Abstract

We demonstrate an elliptical gold nanodisk array (GNA) for engineering the spectral profile of surface lattice resonance (SLR). The nanodisk’s shape has a great impact on SLR. Small linewidth of 20 nm at an aspect ratio of 1.17, as well as large wavelength tuning of 64 nm within 4% strain via different orientations and polarizations, are achieved experimentally. The enhanced wavelength response of 6.93 nm per 1% strain variation for elliptical GNA is 2.4 times better than that for general circular GNA. Furthermore, the strain sensing for elliptical GNA approaches is 5.7 times greater than that for circular GNA.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Sensing properties of lattice resonances of 2D metal nanoparticle arrays: An analytical model

Barbora Špačková and Jiří Homola
Opt. Express 21(22) 27490-27502 (2013)

Geometric effects on far-field coupling between multipoles of nanoparticles in square arrays

Drew DeJarnette, D. Keith Roper, and Braden Harbin
J. Opt. Soc. Am. B 29(1) 88-100 (2012)

Magnetic circular dichroism of non-local surface lattice resonances in magnetic nanoparticle arrays

Mikko Kataja, Sara Pourjamal, and Sebastiaan van Dijken
Opt. Express 24(4) 3562-3571 (2016)

References

  • View by:
  • |
  • |
  • |

  1. F. A. A. Nugroho, B. Iandolo, J. B. Wagner, and C. Langhammer, “Bottom-up nanofabrication of supported noble metal alloy nanoparticle arrays for plasmonics,” ACS Nano 10(2), 2871–2879 (2016).
    [Crossref] [PubMed]
  2. O. Vazquez-Mena, T. Sannomiya, L. G. Villanueva, J. Voros, and J. Brugger, “Metallic nanodot arrays by stencil lithography for plasmonic biosensing applications,” ACS Nano 5(2), 844–853 (2011).
    [Crossref] [PubMed]
  3. N. A. Abu Hatab, J. M. Oran, and M. J. Sepaniak, “Surface-enhanced Raman spectroscopy substrates created via electron beam lithography and nanotransfer printing,” ACS Nano 2(2), 377–385 (2008).
    [Crossref] [PubMed]
  4. M. A. Garcia, “Surface plasmons in metallic nanoparticles: fundamentals and applications,” J. Phys. D Appl. Phys. 44(28), 283001 (2011).
    [Crossref]
  5. A. D. Humphrey and W. L. Barnes, “Plasmonic surface lattice resonance on arrays of different lattice symmetry,” Phys. Rev. B Condens. Matter 90(7), 075404 (2014).
    [Crossref]
  6. N. A. Mirin, K. Bao, and P. Nordlander, “Fano resonances in plasmonic nanoparticle aggregates,” J. Phys. Chem. A 113(16), 4028–4034 (2009).
    [Crossref] [PubMed]
  7. B. Špačková and J. Homola, “Sensing properties of lattice resonances of 2D metal nanoparticle arrays: an analytical model,” Opt. Express 21(22), 27490–27502 (2013).
    [Crossref] [PubMed]
  8. M. L. Tseng, J. Yang, M. Semmlinger, C. Zhang, P. Nordlander, and N. J. Halas, “Two-dimensional active tuning of an aluminum plasmonic array for full-spectrum response,” Nano Lett. 17(10), 6034–6039 (2017).
    [Crossref] [PubMed]
  9. A. Yang, A. J. Hryn, M. R. Bourgeois, W. K. Lee, J. Hu, G. C. Schatz, and T. W. Odom, “Programmable and reversible plasmon mode engineering,” Proc. Natl. Acad. Sci. U.S.A. 113(50), 14201–14206 (2016).
    [Crossref] [PubMed]
  10. D. Feng, H. Zhang, S. Xu, L. Tian, and N. Song, “Fabrication of plasmonic nanoparticles on a wave shape PDMS substrate,” Plasmonics 12(5), 1627–1631 (2017).
    [Crossref]
  11. M. Kahraman, P. Daggumati, O. Kurtulus, E. Seker, and S. Wachsmann-Hogiu, “Fabrication and characterization of flexible and tunable plasmonic nanostructures,” Sci. Rep. 3(1), 3396 (2013).
    [Crossref] [PubMed]
  12. U. Cataldi, R. Caputo, Y. Kurylyak, G. Klein, M. Chekini, C. Umeton, and T. Bürgi, “Growing gold nanoparticles on a flexible substrate to enable simple mechanical control of their plasmonic coupling,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(37), 7927–7933 (2014).
    [Crossref]
  13. F. Huang and J. J. Baumberg, “Actively tuned plasmons on elastomerically driven Au nanoparticle dimers,” Nano Lett. 10(5), 1787–1792 (2010).
    [Crossref] [PubMed]
  14. Y. Cui, J. Zhou, V. A. Tamma, and W. Park, “Dynamic tuning and symmetry lowering of Fano resonance in plasmonic nanostructure,” ACS Nano 6(3), 2385–2393 (2012).
    [Crossref] [PubMed]
  15. I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10(10), 4222–4227 (2010).
    [Crossref] [PubMed]
  16. D. Yoo, T. W. Johnson, S. Cherukulappurath, D. J. Norris, and S.-H. Oh, “Template-stripped tunable plasmonic devices on stretchable and rollable substrates,” ACS Nano 9(11), 10647–10654 (2015).
    [Crossref] [PubMed]
  17. D. Feng, H. Zhang, S. Xu, L. Tian, and N. Song, “Stretchable array of metal nanodisks on a 3D sinusoidal wavy elastomeric substrate for frequency tunable plasmonics,” Nanotechnology 28(11), 115703 (2017).
    [Crossref] [PubMed]
  18. L. Gao, Y. Zhang, H. Zhang, S. Doshay, X. Xie, H. Luo, D. Shah, Y. Shi, S. Xu, H. Fang, J. A. Fan, P. Nordlander, Y. Huang, and J. A. Rogers, “Optics and nonlinear buckling mechanics in large-area, highly stretchable arrays of plasmonic nanostructures,” ACS Nano 9(6), 5968–5975 (2015).
    [Crossref] [PubMed]
  19. E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
    [Crossref] [PubMed]
  20. S. R. K. Rodriguez, M. C. Schaafsma, A. Berrier, and J. Gómez Rivas, “Collective resonances in plasmonic crystals: size matters,” Phys. Rev. B Condens. Matter 407(20), 4081–4085 (2012).
    [Crossref]
  21. Y. Feng, W. L. Li, Y. F. Hou, Y. Yu, W. P. Cao, T. D. Zhang, and W. D. Fei, “Enhanced dielectric properties of PVDF-HFP/BaTiO3-nanowire composites induced by interfacial polarization and wire-shape,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(6), 1250–1260 (2015).
    [Crossref]
  22. A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [Crossref] [PubMed]
  23. B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
    [Crossref] [PubMed]
  24. A. O. Pinchuk and G. C. Schatz, “Nanoparticle optical properties: far- and near-field electrodynamic coupling in a chain of silver spherical nanoparticles,” Mater. Sci. Eng. B 149(3), 251–258 (2008).
    [Crossref]
  25. T. W. Lu, C. Wang, C. F. Hsiao, and P. T. Lee, “Tunable nanoblock lasers and stretching sensors,” Nanoscale 8(37), 16769–16775 (2016).
    [Crossref] [PubMed]

