Abstract

A surface plasmon resonance (SPR) biosensor, which contains an overlayer of titanium dioxide nanoparticles (TDNPs) to modify the plasmonic interface, has been developed and investigated. Owing to its large surface area and high refractive index, the TDNP overlayer significantly enhances the probing electric field intensity and detection sensitivity. This sensitivity is related to the TDNP overlayer thickness, which can be engineered by changing the TiO2–ethanol dispersion’s spin-coating concentration. The highest refractive index sensitivity for ethylene glycol measurement is 2567.3 nm/RIU, which is 38% higher than that of a conventional SPR sensor with an uncoated gold film. The proposed TDNP-SPR sensor also exhibits a 1.59-fold sensitivity enhancement in fetal bovine serum detection. Moreover, the proposed interface modification approach that is applied without additional biochemical amplification steps is chemical-free and contamination-free; therefore this TDNP-SPR sensor could be integrated into a sensitive, cost-effective, and biocompatible platform for rapid and label-free biochemical detection.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Sensitivity-enhanced surface plasmon resonance sensor utilizing a tungsten disulfide (WS2) nanosheets overlayer

Hao Wang, Hui Zhang, Jiangli Dong, Shiqi Hu, Wenguo Zhu, Wentao Qiu, Huihui Lu, Jianhui Yu, Heyuan Guan, Shecheng Gao, Zhaohui Li, Weiping Liu, Miao He, Jun Zhang, Zhe Chen, and Yunhan Luo
Photon. Res. 6(6) 485-491 (2018)

Ellipsometry study on gold-nanoparticle-coated gold thin film for biosensing application

Rakesh Singh Moirangthem, Yia-Chung Chang, and Pei-Kuen Wei
Biomed. Opt. Express 2(9) 2569-2576 (2011)

Hybrid cavity-coupled plasmonic biosensors for low concentration, label-free and selective biomolecular detection.

Abraham Vázquez-Guardado, Alexandra Smith, Wade Wilson, Jeanette Ortega, J. Manuel Perez, and Debashis Chanda
Opt. Express 24(22) 25785-25796 (2016)

References

  • View by:
  • |
  • |
  • |

  1. X. R. Cheng, V. W. Sze Hung, S. Scarano, M. Mascini, M. Minunni, and K. Kerman, “Label-free methods for probing the interaction of clioquinol with amyloid-β,” Anal. Methods 4(8), 2228–2232 (2012).
    [Crossref]
  2. M. A. Cooper, “Optical biosensors in drug discovery,” Nat. Rev. Drug Discov. 1(7), 515–528 (2002).
    [PubMed]
  3. M. A. González-Martínez, R. Puchades, and A. Maquieira, “Optical immunosensors for environmental monitoring: how far have we come?” Anal. Bioanal. Chem. 387(1), 205–218 (2007).
    [Crossref] [PubMed]
  4. R. H. Wilson, K. Vishwanath, and M. A. Mycek, “Optical methods for quantitative and label-free sensing in living human tissues: principles, techniques, and applications,” Adv. Phys. 1(4), 523–543 (2016).
    [PubMed]
  5. Y. Maruyama, S. Terao, and K. Sawada, “Label free CMOS DNA image sensor based on the charge transfer technique,” Biosens. Bioelectron. 24(10), 3108–3112 (2009).
    [Crossref] [PubMed]
  6. S. Mohammadzadeh-Asl, A. Keshtkar, J. Ezzati Nazhad Dolatabadi, and M. de la Guardia, “Nanomaterials and phase sensitive based signal enhancment in surface plasmon resonance,” Biosens. Bioelectron. 110, 118–131 (2018).
    [Crossref] [PubMed]
  7. M. E. El-Naggar, T. I. Shaheen, M. M. G. Fouda, and A. A. Hebeish, “Eco-friendly microwave-assisted green and rapid synthesis of well-stabilized gold and core-shell silver-gold nanoparticles,” Carbohydr. Polym. 136, 1128–1136 (2016).
    [Crossref] [PubMed]
  8. Z. Altintas, Y. Uludag, Y. Gurbuz, and I. Tothill, “Development of surface chemistry for surface plasmon resonance based sensors for the detection of proteins and DNA molecules,” Anal. Chim. Acta 712, 138–144 (2012).
    [Crossref] [PubMed]
  9. P. Da, W. Li, X. Lin, Y. Wang, J. Tang, and G. Zheng, “Surface plasmon resonance enhanced real-time photoelectrochemical protein sensing by gold nanoparticle-decorated TiO₂ nanowires,” Anal. Chem. 86(13), 6633–6639 (2014).
    [Crossref] [PubMed]
  10. S. G. Patching, “Surface plasmon resonance spectroscopy for characterisation of membrane protein-ligand interactions and its potential for drug discovery,” Biochim. Biophys. Acta 1838(1 Pt A), 43–55 (2014).
    [Crossref] [PubMed]
  11. L. Guo, J. A. Jackman, H. H. Yang, P. Chen, N. J. Cho, and D. H. Kim, “Strategies for enhancing the sensitivity of plasmonic nanosensors,” Nano Today 10(2), 213–239 (2015).
    [Crossref]
  12. T. Xue, X. Cui, W. Guan, Q. Wang, C. Liu, H. Wang, K. Qi, D. J. Singh, and W. Zheng, “Surface plasmon resonance technique for directly probing the interaction of DNA and graphene oxide and ultra-sensitive biosensing,” Biosens. Bioelectron. 58, 374–379 (2014).
    [Crossref] [PubMed]
  13. W. C. Law, K. T. Yong, A. Baev, and P. N. Prasad, “Sensitivity improved surface plasmon resonance biosensor for cancer biomarker detection based on plasmonic enhancement,” ACS Nano 5(6), 4858–4864 (2011).
    [Crossref] [PubMed]
  14. H. Chen, S. Jia, F. Qi, F. Zou, Y. Hou, K. Koh, and Y. Yin, “Fabrication of a simple and convenient surface plasmon resonance cytosensor based on oriented peptide on calix[4]arene crownether monolayer,” Sens. Actuators B Chem. 225, 504–509 (2016).
    [Crossref]
  15. W. Wei, J. Nong, Y. Zhu, G. Zhang, N. Wang, S. Luo, N. Chen, G. Lan, C. J. Chuang, and Y. Huang, “Graphene/Au-enhanced plastic clad silica fiber optic surface plasmon resonance sensor,” Plasmonics 13(2), 483–491 (2018).
    [Crossref]
  16. H. Wang, H. Zhang, J. Dong, S. Hu, W. Zhu, W. Qiu, H. Lu, J. Yu, H. Guan, S. Gao, Z. Li, W. Liu, M. He, J. Zhang, Z. Chen, and Y. Luo, “Sensitivity-enhanced surface plasmon resonance sensor utilizing a tungsten disulfide (WS2) nanosheets overlayer,” Photon. Res. 6(6), 485–491 (2018).
    [Crossref]
  17. P. K. Maharana, P. Padhy, and R. Jha, “On the Field Enhancement and Performance of an Ultra-Stable SPR Biosensor Based on Graphene,” IEEE Photonics Technol. Lett. 25(22), 2156–2159 (2013).
    [Crossref]
  18. S. Zeng, X. Yu, W. C. Law, Y. Zhang, R. Hu, X. Q. Dinh, H. P. Ho, and K. T. Yong, “Size dependence of Au NP-enhanced surface plasmon resonance based on differential phase measurement,” Sens. Actuators B Chem. 176(1), 1128–1133 (2013).
    [Crossref]
  19. F. Zou, B. Wu, X. Wang, Y. Chen, K. Koh, K. Wang, and H. Chen, “Signal amplification and dual recognition strategy for small-molecule detection by surface plasmon resonance based on calix[4]arene crown ether-modified gold nanoparticles,” Sens. Actuators B Chem. 241, 160–167 (2017).
    [Crossref]
  20. H. Chen, Y. Hou, Z. Ye, H. Wang, K. Koh, Z. Shen, and Y. Shu, “Label-free surface plasmon resonance cytosensor for breast cancer cell detection based on nano-conjugation of monodisperse magnetic nanoparticle and folic acid,” Sens. Actuators B Chem. 201, 433–438 (2014).
    [Crossref]
  21. T. Wink, S. J. van Zuilen, A. Bult, and W. P. van Bennekom, “Liposome-mediated enhancement of the sensitivity in immunoassays of proteins and peptides in surface plasmon resonance spectrometry,” Anal. Chem. 70(5), 827–832 (1998).
    [Crossref] [PubMed]
  22. E. G. Lee, K. M. Park, J. Y. Jeong, S. H. Lee, J. E. Baek, H. W. Lee, J. K. Jung, and B. H. Chung, “Carbon nanotube-assisted enhancement of surface plasmon resonance signal,” Anal. Biochem. 408(2), 206–211 (2011).
    [Crossref] [PubMed]
  23. J. Qiu, S. Zhang, and H. Zhao, “Recent applications of TiO2 nanomaterials in chemical sensing in aqueous media,” Sens. Actuators B Chem. 160(1), 875–890 (2011).
    [Crossref] [PubMed]
  24. K. Song, X. Han, and G. Shao, “Electronic properties of rutile TiO2 doped with 4d transition metals: First-principles study,” J. Alloys Compd. 551, 118–124 (2013).
    [Crossref]
  25. M. G. Méndez-Medrano, E. Kowalska, A. Lehoux, A. Herissan, B. Ohtani, D. Bahena, V. Briois, C. Colbeau-Justin, J. L. Rodriguez-Lopez, and H. Remita, “Surface Modification of TiO2 with Ag Nanoparticles and CuO Nanoclusters for Application in Photocatalysis,” J. Phys. Chem. C 120(9), 5143–5154 (2016).
    [Crossref]
  26. A. E. Shalan, M. M. Rashad, Y. Yu, M. Lira-Cantu, and M. S. A. Abdel-Mottaleb, “Controlling the microstructure and properties of titania nanopowders for high efficiency dye sensitized solar cells,” Electrochim. Acta 89, 469–478 (2013).
    [Crossref]
  27. M. Radecka, M. Rekas, A. Trenczek-Zajac, and K. Zakrzewska, “Importance of the band gap energy and flat band potential for application of modified TiO2 photoanodes in water photolysis,” J. Power Sources 181(1), 46–55 (2008).
    [Crossref]
  28. X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong, and Y. Li, “Hydrogenated TiO2 nanotube arrays for supercapacitors,” Nano Lett. 12(3), 1690–1696 (2012).
    [Crossref] [PubMed]
  29. J. Yang, D. Li, Z. Pang, and Q. Wei, “Laccase Biosensor Based on Ag-Doped TiO2 Nanoparticles on CuCNFs for the Determination of Hydroquinone,” Nano 11(12), 1650132 (2016).
    [Crossref]
  30. Z. Jin, W. Guan, C. Liu, T. Xue, Q. Wang, W. Zheng, and X. Cui, “A stable and high resolution optical waveguide biosensor based on dense TiO2/Ag multilayer film,” Appl. Surf. Sci. 377, 207–212 (2016).
    [Crossref]
  31. G. L. Tan, M. F. Lemon, D. J. Jones, and R. H. French, “Optical properties and London dispersion interaction of amorphous and crystalline, SiO2 determined by vacuum ultraviolet spectroscopy and spectroscopic ellipsometry,” Phys. Rev. B Condens. Matter Mater. Phys. 72(20), 205117 (2005).
    [Crossref]
  32. A. Shalabney and I. Abdulhalim, “Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors,” Sens. Actuators A Phys. 159(1), 24–32 (2010).
    [Crossref]
  33. N. F. Chiu and T. Y. Huang, “Sensitivity and kinetic analysis of graphene oxide-based surface plasmon resonance biosensors,” Sens. Actuators B Chem. 197, 35–42 (2014).
    [Crossref]
  34. L. Wu, H. S. Chu, W. S. Koh, and E. P. Li, “Highly sensitive graphene biosensors based on surface plasmon resonance,” Opt. Express 18(14), 14395–14400 (2010).
    [Crossref] [PubMed]
  35. S. Chen and C. Lin, “High-performance bimetallic film surface plasmon resonance sensor based on film thickness optimization,” Opt. Inter. J. Light Electron Opt. 127(19), 7514–7519 (2016).
    [Crossref]
  36. P. Bhatia and B. D. Gupta, “Surface plasmon resonance based fiber optic refractive index sensor utilizing silicon layer: Effect of doping,” Opt. Commun. 286, 171–175 (2013).
    [Crossref]
  37. S. Singh, S. K. Mishra, and B. D. Gupta, “Sensitivity enhancement of a surface plasmon resonance based fibre optic refractive index sensor utilizing an additional layer of oxides,” Sens. Actuators A Phys. 193, 136–140 (2013).
    [Crossref]

