Abstract

Frequency selective detection of low energy photons is a scientific challenge using natural materials. A hypothetical surface which functions like a light funnel with very low thermal mass in order to enhance photon collection and suppress background thermal noise is the ideal solution to address both low temperature and frequency selective detection limitations of present detection systems. Here, we present a cavity-coupled quasi-three dimensional plasmonic crystal which induces impedance matching to the free space giving rise to extraordinary transmission through the sub-wavelength aperture array like a “light funnel” in coupling low energy incident photons resulting in frequency selective perfect (~100%) absorption of the incident radiation and zero back reflection. The peak wavelength of absorption of the incident light is almost independent of the angle of incidence and remains within 20% of its maximum (100%) up to θi45˚. This perfect absorption results from the incident light-driven localized edge “micro-plasma” currents on the lossy metallic surfaces. The wide-angle light funneling is validated with experimental measurements. Further, a super-lattice based electronic biasing circuit converts the absorbed narrow linewidth (Δλ/λ0< 0.075) photon energy inside the sub-wavelength thick film (< λ/100) to voltage output with high signal to noise ratio close to the theoretical limit. Such artificial plasmonic surfaces enable flexible scaling of light funneling response to any wavelength range by simple dimensional changes paving the path towards room temperature frequency selective low energy photon detection.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Wavelength-selective mid-infrared metamaterial absorbers with multiple tungsten cross resonators

Zhigang Li, Liliana Stan, David A. Czaplewski, Xiaodong Yang, and Jie Gao
Opt. Express 26(5) 5616-5631 (2018)

Optimized microbolometers with higher sensitivity for visible and infrared imaging

D. Razansky, P. D. Einziger, D. R. Adam, and T. Tamir
Opt. Express 14(22) 10426-10434 (2006)

Multi-spectral materials: hybridisation of optical plasmonic filters, a mid infrared metamaterial absorber and a terahertz metamaterial absorber

James Grant, Iain J. H. McCrindle, and David R. S. Cumming
Opt. Express 24(4) 3451-3463 (2016)