2017 (3)

M. L. Tseng, J. Yang, M. Semmlinger, C. Zhang, P. Nordlander, and N. J. Halas, “Two-dimensional active tuning of an aluminum plasmonic array for full-spectrum response,” Nano Lett. 17(10), 6034–6039 (2017).
[Crossref] [PubMed]

D. Feng, H. Zhang, S. Xu, L. Tian, and N. Song, “Fabrication of plasmonic nanoparticles on a wave shape PDMS substrate,” Plasmonics 12(5), 1627–1631 (2017).
[Crossref]

D. Feng, H. Zhang, S. Xu, L. Tian, and N. Song, “Stretchable array of metal nanodisks on a 3D sinusoidal wavy elastomeric substrate for frequency tunable plasmonics,” Nanotechnology 28(11), 115703 (2017).
[Crossref] [PubMed]

2016 (3)

F. A. A. Nugroho, B. Iandolo, J. B. Wagner, and C. Langhammer, “Bottom-up nanofabrication of supported noble metal alloy nanoparticle arrays for plasmonics,” ACS Nano 10(2), 2871–2879 (2016).
[Crossref] [PubMed]

A. Yang, A. J. Hryn, M. R. Bourgeois, W. K. Lee, J. Hu, G. C. Schatz, and T. W. Odom, “Programmable and reversible plasmon mode engineering,” Proc. Natl. Acad. Sci. U.S.A. 113(50), 14201–14206 (2016).
[Crossref] [PubMed]

T. W. Lu, C. Wang, C. F. Hsiao, and P. T. Lee, “Tunable nanoblock lasers and stretching sensors,” Nanoscale 8(37), 16769–16775 (2016).
[Crossref] [PubMed]

2015 (3)

Y. Feng, W. L. Li, Y. F. Hou, Y. Yu, W. P. Cao, T. D. Zhang, and W. D. Fei, “Enhanced dielectric properties of PVDF-HFP/BaTiO3-nanowire composites induced by interfacial polarization and wire-shape,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(6), 1250–1260 (2015).
[Crossref]

L. Gao, Y. Zhang, H. Zhang, S. Doshay, X. Xie, H. Luo, D. Shah, Y. Shi, S. Xu, H. Fang, J. A. Fan, P. Nordlander, Y. Huang, and J. A. Rogers, “Optics and nonlinear buckling mechanics in large-area, highly stretchable arrays of plasmonic nanostructures,” ACS Nano 9(6), 5968–5975 (2015).
[Crossref] [PubMed]

D. Yoo, T. W. Johnson, S. Cherukulappurath, D. J. Norris, and S.-H. Oh, “Template-stripped tunable plasmonic devices on stretchable and rollable substrates,” ACS Nano 9(11), 10647–10654 (2015).
[Crossref] [PubMed]

2014 (2)

U. Cataldi, R. Caputo, Y. Kurylyak, G. Klein, M. Chekini, C. Umeton, and T. Bürgi, “Growing gold nanoparticles on a flexible substrate to enable simple mechanical control of their plasmonic coupling,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(37), 7927–7933 (2014).
[Crossref]

A. D. Humphrey and W. L. Barnes, “Plasmonic surface lattice resonance on arrays of different lattice symmetry,” Phys. Rev. B Condens. Matter 90(7), 075404 (2014).
[Crossref]

2013 (2)

B. Špačková and J. Homola, “Sensing properties of lattice resonances of 2D metal nanoparticle arrays: an analytical model,” Opt. Express 21(22), 27490–27502 (2013).
[Crossref] [PubMed]

M. Kahraman, P. Daggumati, O. Kurtulus, E. Seker, and S. Wachsmann-Hogiu, “Fabrication and characterization of flexible and tunable plasmonic nanostructures,” Sci. Rep. 3(1), 3396 (2013).
[Crossref] [PubMed]

2012 (2)

Y. Cui, J. Zhou, V. A. Tamma, and W. Park, “Dynamic tuning and symmetry lowering of Fano resonance in plasmonic nanostructure,” ACS Nano 6(3), 2385–2393 (2012).
[Crossref] [PubMed]

S. R. K. Rodriguez, M. C. Schaafsma, A. Berrier, and J. Gómez Rivas, “Collective resonances in plasmonic crystals: size matters,” Phys. Rev. B Condens. Matter 407(20), 4081–4085 (2012).
[Crossref]

2011 (2)

M. A. Garcia, “Surface plasmons in metallic nanoparticles: fundamentals and applications,” J. Phys. D Appl. Phys. 44(28), 283001 (2011).
[Crossref]

O. Vazquez-Mena, T. Sannomiya, L. G. Villanueva, J. Voros, and J. Brugger, “Metallic nanodot arrays by stencil lithography for plasmonic biosensing applications,” ACS Nano 5(2), 844–853 (2011).
[Crossref] [PubMed]

2010 (2)

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10(10), 4222–4227 (2010).
[Crossref] [PubMed]

F. Huang and J. J. Baumberg, “Actively tuned plasmons on elastomerically driven Au nanoparticle dimers,” Nano Lett. 10(5), 1787–1792 (2010).
[Crossref] [PubMed]

2009 (1)

N. A. Mirin, K. Bao, and P. Nordlander, “Fano resonances in plasmonic nanoparticle aggregates,” J. Phys. Chem. A 113(16), 4028–4034 (2009).
[Crossref] [PubMed]

2008 (3)

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[Crossref] [PubMed]

A. O. Pinchuk and G. C. Schatz, “Nanoparticle optical properties: far- and near-field electrodynamic coupling in a chain of silver spherical nanoparticles,” Mater. Sci. Eng. B 149(3), 251–258 (2008).
[Crossref]

N. A. Abu Hatab, J. M. Oran, and M. J. Sepaniak, “Surface-enhanced Raman spectroscopy substrates created via electron beam lithography and nanotransfer printing,” ACS Nano 2(2), 377–385 (2008).
[Crossref] [PubMed]

2005 (1)

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[Crossref] [PubMed]

1998 (1)

Abu Hatab, N. A.