2018 (3)

S. Mohammadzadeh-Asl, A. Keshtkar, J. Ezzati Nazhad Dolatabadi, and M. de la Guardia, “Nanomaterials and phase sensitive based signal enhancment in surface plasmon resonance,” Biosens. Bioelectron. 110, 118–131 (2018).
[Crossref] [PubMed]

W. Wei, J. Nong, Y. Zhu, G. Zhang, N. Wang, S. Luo, N. Chen, G. Lan, C. J. Chuang, and Y. Huang, “Graphene/Au-enhanced plastic clad silica fiber optic surface plasmon resonance sensor,” Plasmonics 13(2), 483–491 (2018).
[Crossref]

H. Wang, H. Zhang, J. Dong, S. Hu, W. Zhu, W. Qiu, H. Lu, J. Yu, H. Guan, S. Gao, Z. Li, W. Liu, M. He, J. Zhang, Z. Chen, and Y. Luo, “Sensitivity-enhanced surface plasmon resonance sensor utilizing a tungsten disulfide (WS2) nanosheets overlayer,” Photon. Res. 6(6), 485–491 (2018).
[Crossref]

2017 (1)

F. Zou, B. Wu, X. Wang, Y. Chen, K. Koh, K. Wang, and H. Chen, “Signal amplification and dual recognition strategy for small-molecule detection by surface plasmon resonance based on calix[4]arene crown ether-modified gold nanoparticles,” Sens. Actuators B Chem. 241, 160–167 (2017).
[Crossref]

2016 (7)

H. Chen, S. Jia, F. Qi, F. Zou, Y. Hou, K. Koh, and Y. Yin, “Fabrication of a simple and convenient surface plasmon resonance cytosensor based on oriented peptide on calix[4]arene crownether monolayer,” Sens. Actuators B Chem. 225, 504–509 (2016).
[Crossref]

M. E. El-Naggar, T. I. Shaheen, M. M. G. Fouda, and A. A. Hebeish, “Eco-friendly microwave-assisted green and rapid synthesis of well-stabilized gold and core-shell silver-gold nanoparticles,” Carbohydr. Polym. 136, 1128–1136 (2016).
[Crossref] [PubMed]

R. H. Wilson, K. Vishwanath, and M. A. Mycek, “Optical methods for quantitative and label-free sensing in living human tissues: principles, techniques, and applications,” Adv. Phys. 1(4), 523–543 (2016).
[PubMed]

S. Chen and C. Lin, “High-performance bimetallic film surface plasmon resonance sensor based on film thickness optimization,” Opt. Inter. J. Light Electron Opt. 127(19), 7514–7519 (2016).
[Crossref]

M. G. Méndez-Medrano, E. Kowalska, A. Lehoux, A. Herissan, B. Ohtani, D. Bahena, V. Briois, C. Colbeau-Justin, J. L. Rodriguez-Lopez, and H. Remita, “Surface Modification of TiO2 with Ag Nanoparticles and CuO Nanoclusters for Application in Photocatalysis,” J. Phys. Chem. C 120(9), 5143–5154 (2016).
[Crossref]

J. Yang, D. Li, Z. Pang, and Q. Wei, “Laccase Biosensor Based on Ag-Doped TiO2 Nanoparticles on CuCNFs for the Determination of Hydroquinone,” Nano 11(12), 1650132 (2016).
[Crossref]

Z. Jin, W. Guan, C. Liu, T. Xue, Q. Wang, W. Zheng, and X. Cui, “A stable and high resolution optical waveguide biosensor based on dense TiO2/Ag multilayer film,” Appl. Surf. Sci. 377, 207–212 (2016).
[Crossref]

2015 (1)

L. Guo, J. A. Jackman, H. H. Yang, P. Chen, N. J. Cho, and D. H. Kim, “Strategies for enhancing the sensitivity of plasmonic nanosensors,” Nano Today 10(2), 213–239 (2015).
[Crossref]

2014 (5)

T. Xue, X. Cui, W. Guan, Q. Wang, C. Liu, H. Wang, K. Qi, D. J. Singh, and W. Zheng, “Surface plasmon resonance technique for directly probing the interaction of DNA and graphene oxide and ultra-sensitive biosensing,” Biosens. Bioelectron. 58, 374–379 (2014).
[Crossref] [PubMed]

H. Chen, Y. Hou, Z. Ye, H. Wang, K. Koh, Z. Shen, and Y. Shu, “Label-free surface plasmon resonance cytosensor for breast cancer cell detection based on nano-conjugation of monodisperse magnetic nanoparticle and folic acid,” Sens. Actuators B Chem. 201, 433–438 (2014).
[Crossref]

P. Da, W. Li, X. Lin, Y. Wang, J. Tang, and G. Zheng, “Surface plasmon resonance enhanced real-time photoelectrochemical protein sensing by gold nanoparticle-decorated TiO₂ nanowires,” Anal. Chem. 86(13), 6633–6639 (2014).
[Crossref] [PubMed]

S. G. Patching, “Surface plasmon resonance spectroscopy for characterisation of membrane protein-ligand interactions and its potential for drug discovery,” Biochim. Biophys. Acta 1838(1 Pt A), 43–55 (2014).
[Crossref] [PubMed]

N. F. Chiu and T. Y. Huang, “Sensitivity and kinetic analysis of graphene oxide-based surface plasmon resonance biosensors,” Sens. Actuators B Chem. 197, 35–42 (2014).
[Crossref]

2013 (6)

P. Bhatia and B. D. Gupta, “Surface plasmon resonance based fiber optic refractive index sensor utilizing silicon layer: Effect of doping,” Opt. Commun. 286, 171–175 (2013).
[Crossref]

S. Singh, S. K. Mishra, and B. D. Gupta, “Sensitivity enhancement of a surface plasmon resonance based fibre optic refractive index sensor utilizing an additional layer of oxides,” Sens. Actuators A Phys. 193, 136–140 (2013).
[Crossref]

K. Song, X. Han, and G. Shao, “Electronic properties of rutile TiO2 doped with 4d transition metals: First-principles study,” J. Alloys Compd. 551, 118–124 (2013).
[Crossref]

A. E. Shalan, M. M. Rashad, Y. Yu, M. Lira-Cantu, and M. S. A. Abdel-Mottaleb, “Controlling the microstructure and properties of titania nanopowders for high efficiency dye sensitized solar cells,” Electrochim. Acta 89, 469–478 (2013).
[Crossref]

P. K. Maharana, P. Padhy, and R. Jha, “On the Field Enhancement and Performance of an Ultra-Stable SPR Biosensor Based on Graphene,” IEEE Photonics Technol. Lett. 25(22), 2156–2159 (2013).
[Crossref]

S. Zeng, X. Yu, W. C. Law, Y. Zhang, R. Hu, X. Q. Dinh, H. P. Ho, and K. T. Yong, “Size dependence of Au NP-enhanced surface plasmon resonance based on differential phase measurement,” Sens. Actuators B Chem. 176(1), 1128–1133 (2013).
[Crossref]

2012 (3)

Z. Altintas, Y. Uludag, Y. Gurbuz, and I. Tothill, “Development of surface chemistry for surface plasmon resonance based sensors for the detection of proteins and DNA molecules,” Anal. Chim. Acta 712, 138–144 (2012).
[Crossref] [PubMed]

X. R. Cheng, V. W. Sze Hung, S. Scarano, M. Mascini, M. Minunni, and K. Kerman, “Label-free methods for probing the interaction of clioquinol with amyloid-β,” Anal. Methods 4(8), 2228–2232 (2012).
[Crossref]

X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong, and Y. Li, “Hydrogenated TiO2 nanotube arrays for supercapacitors,” Nano Lett. 12(3), 1690–1696 (2012).
[Crossref] [PubMed]

2011 (3)

E. G. Lee, K. M. Park, J. Y. Jeong, S. H. Lee, J. E. Baek, H. W. Lee, J. K. Jung, and B. H. Chung, “Carbon nanotube-assisted enhancement of surface plasmon resonance signal,” Anal. Biochem. 408(2), 206–211 (2011).
[Crossref] [PubMed]

J. Qiu, S. Zhang, and H. Zhao, “Recent applications of TiO2 nanomaterials in chemical sensing in aqueous media,” Sens. Actuators B Chem. 160(1), 875–890 (2011).
[Crossref] [PubMed]

W. C. Law, K. T. Yong, A. Baev, and P. N. Prasad, “Sensitivity improved surface plasmon resonance biosensor for cancer biomarker detection based on plasmonic enhancement,” ACS Nano 5(6), 4858–4864 (2011).
[Crossref] [PubMed]

2010 (2)

L. Wu, H. S. Chu, W. S. Koh, and E. P. Li, “Highly sensitive graphene biosensors based on surface plasmon resonance,” Opt. Express 18(14), 14395–14400 (2010).
[Crossref] [PubMed]

A. Shalabney and I. Abdulhalim, “Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors,” Sens. Actuators A Phys. 159(1), 24–32 (2010).
[Crossref]

2009 (1)

Y. Maruyama, S. Terao, and K. Sawada, “Label free CMOS DNA image sensor based on the charge transfer technique,” Biosens. Bioelectron. 24(10), 3108–3112 (2009).
[Crossref] [PubMed]

2008 (1)

M. Radecka, M. Rekas, A. Trenczek-Zajac, and K. Zakrzewska, “Importance of the band gap energy and flat band potential for application of modified TiO2 photoanodes in water photolysis,” J. Power Sources 181(1), 46–55 (2008).
[Crossref]

2007 (1)

M. A. González-Martínez, R. Puchades, and A. Maquieira, “Optical immunosensors for environmental monitoring: how far have we come?” Anal. Bioanal. Chem. 387(1), 205–218 (2007).
[Crossref] [PubMed]

2005 (1)

G. L. Tan, M. F. Lemon, D. J. Jones, and R. H. French, “Optical properties and London dispersion interaction of amorphous and crystalline, SiO2 determined by vacuum ultraviolet spectroscopy and spectroscopic ellipsometry,” Phys. Rev. B Condens. Matter Mater. Phys. 72(20), 205117 (2005).
[Crossref]

2002 (1)

M. A. Cooper, “Optical biosensors in drug discovery,” Nat. Rev. Drug Discov. 1(7), 515–528 (2002).
[PubMed]

1998 (1)

T. Wink, S. J. van Zuilen, A. Bult, and W. P. van Bennekom, “Liposome-mediated enhancement of the sensitivity in immunoassays of proteins and peptides in surface plasmon resonance spectrometry,” Anal. Chem. 70(5), 827–832 (1998).
[Crossref] [PubMed]

Abdel-Mottaleb, M. S. A.