References

  • View by:
  • |
  • |
  • |

  1. H. Paudel, A. Safaei, and M. Leuenberger, “Nanoplasmonics in Metallic Nanostructures and Dirac Systems” (IntechOpen, 2017) Chap 3.
  2. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  3. S. Modak, A. Safaei, and D. Chanda, Cavity Induced Tunable Extraordinary Transmission: A Unique Way of Funneling Light through Subwavelength Apertures.” ArXiv e-prints 2017; http://adsabs.harvard.edu/#abs/2017arXiv171000392M (accessed October 01, 2017).
  4. F. J. García de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79(4), 1267–1290 (2007).
    [Crossref]
  5. A. Safaei, S. Chandra, A. Vázquez-Guardado, J. Calderon, D. Franklin, L. Tetard, L. Zhai, M. N. Leuenberger, and D. Chanda, “Dynamically tunable extraordinary light absorption in monolayer graphene,” Phys. Rev. B 96(16), 165431 (2017).
    [Crossref]
  6. A. Safaei, S. Chandra, M. N. Leuenberger, and D. Chanda, “Wide Angle Dynamically Tunable Enhanced Infrared Absorption on Large Area Nanopatterned Graphene.” ArXiv e-prints 2018; http://adsabs.harvard.edu/abs/2018arXiv180600837S (accessed Jun 03, 2018).
  7. M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
    [Crossref] [PubMed]
  8. A. Safaei, A. Vázquez-Guardado, D. Franklin, M. N. Leuenberger, and D. Chanda, “High-Efficiency Broadband Mid-Infrared Flat Lens,” Adv. Opt. Mater. 6(13), 1800216 (2018).
    [Crossref]
  9. W. D. Newman, C. L. Cortes, J. Atkinson, S. Pramanik, R. G. DeCorby, and Z. Jacob, “Ferrell–Berreman Modes in Plasmonic Epsilon-near-Zero Media,” ACS Photonics 2(1), 2–7 (2015).
    [Crossref]
  10. R. de Waele, S. P. Burgos, H. A. Atwater, and A. Polman, “Negative refractive index in coaxial plasmon waveguides,” Opt. Express 18(12), 12770–12778 (2010).
    [Crossref] [PubMed]
  11. F. Peragut, L. Cerutti, A. Baranov, J. P. Hugonin, T. Taliercio, Y. De Wilde, and J. J. Greffet, “Hyperbolic metamaterials and surface plasmon polaritons,” Optica 4(11), 1409–1415 (2017).
    [Crossref]
  12. A. M. Brown, R. Sundararaman, P. Narang, W. A. Goddard, and H. A. Atwater, “Nonradiative plasmon decay and hot carrier dynamics: effects of phonons, surfaces, and geometry,” ACS Nano 10(1), 957–966 (2016).
    [Crossref] [PubMed]
  13. R. Sundararaman, P. Narang, A. S. Jermyn, W. A. Goddard, and H. A. Atwater, “Theoretical predictions for hot-carrier generation from surface plasmon decay,” Nat. Commun. 5(1), 5788 (2014).
    [Crossref] [PubMed]
  14. T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers fabricated by colloidal mask etching of Al–Al2O3–Al trilayers,” ACS Photonics 2(7), 964–970 (2015).
    [Crossref]
  15. T. D. Dao, S. Ishii, T. Yokoyama, T. Sawada, R. P. Sugavaneshwar, K. Chen, Y. Wada, T. Nabatame, and T. Nagao, “Hole array perfect absorbers for spectrally selective midwavelength infrared pyroelectric detectors,” ACS Photonics 3(7), 1271–1278 (2016).
    [Crossref]
  16. Y. Nishijima, A. Balčytis, S. Naganuma, G. Seniutinas, and S. Juodkazis, “Tailoring metal and insulator contributions in plasmonic perfect absorber metasurfaces,” ACS Applied Nano Materials 1(7), 3557–3564 (2018).
    [Crossref]
  17. J. Rosenberg, R. V. Shenoi, S. Krishna, and O. Painter, “Design of plasmonic photonic crystal resonant cavities for polarization sensitive infrared photodetectors,” Opt. Express 18(4), 3672–3686 (2010).
    [Crossref] [PubMed]
  18. J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95(16), 161101 (2009).
    [Crossref]
  19. T. Gu, A. Andryieuski, Y. Hao, Y. Li, J. Hone, C. W. Wong, A. Lavrinenko, T. Low, and T. F. Heinz, “Photonic and plasmonic guided modes in graphene–silicon photonic crystals,” ACS Photonics 2(11), 1552–1558 (2015).
    [Crossref]
  20. J. K. Yang, M.-K. Seo, I. K. Hwang, S. B. Kim, and Y. H. Lee, “Polarization-selective resonant photonic crystal photodetector,” Appl. Phys. Lett. 93(21), 211103 (2008).
    [Crossref]
  21. X. Hu, M. Li, Z. Ye, W. Y. Leung, K.-M. Ho, and S. Y. Lin, “Design of midinfrared photodetectors enhanced by resonant cavities with subwavelength metallic gratings,” Appl. Phys. Lett. 93(24), 241108 (2008).
    [Crossref]
  22. J. S. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chandran, S. Fan, and M. L. Brongersma, “Extraordinary optical absorption through subwavelength slits,” Opt. Lett. 34(5), 686–688 (2009).
    [Crossref] [PubMed]
  23. Q. Feng, M. Pu, C. Hu, and X. Luo, “Engineering the dispersion of metamaterial surface for broadband infrared absorption,” Opt. Lett. 37(11), 2133–2135 (2012).
    [Crossref] [PubMed]
  24. S. Chandra, D. Franklin, J. Cozart, A. Safaei, and D. Chanda, “Adaptive multispectral infrared camouflage,” ACS Photonics 5(11), 4513–4519 (2018).
    [Crossref]
  25. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  26. D. Li and D. Pacifici, “Strong amplitude and phase modulation of optical spatial coherence with surface plasmon polaritons,” Sci. Adv. 3(10), e1700133 (2017).
    [Crossref] [PubMed]
  27. A. S. Gawarikar, R. P. Shea, and J. J. Talghader, “High detectivity uncooled thermal detectors with resonant cavity coupled absorption in the long-wave infrared,” IEEE Trans. Electron Dev. 60(8), 2586–2591 (2013).
    [Crossref]
  28. F. B. P. Niesler, J. K. Gansel, S. Fischbach, and M. Wegener, “Metamaterial metal-based bolometers,” Appl. Phys. Lett. 100(20), 203508 (2012).
    [Crossref]
  29. J. Y. Suen, K. Fan, J. Montoya, C. Bingham, V. Stenger, S. Sriram, and W. J. Padilla, “Multifunctional metamaterial pyroelectric infrared detectors,” Optica 4(2), 276–279 (2017).
    [Crossref]
  30. D. D. Coon, R. P. G. Karunasiri, and L. Z. Liu, “Narrow band infrared detection in multiquantum well structures,” Appl. Phys. Lett. 47(3), 289–291 (1985).
    [Crossref]
  31. Z. Qian, S. Kang, V. Rajaram, and M. Rinaldi, “Narrowband MEMS resonant infrared detectors based on ultrathin perfect plasmonic absorbers,” 2016 IEEE SENSORS, 1, 16597228 (2016).
  32. G. C. Dyer, G. R. Aizin, J. L. Reno, E. A. Shaner, and S. J. Allen, “Novel tunable millimeter-wave grating-gated plasmonic detectors,” IEEE J. Sel. Top. Quantum Electron. 17(1), 85–91 (2011).
    [Crossref]
  33. G. C. Dyer, J. D. Crossno, G. R. Aizin, E. A. Shaner, M. C. Wanke, J. L. Reno, and S. J. Allen, “A plasmonic terahertz detector with a monolithic hot electron bolometer,” J. Phys. Condens. Matter 21(19), 195803 (2009).
    [Crossref] [PubMed]
  34. M. Mahjouri-Samani, Y. S. Zhou, X. N. He, W. Xiong, P. Hilger, and Y. F. Lu, “Plasmonic-enhanced carbon nanotube infrared bolometers,” Nanotechnology 24(3), 035502 (2013).
    [Crossref] [PubMed]
  35. J. J. Talghader, A. S. Gawarikar, and R. P. Shea, “Spectral selectivity in infrared thermal detection,” Light Sci. Appl. 1(8), e24 (2012).
    [Crossref]
  36. K. C. Liddiard, “Thin-film resistance bolometer ir detectors,” Infrared Phys. 24(1), 57–64 (1984).
    [Crossref]
  37. F. Niklaus, C. Jansson, A. Decharat, J.-E. Källhammer, H. Pettersson, and G. Stemme, “Uncooled infrared bolometer arrays operating in a low to medium vacuum atmosphere: performance model and tradeoffs,” in Infrared Technology and Applications XXXIII, (SPIE, 2007)
  38. D. Chanda, A. Safaei, and M. N. Leuenberger, “Optical detector device with patterned graphene layer and related methods,” US Patent App. 15/782,948 (2018).
  39. D. Chanda, S. Modak, J. Lee, and A. Safaei, “Optical frequency-selective absorber-based infrared detector, methods, and applications,” US Patent App. 15/538,746 (2018).
  40. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
    [Crossref] [PubMed]
  41. R. Stanley, “Plasmonics in the mid-infrared,” Nat. Photonics 6(7), 409–411 (2012).
    [Crossref]
  42. P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haïdar, and J. L. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett. 98(19), 191109 (2011).
    [Crossref]
  43. R. Wood, Monolithic Silicon Microbolometer Arrays, Uncooled Infrared Imaging Arrays and Systems (Academic, 1997), Vol. 47.
  44. E. L. Dereniak and G. D. Boreman, Infrared Detectors and Systems (John Wiley & Sons, Inc., 1996).
  45. A. Rogalski, “Infrared detectors: an overview,” Infrared Phys. Technol. 43(3-5), 187–210 (2002).
    [Crossref]
  46. A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys. 105(9), 091101 (2009).
    [Crossref]
  47. P. W. Kruse, Uncooled thermal imaging: arrays, systems, and applications / Paul W. Kruse, Tutorial texts in optical engineering: v. TT 51 (Bellingham, Wash., USA, SPIE 2001).
  48. S. D. Gunapala, S. V. Bandara, J. K. Liu, J. M. Mumolo, S. B. Rafol, D. Z. Ting, A. Soibel, and C. Hill, “Quantum Well Infrared Photodetector Technology and Applications,” IEEE J. Sel. Top. Quantum Electron. 20(6), 154–165 (2014).
    [Crossref]
  49. D. M. T. Kuo, A. B. Fang, and Y. C. Chang, “Theoretical modeling of dark current and photo-response for quantum well and quantum dot infrared detectors,” Infrared Phys. Technol. 42(3-5), 433–442 (2001).
    [Crossref]
  50. A. Vázquez-Guardado, A. Safaei, S. Modak, D. Franklin, and D. Chanda, “Hybrid coupling mechanism in a system supporting high order diffraction, plasmonic, and cavity resonances,” Phys. Rev. Lett. 113(26), 263902 (2014).
    [Crossref] [PubMed]
  51. E. D. Palik, Handbook of Optical-Constants (Academic, 1984).
  52. R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(4), 046608 (2004).
    [Crossref] [PubMed]
  53. E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental verification of n = 0 structures for visible light,” Phys. Rev. Lett. 110(1), 013902 (2013).
    [Crossref] [PubMed]
  54. A. M. Mahmoud and N. Engheta, “Wave-matter interactions in epsilon-and-mu-near-zero structures,” Nat. Commun. 5(1), 5638 (2014).
    [Crossref] [PubMed]
  55. J. C. Mather, “Electrical self-calibration of nonideal bolometers,” Appl. Opt. 23(18), 3181–3183 (1984).
    [Crossref] [PubMed]
  56. M. Ou-Yang, C. S. Sheen, and J. S. Shie, “Parameter extraction of resistive thermal microsensors by AC electrical method,” IEEE Trans. Instrum. Meas. 47(2), 403–408 (1998).
    [Crossref]
  57. Y. M. Chen, J. S. Shie, and T. Hwang, “Parameter extraction of resistive thermal sensors,” Sens. Actuators A Phys. 55(1), 43–47 (1996).
    [Crossref]
  58. J. B. Herzog, M. W. Knight, and D. Natelson, “Thermoplasmonics: quantifying plasmonic heating in single nanowires,” Nano Lett. 14(2), 499–503 (2014).
    [Crossref] [PubMed]
  59. U. Dillner, E. Kessler, and H. G. Meyer, “Figures of merit of thermoelectric and bolometric thermal radiation sensors,” Journal of Sensors and Sensor Systems 2(1), 85–94 (2013).
    [Crossref]
  60. A. Varpula, A. V. Timofeev, A. Shchepetov, K. Grigoras, J. Hassel, J. Ahopelto, M. Ylilammi, and M. Prunnila, “Thermoelectric thermal detectors based on ultra-thin heavily doped single-crystal silicon membranes,” Appl. Phys. Lett. 110(26), 262101 (2017).
    [Crossref]
  61. G. Wang, V. Yefremenko, V. Novosad, J. Pearson, R. Divan, C. L. Chang, L. Bleem, A. T. Crites, J. Mehl, B. A. Benson, T. Natoli, K. Story, S. S. Meyer, J. E. Carlstrom, J. McMahon, J. Sayre, J. Ruhl, E. George, N. Harrington, C. Reichardt, E. Shirokoff, E. Young, A. Lee, and W. Holzapfel, “An Absorber-coupled TES Bolometer for Measuring CMB Polarization,” Phys. Procedia 37, 1349–1354 (2012).
    [Crossref]

2018 (3)

A. Safaei, A. Vázquez-Guardado, D. Franklin, M. N. Leuenberger, and D. Chanda, “High-Efficiency Broadband Mid-Infrared Flat Lens,” Adv. Opt. Mater. 6(13), 1800216 (2018).
[Crossref]

Y. Nishijima, A. Balčytis, S. Naganuma, G. Seniutinas, and S. Juodkazis, “Tailoring metal and insulator contributions in plasmonic perfect absorber metasurfaces,” ACS Applied Nano Materials 1(7), 3557–3564 (2018).
[Crossref]

S. Chandra, D. Franklin, J. Cozart, A. Safaei, and D. Chanda, “Adaptive multispectral infrared camouflage,” ACS Photonics 5(11), 4513–4519 (2018).
[Crossref]

2017 (5)

D. Li and D. Pacifici, “Strong amplitude and phase modulation of optical spatial coherence with surface plasmon polaritons,” Sci. Adv. 3(10), e1700133 (2017).
[Crossref] [PubMed]

A. Safaei, S. Chandra, A. Vázquez-Guardado, J. Calderon, D. Franklin, L. Tetard, L. Zhai, M. N. Leuenberger, and D. Chanda, “Dynamically tunable extraordinary light absorption in monolayer graphene,” Phys. Rev. B 96(16), 165431 (2017).
[Crossref]

A. Varpula, A. V. Timofeev, A. Shchepetov, K. Grigoras, J. Hassel, J. Ahopelto, M. Ylilammi, and M. Prunnila, “Thermoelectric thermal detectors based on ultra-thin heavily doped single-crystal silicon membranes,” Appl. Phys. Lett. 110(26), 262101 (2017).
[Crossref]

J. Y. Suen, K. Fan, J. Montoya, C. Bingham, V. Stenger, S. Sriram, and W. J. Padilla, “Multifunctional metamaterial pyroelectric infrared detectors,” Optica 4(2), 276–279 (2017).
[Crossref]

F. Peragut, L. Cerutti, A. Baranov, J. P. Hugonin, T. Taliercio, Y. De Wilde, and J. J. Greffet, “Hyperbolic metamaterials and surface plasmon polaritons,” Optica 4(11), 1409–1415 (2017).
[Crossref]

2016 (3)

A. M. Brown, R. Sundararaman, P. Narang, W. A. Goddard, and H. A. Atwater, “Nonradiative plasmon decay and hot carrier dynamics: effects of phonons, surfaces, and geometry,” ACS Nano 10(1), 957–966 (2016).
[Crossref] [PubMed]

Z. Qian, S. Kang, V. Rajaram, and M. Rinaldi, “Narrowband MEMS resonant infrared detectors based on ultrathin perfect plasmonic absorbers,” 2016 IEEE SENSORS, 1, 16597228 (2016).