N. A. Abu Hatab, J. M. Oran, and M. J. Sepaniak, “Surface-enhanced Raman spectroscopy substrates created via electron beam lithography and nanotransfer printing,” ACS Nano 2(2), 377–385 (2008).
[Crossref] [PubMed]

Atwater, H. A.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10(10), 4222–4227 (2010).
[Crossref] [PubMed]

Auguié, B.

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[Crossref] [PubMed]

Aydin, K.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10(10), 4222–4227 (2010).
[Crossref] [PubMed]

Bao, K.

N. A. Mirin, K. Bao, and P. Nordlander, “Fano resonances in plasmonic nanoparticle aggregates,” J. Phys. Chem. A 113(16), 4028–4034 (2009).
[Crossref] [PubMed]

Barnes, W. L.

A. D. Humphrey and W. L. Barnes, “Plasmonic surface lattice resonance on arrays of different lattice symmetry,” Phys. Rev. B Condens. Matter 90(7), 075404 (2014).
[Crossref]

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[Crossref] [PubMed]

Baumberg, J. J.

F. Huang and J. J. Baumberg, “Actively tuned plasmons on elastomerically driven Au nanoparticle dimers,” Nano Lett. 10(5), 1787–1792 (2010).
[Crossref] [PubMed]

Berrier, A.

S. R. K. Rodriguez, M. C. Schaafsma, A. Berrier, and J. Gómez Rivas, “Collective resonances in plasmonic crystals: size matters,” Phys. Rev. B Condens. Matter 407(20), 4081–4085 (2012).
[Crossref]

Bourgeois, M. R.

A. Yang, A. J. Hryn, M. R. Bourgeois, W. K. Lee, J. Hu, G. C. Schatz, and T. W. Odom, “Programmable and reversible plasmon mode engineering,” Proc. Natl. Acad. Sci. U.S.A. 113(50), 14201–14206 (2016).
[Crossref] [PubMed]

Briggs, R. M.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10(10), 4222–4227 (2010).
[Crossref] [PubMed]

Brugger, J.

O. Vazquez-Mena, T. Sannomiya, L. G. Villanueva, J. Voros, and J. Brugger, “Metallic nanodot arrays by stencil lithography for plasmonic biosensing applications,” ACS Nano 5(2), 844–853 (2011).
[Crossref] [PubMed]

Bürgi, T.

U. Cataldi, R. Caputo, Y. Kurylyak, G. Klein, M. Chekini, C. Umeton, and T. Bürgi, “Growing gold nanoparticles on a flexible substrate to enable simple mechanical control of their plasmonic coupling,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(37), 7927–7933 (2014).
[Crossref]

Cao, W. P.

Y. Feng, W. L. Li, Y. F. Hou, Y. Yu, W. P. Cao, T. D. Zhang, and W. D. Fei, “Enhanced dielectric properties of PVDF-HFP/BaTiO3-nanowire composites induced by interfacial polarization and wire-shape,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(6), 1250–1260 (2015).
[Crossref]

Caputo, R.

U. Cataldi, R. Caputo, Y. Kurylyak, G. Klein, M. Chekini, C. Umeton, and T. Bürgi, “Growing gold nanoparticles on a flexible substrate to enable simple mechanical control of their plasmonic coupling,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(37), 7927–7933 (2014).
[Crossref]

Cataldi, U.

U. Cataldi, R. Caputo, Y. Kurylyak, G. Klein, M. Chekini, C. Umeton, and T. Bürgi, “Growing gold nanoparticles on a flexible substrate to enable simple mechanical control of their plasmonic coupling,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(37), 7927–7933 (2014).
[Crossref]

Chekini, M.

U. Cataldi, R. Caputo, Y. Kurylyak, G. Klein, M. Chekini, C. Umeton, and T. Bürgi, “Growing gold nanoparticles on a flexible substrate to enable simple mechanical control of their plasmonic coupling,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(37), 7927–7933 (2014).
[Crossref]

Cherukulappurath, S.

D. Yoo, T. W. Johnson, S. Cherukulappurath, D. J. Norris, and S.-H. Oh, “Template-stripped tunable plasmonic devices on stretchable and rollable substrates,” ACS Nano 9(11), 10647–10654 (2015).
[Crossref] [PubMed]

Cui, Y.

Y. Cui, J. Zhou, V. A. Tamma, and W. Park, “Dynamic tuning and symmetry lowering of Fano resonance in plasmonic nanostructure,” ACS Nano 6(3), 2385–2393 (2012).
[Crossref] [PubMed]

Daggumati, P.

M. Kahraman, P. Daggumati, O. Kurtulus, E. Seker, and S. Wachsmann-Hogiu, “Fabrication and characterization of flexible and tunable plasmonic nanostructures,” Sci. Rep. 3(1), 3396 (2013).
[Crossref] [PubMed]

Djurišic, A. B.

Doshay, S.

L. Gao, Y. Zhang, H. Zhang, S. Doshay, X. Xie, H. Luo, D. Shah, Y. Shi, S. Xu, H. Fang, J. A. Fan, P. Nordlander, Y. Huang, and J. A. Rogers, “Optics and nonlinear buckling mechanics in large-area, highly stretchable arrays of plasmonic nanostructures,” ACS Nano 9(6), 5968–5975 (2015).
[Crossref] [PubMed]

Elazar, J. M.

Fan, J. A.

L. Gao, Y. Zhang, H. Zhang, S. Doshay, X. Xie, H. Luo, D. Shah, Y. Shi, S. Xu, H. Fang, J. A. Fan, P. Nordlander, Y. Huang, and J. A. Rogers, “Optics and nonlinear buckling mechanics in large-area, highly stretchable arrays of plasmonic nanostructures,” ACS Nano 9(6), 5968–5975 (2015).
[Crossref] [PubMed]

Fang, H.

L. Gao, Y. Zhang, H. Zhang, S. Doshay, X. Xie, H. Luo, D. Shah, Y. Shi, S. Xu, H. Fang, J. A. Fan, P. Nordlander, Y. Huang, and J. A. Rogers, “Optics and nonlinear buckling mechanics in large-area, highly stretchable arrays of plasmonic nanostructures,” ACS Nano 9(6), 5968–5975 (2015).
[Crossref] [PubMed]

Fei, W. D.

Y. Feng, W. L. Li, Y. F. Hou, Y. Yu, W. P. Cao, T. D. Zhang, and W. D. Fei, “Enhanced dielectric properties of PVDF-HFP/BaTiO3-nanowire composites induced by interfacial polarization and wire-shape,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(6), 1250–1260 (2015).
[Crossref]

Feng, D.