A. E. Shalan, M. M. Rashad, Y. Yu, M. Lira-Cantu, and M. S. A. Abdel-Mottaleb, “Controlling the microstructure and properties of titania nanopowders for high efficiency dye sensitized solar cells,” Electrochim. Acta 89, 469–478 (2013).
[Crossref]

Abdulhalim, I.

A. Shalabney and I. Abdulhalim, “Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors,” Sens. Actuators A Phys. 159(1), 24–32 (2010).
[Crossref]

Altintas, Z.

Z. Altintas, Y. Uludag, Y. Gurbuz, and I. Tothill, “Development of surface chemistry for surface plasmon resonance based sensors for the detection of proteins and DNA molecules,” Anal. Chim. Acta 712, 138–144 (2012).
[Crossref] [PubMed]

Baek, J. E.

E. G. Lee, K. M. Park, J. Y. Jeong, S. H. Lee, J. E. Baek, H. W. Lee, J. K. Jung, and B. H. Chung, “Carbon nanotube-assisted enhancement of surface plasmon resonance signal,” Anal. Biochem. 408(2), 206–211 (2011).
[Crossref] [PubMed]

Baev, A.

W. C. Law, K. T. Yong, A. Baev, and P. N. Prasad, “Sensitivity improved surface plasmon resonance biosensor for cancer biomarker detection based on plasmonic enhancement,” ACS Nano 5(6), 4858–4864 (2011).
[Crossref] [PubMed]

Bahena, D.

M. G. Méndez-Medrano, E. Kowalska, A. Lehoux, A. Herissan, B. Ohtani, D. Bahena, V. Briois, C. Colbeau-Justin, J. L. Rodriguez-Lopez, and H. Remita, “Surface Modification of TiO2 with Ag Nanoparticles and CuO Nanoclusters for Application in Photocatalysis,” J. Phys. Chem. C 120(9), 5143–5154 (2016).
[Crossref]

Bhatia, P.

P. Bhatia and B. D. Gupta, “Surface plasmon resonance based fiber optic refractive index sensor utilizing silicon layer: Effect of doping,” Opt. Commun. 286, 171–175 (2013).
[Crossref]

Briois, V.

M. G. Méndez-Medrano, E. Kowalska, A. Lehoux, A. Herissan, B. Ohtani, D. Bahena, V. Briois, C. Colbeau-Justin, J. L. Rodriguez-Lopez, and H. Remita, “Surface Modification of TiO2 with Ag Nanoparticles and CuO Nanoclusters for Application in Photocatalysis,” J. Phys. Chem. C 120(9), 5143–5154 (2016).
[Crossref]

Bult, A.

T. Wink, S. J. van Zuilen, A. Bult, and W. P. van Bennekom, “Liposome-mediated enhancement of the sensitivity in immunoassays of proteins and peptides in surface plasmon resonance spectrometry,” Anal. Chem. 70(5), 827–832 (1998).
[Crossref] [PubMed]

Chen, H.

F. Zou, B. Wu, X. Wang, Y. Chen, K. Koh, K. Wang, and H. Chen, “Signal amplification and dual recognition strategy for small-molecule detection by surface plasmon resonance based on calix[4]arene crown ether-modified gold nanoparticles,” Sens. Actuators B Chem. 241, 160–167 (2017).
[Crossref]

H. Chen, S. Jia, F. Qi, F. Zou, Y. Hou, K. Koh, and Y. Yin, “Fabrication of a simple and convenient surface plasmon resonance cytosensor based on oriented peptide on calix[4]arene crownether monolayer,” Sens. Actuators B Chem. 225, 504–509 (2016).
[Crossref]

H. Chen, Y. Hou, Z. Ye, H. Wang, K. Koh, Z. Shen, and Y. Shu, “Label-free surface plasmon resonance cytosensor for breast cancer cell detection based on nano-conjugation of monodisperse magnetic nanoparticle and folic acid,” Sens. Actuators B Chem. 201, 433–438 (2014).
[Crossref]

Chen, N.

W. Wei, J. Nong, Y. Zhu, G. Zhang, N. Wang, S. Luo, N. Chen, G. Lan, C. J. Chuang, and Y. Huang, “Graphene/Au-enhanced plastic clad silica fiber optic surface plasmon resonance sensor,” Plasmonics 13(2), 483–491 (2018).
[Crossref]

Chen, P.

L. Guo, J. A. Jackman, H. H. Yang, P. Chen, N. J. Cho, and D. H. Kim, “Strategies for enhancing the sensitivity of plasmonic nanosensors,” Nano Today 10(2), 213–239 (2015).
[Crossref]

Chen, S.

S. Chen and C. Lin, “High-performance bimetallic film surface plasmon resonance sensor based on film thickness optimization,” Opt. Inter. J. Light Electron Opt. 127(19), 7514–7519 (2016).
[Crossref]

Chen, Y.

F. Zou, B. Wu, X. Wang, Y. Chen, K. Koh, K. Wang, and H. Chen, “Signal amplification and dual recognition strategy for small-molecule detection by surface plasmon resonance based on calix[4]arene crown ether-modified gold nanoparticles,” Sens. Actuators B Chem. 241, 160–167 (2017).
[Crossref]

Chen, Z.

Cheng, X. R.

X. R. Cheng, V. W. Sze Hung, S. Scarano, M. Mascini, M. Minunni, and K. Kerman, “Label-free methods for probing the interaction of clioquinol with amyloid-β,” Anal. Methods 4(8), 2228–2232 (2012).
[Crossref]

Chiu, N. F.

N. F. Chiu and T. Y. Huang, “Sensitivity and kinetic analysis of graphene oxide-based surface plasmon resonance biosensors,” Sens. Actuators B Chem. 197, 35–42 (2014).
[Crossref]

Cho, N. J.

L. Guo, J. A. Jackman, H. H. Yang, P. Chen, N. J. Cho, and D. H. Kim, “Strategies for enhancing the sensitivity of plasmonic nanosensors,” Nano Today 10(2), 213–239 (2015).
[Crossref]

Chu, H. S.

Chuang, C. J.

W. Wei, J. Nong, Y. Zhu, G. Zhang, N. Wang, S. Luo, N. Chen, G. Lan, C. J. Chuang, and Y. Huang, “Graphene/Au-enhanced plastic clad silica fiber optic surface plasmon resonance sensor,” Plasmonics 13(2), 483–491 (2018).
[Crossref]

Chung, B. H.

E. G. Lee, K. M. Park, J. Y. Jeong, S. H. Lee, J. E. Baek, H. W. Lee, J. K. Jung, and B. H. Chung, “Carbon nanotube-assisted enhancement of surface plasmon resonance signal,” Anal. Biochem. 408(2), 206–211 (2011).
[Crossref] [PubMed]

Colbeau-Justin, C.

M. G. Méndez-Medrano, E. Kowalska, A. Lehoux, A. Herissan, B. Ohtani, D. Bahena, V. Briois, C. Colbeau-Justin, J. L. Rodriguez-Lopez, and H. Remita, “Surface Modification of TiO2 with Ag Nanoparticles and CuO Nanoclusters for Application in Photocatalysis,” J. Phys. Chem. C 120(9), 5143–5154 (2016).
[Crossref]

Cooper, M. A.

M. A. Cooper, “Optical biosensors in drug discovery,” Nat. Rev. Drug Discov. 1(7), 515–528 (2002).
[PubMed]

Cui, X.

Z. Jin, W. Guan, C. Liu, T. Xue, Q. Wang, W. Zheng, and X. Cui, “A stable and high resolution optical waveguide biosensor based on dense TiO2/Ag multilayer film,” Appl. Surf. Sci. 377, 207–212 (2016).
[Crossref]

T. Xue, X. Cui, W. Guan, Q. Wang, C. Liu, H. Wang, K. Qi, D. J. Singh, and W. Zheng, “Surface plasmon resonance technique for directly probing the interaction of DNA and graphene oxide and ultra-sensitive biosensing,” Biosens. Bioelectron. 58, 374–379 (2014).
[Crossref] [PubMed]

Da, P.

P. Da, W. Li, X. Lin, Y. Wang, J. Tang, and G. Zheng, “Surface plasmon resonance enhanced real-time photoelectrochemical protein sensing by gold nanoparticle-decorated TiO₂ nanowires,” Anal. Chem. 86(13), 6633–6639 (2014).
[Crossref] [PubMed]

de la Guardia, M.

S. Mohammadzadeh-Asl, A. Keshtkar, J. Ezzati Nazhad Dolatabadi, and M. de la Guardia, “Nanomaterials and phase sensitive based signal enhancment in surface plasmon resonance,” Biosens. Bioelectron. 110, 118–131 (2018).
[Crossref] [PubMed]

Dinh, X. Q.

S. Zeng, X. Yu, W. C. Law, Y. Zhang, R. Hu, X. Q. Dinh, H. P. Ho, and K. T. Yong, “Size dependence of Au NP-enhanced surface plasmon resonance based on differential phase measurement,” Sens. Actuators B Chem. 176(1), 1128–1133 (2013).
[Crossref]

Dong, J.

El-Naggar, M. E.

M. E. El-Naggar, T. I. Shaheen, M. M. G. Fouda, and A. A. Hebeish, “Eco-friendly microwave-assisted green and rapid synthesis of well-stabilized gold and core-shell silver-gold nanoparticles,” Carbohydr. Polym. 136, 1128–1136 (2016).
[Crossref] [PubMed]

Ezzati Nazhad Dolatabadi, J.

S. Mohammadzadeh-Asl, A. Keshtkar, J. Ezzati Nazhad Dolatabadi, and M. de la Guardia, “Nanomaterials and phase sensitive based signal enhancment in surface plasmon resonance,” Biosens. Bioelectron. 110, 118–131 (2018).
[Crossref] [PubMed]

Fouda, M. M. G.

M. E. El-Naggar, T. I. Shaheen, M. M. G. Fouda, and A. A. Hebeish, “Eco-friendly microwave-assisted green and rapid synthesis of well-stabilized gold and core-shell silver-gold nanoparticles,” Carbohydr. Polym. 136, 1128–1136 (2016).
[Crossref] [PubMed]

French, R. H.