T. D. Dao, S. Ishii, T. Yokoyama, T. Sawada, R. P. Sugavaneshwar, K. Chen, Y. Wada, T. Nabatame, and T. Nagao, “Hole array perfect absorbers for spectrally selective midwavelength infrared pyroelectric detectors,” ACS Photonics 3(7), 1271–1278 (2016).
[Crossref]

2015 (4)

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers fabricated by colloidal mask etching of Al–Al2O3–Al trilayers,” ACS Photonics 2(7), 964–970 (2015).
[Crossref]

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
[Crossref] [PubMed]

W. D. Newman, C. L. Cortes, J. Atkinson, S. Pramanik, R. G. DeCorby, and Z. Jacob, “Ferrell–Berreman Modes in Plasmonic Epsilon-near-Zero Media,” ACS Photonics 2(1), 2–7 (2015).
[Crossref]

T. Gu, A. Andryieuski, Y. Hao, Y. Li, J. Hone, C. W. Wong, A. Lavrinenko, T. Low, and T. F. Heinz, “Photonic and plasmonic guided modes in graphene–silicon photonic crystals,” ACS Photonics 2(11), 1552–1558 (2015).
[Crossref]

2014 (5)

R. Sundararaman, P. Narang, A. S. Jermyn, W. A. Goddard, and H. A. Atwater, “Theoretical predictions for hot-carrier generation from surface plasmon decay,” Nat. Commun. 5(1), 5788 (2014).
[Crossref] [PubMed]

S. D. Gunapala, S. V. Bandara, J. K. Liu, J. M. Mumolo, S. B. Rafol, D. Z. Ting, A. Soibel, and C. Hill, “Quantum Well Infrared Photodetector Technology and Applications,” IEEE J. Sel. Top. Quantum Electron. 20(6), 154–165 (2014).
[Crossref]

A. Vázquez-Guardado, A. Safaei, S. Modak, D. Franklin, and D. Chanda, “Hybrid coupling mechanism in a system supporting high order diffraction, plasmonic, and cavity resonances,” Phys. Rev. Lett. 113(26), 263902 (2014).
[Crossref] [PubMed]

A. M. Mahmoud and N. Engheta, “Wave-matter interactions in epsilon-and-mu-near-zero structures,” Nat. Commun. 5(1), 5638 (2014).
[Crossref] [PubMed]

J. B. Herzog, M. W. Knight, and D. Natelson, “Thermoplasmonics: quantifying plasmonic heating in single nanowires,” Nano Lett. 14(2), 499–503 (2014).
[Crossref] [PubMed]

2013 (4)

U. Dillner, E. Kessler, and H. G. Meyer, “Figures of merit of thermoelectric and bolometric thermal radiation sensors,” Journal of Sensors and Sensor Systems 2(1), 85–94 (2013).
[Crossref]

E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental verification of n = 0 structures for visible light,” Phys. Rev. Lett. 110(1), 013902 (2013).
[Crossref] [PubMed]

M. Mahjouri-Samani, Y. S. Zhou, X. N. He, W. Xiong, P. Hilger, and Y. F. Lu, “Plasmonic-enhanced carbon nanotube infrared bolometers,” Nanotechnology 24(3), 035502 (2013).
[Crossref] [PubMed]

A. S. Gawarikar, R. P. Shea, and J. J. Talghader, “High detectivity uncooled thermal detectors with resonant cavity coupled absorption in the long-wave infrared,” IEEE Trans. Electron Dev. 60(8), 2586–2591 (2013).
[Crossref]

2012 (5)

F. B. P. Niesler, J. K. Gansel, S. Fischbach, and M. Wegener, “Metamaterial metal-based bolometers,” Appl. Phys. Lett. 100(20), 203508 (2012).
[Crossref]

J. J. Talghader, A. S. Gawarikar, and R. P. Shea, “Spectral selectivity in infrared thermal detection,” Light Sci. Appl. 1(8), e24 (2012).
[Crossref]

R. Stanley, “Plasmonics in the mid-infrared,” Nat. Photonics 6(7), 409–411 (2012).
[Crossref]

G. Wang, V. Yefremenko, V. Novosad, J. Pearson, R. Divan, C. L. Chang, L. Bleem, A. T. Crites, J. Mehl, B. A. Benson, T. Natoli, K. Story, S. S. Meyer, J. E. Carlstrom, J. McMahon, J. Sayre, J. Ruhl, E. George, N. Harrington, C. Reichardt, E. Shirokoff, E. Young, A. Lee, and W. Holzapfel, “An Absorber-coupled TES Bolometer for Measuring CMB Polarization,” Phys. Procedia 37, 1349–1354 (2012).
[Crossref]

Q. Feng, M. Pu, C. Hu, and X. Luo, “Engineering the dispersion of metamaterial surface for broadband infrared absorption,” Opt. Lett. 37(11), 2133–2135 (2012).
[Crossref] [PubMed]

2011 (2)

P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haïdar, and J. L. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett. 98(19), 191109 (2011).
[Crossref]

G. C. Dyer, G. R. Aizin, J. L. Reno, E. A. Shaner, and S. J. Allen, “Novel tunable millimeter-wave grating-gated plasmonic detectors,” IEEE J. Sel. Top. Quantum Electron. 17(1), 85–91 (2011).
[Crossref]

2010 (2)

2009 (4)

J. S. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chandran, S. Fan, and M. L. Brongersma, “Extraordinary optical absorption through subwavelength slits,” Opt. Lett. 34(5), 686–688 (2009).
[Crossref] [PubMed]

G. C. Dyer, J. D. Crossno, G. R. Aizin, E. A. Shaner, M. C. Wanke, J. L. Reno, and S. J. Allen, “A plasmonic terahertz detector with a monolithic hot electron bolometer,” J. Phys. Condens. Matter 21(19), 195803 (2009).
[Crossref] [PubMed]

A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys. 105(9), 091101 (2009).
[Crossref]

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95(16), 161101 (2009).
[Crossref]

2008 (3)

J. K. Yang, M.-K. Seo, I. K. Hwang, S. B. Kim, and Y. H. Lee, “Polarization-selective resonant photonic crystal photodetector,” Appl. Phys. Lett. 93(21), 211103 (2008).
[Crossref]

X. Hu, M. Li, Z. Ye, W. Y. Leung, K.-M. Ho, and S. Y. Lin, “Design of midinfrared photodetectors enhanced by resonant cavities with subwavelength metallic gratings,” Appl. Phys. Lett. 93(24), 241108 (2008).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

2007 (1)

F. J. García de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79(4), 1267–1290 (2007).
[Crossref]

2004 (2)

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(4), 046608 (2004).
[Crossref] [PubMed]

2002 (1)

A. Rogalski, “Infrared detectors: an overview,” Infrared Phys. Technol. 43(3-5), 187–210 (2002).
[Crossref]

2001 (1)

D. M. T. Kuo, A. B. Fang, and Y. C. Chang, “Theoretical modeling of dark current and photo-response for quantum well and quantum dot infrared detectors,” Infrared Phys. Technol. 42(3-5), 433–442 (2001).
[Crossref]

1998 (1)

M. Ou-Yang, C. S. Sheen, and J. S. Shie, “Parameter extraction of resistive thermal microsensors by AC electrical method,” IEEE Trans. Instrum. Meas. 47(2), 403–408 (1998).
[Crossref]

1996 (1)

Y. M. Chen, J. S. Shie, and T. Hwang, “Parameter extraction of resistive thermal sensors,” Sens. Actuators A Phys. 55(1), 43–47 (1996).
[Crossref]

1985 (1)

D. D. Coon, R. P. G. Karunasiri, and L. Z. Liu, “Narrow band infrared detection in multiquantum well structures,” Appl. Phys. Lett. 47(3), 289–291 (1985).
[Crossref]

1984 (2)

K. C. Liddiard, “Thin-film resistance bolometer ir detectors,” Infrared Phys. 24(1), 57–64 (1984).
[Crossref]

J. C. Mather, “Electrical self-calibration of nonideal bolometers,” Appl. Opt. 23(18), 3181–3183 (1984).
[Crossref] [PubMed]

Ahopelto, J.