D. Feng, H. Zhang, S. Xu, L. Tian, and N. Song, “Stretchable array of metal nanodisks on a 3D sinusoidal wavy elastomeric substrate for frequency tunable plasmonics,” Nanotechnology 28(11), 115703 (2017).
[Crossref] [PubMed]

D. Feng, H. Zhang, S. Xu, L. Tian, and N. Song, “Fabrication of plasmonic nanoparticles on a wave shape PDMS substrate,” Plasmonics 12(5), 1627–1631 (2017).
[Crossref]

Feng, Y.

Y. Feng, W. L. Li, Y. F. Hou, Y. Yu, W. P. Cao, T. D. Zhang, and W. D. Fei, “Enhanced dielectric properties of PVDF-HFP/BaTiO3-nanowire composites induced by interfacial polarization and wire-shape,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(6), 1250–1260 (2015).
[Crossref]

Gao, L.

L. Gao, Y. Zhang, H. Zhang, S. Doshay, X. Xie, H. Luo, D. Shah, Y. Shi, S. Xu, H. Fang, J. A. Fan, P. Nordlander, Y. Huang, and J. A. Rogers, “Optics and nonlinear buckling mechanics in large-area, highly stretchable arrays of plasmonic nanostructures,” ACS Nano 9(6), 5968–5975 (2015).
[Crossref] [PubMed]

Garcia, M. A.

M. A. Garcia, “Surface plasmons in metallic nanoparticles: fundamentals and applications,” J. Phys. D Appl. Phys. 44(28), 283001 (2011).
[Crossref]

Gómez Rivas, J.

S. R. K. Rodriguez, M. C. Schaafsma, A. Berrier, and J. Gómez Rivas, “Collective resonances in plasmonic crystals: size matters,” Phys. Rev. B Condens. Matter 407(20), 4081–4085 (2012).
[Crossref]

Gunnarsson, L.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[Crossref] [PubMed]

Halas, N. J.

M. L. Tseng, J. Yang, M. Semmlinger, C. Zhang, P. Nordlander, and N. J. Halas, “Two-dimensional active tuning of an aluminum plasmonic array for full-spectrum response,” Nano Lett. 17(10), 6034–6039 (2017).
[Crossref] [PubMed]

Hicks, E. M.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[Crossref] [PubMed]

Homola, J.

Hou, Y. F.

Y. Feng, W. L. Li, Y. F. Hou, Y. Yu, W. P. Cao, T. D. Zhang, and W. D. Fei, “Enhanced dielectric properties of PVDF-HFP/BaTiO3-nanowire composites induced by interfacial polarization and wire-shape,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(6), 1250–1260 (2015).
[Crossref]

Hryn, A. J.

A. Yang, A. J. Hryn, M. R. Bourgeois, W. K. Lee, J. Hu, G. C. Schatz, and T. W. Odom, “Programmable and reversible plasmon mode engineering,” Proc. Natl. Acad. Sci. U.S.A. 113(50), 14201–14206 (2016).
[Crossref] [PubMed]

Hsiao, C. F.

T. W. Lu, C. Wang, C. F. Hsiao, and P. T. Lee, “Tunable nanoblock lasers and stretching sensors,” Nanoscale 8(37), 16769–16775 (2016).
[Crossref] [PubMed]

Hu, J.

A. Yang, A. J. Hryn, M. R. Bourgeois, W. K. Lee, J. Hu, G. C. Schatz, and T. W. Odom, “Programmable and reversible plasmon mode engineering,” Proc. Natl. Acad. Sci. U.S.A. 113(50), 14201–14206 (2016).
[Crossref] [PubMed]

Huang, F.

F. Huang and J. J. Baumberg, “Actively tuned plasmons on elastomerically driven Au nanoparticle dimers,” Nano Lett. 10(5), 1787–1792 (2010).
[Crossref] [PubMed]

Huang, Y.

L. Gao, Y. Zhang, H. Zhang, S. Doshay, X. Xie, H. Luo, D. Shah, Y. Shi, S. Xu, H. Fang, J. A. Fan, P. Nordlander, Y. Huang, and J. A. Rogers, “Optics and nonlinear buckling mechanics in large-area, highly stretchable arrays of plasmonic nanostructures,” ACS Nano 9(6), 5968–5975 (2015).
[Crossref] [PubMed]

Humphrey, A. D.

A. D. Humphrey and W. L. Barnes, “Plasmonic surface lattice resonance on arrays of different lattice symmetry,” Phys. Rev. B Condens. Matter 90(7), 075404 (2014).
[Crossref]

Iandolo, B.

F. A. A. Nugroho, B. Iandolo, J. B. Wagner, and C. Langhammer, “Bottom-up nanofabrication of supported noble metal alloy nanoparticle arrays for plasmonics,” ACS Nano 10(2), 2871–2879 (2016).
[Crossref] [PubMed]

Johnson, T. W.

D. Yoo, T. W. Johnson, S. Cherukulappurath, D. J. Norris, and S.-H. Oh, “Template-stripped tunable plasmonic devices on stretchable and rollable substrates,” ACS Nano 9(11), 10647–10654 (2015).
[Crossref] [PubMed]

Kahraman, M.

M. Kahraman, P. Daggumati, O. Kurtulus, E. Seker, and S. Wachsmann-Hogiu, “Fabrication and characterization of flexible and tunable plasmonic nanostructures,” Sci. Rep. 3(1), 3396 (2013).
[Crossref] [PubMed]

Käll, M.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[Crossref] [PubMed]

Kasemo, B.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[Crossref] [PubMed]

Kelaita, Y. A.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10(10), 4222–4227 (2010).
[Crossref] [PubMed]

Klein, G.

U. Cataldi, R. Caputo, Y. Kurylyak, G. Klein, M. Chekini, C. Umeton, and T. Bürgi, “Growing gold nanoparticles on a flexible substrate to enable simple mechanical control of their plasmonic coupling,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(37), 7927–7933 (2014).
[Crossref]

Kurtulus, O.

M. Kahraman, P. Daggumati, O. Kurtulus, E. Seker, and S. Wachsmann-Hogiu, “Fabrication and characterization of flexible and tunable plasmonic nanostructures,” Sci. Rep. 3(1), 3396 (2013).
[Crossref] [PubMed]

Kurylyak, Y.

U. Cataldi, R. Caputo, Y. Kurylyak, G. Klein, M. Chekini, C. Umeton, and T. Bürgi, “Growing gold nanoparticles on a flexible substrate to enable simple mechanical control of their plasmonic coupling,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(37), 7927–7933 (2014).
[Crossref]

Langhammer, C.