G. L. Tan, M. F. Lemon, D. J. Jones, and R. H. French, “Optical properties and London dispersion interaction of amorphous and crystalline, SiO2 determined by vacuum ultraviolet spectroscopy and spectroscopic ellipsometry,” Phys. Rev. B Condens. Matter Mater. Phys. 72(20), 205117 (2005).
[Crossref]

Gan, J.

X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong, and Y. Li, “Hydrogenated TiO2 nanotube arrays for supercapacitors,” Nano Lett. 12(3), 1690–1696 (2012).
[Crossref] [PubMed]

Gao, S.

González-Martínez, M. A.

M. A. González-Martínez, R. Puchades, and A. Maquieira, “Optical immunosensors for environmental monitoring: how far have we come?” Anal. Bioanal. Chem. 387(1), 205–218 (2007).
[Crossref] [PubMed]

Guan, H.

Guan, W.

Z. Jin, W. Guan, C. Liu, T. Xue, Q. Wang, W. Zheng, and X. Cui, “A stable and high resolution optical waveguide biosensor based on dense TiO2/Ag multilayer film,” Appl. Surf. Sci. 377, 207–212 (2016).
[Crossref]

T. Xue, X. Cui, W. Guan, Q. Wang, C. Liu, H. Wang, K. Qi, D. J. Singh, and W. Zheng, “Surface plasmon resonance technique for directly probing the interaction of DNA and graphene oxide and ultra-sensitive biosensing,” Biosens. Bioelectron. 58, 374–379 (2014).
[Crossref] [PubMed]

Guo, L.

L. Guo, J. A. Jackman, H. H. Yang, P. Chen, N. J. Cho, and D. H. Kim, “Strategies for enhancing the sensitivity of plasmonic nanosensors,” Nano Today 10(2), 213–239 (2015).
[Crossref]

Gupta, B. D.

S. Singh, S. K. Mishra, and B. D. Gupta, “Sensitivity enhancement of a surface plasmon resonance based fibre optic refractive index sensor utilizing an additional layer of oxides,” Sens. Actuators A Phys. 193, 136–140 (2013).
[Crossref]

P. Bhatia and B. D. Gupta, “Surface plasmon resonance based fiber optic refractive index sensor utilizing silicon layer: Effect of doping,” Opt. Commun. 286, 171–175 (2013).
[Crossref]

Gurbuz, Y.

Z. Altintas, Y. Uludag, Y. Gurbuz, and I. Tothill, “Development of surface chemistry for surface plasmon resonance based sensors for the detection of proteins and DNA molecules,” Anal. Chim. Acta 712, 138–144 (2012).
[Crossref] [PubMed]

Han, X.

K. Song, X. Han, and G. Shao, “Electronic properties of rutile TiO2 doped with 4d transition metals: First-principles study,” J. Alloys Compd. 551, 118–124 (2013).
[Crossref]

He, M.

Hebeish, A. A.

M. E. El-Naggar, T. I. Shaheen, M. M. G. Fouda, and A. A. Hebeish, “Eco-friendly microwave-assisted green and rapid synthesis of well-stabilized gold and core-shell silver-gold nanoparticles,” Carbohydr. Polym. 136, 1128–1136 (2016).
[Crossref] [PubMed]

Herissan, A.

M. G. Méndez-Medrano, E. Kowalska, A. Lehoux, A. Herissan, B. Ohtani, D. Bahena, V. Briois, C. Colbeau-Justin, J. L. Rodriguez-Lopez, and H. Remita, “Surface Modification of TiO2 with Ag Nanoparticles and CuO Nanoclusters for Application in Photocatalysis,” J. Phys. Chem. C 120(9), 5143–5154 (2016).
[Crossref]

Ho, H. P.

S. Zeng, X. Yu, W. C. Law, Y. Zhang, R. Hu, X. Q. Dinh, H. P. Ho, and K. T. Yong, “Size dependence of Au NP-enhanced surface plasmon resonance based on differential phase measurement,” Sens. Actuators B Chem. 176(1), 1128–1133 (2013).
[Crossref]

Hou, Y.

H. Chen, S. Jia, F. Qi, F. Zou, Y. Hou, K. Koh, and Y. Yin, “Fabrication of a simple and convenient surface plasmon resonance cytosensor based on oriented peptide on calix[4]arene crownether monolayer,” Sens. Actuators B Chem. 225, 504–509 (2016).
[Crossref]

H. Chen, Y. Hou, Z. Ye, H. Wang, K. Koh, Z. Shen, and Y. Shu, “Label-free surface plasmon resonance cytosensor for breast cancer cell detection based on nano-conjugation of monodisperse magnetic nanoparticle and folic acid,” Sens. Actuators B Chem. 201, 433–438 (2014).
[Crossref]

Hu, R.

S. Zeng, X. Yu, W. C. Law, Y. Zhang, R. Hu, X. Q. Dinh, H. P. Ho, and K. T. Yong, “Size dependence of Au NP-enhanced surface plasmon resonance based on differential phase measurement,” Sens. Actuators B Chem. 176(1), 1128–1133 (2013).
[Crossref]

Hu, S.

Huang, T. Y.

N. F. Chiu and T. Y. Huang, “Sensitivity and kinetic analysis of graphene oxide-based surface plasmon resonance biosensors,” Sens. Actuators B Chem. 197, 35–42 (2014).
[Crossref]

Huang, Y.

W. Wei, J. Nong, Y. Zhu, G. Zhang, N. Wang, S. Luo, N. Chen, G. Lan, C. J. Chuang, and Y. Huang, “Graphene/Au-enhanced plastic clad silica fiber optic surface plasmon resonance sensor,” Plasmonics 13(2), 483–491 (2018).
[Crossref]

Jackman, J. A.

L. Guo, J. A. Jackman, H. H. Yang, P. Chen, N. J. Cho, and D. H. Kim, “Strategies for enhancing the sensitivity of plasmonic nanosensors,” Nano Today 10(2), 213–239 (2015).
[Crossref]

Jeong, J. Y.

E. G. Lee, K. M. Park, J. Y. Jeong, S. H. Lee, J. E. Baek, H. W. Lee, J. K. Jung, and B. H. Chung, “Carbon nanotube-assisted enhancement of surface plasmon resonance signal,” Anal. Biochem. 408(2), 206–211 (2011).
[Crossref] [PubMed]

Jha, R.

P. K. Maharana, P. Padhy, and R. Jha, “On the Field Enhancement and Performance of an Ultra-Stable SPR Biosensor Based on Graphene,” IEEE Photonics Technol. Lett. 25(22), 2156–2159 (2013).
[Crossref]

Jia, S.

H. Chen, S. Jia, F. Qi, F. Zou, Y. Hou, K. Koh, and Y. Yin, “Fabrication of a simple and convenient surface plasmon resonance cytosensor based on oriented peptide on calix[4]arene crownether monolayer,” Sens. Actuators B Chem. 225, 504–509 (2016).
[Crossref]

Jin, Z.

Z. Jin, W. Guan, C. Liu, T. Xue, Q. Wang, W. Zheng, and X. Cui, “A stable and high resolution optical waveguide biosensor based on dense TiO2/Ag multilayer film,” Appl. Surf. Sci. 377, 207–212 (2016).
[Crossref]

Jones, D. J.

G. L. Tan, M. F. Lemon, D. J. Jones, and R. H. French, “Optical properties and London dispersion interaction of amorphous and crystalline, SiO2 determined by vacuum ultraviolet spectroscopy and spectroscopic ellipsometry,” Phys. Rev. B Condens. Matter Mater. Phys. 72(20), 205117 (2005).
[Crossref]

Jung, J. K.

E. G. Lee, K. M. Park, J. Y. Jeong, S. H. Lee, J. E. Baek, H. W. Lee, J. K. Jung, and B. H. Chung, “Carbon nanotube-assisted enhancement of surface plasmon resonance signal,” Anal. Biochem. 408(2), 206–211 (2011).
[Crossref] [PubMed]

Kerman, K.

X. R. Cheng, V. W. Sze Hung, S. Scarano, M. Mascini, M. Minunni, and K. Kerman, “Label-free methods for probing the interaction of clioquinol with amyloid-β,” Anal. Methods 4(8), 2228–2232 (2012).
[Crossref]

Keshtkar, A.

S. Mohammadzadeh-Asl, A. Keshtkar, J. Ezzati Nazhad Dolatabadi, and M. de la Guardia, “Nanomaterials and phase sensitive based signal enhancment in surface plasmon resonance,” Biosens. Bioelectron. 110, 118–131 (2018).
[Crossref] [PubMed]

Kim, D. H.

L. Guo, J. A. Jackman, H. H. Yang, P. Chen, N. J. Cho, and D. H. Kim, “Strategies for enhancing the sensitivity of plasmonic nanosensors,” Nano Today 10(2), 213–239 (2015).
[Crossref]

Koh, K.

F. Zou, B. Wu, X. Wang, Y. Chen, K. Koh, K. Wang, and H. Chen, “Signal amplification and dual recognition strategy for small-molecule detection by surface plasmon resonance based on calix[4]arene crown ether-modified gold nanoparticles,” Sens. Actuators B Chem. 241, 160–167 (2017).
[Crossref]

H. Chen, S. Jia, F. Qi, F. Zou, Y. Hou, K. Koh, and Y. Yin, “Fabrication of a simple and convenient surface plasmon resonance cytosensor based on oriented peptide on calix[4]arene crownether monolayer,” Sens. Actuators B Chem. 225, 504–509 (2016).
[Crossref]

H. Chen, Y. Hou, Z. Ye, H. Wang, K. Koh, Z. Shen, and Y. Shu, “Label-free surface plasmon resonance cytosensor for breast cancer cell detection based on nano-conjugation of monodisperse magnetic nanoparticle and folic acid,” Sens. Actuators B Chem. 201, 433–438 (2014).
[Crossref]

Koh, W. S.

Kowalska, E.

M. G. Méndez-Medrano, E. Kowalska, A. Lehoux, A. Herissan, B. Ohtani, D. Bahena, V. Briois, C. Colbeau-Justin, J. L. Rodriguez-Lopez, and H. Remita, “Surface Modification of TiO2 with Ag Nanoparticles and CuO Nanoclusters for Application in Photocatalysis,” J. Phys. Chem. C 120(9), 5143–5154 (2016).
[Crossref]

Lan, G.

W. Wei, J. Nong, Y. Zhu, G. Zhang, N. Wang, S. Luo, N. Chen, G. Lan, C. J. Chuang, and Y. Huang, “Graphene/Au-enhanced plastic clad silica fiber optic surface plasmon resonance sensor,” Plasmonics 13(2), 483–491 (2018).
[Crossref]

Law, W. C.

S. Zeng, X. Yu, W. C. Law, Y. Zhang, R. Hu, X. Q. Dinh, H. P. Ho, and K. T. Yong, “Size dependence of Au NP-enhanced surface plasmon resonance based on differential phase measurement,” Sens. Actuators B Chem. 176(1), 1128–1133 (2013).
[Crossref]

W. C. Law, K. T. Yong, A. Baev, and P. N. Prasad, “Sensitivity improved surface plasmon resonance biosensor for cancer biomarker detection based on plasmonic enhancement,” ACS Nano 5(6), 4858–4864 (2011).
[Crossref] [PubMed]

Lee, E. G.