A. Varpula, A. V. Timofeev, A. Shchepetov, K. Grigoras, J. Hassel, J. Ahopelto, M. Ylilammi, and M. Prunnila, “Thermoelectric thermal detectors based on ultra-thin heavily doped single-crystal silicon membranes,” Appl. Phys. Lett. 110(26), 262101 (2017).
[Crossref]

Aizin, G. R.

G. C. Dyer, G. R. Aizin, J. L. Reno, E. A. Shaner, and S. J. Allen, “Novel tunable millimeter-wave grating-gated plasmonic detectors,” IEEE J. Sel. Top. Quantum Electron. 17(1), 85–91 (2011).
[Crossref]

G. C. Dyer, J. D. Crossno, G. R. Aizin, E. A. Shaner, M. C. Wanke, J. L. Reno, and S. J. Allen, “A plasmonic terahertz detector with a monolithic hot electron bolometer,” J. Phys. Condens. Matter 21(19), 195803 (2009).
[Crossref] [PubMed]

Allen, S. J.

G. C. Dyer, G. R. Aizin, J. L. Reno, E. A. Shaner, and S. J. Allen, “Novel tunable millimeter-wave grating-gated plasmonic detectors,” IEEE J. Sel. Top. Quantum Electron. 17(1), 85–91 (2011).
[Crossref]

G. C. Dyer, J. D. Crossno, G. R. Aizin, E. A. Shaner, M. C. Wanke, J. L. Reno, and S. J. Allen, “A plasmonic terahertz detector with a monolithic hot electron bolometer,” J. Phys. Condens. Matter 21(19), 195803 (2009).
[Crossref] [PubMed]

Andryieuski, A.

T. Gu, A. Andryieuski, Y. Hao, Y. Li, J. Hone, C. W. Wong, A. Lavrinenko, T. Low, and T. F. Heinz, “Photonic and plasmonic guided modes in graphene–silicon photonic crystals,” ACS Photonics 2(11), 1552–1558 (2015).
[Crossref]

Antoszewski, J.

A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys. 105(9), 091101 (2009).
[Crossref]

Atkinson, J.

W. D. Newman, C. L. Cortes, J. Atkinson, S. Pramanik, R. G. DeCorby, and Z. Jacob, “Ferrell–Berreman Modes in Plasmonic Epsilon-near-Zero Media,” ACS Photonics 2(1), 2–7 (2015).
[Crossref]

Atwater, H. A.

A. M. Brown, R. Sundararaman, P. Narang, W. A. Goddard, and H. A. Atwater, “Nonradiative plasmon decay and hot carrier dynamics: effects of phonons, surfaces, and geometry,” ACS Nano 10(1), 957–966 (2016).
[Crossref] [PubMed]

R. Sundararaman, P. Narang, A. S. Jermyn, W. A. Goddard, and H. A. Atwater, “Theoretical predictions for hot-carrier generation from surface plasmon decay,” Nat. Commun. 5(1), 5788 (2014).
[Crossref] [PubMed]

R. de Waele, S. P. Burgos, H. A. Atwater, and A. Polman, “Negative refractive index in coaxial plasmon waveguides,” Opt. Express 18(12), 12770–12778 (2010).
[Crossref] [PubMed]

Balcytis, A.

Y. Nishijima, A. Balčytis, S. Naganuma, G. Seniutinas, and S. Juodkazis, “Tailoring metal and insulator contributions in plasmonic perfect absorber metasurfaces,” ACS Applied Nano Materials 1(7), 3557–3564 (2018).
[Crossref]

Bandara, S. V.

S. D. Gunapala, S. V. Bandara, J. K. Liu, J. M. Mumolo, S. B. Rafol, D. Z. Ting, A. Soibel, and C. Hill, “Quantum Well Infrared Photodetector Technology and Applications,” IEEE J. Sel. Top. Quantum Electron. 20(6), 154–165 (2014).
[Crossref]

Baranov, A.

Bardou, N.

P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haïdar, and J. L. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett. 98(19), 191109 (2011).
[Crossref]

Barnard, E. S.

Benson, B. A.

G. Wang, V. Yefremenko, V. Novosad, J. Pearson, R. Divan, C. L. Chang, L. Bleem, A. T. Crites, J. Mehl, B. A. Benson, T. Natoli, K. Story, S. S. Meyer, J. E. Carlstrom, J. McMahon, J. Sayre, J. Ruhl, E. George, N. Harrington, C. Reichardt, E. Shirokoff, E. Young, A. Lee, and W. Holzapfel, “An Absorber-coupled TES Bolometer for Measuring CMB Polarization,” Phys. Procedia 37, 1349–1354 (2012).
[Crossref]

Bingham, C.

Bleem, L.

G. Wang, V. Yefremenko, V. Novosad, J. Pearson, R. Divan, C. L. Chang, L. Bleem, A. T. Crites, J. Mehl, B. A. Benson, T. Natoli, K. Story, S. S. Meyer, J. E. Carlstrom, J. McMahon, J. Sayre, J. Ruhl, E. George, N. Harrington, C. Reichardt, E. Shirokoff, E. Young, A. Lee, and W. Holzapfel, “An Absorber-coupled TES Bolometer for Measuring CMB Polarization,” Phys. Procedia 37, 1349–1354 (2012).
[Crossref]

Bouchon, P.

P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haïdar, and J. L. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett. 98(19), 191109 (2011).
[Crossref]

Brongersma, M. L.

Brown, A. M.

A. M. Brown, R. Sundararaman, P. Narang, W. A. Goddard, and H. A. Atwater, “Nonradiative plasmon decay and hot carrier dynamics: effects of phonons, surfaces, and geometry,” ACS Nano 10(1), 957–966 (2016).
[Crossref] [PubMed]

Burgos, S. P.

Caglayan, H.

E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental verification of n = 0 structures for visible light,” Phys. Rev. Lett. 110(1), 013902 (2013).
[Crossref] [PubMed]

Calderon, J.

A. Safaei, S. Chandra, A. Vázquez-Guardado, J. Calderon, D. Franklin, L. Tetard, L. Zhai, M. N. Leuenberger, and D. Chanda, “Dynamically tunable extraordinary light absorption in monolayer graphene,” Phys. Rev. B 96(16), 165431 (2017).
[Crossref]

Carlstrom, J. E.

G. Wang, V. Yefremenko, V. Novosad, J. Pearson, R. Divan, C. L. Chang, L. Bleem, A. T. Crites, J. Mehl, B. A. Benson, T. Natoli, K. Story, S. S. Meyer, J. E. Carlstrom, J. McMahon, J. Sayre, J. Ruhl, E. George, N. Harrington, C. Reichardt, E. Shirokoff, E. Young, A. Lee, and W. Holzapfel, “An Absorber-coupled TES Bolometer for Measuring CMB Polarization,” Phys. Procedia 37, 1349–1354 (2012).
[Crossref]

Cerutti, L.

Chanda, D.

S. Chandra, D. Franklin, J. Cozart, A. Safaei, and D. Chanda, “Adaptive multispectral infrared camouflage,” ACS Photonics 5(11), 4513–4519 (2018).
[Crossref]

A. Safaei, A. Vázquez-Guardado, D. Franklin, M. N. Leuenberger, and D. Chanda, “High-Efficiency Broadband Mid-Infrared Flat Lens,” Adv. Opt. Mater. 6(13), 1800216 (2018).
[Crossref]

A. Safaei, S. Chandra, A. Vázquez-Guardado, J. Calderon, D. Franklin, L. Tetard, L. Zhai, M. N. Leuenberger, and D. Chanda, “Dynamically tunable extraordinary light absorption in monolayer graphene,” Phys. Rev. B 96(16), 165431 (2017).
[Crossref]

A. Vázquez-Guardado, A. Safaei, S. Modak, D. Franklin, and D. Chanda, “Hybrid coupling mechanism in a system supporting high order diffraction, plasmonic, and cavity resonances,” Phys. Rev. Lett. 113(26), 263902 (2014).
[Crossref] [PubMed]

Chandra, S.