F. A. A. Nugroho, B. Iandolo, J. B. Wagner, and C. Langhammer, “Bottom-up nanofabrication of supported noble metal alloy nanoparticle arrays for plasmonics,” ACS Nano 10(2), 2871–2879 (2016).
[Crossref] [PubMed]

Lee, P. T.

T. W. Lu, C. Wang, C. F. Hsiao, and P. T. Lee, “Tunable nanoblock lasers and stretching sensors,” Nanoscale 8(37), 16769–16775 (2016).
[Crossref] [PubMed]

Lee, W. K.

A. Yang, A. J. Hryn, M. R. Bourgeois, W. K. Lee, J. Hu, G. C. Schatz, and T. W. Odom, “Programmable and reversible plasmon mode engineering,” Proc. Natl. Acad. Sci. U.S.A. 113(50), 14201–14206 (2016).
[Crossref] [PubMed]

Li, W. L.

Y. Feng, W. L. Li, Y. F. Hou, Y. Yu, W. P. Cao, T. D. Zhang, and W. D. Fei, “Enhanced dielectric properties of PVDF-HFP/BaTiO3-nanowire composites induced by interfacial polarization and wire-shape,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(6), 1250–1260 (2015).
[Crossref]

Lu, T. W.

T. W. Lu, C. Wang, C. F. Hsiao, and P. T. Lee, “Tunable nanoblock lasers and stretching sensors,” Nanoscale 8(37), 16769–16775 (2016).
[Crossref] [PubMed]

Luo, H.

L. Gao, Y. Zhang, H. Zhang, S. Doshay, X. Xie, H. Luo, D. Shah, Y. Shi, S. Xu, H. Fang, J. A. Fan, P. Nordlander, Y. Huang, and J. A. Rogers, “Optics and nonlinear buckling mechanics in large-area, highly stretchable arrays of plasmonic nanostructures,” ACS Nano 9(6), 5968–5975 (2015).
[Crossref] [PubMed]

Majewski, M. L.

Mirin, N. A.

N. A. Mirin, K. Bao, and P. Nordlander, “Fano resonances in plasmonic nanoparticle aggregates,” J. Phys. Chem. A 113(16), 4028–4034 (2009).
[Crossref] [PubMed]

Nordlander, P.

M. L. Tseng, J. Yang, M. Semmlinger, C. Zhang, P. Nordlander, and N. J. Halas, “Two-dimensional active tuning of an aluminum plasmonic array for full-spectrum response,” Nano Lett. 17(10), 6034–6039 (2017).
[Crossref] [PubMed]

L. Gao, Y. Zhang, H. Zhang, S. Doshay, X. Xie, H. Luo, D. Shah, Y. Shi, S. Xu, H. Fang, J. A. Fan, P. Nordlander, Y. Huang, and J. A. Rogers, “Optics and nonlinear buckling mechanics in large-area, highly stretchable arrays of plasmonic nanostructures,” ACS Nano 9(6), 5968–5975 (2015).
[Crossref] [PubMed]

N. A. Mirin, K. Bao, and P. Nordlander, “Fano resonances in plasmonic nanoparticle aggregates,” J. Phys. Chem. A 113(16), 4028–4034 (2009).
[Crossref] [PubMed]

Norris, D. J.

D. Yoo, T. W. Johnson, S. Cherukulappurath, D. J. Norris, and S.-H. Oh, “Template-stripped tunable plasmonic devices on stretchable and rollable substrates,” ACS Nano 9(11), 10647–10654 (2015).
[Crossref] [PubMed]

Nugroho, F. A. A.

F. A. A. Nugroho, B. Iandolo, J. B. Wagner, and C. Langhammer, “Bottom-up nanofabrication of supported noble metal alloy nanoparticle arrays for plasmonics,” ACS Nano 10(2), 2871–2879 (2016).
[Crossref] [PubMed]

Odom, T. W.

A. Yang, A. J. Hryn, M. R. Bourgeois, W. K. Lee, J. Hu, G. C. Schatz, and T. W. Odom, “Programmable and reversible plasmon mode engineering,” Proc. Natl. Acad. Sci. U.S.A. 113(50), 14201–14206 (2016).
[Crossref] [PubMed]

Oh, S.-H.

D. Yoo, T. W. Johnson, S. Cherukulappurath, D. J. Norris, and S.-H. Oh, “Template-stripped tunable plasmonic devices on stretchable and rollable substrates,” ACS Nano 9(11), 10647–10654 (2015).
[Crossref] [PubMed]

Oran, J. M.

N. A. Abu Hatab, J. M. Oran, and M. J. Sepaniak, “Surface-enhanced Raman spectroscopy substrates created via electron beam lithography and nanotransfer printing,” ACS Nano 2(2), 377–385 (2008).
[Crossref] [PubMed]

Park, W.

Y. Cui, J. Zhou, V. A. Tamma, and W. Park, “Dynamic tuning and symmetry lowering of Fano resonance in plasmonic nanostructure,” ACS Nano 6(3), 2385–2393 (2012).
[Crossref] [PubMed]

Pinchuk, A. O.

A. O. Pinchuk and G. C. Schatz, “Nanoparticle optical properties: far- and near-field electrodynamic coupling in a chain of silver spherical nanoparticles,” Mater. Sci. Eng. B 149(3), 251–258 (2008).
[Crossref]

Pryce, I. M.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10(10), 4222–4227 (2010).
[Crossref] [PubMed]

Rakic, A. D.

Rindzevicius, T.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[Crossref] [PubMed]

Rodriguez, S. R. K.

S. R. K. Rodriguez, M. C. Schaafsma, A. Berrier, and J. Gómez Rivas, “Collective resonances in plasmonic crystals: size matters,” Phys. Rev. B Condens. Matter 407(20), 4081–4085 (2012).
[Crossref]

Rogers, J. A.

L. Gao, Y. Zhang, H. Zhang, S. Doshay, X. Xie, H. Luo, D. Shah, Y. Shi, S. Xu, H. Fang, J. A. Fan, P. Nordlander, Y. Huang, and J. A. Rogers, “Optics and nonlinear buckling mechanics in large-area, highly stretchable arrays of plasmonic nanostructures,” ACS Nano 9(6), 5968–5975 (2015).
[Crossref] [PubMed]

Sannomiya, T.

O. Vazquez-Mena, T. Sannomiya, L. G. Villanueva, J. Voros, and J. Brugger, “Metallic nanodot arrays by stencil lithography for plasmonic biosensing applications,” ACS Nano 5(2), 844–853 (2011).
[Crossref] [PubMed]

Schaafsma, M. C.