E. G. Lee, K. M. Park, J. Y. Jeong, S. H. Lee, J. E. Baek, H. W. Lee, J. K. Jung, and B. H. Chung, “Carbon nanotube-assisted enhancement of surface plasmon resonance signal,” Anal. Biochem. 408(2), 206–211 (2011).
[Crossref] [PubMed]

Lee, H. W.

E. G. Lee, K. M. Park, J. Y. Jeong, S. H. Lee, J. E. Baek, H. W. Lee, J. K. Jung, and B. H. Chung, “Carbon nanotube-assisted enhancement of surface plasmon resonance signal,” Anal. Biochem. 408(2), 206–211 (2011).
[Crossref] [PubMed]

Lee, S. H.

E. G. Lee, K. M. Park, J. Y. Jeong, S. H. Lee, J. E. Baek, H. W. Lee, J. K. Jung, and B. H. Chung, “Carbon nanotube-assisted enhancement of surface plasmon resonance signal,” Anal. Biochem. 408(2), 206–211 (2011).
[Crossref] [PubMed]

Lehoux, A.

M. G. Méndez-Medrano, E. Kowalska, A. Lehoux, A. Herissan, B. Ohtani, D. Bahena, V. Briois, C. Colbeau-Justin, J. L. Rodriguez-Lopez, and H. Remita, “Surface Modification of TiO2 with Ag Nanoparticles and CuO Nanoclusters for Application in Photocatalysis,” J. Phys. Chem. C 120(9), 5143–5154 (2016).
[Crossref]

Lemon, M. F.

G. L. Tan, M. F. Lemon, D. J. Jones, and R. H. French, “Optical properties and London dispersion interaction of amorphous and crystalline, SiO2 determined by vacuum ultraviolet spectroscopy and spectroscopic ellipsometry,” Phys. Rev. B Condens. Matter Mater. Phys. 72(20), 205117 (2005).
[Crossref]

Li, D.

J. Yang, D. Li, Z. Pang, and Q. Wei, “Laccase Biosensor Based on Ag-Doped TiO2 Nanoparticles on CuCNFs for the Determination of Hydroquinone,” Nano 11(12), 1650132 (2016).
[Crossref]

Li, E. P.

Li, W.

P. Da, W. Li, X. Lin, Y. Wang, J. Tang, and G. Zheng, “Surface plasmon resonance enhanced real-time photoelectrochemical protein sensing by gold nanoparticle-decorated TiO₂ nanowires,” Anal. Chem. 86(13), 6633–6639 (2014).
[Crossref] [PubMed]

Li, Y.

X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong, and Y. Li, “Hydrogenated TiO2 nanotube arrays for supercapacitors,” Nano Lett. 12(3), 1690–1696 (2012).
[Crossref] [PubMed]

Li, Z.

Lin, C.

S. Chen and C. Lin, “High-performance bimetallic film surface plasmon resonance sensor based on film thickness optimization,” Opt. Inter. J. Light Electron Opt. 127(19), 7514–7519 (2016).
[Crossref]

Lin, X.

P. Da, W. Li, X. Lin, Y. Wang, J. Tang, and G. Zheng, “Surface plasmon resonance enhanced real-time photoelectrochemical protein sensing by gold nanoparticle-decorated TiO₂ nanowires,” Anal. Chem. 86(13), 6633–6639 (2014).
[Crossref] [PubMed]

Lira-Cantu, M.

A. E. Shalan, M. M. Rashad, Y. Yu, M. Lira-Cantu, and M. S. A. Abdel-Mottaleb, “Controlling the microstructure and properties of titania nanopowders for high efficiency dye sensitized solar cells,” Electrochim. Acta 89, 469–478 (2013).
[Crossref]

Liu, C.

Z. Jin, W. Guan, C. Liu, T. Xue, Q. Wang, W. Zheng, and X. Cui, “A stable and high resolution optical waveguide biosensor based on dense TiO2/Ag multilayer film,” Appl. Surf. Sci. 377, 207–212 (2016).
[Crossref]

T. Xue, X. Cui, W. Guan, Q. Wang, C. Liu, H. Wang, K. Qi, D. J. Singh, and W. Zheng, “Surface plasmon resonance technique for directly probing the interaction of DNA and graphene oxide and ultra-sensitive biosensing,” Biosens. Bioelectron. 58, 374–379 (2014).
[Crossref] [PubMed]

Liu, W.

Lu, H.

Lu, X.

X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong, and Y. Li, “Hydrogenated TiO2 nanotube arrays for supercapacitors,” Nano Lett. 12(3), 1690–1696 (2012).
[Crossref] [PubMed]

Luo, S.

W. Wei, J. Nong, Y. Zhu, G. Zhang, N. Wang, S. Luo, N. Chen, G. Lan, C. J. Chuang, and Y. Huang, “Graphene/Au-enhanced plastic clad silica fiber optic surface plasmon resonance sensor,” Plasmonics 13(2), 483–491 (2018).
[Crossref]

Luo, Y.

Maharana, P. K.

P. K. Maharana, P. Padhy, and R. Jha, “On the Field Enhancement and Performance of an Ultra-Stable SPR Biosensor Based on Graphene,” IEEE Photonics Technol. Lett. 25(22), 2156–2159 (2013).
[Crossref]

Maquieira, A.

M. A. González-Martínez, R. Puchades, and A. Maquieira, “Optical immunosensors for environmental monitoring: how far have we come?” Anal. Bioanal. Chem. 387(1), 205–218 (2007).
[Crossref] [PubMed]

Maruyama, Y.

Y. Maruyama, S. Terao, and K. Sawada, “Label free CMOS DNA image sensor based on the charge transfer technique,” Biosens. Bioelectron. 24(10), 3108–3112 (2009).
[Crossref] [PubMed]

Mascini, M.

X. R. Cheng, V. W. Sze Hung, S. Scarano, M. Mascini, M. Minunni, and K. Kerman, “Label-free methods for probing the interaction of clioquinol with amyloid-β,” Anal. Methods 4(8), 2228–2232 (2012).
[Crossref]

Méndez-Medrano, M. G.

M. G. Méndez-Medrano, E. Kowalska, A. Lehoux, A. Herissan, B. Ohtani, D. Bahena, V. Briois, C. Colbeau-Justin, J. L. Rodriguez-Lopez, and H. Remita, “Surface Modification of TiO2 with Ag Nanoparticles and CuO Nanoclusters for Application in Photocatalysis,” J. Phys. Chem. C 120(9), 5143–5154 (2016).
[Crossref]

Minunni, M.

X. R. Cheng, V. W. Sze Hung, S. Scarano, M. Mascini, M. Minunni, and K. Kerman, “Label-free methods for probing the interaction of clioquinol with amyloid-β,” Anal. Methods 4(8), 2228–2232 (2012).
[Crossref]

Mishra, S. K.

S. Singh, S. K. Mishra, and B. D. Gupta, “Sensitivity enhancement of a surface plasmon resonance based fibre optic refractive index sensor utilizing an additional layer of oxides,” Sens. Actuators A Phys. 193, 136–140 (2013).
[Crossref]

Mohammadzadeh-Asl, S.

S. Mohammadzadeh-Asl, A. Keshtkar, J. Ezzati Nazhad Dolatabadi, and M. de la Guardia, “Nanomaterials and phase sensitive based signal enhancment in surface plasmon resonance,” Biosens. Bioelectron. 110, 118–131 (2018).
[Crossref] [PubMed]

Mycek, M. A.

R. H. Wilson, K. Vishwanath, and M. A. Mycek, “Optical methods for quantitative and label-free sensing in living human tissues: principles, techniques, and applications,” Adv. Phys. 1(4), 523–543 (2016).
[PubMed]

Nong, J.

W. Wei, J. Nong, Y. Zhu, G. Zhang, N. Wang, S. Luo, N. Chen, G. Lan, C. J. Chuang, and Y. Huang, “Graphene/Au-enhanced plastic clad silica fiber optic surface plasmon resonance sensor,” Plasmonics 13(2), 483–491 (2018).
[Crossref]

Ohtani, B.

M. G. Méndez-Medrano, E. Kowalska, A. Lehoux, A. Herissan, B. Ohtani, D. Bahena, V. Briois, C. Colbeau-Justin, J. L. Rodriguez-Lopez, and H. Remita, “Surface Modification of TiO2 with Ag Nanoparticles and CuO Nanoclusters for Application in Photocatalysis,” J. Phys. Chem. C 120(9), 5143–5154 (2016).
[Crossref]

Padhy, P.

P. K. Maharana, P. Padhy, and R. Jha, “On the Field Enhancement and Performance of an Ultra-Stable SPR Biosensor Based on Graphene,” IEEE Photonics Technol. Lett. 25(22), 2156–2159 (2013).
[Crossref]

Pang, Z.

J. Yang, D. Li, Z. Pang, and Q. Wei, “Laccase Biosensor Based on Ag-Doped TiO2 Nanoparticles on CuCNFs for the Determination of Hydroquinone,” Nano 11(12), 1650132 (2016).
[Crossref]

Park, K. M.

E. G. Lee, K. M. Park, J. Y. Jeong, S. H. Lee, J. E. Baek, H. W. Lee, J. K. Jung, and B. H. Chung, “Carbon nanotube-assisted enhancement of surface plasmon resonance signal,” Anal. Biochem. 408(2), 206–211 (2011).
[Crossref] [PubMed]

Patching, S. G.

S. G. Patching, “Surface plasmon resonance spectroscopy for characterisation of membrane protein-ligand interactions and its potential for drug discovery,” Biochim. Biophys. Acta 1838(1 Pt A), 43–55 (2014).
[Crossref] [PubMed]

Prasad, P. N.

W. C. Law, K. T. Yong, A. Baev, and P. N. Prasad, “Sensitivity improved surface plasmon resonance biosensor for cancer biomarker detection based on plasmonic enhancement,” ACS Nano 5(6), 4858–4864 (2011).
[Crossref] [PubMed]

Puchades, R.

M. A. González-Martínez, R. Puchades, and A. Maquieira, “Optical immunosensors for environmental monitoring: how far have we come?” Anal. Bioanal. Chem. 387(1), 205–218 (2007).
[Crossref] [PubMed]

Qi, F.

H. Chen, S. Jia, F. Qi, F. Zou, Y. Hou, K. Koh, and Y. Yin, “Fabrication of a simple and convenient surface plasmon resonance cytosensor based on oriented peptide on calix[4]arene crownether monolayer,” Sens. Actuators B Chem. 225, 504–509 (2016).
[Crossref]

Qi, K.

T. Xue, X. Cui, W. Guan, Q. Wang, C. Liu, H. Wang, K. Qi, D. J. Singh, and W. Zheng, “Surface plasmon resonance technique for directly probing the interaction of DNA and graphene oxide and ultra-sensitive biosensing,” Biosens. Bioelectron. 58, 374–379 (2014).
[Crossref] [PubMed]

Qiu, J.