S. Chandra, D. Franklin, J. Cozart, A. Safaei, and D. Chanda, “Adaptive multispectral infrared camouflage,” ACS Photonics 5(11), 4513–4519 (2018).
[Crossref]

A. Safaei, S. Chandra, A. Vázquez-Guardado, J. Calderon, D. Franklin, L. Tetard, L. Zhai, M. N. Leuenberger, and D. Chanda, “Dynamically tunable extraordinary light absorption in monolayer graphene,” Phys. Rev. B 96(16), 165431 (2017).
[Crossref]

Chandran, A.

Chang, C. L.

G. Wang, V. Yefremenko, V. Novosad, J. Pearson, R. Divan, C. L. Chang, L. Bleem, A. T. Crites, J. Mehl, B. A. Benson, T. Natoli, K. Story, S. S. Meyer, J. E. Carlstrom, J. McMahon, J. Sayre, J. Ruhl, E. George, N. Harrington, C. Reichardt, E. Shirokoff, E. Young, A. Lee, and W. Holzapfel, “An Absorber-coupled TES Bolometer for Measuring CMB Polarization,” Phys. Procedia 37, 1349–1354 (2012).
[Crossref]

Chang, Y. C.

D. M. T. Kuo, A. B. Fang, and Y. C. Chang, “Theoretical modeling of dark current and photo-response for quantum well and quantum dot infrared detectors,” Infrared Phys. Technol. 42(3-5), 433–442 (2001).
[Crossref]

Chen, K.

T. D. Dao, S. Ishii, T. Yokoyama, T. Sawada, R. P. Sugavaneshwar, K. Chen, Y. Wada, T. Nabatame, and T. Nagao, “Hole array perfect absorbers for spectrally selective midwavelength infrared pyroelectric detectors,” ACS Photonics 3(7), 1271–1278 (2016).
[Crossref]

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers fabricated by colloidal mask etching of Al–Al2O3–Al trilayers,” ACS Photonics 2(7), 964–970 (2015).
[Crossref]

Chen, Y. M.

Y. M. Chen, J. S. Shie, and T. Hwang, “Parameter extraction of resistive thermal sensors,” Sens. Actuators A Phys. 55(1), 43–47 (1996).
[Crossref]

Coenen, T.

E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental verification of n = 0 structures for visible light,” Phys. Rev. Lett. 110(1), 013902 (2013).
[Crossref] [PubMed]

Coon, D. D.

D. D. Coon, R. P. G. Karunasiri, and L. Z. Liu, “Narrow band infrared detection in multiquantum well structures,” Appl. Phys. Lett. 47(3), 289–291 (1985).
[Crossref]

Cortes, C. L.

W. D. Newman, C. L. Cortes, J. Atkinson, S. Pramanik, R. G. DeCorby, and Z. Jacob, “Ferrell–Berreman Modes in Plasmonic Epsilon-near-Zero Media,” ACS Photonics 2(1), 2–7 (2015).
[Crossref]

Cozart, J.

S. Chandra, D. Franklin, J. Cozart, A. Safaei, and D. Chanda, “Adaptive multispectral infrared camouflage,” ACS Photonics 5(11), 4513–4519 (2018).
[Crossref]

Crites, A. T.

G. Wang, V. Yefremenko, V. Novosad, J. Pearson, R. Divan, C. L. Chang, L. Bleem, A. T. Crites, J. Mehl, B. A. Benson, T. Natoli, K. Story, S. S. Meyer, J. E. Carlstrom, J. McMahon, J. Sayre, J. Ruhl, E. George, N. Harrington, C. Reichardt, E. Shirokoff, E. Young, A. Lee, and W. Holzapfel, “An Absorber-coupled TES Bolometer for Measuring CMB Polarization,” Phys. Procedia 37, 1349–1354 (2012).
[Crossref]

Crossno, J. D.

G. C. Dyer, J. D. Crossno, G. R. Aizin, E. A. Shaner, M. C. Wanke, J. L. Reno, and S. J. Allen, “A plasmonic terahertz detector with a monolithic hot electron bolometer,” J. Phys. Condens. Matter 21(19), 195803 (2009).
[Crossref] [PubMed]

Dagher, G.

P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haïdar, and J. L. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett. 98(19), 191109 (2011).
[Crossref]

Dao, T. D.

T. D. Dao, S. Ishii, T. Yokoyama, T. Sawada, R. P. Sugavaneshwar, K. Chen, Y. Wada, T. Nabatame, and T. Nagao, “Hole array perfect absorbers for spectrally selective midwavelength infrared pyroelectric detectors,” ACS Photonics 3(7), 1271–1278 (2016).
[Crossref]

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers fabricated by colloidal mask etching of Al–Al2O3–Al trilayers,” ACS Photonics 2(7), 964–970 (2015).
[Crossref]

de Waele, R.

De Wilde, Y.

DeCorby, R. G.

W. D. Newman, C. L. Cortes, J. Atkinson, S. Pramanik, R. G. DeCorby, and Z. Jacob, “Ferrell–Berreman Modes in Plasmonic Epsilon-near-Zero Media,” ACS Photonics 2(1), 2–7 (2015).
[Crossref]

Dillner, U.

U. Dillner, E. Kessler, and H. G. Meyer, “Figures of merit of thermoelectric and bolometric thermal radiation sensors,” Journal of Sensors and Sensor Systems 2(1), 85–94 (2013).
[Crossref]

Divan, R.

G. Wang, V. Yefremenko, V. Novosad, J. Pearson, R. Divan, C. L. Chang, L. Bleem, A. T. Crites, J. Mehl, B. A. Benson, T. Natoli, K. Story, S. S. Meyer, J. E. Carlstrom, J. McMahon, J. Sayre, J. Ruhl, E. George, N. Harrington, C. Reichardt, E. Shirokoff, E. Young, A. Lee, and W. Holzapfel, “An Absorber-coupled TES Bolometer for Measuring CMB Polarization,” Phys. Procedia 37, 1349–1354 (2012).
[Crossref]

Dupuis, C.

P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haïdar, and J. L. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett. 98(19), 191109 (2011).
[Crossref]

Dyer, G. C.

G. C. Dyer, G. R. Aizin, J. L. Reno, E. A. Shaner, and S. J. Allen, “Novel tunable millimeter-wave grating-gated plasmonic detectors,” IEEE J. Sel. Top. Quantum Electron. 17(1), 85–91 (2011).
[Crossref]

G. C. Dyer, J. D. Crossno, G. R. Aizin, E. A. Shaner, M. C. Wanke, J. L. Reno, and S. J. Allen, “A plasmonic terahertz detector with a monolithic hot electron bolometer,” J. Phys. Condens. Matter 21(19), 195803 (2009).
[Crossref] [PubMed]

Engheta, N.

A. M. Mahmoud and N. Engheta, “Wave-matter interactions in epsilon-and-mu-near-zero structures,” Nat. Commun. 5(1), 5638 (2014).
[Crossref] [PubMed]

E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental verification of n = 0 structures for visible light,” Phys. Rev. Lett. 110(1), 013902 (2013).
[Crossref] [PubMed]

Fan, K.

Fan, S.

Fang, A. B.

D. M. T. Kuo, A. B. Fang, and Y. C. Chang, “Theoretical modeling of dark current and photo-response for quantum well and quantum dot infrared detectors,” Infrared Phys. Technol. 42(3-5), 433–442 (2001).
[Crossref]

Faraone, L.

A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys. 105(9), 091101 (2009).
[Crossref]

Feng, Q.

Ferlazzo, L.

P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haïdar, and J. L. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett. 98(19), 191109 (2011).
[Crossref]

Fischbach, S.

F. B. P. Niesler, J. K. Gansel, S. Fischbach, and M. Wegener, “Metamaterial metal-based bolometers,” Appl. Phys. Lett. 100(20), 203508 (2012).
[Crossref]

Franklin, D.

S. Chandra, D. Franklin, J. Cozart, A. Safaei, and D. Chanda, “Adaptive multispectral infrared camouflage,” ACS Photonics 5(11), 4513–4519 (2018).
[Crossref]

A. Safaei, A. Vázquez-Guardado, D. Franklin, M. N. Leuenberger, and D. Chanda, “High-Efficiency Broadband Mid-Infrared Flat Lens,” Adv. Opt. Mater. 6(13), 1800216 (2018).
[Crossref]

A. Safaei, S. Chandra, A. Vázquez-Guardado, J. Calderon, D. Franklin, L. Tetard, L. Zhai, M. N. Leuenberger, and D. Chanda, “Dynamically tunable extraordinary light absorption in monolayer graphene,” Phys. Rev. B 96(16), 165431 (2017).
[Crossref]

A. Vázquez-Guardado, A. Safaei, S. Modak, D. Franklin, and D. Chanda, “Hybrid coupling mechanism in a system supporting high order diffraction, plasmonic, and cavity resonances,” Phys. Rev. Lett. 113(26), 263902 (2014).
[Crossref] [PubMed]

Gansel, J. K.