S. R. K. Rodriguez, M. C. Schaafsma, A. Berrier, and J. Gómez Rivas, “Collective resonances in plasmonic crystals: size matters,” Phys. Rev. B Condens. Matter 407(20), 4081–4085 (2012).
[Crossref]

Schatz, G. C.

A. Yang, A. J. Hryn, M. R. Bourgeois, W. K. Lee, J. Hu, G. C. Schatz, and T. W. Odom, “Programmable and reversible plasmon mode engineering,” Proc. Natl. Acad. Sci. U.S.A. 113(50), 14201–14206 (2016).
[Crossref] [PubMed]

A. O. Pinchuk and G. C. Schatz, “Nanoparticle optical properties: far- and near-field electrodynamic coupling in a chain of silver spherical nanoparticles,” Mater. Sci. Eng. B 149(3), 251–258 (2008).
[Crossref]

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[Crossref] [PubMed]

Seker, E.

M. Kahraman, P. Daggumati, O. Kurtulus, E. Seker, and S. Wachsmann-Hogiu, “Fabrication and characterization of flexible and tunable plasmonic nanostructures,” Sci. Rep. 3(1), 3396 (2013).
[Crossref] [PubMed]

Semmlinger, M.

M. L. Tseng, J. Yang, M. Semmlinger, C. Zhang, P. Nordlander, and N. J. Halas, “Two-dimensional active tuning of an aluminum plasmonic array for full-spectrum response,” Nano Lett. 17(10), 6034–6039 (2017).
[Crossref] [PubMed]

Sepaniak, M. J.

N. A. Abu Hatab, J. M. Oran, and M. J. Sepaniak, “Surface-enhanced Raman spectroscopy substrates created via electron beam lithography and nanotransfer printing,” ACS Nano 2(2), 377–385 (2008).
[Crossref] [PubMed]

Shah, D.

L. Gao, Y. Zhang, H. Zhang, S. Doshay, X. Xie, H. Luo, D. Shah, Y. Shi, S. Xu, H. Fang, J. A. Fan, P. Nordlander, Y. Huang, and J. A. Rogers, “Optics and nonlinear buckling mechanics in large-area, highly stretchable arrays of plasmonic nanostructures,” ACS Nano 9(6), 5968–5975 (2015).
[Crossref] [PubMed]

Shi, Y.

L. Gao, Y. Zhang, H. Zhang, S. Doshay, X. Xie, H. Luo, D. Shah, Y. Shi, S. Xu, H. Fang, J. A. Fan, P. Nordlander, Y. Huang, and J. A. Rogers, “Optics and nonlinear buckling mechanics in large-area, highly stretchable arrays of plasmonic nanostructures,” ACS Nano 9(6), 5968–5975 (2015).
[Crossref] [PubMed]

Song, N.

D. Feng, H. Zhang, S. Xu, L. Tian, and N. Song, “Stretchable array of metal nanodisks on a 3D sinusoidal wavy elastomeric substrate for frequency tunable plasmonics,” Nanotechnology 28(11), 115703 (2017).
[Crossref] [PubMed]

D. Feng, H. Zhang, S. Xu, L. Tian, and N. Song, “Fabrication of plasmonic nanoparticles on a wave shape PDMS substrate,” Plasmonics 12(5), 1627–1631 (2017).
[Crossref]

Špacková, B.

Spears, K. G.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[Crossref] [PubMed]

Tamma, V. A.

Y. Cui, J. Zhou, V. A. Tamma, and W. Park, “Dynamic tuning and symmetry lowering of Fano resonance in plasmonic nanostructure,” ACS Nano 6(3), 2385–2393 (2012).
[Crossref] [PubMed]

Tian, L.

D. Feng, H. Zhang, S. Xu, L. Tian, and N. Song, “Stretchable array of metal nanodisks on a 3D sinusoidal wavy elastomeric substrate for frequency tunable plasmonics,” Nanotechnology 28(11), 115703 (2017).
[Crossref] [PubMed]

D. Feng, H. Zhang, S. Xu, L. Tian, and N. Song, “Fabrication of plasmonic nanoparticles on a wave shape PDMS substrate,” Plasmonics 12(5), 1627–1631 (2017).
[Crossref]

Tseng, M. L.

M. L. Tseng, J. Yang, M. Semmlinger, C. Zhang, P. Nordlander, and N. J. Halas, “Two-dimensional active tuning of an aluminum plasmonic array for full-spectrum response,” Nano Lett. 17(10), 6034–6039 (2017).
[Crossref] [PubMed]

Umeton, C.

U. Cataldi, R. Caputo, Y. Kurylyak, G. Klein, M. Chekini, C. Umeton, and T. Bürgi, “Growing gold nanoparticles on a flexible substrate to enable simple mechanical control of their plasmonic coupling,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(37), 7927–7933 (2014).
[Crossref]

Van Duyne, R. P.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[Crossref] [PubMed]

Vazquez-Mena, O.

O. Vazquez-Mena, T. Sannomiya, L. G. Villanueva, J. Voros, and J. Brugger, “Metallic nanodot arrays by stencil lithography for plasmonic biosensing applications,” ACS Nano 5(2), 844–853 (2011).
[Crossref] [PubMed]

Villanueva, L. G.

O. Vazquez-Mena, T. Sannomiya, L. G. Villanueva, J. Voros, and J. Brugger, “Metallic nanodot arrays by stencil lithography for plasmonic biosensing applications,” ACS Nano 5(2), 844–853 (2011).
[Crossref] [PubMed]

Voros, J.

O. Vazquez-Mena, T. Sannomiya, L. G. Villanueva, J. Voros, and J. Brugger, “Metallic nanodot arrays by stencil lithography for plasmonic biosensing applications,” ACS Nano 5(2), 844–853 (2011).
[Crossref] [PubMed]

Wachsmann-Hogiu, S.

M. Kahraman, P. Daggumati, O. Kurtulus, E. Seker, and S. Wachsmann-Hogiu, “Fabrication and characterization of flexible and tunable plasmonic nanostructures,” Sci. Rep. 3(1), 3396 (2013).
[Crossref] [PubMed]

Wagner, J. B.

F. A. A. Nugroho, B. Iandolo, J. B. Wagner, and C. Langhammer, “Bottom-up nanofabrication of supported noble metal alloy nanoparticle arrays for plasmonics,” ACS Nano 10(2), 2871–2879 (2016).
[Crossref] [PubMed]

Wang, C.

T. W. Lu, C. Wang, C. F. Hsiao, and P. T. Lee, “Tunable nanoblock lasers and stretching sensors,” Nanoscale 8(37), 16769–16775 (2016).
[Crossref] [PubMed]

Xie, X.