J. Qiu, S. Zhang, and H. Zhao, “Recent applications of TiO2 nanomaterials in chemical sensing in aqueous media,” Sens. Actuators B Chem. 160(1), 875–890 (2011).
[Crossref] [PubMed]

Qiu, W.

Radecka, M.

M. Radecka, M. Rekas, A. Trenczek-Zajac, and K. Zakrzewska, “Importance of the band gap energy and flat band potential for application of modified TiO2 photoanodes in water photolysis,” J. Power Sources 181(1), 46–55 (2008).
[Crossref]

Rashad, M. M.

A. E. Shalan, M. M. Rashad, Y. Yu, M. Lira-Cantu, and M. S. A. Abdel-Mottaleb, “Controlling the microstructure and properties of titania nanopowders for high efficiency dye sensitized solar cells,” Electrochim. Acta 89, 469–478 (2013).
[Crossref]

Rekas, M.

M. Radecka, M. Rekas, A. Trenczek-Zajac, and K. Zakrzewska, “Importance of the band gap energy and flat band potential for application of modified TiO2 photoanodes in water photolysis,” J. Power Sources 181(1), 46–55 (2008).
[Crossref]

Remita, H.

M. G. Méndez-Medrano, E. Kowalska, A. Lehoux, A. Herissan, B. Ohtani, D. Bahena, V. Briois, C. Colbeau-Justin, J. L. Rodriguez-Lopez, and H. Remita, “Surface Modification of TiO2 with Ag Nanoparticles and CuO Nanoclusters for Application in Photocatalysis,” J. Phys. Chem. C 120(9), 5143–5154 (2016).
[Crossref]

Rodriguez-Lopez, J. L.

M. G. Méndez-Medrano, E. Kowalska, A. Lehoux, A. Herissan, B. Ohtani, D. Bahena, V. Briois, C. Colbeau-Justin, J. L. Rodriguez-Lopez, and H. Remita, “Surface Modification of TiO2 with Ag Nanoparticles and CuO Nanoclusters for Application in Photocatalysis,” J. Phys. Chem. C 120(9), 5143–5154 (2016).
[Crossref]

Sawada, K.

Y. Maruyama, S. Terao, and K. Sawada, “Label free CMOS DNA image sensor based on the charge transfer technique,” Biosens. Bioelectron. 24(10), 3108–3112 (2009).
[Crossref] [PubMed]

Scarano, S.

X. R. Cheng, V. W. Sze Hung, S. Scarano, M. Mascini, M. Minunni, and K. Kerman, “Label-free methods for probing the interaction of clioquinol with amyloid-β,” Anal. Methods 4(8), 2228–2232 (2012).
[Crossref]

Shaheen, T. I.

M. E. El-Naggar, T. I. Shaheen, M. M. G. Fouda, and A. A. Hebeish, “Eco-friendly microwave-assisted green and rapid synthesis of well-stabilized gold and core-shell silver-gold nanoparticles,” Carbohydr. Polym. 136, 1128–1136 (2016).
[Crossref] [PubMed]

Shalabney, A.

A. Shalabney and I. Abdulhalim, “Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors,” Sens. Actuators A Phys. 159(1), 24–32 (2010).
[Crossref]

Shalan, A. E.

A. E. Shalan, M. M. Rashad, Y. Yu, M. Lira-Cantu, and M. S. A. Abdel-Mottaleb, “Controlling the microstructure and properties of titania nanopowders for high efficiency dye sensitized solar cells,” Electrochim. Acta 89, 469–478 (2013).
[Crossref]

Shao, G.

K. Song, X. Han, and G. Shao, “Electronic properties of rutile TiO2 doped with 4d transition metals: First-principles study,” J. Alloys Compd. 551, 118–124 (2013).
[Crossref]

Shen, Z.

H. Chen, Y. Hou, Z. Ye, H. Wang, K. Koh, Z. Shen, and Y. Shu, “Label-free surface plasmon resonance cytosensor for breast cancer cell detection based on nano-conjugation of monodisperse magnetic nanoparticle and folic acid,” Sens. Actuators B Chem. 201, 433–438 (2014).
[Crossref]

Shu, Y.

H. Chen, Y. Hou, Z. Ye, H. Wang, K. Koh, Z. Shen, and Y. Shu, “Label-free surface plasmon resonance cytosensor for breast cancer cell detection based on nano-conjugation of monodisperse magnetic nanoparticle and folic acid,” Sens. Actuators B Chem. 201, 433–438 (2014).
[Crossref]

Singh, D. J.

T. Xue, X. Cui, W. Guan, Q. Wang, C. Liu, H. Wang, K. Qi, D. J. Singh, and W. Zheng, “Surface plasmon resonance technique for directly probing the interaction of DNA and graphene oxide and ultra-sensitive biosensing,” Biosens. Bioelectron. 58, 374–379 (2014).
[Crossref] [PubMed]

Singh, S.

S. Singh, S. K. Mishra, and B. D. Gupta, “Sensitivity enhancement of a surface plasmon resonance based fibre optic refractive index sensor utilizing an additional layer of oxides,” Sens. Actuators A Phys. 193, 136–140 (2013).
[Crossref]

Song, K.

K. Song, X. Han, and G. Shao, “Electronic properties of rutile TiO2 doped with 4d transition metals: First-principles study,” J. Alloys Compd. 551, 118–124 (2013).
[Crossref]

Sze Hung, V. W.

X. R. Cheng, V. W. Sze Hung, S. Scarano, M. Mascini, M. Minunni, and K. Kerman, “Label-free methods for probing the interaction of clioquinol with amyloid-β,” Anal. Methods 4(8), 2228–2232 (2012).
[Crossref]

Tan, G. L.

G. L. Tan, M. F. Lemon, D. J. Jones, and R. H. French, “Optical properties and London dispersion interaction of amorphous and crystalline, SiO2 determined by vacuum ultraviolet spectroscopy and spectroscopic ellipsometry,” Phys. Rev. B Condens. Matter Mater. Phys. 72(20), 205117 (2005).
[Crossref]

Tang, J.

P. Da, W. Li, X. Lin, Y. Wang, J. Tang, and G. Zheng, “Surface plasmon resonance enhanced real-time photoelectrochemical protein sensing by gold nanoparticle-decorated TiO₂ nanowires,” Anal. Chem. 86(13), 6633–6639 (2014).
[Crossref] [PubMed]

Terao, S.

Y. Maruyama, S. Terao, and K. Sawada, “Label free CMOS DNA image sensor based on the charge transfer technique,” Biosens. Bioelectron. 24(10), 3108–3112 (2009).
[Crossref] [PubMed]

Tong, Y.

X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong, and Y. Li, “Hydrogenated TiO2 nanotube arrays for supercapacitors,” Nano Lett. 12(3), 1690–1696 (2012).
[Crossref] [PubMed]

Tothill, I.

Z. Altintas, Y. Uludag, Y. Gurbuz, and I. Tothill, “Development of surface chemistry for surface plasmon resonance based sensors for the detection of proteins and DNA molecules,” Anal. Chim. Acta 712, 138–144 (2012).
[Crossref] [PubMed]

Trenczek-Zajac, A.

M. Radecka, M. Rekas, A. Trenczek-Zajac, and K. Zakrzewska, “Importance of the band gap energy and flat band potential for application of modified TiO2 photoanodes in water photolysis,” J. Power Sources 181(1), 46–55 (2008).
[Crossref]

Uludag, Y.

Z. Altintas, Y. Uludag, Y. Gurbuz, and I. Tothill, “Development of surface chemistry for surface plasmon resonance based sensors for the detection of proteins and DNA molecules,” Anal. Chim. Acta 712, 138–144 (2012).
[Crossref] [PubMed]

van Bennekom, W. P.

T. Wink, S. J. van Zuilen, A. Bult, and W. P. van Bennekom, “Liposome-mediated enhancement of the sensitivity in immunoassays of proteins and peptides in surface plasmon resonance spectrometry,” Anal. Chem. 70(5), 827–832 (1998).
[Crossref] [PubMed]

van Zuilen, S. J.

T. Wink, S. J. van Zuilen, A. Bult, and W. P. van Bennekom, “Liposome-mediated enhancement of the sensitivity in immunoassays of proteins and peptides in surface plasmon resonance spectrometry,” Anal. Chem. 70(5), 827–832 (1998).
[Crossref] [PubMed]

Vishwanath, K.

R. H. Wilson, K. Vishwanath, and M. A. Mycek, “Optical methods for quantitative and label-free sensing in living human tissues: principles, techniques, and applications,” Adv. Phys. 1(4), 523–543 (2016).
[PubMed]

Wang, G.

X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong, and Y. Li, “Hydrogenated TiO2 nanotube arrays for supercapacitors,” Nano Lett. 12(3), 1690–1696 (2012).
[Crossref] [PubMed]

Wang, H.

H. Wang, H. Zhang, J. Dong, S. Hu, W. Zhu, W. Qiu, H. Lu, J. Yu, H. Guan, S. Gao, Z. Li, W. Liu, M. He, J. Zhang, Z. Chen, and Y. Luo, “Sensitivity-enhanced surface plasmon resonance sensor utilizing a tungsten disulfide (WS2) nanosheets overlayer,” Photon. Res. 6(6), 485–491 (2018).
[Crossref]

H. Chen, Y. Hou, Z. Ye, H. Wang, K. Koh, Z. Shen, and Y. Shu, “Label-free surface plasmon resonance cytosensor for breast cancer cell detection based on nano-conjugation of monodisperse magnetic nanoparticle and folic acid,” Sens. Actuators B Chem. 201, 433–438 (2014).
[Crossref]

T. Xue, X. Cui, W. Guan, Q. Wang, C. Liu, H. Wang, K. Qi, D. J. Singh, and W. Zheng, “Surface plasmon resonance technique for directly probing the interaction of DNA and graphene oxide and ultra-sensitive biosensing,” Biosens. Bioelectron. 58, 374–379 (2014).
[Crossref] [PubMed]

Wang, K.

F. Zou, B. Wu, X. Wang, Y. Chen, K. Koh, K. Wang, and H. Chen, “Signal amplification and dual recognition strategy for small-molecule detection by surface plasmon resonance based on calix[4]arene crown ether-modified gold nanoparticles,” Sens. Actuators B Chem. 241, 160–167 (2017).
[Crossref]

Wang, N.

W. Wei, J. Nong, Y. Zhu, G. Zhang, N. Wang, S. Luo, N. Chen, G. Lan, C. J. Chuang, and Y. Huang, “Graphene/Au-enhanced plastic clad silica fiber optic surface plasmon resonance sensor,” Plasmonics 13(2), 483–491 (2018).
[Crossref]

Wang, Q.

Z. Jin, W. Guan, C. Liu, T. Xue, Q. Wang, W. Zheng, and X. Cui, “A stable and high resolution optical waveguide biosensor based on dense TiO2/Ag multilayer film,” Appl. Surf. Sci. 377, 207–212 (2016).
[Crossref]

T. Xue, X. Cui, W. Guan, Q. Wang, C. Liu, H. Wang, K. Qi, D. J. Singh, and W. Zheng, “Surface plasmon resonance technique for directly probing the interaction of DNA and graphene oxide and ultra-sensitive biosensing,” Biosens. Bioelectron. 58, 374–379 (2014).
[Crossref] [PubMed]

Wang, X.