F. B. P. Niesler, J. K. Gansel, S. Fischbach, and M. Wegener, “Metamaterial metal-based bolometers,” Appl. Phys. Lett. 100(20), 203508 (2012).
[Crossref]

García de Abajo, F. J.

F. J. García de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79(4), 1267–1290 (2007).
[Crossref]

Garcia-Vidal, F. J.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Gawarikar, A. S.

A. S. Gawarikar, R. P. Shea, and J. J. Talghader, “High detectivity uncooled thermal detectors with resonant cavity coupled absorption in the long-wave infrared,” IEEE Trans. Electron Dev. 60(8), 2586–2591 (2013).
[Crossref]

J. J. Talghader, A. S. Gawarikar, and R. P. Shea, “Spectral selectivity in infrared thermal detection,” Light Sci. Appl. 1(8), e24 (2012).
[Crossref]

George, E.

G. Wang, V. Yefremenko, V. Novosad, J. Pearson, R. Divan, C. L. Chang, L. Bleem, A. T. Crites, J. Mehl, B. A. Benson, T. Natoli, K. Story, S. S. Meyer, J. E. Carlstrom, J. McMahon, J. Sayre, J. Ruhl, E. George, N. Harrington, C. Reichardt, E. Shirokoff, E. Young, A. Lee, and W. Holzapfel, “An Absorber-coupled TES Bolometer for Measuring CMB Polarization,” Phys. Procedia 37, 1349–1354 (2012).
[Crossref]

Ghenuche, P.

P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haïdar, and J. L. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett. 98(19), 191109 (2011).
[Crossref]

Goddard, W. A.

A. M. Brown, R. Sundararaman, P. Narang, W. A. Goddard, and H. A. Atwater, “Nonradiative plasmon decay and hot carrier dynamics: effects of phonons, surfaces, and geometry,” ACS Nano 10(1), 957–966 (2016).
[Crossref] [PubMed]

R. Sundararaman, P. Narang, A. S. Jermyn, W. A. Goddard, and H. A. Atwater, “Theoretical predictions for hot-carrier generation from surface plasmon decay,” Nat. Commun. 5(1), 5788 (2014).
[Crossref] [PubMed]

Greffet, J. J.

Grigoras, K.

A. Varpula, A. V. Timofeev, A. Shchepetov, K. Grigoras, J. Hassel, J. Ahopelto, M. Ylilammi, and M. Prunnila, “Thermoelectric thermal detectors based on ultra-thin heavily doped single-crystal silicon membranes,” Appl. Phys. Lett. 110(26), 262101 (2017).
[Crossref]

Gu, T.

T. Gu, A. Andryieuski, Y. Hao, Y. Li, J. Hone, C. W. Wong, A. Lavrinenko, T. Low, and T. F. Heinz, “Photonic and plasmonic guided modes in graphene–silicon photonic crystals,” ACS Photonics 2(11), 1552–1558 (2015).
[Crossref]

Gunapala, S. D.

S. D. Gunapala, S. V. Bandara, J. K. Liu, J. M. Mumolo, S. B. Rafol, D. Z. Ting, A. Soibel, and C. Hill, “Quantum Well Infrared Photodetector Technology and Applications,” IEEE J. Sel. Top. Quantum Electron. 20(6), 154–165 (2014).
[Crossref]

Haïdar, R.

P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haïdar, and J. L. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett. 98(19), 191109 (2011).
[Crossref]

Halas, N. J.

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
[Crossref] [PubMed]

Hao, Y.

T. Gu, A. Andryieuski, Y. Hao, Y. Li, J. Hone, C. W. Wong, A. Lavrinenko, T. Low, and T. F. Heinz, “Photonic and plasmonic guided modes in graphene–silicon photonic crystals,” ACS Photonics 2(11), 1552–1558 (2015).
[Crossref]

Harrington, N.

G. Wang, V. Yefremenko, V. Novosad, J. Pearson, R. Divan, C. L. Chang, L. Bleem, A. T. Crites, J. Mehl, B. A. Benson, T. Natoli, K. Story, S. S. Meyer, J. E. Carlstrom, J. McMahon, J. Sayre, J. Ruhl, E. George, N. Harrington, C. Reichardt, E. Shirokoff, E. Young, A. Lee, and W. Holzapfel, “An Absorber-coupled TES Bolometer for Measuring CMB Polarization,” Phys. Procedia 37, 1349–1354 (2012).
[Crossref]

Hassel, J.

A. Varpula, A. V. Timofeev, A. Shchepetov, K. Grigoras, J. Hassel, J. Ahopelto, M. Ylilammi, and M. Prunnila, “Thermoelectric thermal detectors based on ultra-thin heavily doped single-crystal silicon membranes,” Appl. Phys. Lett. 110(26), 262101 (2017).
[Crossref]

He, X. N.

M. Mahjouri-Samani, Y. S. Zhou, X. N. He, W. Xiong, P. Hilger, and Y. F. Lu, “Plasmonic-enhanced carbon nanotube infrared bolometers,” Nanotechnology 24(3), 035502 (2013).
[Crossref] [PubMed]

Heinz, T. F.

T. Gu, A. Andryieuski, Y. Hao, Y. Li, J. Hone, C. W. Wong, A. Lavrinenko, T. Low, and T. F. Heinz, “Photonic and plasmonic guided modes in graphene–silicon photonic crystals,” ACS Photonics 2(11), 1552–1558 (2015).
[Crossref]

Herzog, J. B.

J. B. Herzog, M. W. Knight, and D. Natelson, “Thermoplasmonics: quantifying plasmonic heating in single nanowires,” Nano Lett. 14(2), 499–503 (2014).
[Crossref] [PubMed]

Hilger, P.

M. Mahjouri-Samani, Y. S. Zhou, X. N. He, W. Xiong, P. Hilger, and Y. F. Lu, “Plasmonic-enhanced carbon nanotube infrared bolometers,” Nanotechnology 24(3), 035502 (2013).
[Crossref] [PubMed]

Hill, C.

S. D. Gunapala, S. V. Bandara, J. K. Liu, J. M. Mumolo, S. B. Rafol, D. Z. Ting, A. Soibel, and C. Hill, “Quantum Well Infrared Photodetector Technology and Applications,” IEEE J. Sel. Top. Quantum Electron. 20(6), 154–165 (2014).
[Crossref]

Ho, K.-M.

X. Hu, M. Li, Z. Ye, W. Y. Leung, K.-M. Ho, and S. Y. Lin, “Design of midinfrared photodetectors enhanced by resonant cavities with subwavelength metallic gratings,” Appl. Phys. Lett. 93(24), 241108 (2008).
[Crossref]

Holzapfel, W.

G. Wang, V. Yefremenko, V. Novosad, J. Pearson, R. Divan, C. L. Chang, L. Bleem, A. T. Crites, J. Mehl, B. A. Benson, T. Natoli, K. Story, S. S. Meyer, J. E. Carlstrom, J. McMahon, J. Sayre, J. Ruhl, E. George, N. Harrington, C. Reichardt, E. Shirokoff, E. Young, A. Lee, and W. Holzapfel, “An Absorber-coupled TES Bolometer for Measuring CMB Polarization,” Phys. Procedia 37, 1349–1354 (2012).
[Crossref]

Hone, J.

T. Gu, A. Andryieuski, Y. Hao, Y. Li, J. Hone, C. W. Wong, A. Lavrinenko, T. Low, and T. F. Heinz, “Photonic and plasmonic guided modes in graphene–silicon photonic crystals,” ACS Photonics 2(11), 1552–1558 (2015).
[Crossref]

Hu, C.

Hu, X.

X. Hu, M. Li, Z. Ye, W. Y. Leung, K.-M. Ho, and S. Y. Lin, “Design of midinfrared photodetectors enhanced by resonant cavities with subwavelength metallic gratings,” Appl. Phys. Lett. 93(24), 241108 (2008).
[Crossref]

Hugonin, J. P.

Hwang, I. K.

J. K. Yang, M.-K. Seo, I. K. Hwang, S. B. Kim, and Y. H. Lee, “Polarization-selective resonant photonic crystal photodetector,” Appl. Phys. Lett. 93(21), 211103 (2008).
[Crossref]

Hwang, T.

