” Sci. Rep. 7(1), 4755 (2017).
[Crossref] [PubMed]

C. Gong, M. Zhan, J. Yang, Z. Wang, H. Liu, Y. Zhao, and W. Liu, “Broadband terahertz metamaterial absorber based on sectional asymmetric structures,” Sci. Rep. 6(1), 32466 (2016).
[Crossref] [PubMed]

F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. I. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6(1), 39445 (2016).
[Crossref] [PubMed]

Science (2)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Other (3)

S. A. Ramakrishna and T. M. Grzegorczyk, “Physics and Applications of Negative refractive index materials,” Taylor & Francis Group (2008).

CST Computer Simulation Technology 3D EM Field Simulation. http://www.cst.com/ .

D. M. Pozar, Microwave Engineering 4th Ed. (J. Wiley, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Geometry of the unit cell of the metamaterial perfect absorber with structural parameters and polarization (a) 3-D view, (b) side view: a = 6 mm, tp = 0.105 mm, r1 = 2.3 mm, r2 = 1.8 mm, td = 2 mm, and tm = 0.036 mm.
Fig. 2
Fig. 2 (a) Fabricating process and (b) prototype of proposed polymer ring MPA
Fig. 3
Fig. 3 (a) The simulated absorption spectra and (b) the extracted effective impedance of the copper and the proposed polymer ring MPA
Fig. 4
Fig. 4 Simulated results of the induced electric field of the PR MPA in the (a, b) x-y and (c, d) x-z planes at 10.8 and 23.8 GHz, respectively.
Fig. 5
Fig. 5 The dependence of the simulated absorption spectra of the PR MPA on (a) electrical conductivity, (b) polymer thickness tp and (c) dielectric thickness td.
Fig. 6
Fig. 6 Simulated (red line) and measured (blue line) absorption spectra working with various dielectric thickness: (a) 1.6mm, (b) 2.0mm and (c) 2.4 mm.
Fig. 7
Fig. 7 Simulated absorption spectra working with (a) polarization angle and (b), (c) incident angle in TE and TM polarization, respectively.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Z ω = μ(ω) ε(ω) = (1+ S 11 (ω)) 2 S 21 (ω) 2 (1 S 11 (ω)) 2 S 21 (ω) 2
P abs = 1 2 2πfε'' | E | 2
ε(ω)=ε'(ω)+jε''(ω)= ε r (ω) ε 0 +j σ(ω) ω
R= η η e η+ η e
T= 2η η+ η e
η=(1+j) πf μ r μ 0 σ ={ (1+j) 1 σ t m for 0< t m < δ s (1+j) 1 σ δ s for t m δ s

Metrics