L. Gao, Y. Zhang, H. Zhang, S. Doshay, X. Xie, H. Luo, D. Shah, Y. Shi, S. Xu, H. Fang, J. A. Fan, P. Nordlander, Y. Huang, and J. A. Rogers, “Optics and nonlinear buckling mechanics in large-area, highly stretchable arrays of plasmonic nanostructures,” ACS Nano 9(6), 5968–5975 (2015).
[Crossref] [PubMed]

Xu, S.

D. Feng, H. Zhang, S. Xu, L. Tian, and N. Song, “Stretchable array of metal nanodisks on a 3D sinusoidal wavy elastomeric substrate for frequency tunable plasmonics,” Nanotechnology 28(11), 115703 (2017).
[Crossref] [PubMed]

D. Feng, H. Zhang, S. Xu, L. Tian, and N. Song, “Fabrication of plasmonic nanoparticles on a wave shape PDMS substrate,” Plasmonics 12(5), 1627–1631 (2017).
[Crossref]

L. Gao, Y. Zhang, H. Zhang, S. Doshay, X. Xie, H. Luo, D. Shah, Y. Shi, S. Xu, H. Fang, J. A. Fan, P. Nordlander, Y. Huang, and J. A. Rogers, “Optics and nonlinear buckling mechanics in large-area, highly stretchable arrays of plasmonic nanostructures,” ACS Nano 9(6), 5968–5975 (2015).
[Crossref] [PubMed]

Yang, A.

A. Yang, A. J. Hryn, M. R. Bourgeois, W. K. Lee, J. Hu, G. C. Schatz, and T. W. Odom, “Programmable and reversible plasmon mode engineering,” Proc. Natl. Acad. Sci. U.S.A. 113(50), 14201–14206 (2016).
[Crossref] [PubMed]

Yang, J.

M. L. Tseng, J. Yang, M. Semmlinger, C. Zhang, P. Nordlander, and N. J. Halas, “Two-dimensional active tuning of an aluminum plasmonic array for full-spectrum response,” Nano Lett. 17(10), 6034–6039 (2017).
[Crossref] [PubMed]

Yoo, D.

D. Yoo, T. W. Johnson, S. Cherukulappurath, D. J. Norris, and S.-H. Oh, “Template-stripped tunable plasmonic devices on stretchable and rollable substrates,” ACS Nano 9(11), 10647–10654 (2015).
[Crossref] [PubMed]

Yu, Y.

Y. Feng, W. L. Li, Y. F. Hou, Y. Yu, W. P. Cao, T. D. Zhang, and W. D. Fei, “Enhanced dielectric properties of PVDF-HFP/BaTiO3-nanowire composites induced by interfacial polarization and wire-shape,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(6), 1250–1260 (2015).
[Crossref]

Zhang, C.

M. L. Tseng, J. Yang, M. Semmlinger, C. Zhang, P. Nordlander, and N. J. Halas, “Two-dimensional active tuning of an aluminum plasmonic array for full-spectrum response,” Nano Lett. 17(10), 6034–6039 (2017).
[Crossref] [PubMed]

Zhang, H.

D. Feng, H. Zhang, S. Xu, L. Tian, and N. Song, “Fabrication of plasmonic nanoparticles on a wave shape PDMS substrate,” Plasmonics 12(5), 1627–1631 (2017).
[Crossref]

D. Feng, H. Zhang, S. Xu, L. Tian, and N. Song, “Stretchable array of metal nanodisks on a 3D sinusoidal wavy elastomeric substrate for frequency tunable plasmonics,” Nanotechnology 28(11), 115703 (2017).
[Crossref] [PubMed]

L. Gao, Y. Zhang, H. Zhang, S. Doshay, X. Xie, H. Luo, D. Shah, Y. Shi, S. Xu, H. Fang, J. A. Fan, P. Nordlander, Y. Huang, and J. A. Rogers, “Optics and nonlinear buckling mechanics in large-area, highly stretchable arrays of plasmonic nanostructures,” ACS Nano 9(6), 5968–5975 (2015).
[Crossref] [PubMed]

Zhang, T. D.

Y. Feng, W. L. Li, Y. F. Hou, Y. Yu, W. P. Cao, T. D. Zhang, and W. D. Fei, “Enhanced dielectric properties of PVDF-HFP/BaTiO3-nanowire composites induced by interfacial polarization and wire-shape,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(6), 1250–1260 (2015).
[Crossref]

Zhang, Y.

L. Gao, Y. Zhang, H. Zhang, S. Doshay, X. Xie, H. Luo, D. Shah, Y. Shi, S. Xu, H. Fang, J. A. Fan, P. Nordlander, Y. Huang, and J. A. Rogers, “Optics and nonlinear buckling mechanics in large-area, highly stretchable arrays of plasmonic nanostructures,” ACS Nano 9(6), 5968–5975 (2015).
[Crossref] [PubMed]

Zhou, J.

Y. Cui, J. Zhou, V. A. Tamma, and W. Park, “Dynamic tuning and symmetry lowering of Fano resonance in plasmonic nanostructure,” ACS Nano 6(3), 2385–2393 (2012).
[Crossref] [PubMed]

Zou, S.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[Crossref] [PubMed]

ACS Nano (6)

Y. Cui, J. Zhou, V. A. Tamma, and W. Park, “Dynamic tuning and symmetry lowering of Fano resonance in plasmonic nanostructure,” ACS Nano 6(3), 2385–2393 (2012).
[Crossref] [PubMed]

D. Yoo, T. W. Johnson, S. Cherukulappurath, D. J. Norris, and S.-H. Oh, “Template-stripped tunable plasmonic devices on stretchable and rollable substrates,” ACS Nano 9(11), 10647–10654 (2015).
[Crossref] [PubMed]

L. Gao, Y. Zhang, H. Zhang, S. Doshay, X. Xie, H. Luo, D. Shah, Y. Shi, S. Xu, H. Fang, J. A. Fan, P. Nordlander, Y. Huang, and J. A. Rogers, “Optics and nonlinear buckling mechanics in large-area, highly stretchable arrays of plasmonic nanostructures,” ACS Nano 9(6), 5968–5975 (2015).
[Crossref] [PubMed]

F. A. A. Nugroho, B. Iandolo, J. B. Wagner, and C. Langhammer, “Bottom-up nanofabrication of supported noble metal alloy nanoparticle arrays for plasmonics,” ACS Nano 10(2), 2871–2879 (2016).
[Crossref] [PubMed]

O. Vazquez-Mena, T. Sannomiya, L. G. Villanueva, J. Voros, and J. Brugger, “Metallic nanodot arrays by stencil lithography for plasmonic biosensing applications,” ACS Nano 5(2), 844–853 (2011).
[Crossref] [PubMed]