Y. M. Chen, J. S. Shie, and T. Hwang, “Parameter extraction of resistive thermal sensors,” Sens. Actuators A Phys. 55(1), 43–47 (1996).
[Crossref]

Ishii, S.

T. D. Dao, S. Ishii, T. Yokoyama, T. Sawada, R. P. Sugavaneshwar, K. Chen, Y. Wada, T. Nabatame, and T. Nagao, “Hole array perfect absorbers for spectrally selective midwavelength infrared pyroelectric detectors,” ACS Photonics 3(7), 1271–1278 (2016).
[Crossref]

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers fabricated by colloidal mask etching of Al–Al2O3–Al trilayers,” ACS Photonics 2(7), 964–970 (2015).
[Crossref]

Jacob, Z.

W. D. Newman, C. L. Cortes, J. Atkinson, S. Pramanik, R. G. DeCorby, and Z. Jacob, “Ferrell–Berreman Modes in Plasmonic Epsilon-near-Zero Media,” ACS Photonics 2(1), 2–7 (2015).
[Crossref]

Jermyn, A. S.

R. Sundararaman, P. Narang, A. S. Jermyn, W. A. Goddard, and H. A. Atwater, “Theoretical predictions for hot-carrier generation from surface plasmon decay,” Nat. Commun. 5(1), 5788 (2014).
[Crossref] [PubMed]

Juodkazis, S.

Y. Nishijima, A. Balčytis, S. Naganuma, G. Seniutinas, and S. Juodkazis, “Tailoring metal and insulator contributions in plasmonic perfect absorber metasurfaces,” ACS Applied Nano Materials 1(7), 3557–3564 (2018).
[Crossref]

Kang, S.

Z. Qian, S. Kang, V. Rajaram, and M. Rinaldi, “Narrowband MEMS resonant infrared detectors based on ultrathin perfect plasmonic absorbers,” 2016 IEEE SENSORS, 1, 16597228 (2016).

Karunasiri, R. P. G.

D. D. Coon, R. P. G. Karunasiri, and L. Z. Liu, “Narrow band infrared detection in multiquantum well structures,” Appl. Phys. Lett. 47(3), 289–291 (1985).
[Crossref]

Kessler, E.

U. Dillner, E. Kessler, and H. G. Meyer, “Figures of merit of thermoelectric and bolometric thermal radiation sensors,” Journal of Sensors and Sensor Systems 2(1), 85–94 (2013).
[Crossref]

Kim, S. B.

J. K. Yang, M.-K. Seo, I. K. Hwang, S. B. Kim, and Y. H. Lee, “Polarization-selective resonant photonic crystal photodetector,” Appl. Phys. Lett. 93(21), 211103 (2008).
[Crossref]

Kitajima, M.

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers fabricated by colloidal mask etching of Al–Al2O3–Al trilayers,” ACS Photonics 2(7), 964–970 (2015).
[Crossref]

Knight, M. W.

J. B. Herzog, M. W. Knight, and D. Natelson, “Thermoplasmonics: quantifying plasmonic heating in single nanowires,” Nano Lett. 14(2), 499–503 (2014).
[Crossref] [PubMed]

Krishna, S.

J. Rosenberg, R. V. Shenoi, S. Krishna, and O. Painter, “Design of plasmonic photonic crystal resonant cavities for polarization sensitive infrared photodetectors,” Opt. Express 18(4), 3672–3686 (2010).
[Crossref] [PubMed]

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95(16), 161101 (2009).
[Crossref]

Kuo, D. M. T.

D. M. T. Kuo, A. B. Fang, and Y. C. Chang, “Theoretical modeling of dark current and photo-response for quantum well and quantum dot infrared detectors,” Infrared Phys. Technol. 42(3-5), 433–442 (2001).
[Crossref]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Lavrinenko, A.

T. Gu, A. Andryieuski, Y. Hao, Y. Li, J. Hone, C. W. Wong, A. Lavrinenko, T. Low, and T. F. Heinz, “Photonic and plasmonic guided modes in graphene–silicon photonic crystals,” ACS Photonics 2(11), 1552–1558 (2015).
[Crossref]

Lee, A.

G. Wang, V. Yefremenko, V. Novosad, J. Pearson, R. Divan, C. L. Chang, L. Bleem, A. T. Crites, J. Mehl, B. A. Benson, T. Natoli, K. Story, S. S. Meyer, J. E. Carlstrom, J. McMahon, J. Sayre, J. Ruhl, E. George, N. Harrington, C. Reichardt, E. Shirokoff, E. Young, A. Lee, and W. Holzapfel, “An Absorber-coupled TES Bolometer for Measuring CMB Polarization,” Phys. Procedia 37, 1349–1354 (2012).
[Crossref]

Lee, Y. H.

J. K. Yang, M.-K. Seo, I. K. Hwang, S. B. Kim, and Y. H. Lee, “Polarization-selective resonant photonic crystal photodetector,” Appl. Phys. Lett. 93(21), 211103 (2008).
[Crossref]

Leuenberger, M. N.

A. Safaei, A. Vázquez-Guardado, D. Franklin, M. N. Leuenberger, and D. Chanda, “High-Efficiency Broadband Mid-Infrared Flat Lens,” Adv. Opt. Mater. 6(13), 1800216 (2018).
[Crossref]

A. Safaei, S. Chandra, A. Vázquez-Guardado, J. Calderon, D. Franklin, L. Tetard, L. Zhai, M. N. Leuenberger, and D. Chanda, “Dynamically tunable extraordinary light absorption in monolayer graphene,” Phys. Rev. B 96(16), 165431 (2017).
[Crossref]

Leung, W. Y.

X. Hu, M. Li, Z. Ye, W. Y. Leung, K.-M. Ho, and S. Y. Lin, “Design of midinfrared photodetectors enhanced by resonant cavities with subwavelength metallic gratings,” Appl. Phys. Lett. 93(24), 241108 (2008).
[Crossref]

Li, D.

D. Li and D. Pacifici, “Strong amplitude and phase modulation of optical spatial coherence with surface plasmon polaritons,” Sci. Adv. 3(10), e1700133 (2017).
[Crossref] [PubMed]

Li, M.

X. Hu, M. Li, Z. Ye, W. Y. Leung, K.-M. Ho, and S. Y. Lin, “Design of midinfrared photodetectors enhanced by resonant cavities with subwavelength metallic gratings,” Appl. Phys. Lett. 93(24), 241108 (2008).
[Crossref]

Li, Y.

T. Gu, A. Andryieuski, Y. Hao, Y. Li, J. Hone, C. W. Wong, A. Lavrinenko, T. Low, and T. F. Heinz, “Photonic and plasmonic guided modes in graphene–silicon photonic crystals,” ACS Photonics 2(11), 1552–1558 (2015).
[Crossref]

Liddiard, K. C.

K. C. Liddiard, “Thin-film resistance bolometer ir detectors,” Infrared Phys. 24(1), 57–64 (1984).
[Crossref]

Lin, S. Y.

X. Hu, M. Li, Z. Ye, W. Y. Leung, K.-M. Ho, and S. Y. Lin, “Design of midinfrared photodetectors enhanced by resonant cavities with subwavelength metallic gratings,” Appl. Phys. Lett. 93(24), 241108 (2008).
[Crossref]

Liu, J. K.

S. D. Gunapala, S. V. Bandara, J. K. Liu, J. M. Mumolo, S. B. Rafol, D. Z. Ting, A. Soibel, and C. Hill, “Quantum Well Infrared Photodetector Technology and Applications,” IEEE J. Sel. Top. Quantum Electron. 20(6), 154–165 (2014).
[Crossref]

Liu, L. Z.

D. D. Coon, R. P. G. Karunasiri, and L. Z. Liu, “Narrow band infrared detection in multiquantum well structures,” Appl. Phys. Lett. 47(3), 289–291 (1985).
[Crossref]

Low, T.

T. Gu, A. Andryieuski, Y. Hao, Y. Li, J. Hone, C. W. Wong, A. Lavrinenko, T. Low, and T. F. Heinz, “Photonic and plasmonic guided modes in graphene–silicon photonic crystals,” ACS Photonics 2(11), 1552–1558 (2015).
[Crossref]

Lu, Y. F.

M. Mahjouri-Samani, Y. S. Zhou, X. N. He, W. Xiong, P. Hilger, and Y. F. Lu, “Plasmonic-enhanced carbon nanotube infrared bolometers,” Nanotechnology 24(3), 035502 (2013).
[Crossref] [PubMed]

Luo, X.

Mahjouri-Samani, M.