F. Zou, B. Wu, X. Wang, Y. Chen, K. Koh, K. Wang, and H. Chen, “Signal amplification and dual recognition strategy for small-molecule detection by surface plasmon resonance based on calix[4]arene crown ether-modified gold nanoparticles,” Sens. Actuators B Chem. 241, 160–167 (2017).
[Crossref]

Wang, Y.

P. Da, W. Li, X. Lin, Y. Wang, J. Tang, and G. Zheng, “Surface plasmon resonance enhanced real-time photoelectrochemical protein sensing by gold nanoparticle-decorated TiO₂ nanowires,” Anal. Chem. 86(13), 6633–6639 (2014).
[Crossref] [PubMed]

Wei, Q.

J. Yang, D. Li, Z. Pang, and Q. Wei, “Laccase Biosensor Based on Ag-Doped TiO2 Nanoparticles on CuCNFs for the Determination of Hydroquinone,” Nano 11(12), 1650132 (2016).
[Crossref]

Wei, W.

W. Wei, J. Nong, Y. Zhu, G. Zhang, N. Wang, S. Luo, N. Chen, G. Lan, C. J. Chuang, and Y. Huang, “Graphene/Au-enhanced plastic clad silica fiber optic surface plasmon resonance sensor,” Plasmonics 13(2), 483–491 (2018).
[Crossref]

Wilson, R. H.

R. H. Wilson, K. Vishwanath, and M. A. Mycek, “Optical methods for quantitative and label-free sensing in living human tissues: principles, techniques, and applications,” Adv. Phys. 1(4), 523–543 (2016).
[PubMed]

Wink, T.

T. Wink, S. J. van Zuilen, A. Bult, and W. P. van Bennekom, “Liposome-mediated enhancement of the sensitivity in immunoassays of proteins and peptides in surface plasmon resonance spectrometry,” Anal. Chem. 70(5), 827–832 (1998).
[Crossref] [PubMed]

Wu, B.

F. Zou, B. Wu, X. Wang, Y. Chen, K. Koh, K. Wang, and H. Chen, “Signal amplification and dual recognition strategy for small-molecule detection by surface plasmon resonance based on calix[4]arene crown ether-modified gold nanoparticles,” Sens. Actuators B Chem. 241, 160–167 (2017).
[Crossref]

Wu, L.

Xue, T.

Z. Jin, W. Guan, C. Liu, T. Xue, Q. Wang, W. Zheng, and X. Cui, “A stable and high resolution optical waveguide biosensor based on dense TiO2/Ag multilayer film,” Appl. Surf. Sci. 377, 207–212 (2016).
[Crossref]

T. Xue, X. Cui, W. Guan, Q. Wang, C. Liu, H. Wang, K. Qi, D. J. Singh, and W. Zheng, “Surface plasmon resonance technique for directly probing the interaction of DNA and graphene oxide and ultra-sensitive biosensing,” Biosens. Bioelectron. 58, 374–379 (2014).
[Crossref] [PubMed]

Yang, H. H.

L. Guo, J. A. Jackman, H. H. Yang, P. Chen, N. J. Cho, and D. H. Kim, “Strategies for enhancing the sensitivity of plasmonic nanosensors,” Nano Today 10(2), 213–239 (2015).
[Crossref]

Yang, J.

J. Yang, D. Li, Z. Pang, and Q. Wei, “Laccase Biosensor Based on Ag-Doped TiO2 Nanoparticles on CuCNFs for the Determination of Hydroquinone,” Nano 11(12), 1650132 (2016).
[Crossref]

Ye, Z.

H. Chen, Y. Hou, Z. Ye, H. Wang, K. Koh, Z. Shen, and Y. Shu, “Label-free surface plasmon resonance cytosensor for breast cancer cell detection based on nano-conjugation of monodisperse magnetic nanoparticle and folic acid,” Sens. Actuators B Chem. 201, 433–438 (2014).
[Crossref]

Yin, Y.

H. Chen, S. Jia, F. Qi, F. Zou, Y. Hou, K. Koh, and Y. Yin, “Fabrication of a simple and convenient surface plasmon resonance cytosensor based on oriented peptide on calix[4]arene crownether monolayer,” Sens. Actuators B Chem. 225, 504–509 (2016).
[Crossref]

Yong, K. T.

S. Zeng, X. Yu, W. C. Law, Y. Zhang, R. Hu, X. Q. Dinh, H. P. Ho, and K. T. Yong, “Size dependence of Au NP-enhanced surface plasmon resonance based on differential phase measurement,” Sens. Actuators B Chem. 176(1), 1128–1133 (2013).
[Crossref]

W. C. Law, K. T. Yong, A. Baev, and P. N. Prasad, “Sensitivity improved surface plasmon resonance biosensor for cancer biomarker detection based on plasmonic enhancement,” ACS Nano 5(6), 4858–4864 (2011).
[Crossref] [PubMed]

Yu, J.

Yu, M.

X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong, and Y. Li, “Hydrogenated TiO2 nanotube arrays for supercapacitors,” Nano Lett. 12(3), 1690–1696 (2012).
[Crossref] [PubMed]

Yu, X.

S. Zeng, X. Yu, W. C. Law, Y. Zhang, R. Hu, X. Q. Dinh, H. P. Ho, and K. T. Yong, “Size dependence of Au NP-enhanced surface plasmon resonance based on differential phase measurement,” Sens. Actuators B Chem. 176(1), 1128–1133 (2013).
[Crossref]

Yu, Y.

A. E. Shalan, M. M. Rashad, Y. Yu, M. Lira-Cantu, and M. S. A. Abdel-Mottaleb, “Controlling the microstructure and properties of titania nanopowders for high efficiency dye sensitized solar cells,” Electrochim. Acta 89, 469–478 (2013).
[Crossref]

Zakrzewska, K.

M. Radecka, M. Rekas, A. Trenczek-Zajac, and K. Zakrzewska, “Importance of the band gap energy and flat band potential for application of modified TiO2 photoanodes in water photolysis,” J. Power Sources 181(1), 46–55 (2008).
[Crossref]

Zeng, S.

S. Zeng, X. Yu, W. C. Law, Y. Zhang, R. Hu, X. Q. Dinh, H. P. Ho, and K. T. Yong, “Size dependence of Au NP-enhanced surface plasmon resonance based on differential phase measurement,” Sens. Actuators B Chem. 176(1), 1128–1133 (2013).
[Crossref]

Zhai, T.

X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong, and Y. Li, “Hydrogenated TiO2 nanotube arrays for supercapacitors,” Nano Lett. 12(3), 1690–1696 (2012).
[Crossref] [PubMed]

Zhang, G.

W. Wei, J. Nong, Y. Zhu, G. Zhang, N. Wang, S. Luo, N. Chen, G. Lan, C. J. Chuang, and Y. Huang, “Graphene/Au-enhanced plastic clad silica fiber optic surface plasmon resonance sensor,” Plasmonics 13(2), 483–491 (2018).
[Crossref]

Zhang, H.

Zhang, J.

Zhang, S.

J. Qiu, S. Zhang, and H. Zhao, “Recent applications of TiO2 nanomaterials in chemical sensing in aqueous media,” Sens. Actuators B Chem. 160(1), 875–890 (2011).
[Crossref] [PubMed]

Zhang, Y.

S. Zeng, X. Yu, W. C. Law, Y. Zhang, R. Hu, X. Q. Dinh, H. P. Ho, and K. T. Yong, “Size dependence of Au NP-enhanced surface plasmon resonance based on differential phase measurement,” Sens. Actuators B Chem. 176(1), 1128–1133 (2013).
[Crossref]

Zhao, H.

J. Qiu, S. Zhang, and H. Zhao, “Recent applications of TiO2 nanomaterials in chemical sensing in aqueous media,” Sens. Actuators B Chem. 160(1), 875–890 (2011).
[Crossref] [PubMed]

Zheng, G.

P. Da, W. Li, X. Lin, Y. Wang, J. Tang, and G. Zheng, “Surface plasmon resonance enhanced real-time photoelectrochemical protein sensing by gold nanoparticle-decorated TiO₂ nanowires,” Anal. Chem. 86(13), 6633–6639 (2014).
[Crossref] [PubMed]

Zheng, W.

Z. Jin, W. Guan, C. Liu, T. Xue, Q. Wang, W. Zheng, and X. Cui, “A stable and high resolution optical waveguide biosensor based on dense TiO2/Ag multilayer film,” Appl. Surf. Sci. 377, 207–212 (2016).
[Crossref]

T. Xue, X. Cui, W. Guan, Q. Wang, C. Liu, H. Wang, K. Qi, D. J. Singh, and W. Zheng, “Surface plasmon resonance technique for directly probing the interaction of DNA and graphene oxide and ultra-sensitive biosensing,” Biosens. Bioelectron. 58, 374–379 (2014).
[Crossref] [PubMed]

Zhu, W.

Zhu, Y.

W. Wei, J. Nong, Y. Zhu, G. Zhang, N. Wang, S. Luo, N. Chen, G. Lan, C. J. Chuang, and Y. Huang, “Graphene/Au-enhanced plastic clad silica fiber optic surface plasmon resonance sensor,” Plasmonics 13(2), 483–491 (2018).
[Crossref]

Zou, F.

F. Zou, B. Wu, X. Wang, Y. Chen, K. Koh, K. Wang, and H. Chen, “Signal amplification and dual recognition strategy for small-molecule detection by surface plasmon resonance based on calix[4]arene crown ether-modified gold nanoparticles,” Sens. Actuators B Chem. 241, 160–167 (2017).
[Crossref]

H. Chen, S. Jia, F. Qi, F. Zou, Y. Hou, K. Koh, and Y. Yin, “Fabrication of a simple and convenient surface plasmon resonance cytosensor based on oriented peptide on calix[4]arene crownether monolayer,” Sens. Actuators B Chem. 225, 504–509 (2016).
[Crossref]

ACS Nano (1)

W. C. Law, K. T. Yong, A. Baev, and P. N. Prasad, “Sensitivity improved surface plasmon resonance biosensor for cancer biomarker detection based on plasmonic enhancement,” ACS Nano 5(6), 4858–4864 (2011).
[Crossref] [PubMed]

Adv. Phys. (1)

R. H. Wilson, K. Vishwanath, and M. A. Mycek, “Optical methods for quantitative and label-free sensing in living human tissues: principles, techniques, and applications,” Adv. Phys. 1(4), 523–543 (2016).
[PubMed]

Anal. Bioanal. Chem. (1)

M. A. González-Martínez, R. Puchades, and A. Maquieira, “Optical immunosensors for environmental monitoring: how far have we come?” Anal. Bioanal. Chem. 387(1), 205–218 (2007).
[Crossref] [PubMed]

Anal. Biochem. (1)

E. G. Lee, K. M. Park, J. Y. Jeong, S. H. Lee, J. E. Baek, H. W. Lee, J. K. Jung, and B. H. Chung, “Carbon nanotube-assisted enhancement of surface plasmon resonance signal,” Anal. Biochem. 408(2), 206–211 (2011).
[Crossref] [PubMed]