N. A. Abu Hatab, J. M. Oran, and M. J. Sepaniak, “Surface-enhanced Raman spectroscopy substrates created via electron beam lithography and nanotransfer printing,” ACS Nano 2(2), 377–385 (2008).
[Crossref] [PubMed]

Appl. Opt. (1)

J. Mater. Chem. C Mater. Opt. Electron. Devices (2)

Y. Feng, W. L. Li, Y. F. Hou, Y. Yu, W. P. Cao, T. D. Zhang, and W. D. Fei, “Enhanced dielectric properties of PVDF-HFP/BaTiO3-nanowire composites induced by interfacial polarization and wire-shape,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(6), 1250–1260 (2015).
[Crossref]

U. Cataldi, R. Caputo, Y. Kurylyak, G. Klein, M. Chekini, C. Umeton, and T. Bürgi, “Growing gold nanoparticles on a flexible substrate to enable simple mechanical control of their plasmonic coupling,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(37), 7927–7933 (2014).
[Crossref]

J. Phys. Chem. A (1)

N. A. Mirin, K. Bao, and P. Nordlander, “Fano resonances in plasmonic nanoparticle aggregates,” J. Phys. Chem. A 113(16), 4028–4034 (2009).
[Crossref] [PubMed]

J. Phys. D Appl. Phys. (1)

M. A. Garcia, “Surface plasmons in metallic nanoparticles: fundamentals and applications,” J. Phys. D Appl. Phys. 44(28), 283001 (2011).
[Crossref]

Mater. Sci. Eng. B (1)

A. O. Pinchuk and G. C. Schatz, “Nanoparticle optical properties: far- and near-field electrodynamic coupling in a chain of silver spherical nanoparticles,” Mater. Sci. Eng. B 149(3), 251–258 (2008).
[Crossref]

Nano Lett. (4)

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[Crossref] [PubMed]

F. Huang and J. J. Baumberg, “Actively tuned plasmons on elastomerically driven Au nanoparticle dimers,” Nano Lett. 10(5), 1787–1792 (2010).
[Crossref] [PubMed]

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10(10), 4222–4227 (2010).
[Crossref] [PubMed]

M. L. Tseng, J. Yang, M. Semmlinger, C. Zhang, P. Nordlander, and N. J. Halas, “Two-dimensional active tuning of an aluminum plasmonic array for full-spectrum response,” Nano Lett. 17(10), 6034–6039 (2017).
[Crossref] [PubMed]

Nanoscale (1)

T. W. Lu, C. Wang, C. F. Hsiao, and P. T. Lee, “Tunable nanoblock lasers and stretching sensors,” Nanoscale 8(37), 16769–16775 (2016).
[Crossref] [PubMed]

Nanotechnology (1)

D. Feng, H. Zhang, S. Xu, L. Tian, and N. Song, “Stretchable array of metal nanodisks on a 3D sinusoidal wavy elastomeric substrate for frequency tunable plasmonics,” Nanotechnology 28(11), 115703 (2017).
[Crossref] [PubMed]

Opt. Express (1)

Phys. Rev. B Condens. Matter (2)

S. R. K. Rodriguez, M. C. Schaafsma, A. Berrier, and J. Gómez Rivas, “Collective resonances in plasmonic crystals: size matters,” Phys. Rev. B Condens. Matter 407(20), 4081–4085 (2012).
[Crossref]

A. D. Humphrey and W. L. Barnes, “Plasmonic surface lattice resonance on arrays of different lattice symmetry,” Phys. Rev. B Condens. Matter 90(7), 075404 (2014).
[Crossref]

Phys. Rev. Lett. (1)

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[Crossref] [PubMed]

Plasmonics (1)

D. Feng, H. Zhang, S. Xu, L. Tian, and N. Song, “Fabrication of plasmonic nanoparticles on a wave shape PDMS substrate,” Plasmonics 12(5), 1627–1631 (2017).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

A. Yang, A. J. Hryn, M. R. Bourgeois, W. K. Lee, J. Hu, G. C. Schatz, and T. W. Odom, “Programmable and reversible plasmon mode engineering,” Proc. Natl. Acad. Sci. U.S.A. 113(50), 14201–14206 (2016).
[Crossref] [PubMed]

Sci. Rep. (1)

M. Kahraman, P. Daggumati, O. Kurtulus, E. Seker, and S. Wachsmann-Hogiu, “Fabrication and characterization of flexible and tunable plasmonic nanostructures,” Sci. Rep. 3(1), 3396 (2013).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Illustration of strain sensing for elliptical GNA with spectral shift caused by an external stretching force. Theoretical spectra of S and 1/α under (b) transverse and (c) longitudinal polarizations. The resonance wavelength is indicated by the vertical dashed line. Theoretical extinction spectra under (d) transverse and (e) longitudinal polarizations.
Fig. 2
Fig. 2 The spectra of Re(S) and Re(1/α), extinction spectra, and FWHM and 1/|ms| with different R under (a) (c) (e) transverse and (b) (d) (f) longitudinal polarizations.
Fig. 3
Fig. 3 (a) Fabrication process of elliptical GNA embedded in PDMS. (b) SEM, microscope, and macroscopic images of elliptical GNA. The red dashed region indicates the nanoparticle array.
Fig. 4
Fig. 4 Measured and simulated extinction spectra of circular GNA under (a) transverse and (b) longitudinal polarizations. Measured and simulated extinction spectra of elliptical GNA under (c) transverse and (d) longitudinal polarizations.
Fig. 5
Fig. 5 (a) Illustration of the six cases considered for strain sensing under different polarizations and nanodisk orientations for circular and elliptical GNAs. Measured extinction spectra before and after stretching for circular and elliptical GNAs under (b) transverse (cases A and E) and (c) longitudinal (cases B and F) polarizations. Measured resonance peak shift and FWHM variation under different strains for (d) cases A and E and (e) cases B and F. Comparisons of strain sensing properties for (f) SS and (g) FOM.
Fig. 6
Fig. 6 Illustration of the effects of the orientation of nanodisk, far-field coupling, and shape of nanodisk on SS, comparing different situations for better understanding.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

α static =abc( ε m - ε d )/(3 ε d +3L( ε m - ε d )),
α= α static /(1-( 2 3 )i k 3 α static -( k 2 a ˜ ) α static ),
α * =1/(1/α-S),
S= dipoles exp(ikr)[(1ikr)(3 cos 2 θ1)/ r 3 + k 2 sin 2 θ/r]
C abs =4πkIm( α * )
C scat = 8π 3 k 4 | α * | 2
C ext = C abs + C scat