Anal. Chem. (2)

T. Wink, S. J. van Zuilen, A. Bult, and W. P. van Bennekom, “Liposome-mediated enhancement of the sensitivity in immunoassays of proteins and peptides in surface plasmon resonance spectrometry,” Anal. Chem. 70(5), 827–832 (1998).
[Crossref] [PubMed]

P. Da, W. Li, X. Lin, Y. Wang, J. Tang, and G. Zheng, “Surface plasmon resonance enhanced real-time photoelectrochemical protein sensing by gold nanoparticle-decorated TiO₂ nanowires,” Anal. Chem. 86(13), 6633–6639 (2014).
[Crossref] [PubMed]

Anal. Chim. Acta (1)

Z. Altintas, Y. Uludag, Y. Gurbuz, and I. Tothill, “Development of surface chemistry for surface plasmon resonance based sensors for the detection of proteins and DNA molecules,” Anal. Chim. Acta 712, 138–144 (2012).
[Crossref] [PubMed]

Anal. Methods (1)

X. R. Cheng, V. W. Sze Hung, S. Scarano, M. Mascini, M. Minunni, and K. Kerman, “Label-free methods for probing the interaction of clioquinol with amyloid-β,” Anal. Methods 4(8), 2228–2232 (2012).
[Crossref]

Appl. Surf. Sci. (1)

Z. Jin, W. Guan, C. Liu, T. Xue, Q. Wang, W. Zheng, and X. Cui, “A stable and high resolution optical waveguide biosensor based on dense TiO2/Ag multilayer film,” Appl. Surf. Sci. 377, 207–212 (2016).
[Crossref]

Biochim. Biophys. Acta (1)

S. G. Patching, “Surface plasmon resonance spectroscopy for characterisation of membrane protein-ligand interactions and its potential for drug discovery,” Biochim. Biophys. Acta 1838(1 Pt A), 43–55 (2014).
[Crossref] [PubMed]

Biosens. Bioelectron. (3)

Y. Maruyama, S. Terao, and K. Sawada, “Label free CMOS DNA image sensor based on the charge transfer technique,” Biosens. Bioelectron. 24(10), 3108–3112 (2009).
[Crossref] [PubMed]

S. Mohammadzadeh-Asl, A. Keshtkar, J. Ezzati Nazhad Dolatabadi, and M. de la Guardia, “Nanomaterials and phase sensitive based signal enhancment in surface plasmon resonance,” Biosens. Bioelectron. 110, 118–131 (2018).
[Crossref] [PubMed]

T. Xue, X. Cui, W. Guan, Q. Wang, C. Liu, H. Wang, K. Qi, D. J. Singh, and W. Zheng, “Surface plasmon resonance technique for directly probing the interaction of DNA and graphene oxide and ultra-sensitive biosensing,” Biosens. Bioelectron. 58, 374–379 (2014).
[Crossref] [PubMed]

Carbohydr. Polym. (1)

M. E. El-Naggar, T. I. Shaheen, M. M. G. Fouda, and A. A. Hebeish, “Eco-friendly microwave-assisted green and rapid synthesis of well-stabilized gold and core-shell silver-gold nanoparticles,” Carbohydr. Polym. 136, 1128–1136 (2016).
[Crossref] [PubMed]

Electrochim. Acta (1)

A. E. Shalan, M. M. Rashad, Y. Yu, M. Lira-Cantu, and M. S. A. Abdel-Mottaleb, “Controlling the microstructure and properties of titania nanopowders for high efficiency dye sensitized solar cells,” Electrochim. Acta 89, 469–478 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (1)

P. K. Maharana, P. Padhy, and R. Jha, “On the Field Enhancement and Performance of an Ultra-Stable SPR Biosensor Based on Graphene,” IEEE Photonics Technol. Lett. 25(22), 2156–2159 (2013).
[Crossref]

J. Alloys Compd. (1)

K. Song, X. Han, and G. Shao, “Electronic properties of rutile TiO2 doped with 4d transition metals: First-principles study,” J. Alloys Compd. 551, 118–124 (2013).
[Crossref]

J. Phys. Chem. C (1)

M. G. Méndez-Medrano, E. Kowalska, A. Lehoux, A. Herissan, B. Ohtani, D. Bahena, V. Briois, C. Colbeau-Justin, J. L. Rodriguez-Lopez, and H. Remita, “Surface Modification of TiO2 with Ag Nanoparticles and CuO Nanoclusters for Application in Photocatalysis,” J. Phys. Chem. C 120(9), 5143–5154 (2016).
[Crossref]

J. Power Sources (1)

M. Radecka, M. Rekas, A. Trenczek-Zajac, and K. Zakrzewska, “Importance of the band gap energy and flat band potential for application of modified TiO2 photoanodes in water photolysis,” J. Power Sources 181(1), 46–55 (2008).
[Crossref]

Nano (1)

J. Yang, D. Li, Z. Pang, and Q. Wei, “Laccase Biosensor Based on Ag-Doped TiO2 Nanoparticles on CuCNFs for the Determination of Hydroquinone,” Nano 11(12), 1650132 (2016).
[Crossref]

Nano Lett. (1)

X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong, and Y. Li, “Hydrogenated TiO2 nanotube arrays for supercapacitors,” Nano Lett. 12(3), 1690–1696 (2012).
[Crossref] [PubMed]

Nano Today (1)

L. Guo, J. A. Jackman, H. H. Yang, P. Chen, N. J. Cho, and D. H. Kim, “Strategies for enhancing the sensitivity of plasmonic nanosensors,” Nano Today 10(2), 213–239 (2015).
[Crossref]

Nat. Rev. Drug Discov. (1)

M. A. Cooper, “Optical biosensors in drug discovery,” Nat. Rev. Drug Discov. 1(7), 515–528 (2002).
[PubMed]

Opt. Commun. (1)

P. Bhatia and B. D. Gupta, “Surface plasmon resonance based fiber optic refractive index sensor utilizing silicon layer: Effect of doping,” Opt. Commun. 286, 171–175 (2013).
[Crossref]

Opt. Express (1)

Opt. Inter. J. Light Electron Opt. (1)

S. Chen and C. Lin, “High-performance bimetallic film surface plasmon resonance sensor based on film thickness optimization,” Opt. Inter. J. Light Electron Opt. 127(19), 7514–7519 (2016).
[Crossref]

Photon. Res. (1)

Phys. Rev. B Condens. Matter Mater. Phys. (1)

G. L. Tan, M. F. Lemon, D. J. Jones, and R. H. French, “Optical properties and London dispersion interaction of amorphous and crystalline, SiO2 determined by vacuum ultraviolet spectroscopy and spectroscopic ellipsometry,” Phys. Rev. B Condens. Matter Mater. Phys. 72(20), 205117 (2005).
[Crossref]

Plasmonics (1)

W. Wei, J. Nong, Y. Zhu, G. Zhang, N. Wang, S. Luo, N. Chen, G. Lan, C. J. Chuang, and Y. Huang, “Graphene/Au-enhanced plastic clad silica fiber optic surface plasmon resonance sensor,” Plasmonics 13(2), 483–491 (2018).
[Crossref]

Sens. Actuators A Phys. (2)

A. Shalabney and I. Abdulhalim, “Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors,” Sens. Actuators A Phys. 159(1), 24–32 (2010).
[Crossref]

S. Singh, S. K. Mishra, and B. D. Gupta, “Sensitivity enhancement of a surface plasmon resonance based fibre optic refractive index sensor utilizing an additional layer of oxides,” Sens. Actuators A Phys. 193, 136–140 (2013).
[Crossref]

Sens. Actuators B Chem. (6)

N. F. Chiu and T. Y. Huang, “Sensitivity and kinetic analysis of graphene oxide-based surface plasmon resonance biosensors,” Sens. Actuators B Chem. 197, 35–42 (2014).
[Crossref]

J. Qiu, S. Zhang, and H. Zhao, “Recent applications of TiO2 nanomaterials in chemical sensing in aqueous media,” Sens. Actuators B Chem. 160(1), 875–890 (2011).
[Crossref] [PubMed]

H. Chen, S. Jia, F. Qi, F. Zou, Y. Hou, K. Koh, and Y. Yin, “Fabrication of a simple and convenient surface plasmon resonance cytosensor based on oriented peptide on calix[4]arene crownether monolayer,” Sens. Actuators B Chem. 225, 504–509 (2016).
[Crossref]

S. Zeng, X. Yu, W. C. Law, Y. Zhang, R. Hu, X. Q. Dinh, H. P. Ho, and K. T. Yong, “Size dependence of Au NP-enhanced surface plasmon resonance based on differential phase measurement,” Sens. Actuators B Chem. 176(1), 1128–1133 (2013).
[Crossref]

F. Zou, B. Wu, X. Wang, Y. Chen, K. Koh, K. Wang, and H. Chen, “Signal amplification and dual recognition strategy for small-molecule detection by surface plasmon resonance based on calix[4]arene crown ether-modified gold nanoparticles,” Sens. Actuators B Chem. 241, 160–167 (2017).
[Crossref]

H. Chen, Y. Hou, Z. Ye, H. Wang, K. Koh, Z. Shen, and Y. Shu, “Label-free surface plasmon resonance cytosensor for breast cancer cell detection based on nano-conjugation of monodisperse magnetic nanoparticle and folic acid,” Sens. Actuators B Chem. 201, 433–438 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic of the TDNP-SPR sensor.
Fig. 2
Fig. 2 (a) Photographs of different TiO2–ethanol dispersions. (b) Absorption spectra of the prepared TiO2–ethanol dispersions.
Fig. 3
Fig. 3 The SEM images of surface morphology of the SPR chips without (a) and with (b) TDNP overlayer.
Fig. 4
Fig. 4 (a) 3D AFM images. (b) Line scanning height profiles of TDNP coating layers with different TiO2 concentrations. (c) Linear relationship between the TiO2 concentration and the average thickness of the coating layer.
Fig. 5
Fig. 5 Transmittance spectra of the TDNP-SPR sensors at different TiO2 concentration: (a) without coating, (b) 0.5%, (c) 1%, (d) 1.5%, (e) 2%, and (f) 2.5%.
Fig. 6
Fig. 6 (a) Spectra of TDNP-SPR sensors for different TiO2 concentrations at na = 1.333. (b) Corresponding relationship between the resonance wavelength and the TiO2 concentration.
Fig. 7
Fig. 7 (a) Relationships between the resonant wavelength and analyte RI for different TiO2 concentrations. (b) Sensitivity, (c) FWHM, and (d) FoM comparisons of the different TDNP-SPR sensors.
Fig. 8
Fig. 8 Reflectance spectral evolution for SPR sensors with (a) an uncoated Au film and (b) 1% and (c) 1.5% TiO2/Au hybrid layers in response to the change in the FBS solution volume ratio.
Fig. 9
Fig. 9 (a) Relationship between the resonant wavelength of the three types of SPR sensors and the volume ratio of the FBS solution. (b) Sensitivity enhancement of the TDNP-SPR sensors compared with the control SPR sensor in the bulk RI and FBS measurements.

Tables (1)

Tables Icon

Table 1 Comparison of the SPR sensing performance for various plasmonic interface-modified materials