M. Mahjouri-Samani, Y. S. Zhou, X. N. He, W. Xiong, P. Hilger, and Y. F. Lu, “Plasmonic-enhanced carbon nanotube infrared bolometers,” Nanotechnology 24(3), 035502 (2013).
[Crossref] [PubMed]

Mahmoud, A. M.

A. M. Mahmoud and N. Engheta, “Wave-matter interactions in epsilon-and-mu-near-zero structures,” Nat. Commun. 5(1), 5638 (2014).
[Crossref] [PubMed]

Martín-Moreno, L.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Mather, J. C.

McMahon, J.

G. Wang, V. Yefremenko, V. Novosad, J. Pearson, R. Divan, C. L. Chang, L. Bleem, A. T. Crites, J. Mehl, B. A. Benson, T. Natoli, K. Story, S. S. Meyer, J. E. Carlstrom, J. McMahon, J. Sayre, J. Ruhl, E. George, N. Harrington, C. Reichardt, E. Shirokoff, E. Young, A. Lee, and W. Holzapfel, “An Absorber-coupled TES Bolometer for Measuring CMB Polarization,” Phys. Procedia 37, 1349–1354 (2012).
[Crossref]

Mehl, J.

G. Wang, V. Yefremenko, V. Novosad, J. Pearson, R. Divan, C. L. Chang, L. Bleem, A. T. Crites, J. Mehl, B. A. Benson, T. Natoli, K. Story, S. S. Meyer, J. E. Carlstrom, J. McMahon, J. Sayre, J. Ruhl, E. George, N. Harrington, C. Reichardt, E. Shirokoff, E. Young, A. Lee, and W. Holzapfel, “An Absorber-coupled TES Bolometer for Measuring CMB Polarization,” Phys. Procedia 37, 1349–1354 (2012).
[Crossref]

Meyer, H. G.

U. Dillner, E. Kessler, and H. G. Meyer, “Figures of merit of thermoelectric and bolometric thermal radiation sensors,” Journal of Sensors and Sensor Systems 2(1), 85–94 (2013).
[Crossref]

Meyer, S. S.

G. Wang, V. Yefremenko, V. Novosad, J. Pearson, R. Divan, C. L. Chang, L. Bleem, A. T. Crites, J. Mehl, B. A. Benson, T. Natoli, K. Story, S. S. Meyer, J. E. Carlstrom, J. McMahon, J. Sayre, J. Ruhl, E. George, N. Harrington, C. Reichardt, E. Shirokoff, E. Young, A. Lee, and W. Holzapfel, “An Absorber-coupled TES Bolometer for Measuring CMB Polarization,” Phys. Procedia 37, 1349–1354 (2012).
[Crossref]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Modak, S.

A. Vázquez-Guardado, A. Safaei, S. Modak, D. Franklin, and D. Chanda, “Hybrid coupling mechanism in a system supporting high order diffraction, plasmonic, and cavity resonances,” Phys. Rev. Lett. 113(26), 263902 (2014).
[Crossref] [PubMed]

Montoya, J.

Mumolo, J. M.

S. D. Gunapala, S. V. Bandara, J. K. Liu, J. M. Mumolo, S. B. Rafol, D. Z. Ting, A. Soibel, and C. Hill, “Quantum Well Infrared Photodetector Technology and Applications,” IEEE J. Sel. Top. Quantum Electron. 20(6), 154–165 (2014).
[Crossref]

Nabatame, T.

T. D. Dao, S. Ishii, T. Yokoyama, T. Sawada, R. P. Sugavaneshwar, K. Chen, Y. Wada, T. Nabatame, and T. Nagao, “Hole array perfect absorbers for spectrally selective midwavelength infrared pyroelectric detectors,” ACS Photonics 3(7), 1271–1278 (2016).
[Crossref]

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers fabricated by colloidal mask etching of Al–Al2O3–Al trilayers,” ACS Photonics 2(7), 964–970 (2015).
[Crossref]

Naganuma, S.

Y. Nishijima, A. Balčytis, S. Naganuma, G. Seniutinas, and S. Juodkazis, “Tailoring metal and insulator contributions in plasmonic perfect absorber metasurfaces,” ACS Applied Nano Materials 1(7), 3557–3564 (2018).
[Crossref]

Nagao, T.

T. D. Dao, S. Ishii, T. Yokoyama, T. Sawada, R. P. Sugavaneshwar, K. Chen, Y. Wada, T. Nabatame, and T. Nagao, “Hole array perfect absorbers for spectrally selective midwavelength infrared pyroelectric detectors,” ACS Photonics 3(7), 1271–1278 (2016).
[Crossref]

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers fabricated by colloidal mask etching of Al–Al2O3–Al trilayers,” ACS Photonics 2(7), 964–970 (2015).
[Crossref]

Narang, P.

A. M. Brown, R. Sundararaman, P. Narang, W. A. Goddard, and H. A. Atwater, “Nonradiative plasmon decay and hot carrier dynamics: effects of phonons, surfaces, and geometry,” ACS Nano 10(1), 957–966 (2016).
[Crossref] [PubMed]

R. Sundararaman, P. Narang, A. S. Jermyn, W. A. Goddard, and H. A. Atwater, “Theoretical predictions for hot-carrier generation from surface plasmon decay,” Nat. Commun. 5(1), 5788 (2014).
[Crossref] [PubMed]

Natelson, D.

J. B. Herzog, M. W. Knight, and D. Natelson, “Thermoplasmonics: quantifying plasmonic heating in single nanowires,” Nano Lett. 14(2), 499–503 (2014).
[Crossref] [PubMed]

Natoli, T.

G. Wang, V. Yefremenko, V. Novosad, J. Pearson, R. Divan, C. L. Chang, L. Bleem, A. T. Crites, J. Mehl, B. A. Benson, T. Natoli, K. Story, S. S. Meyer, J. E. Carlstrom, J. McMahon, J. Sayre, J. Ruhl, E. George, N. Harrington, C. Reichardt, E. Shirokoff, E. Young, A. Lee, and W. Holzapfel, “An Absorber-coupled TES Bolometer for Measuring CMB Polarization,” Phys. Procedia 37, 1349–1354 (2012).
[Crossref]

Newman, W. D.

W. D. Newman, C. L. Cortes, J. Atkinson, S. Pramanik, R. G. DeCorby, and Z. Jacob, “Ferrell–Berreman Modes in Plasmonic Epsilon-near-Zero Media,” ACS Photonics 2(1), 2–7 (2015).
[Crossref]

Niesler, F. B. P.

F. B. P. Niesler, J. K. Gansel, S. Fischbach, and M. Wegener, “Metamaterial metal-based bolometers,” Appl. Phys. Lett. 100(20), 203508 (2012).
[Crossref]

Nishijima, Y.

Y. Nishijima, A. Balčytis, S. Naganuma, G. Seniutinas, and S. Juodkazis, “Tailoring metal and insulator contributions in plasmonic perfect absorber metasurfaces,” ACS Applied Nano Materials 1(7), 3557–3564 (2018).
[Crossref]

Nordlander, P.

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
[Crossref] [PubMed]

Novosad, V.

G. Wang, V. Yefremenko, V. Novosad, J. Pearson, R. Divan, C. L. Chang, L. Bleem, A. T. Crites, J. Mehl, B. A. Benson, T. Natoli, K. Story, S. S. Meyer, J. E. Carlstrom, J. McMahon, J. Sayre, J. Ruhl, E. George, N. Harrington, C. Reichardt, E. Shirokoff, E. Young, A. Lee, and W. Holzapfel, “An Absorber-coupled TES Bolometer for Measuring CMB Polarization,” Phys. Procedia 37, 1349–1354 (2012).
[Crossref]

Ohi, A.

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers fabricated by colloidal mask etching of Al–Al2O3–Al trilayers,” ACS Photonics 2(7), 964–970 (2015).
[Crossref]

Ou-Yang, M.

M. Ou-Yang, C. S. Sheen, and J. S. Shie, “Parameter extraction of resistive thermal microsensors by AC electrical method,” IEEE Trans. Instrum. Meas. 47(2), 403–408 (1998).
[Crossref]

Pacifici, D.

D. Li and D. Pacifici, “Strong amplitude and phase modulation of optical spatial coherence with surface plasmon polaritons,” Sci. Adv. 3(10), e1700133 (2017).
[Crossref] [PubMed]

Padilla, W. J.

J. Y. Suen, K. Fan, J. Montoya, C. Bingham, V. Stenger, S. Sriram, and W. J. Padilla, “Multifunctional metamaterial pyroelectric infrared detectors,” Optica 4(2), 276–279 (2017).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Painter, O.

J. Rosenberg, R. V. Shenoi, S. Krishna, and O. Painter, “Design of plasmonic photonic crystal resonant cavities for polarization sensitive infrared photodetectors,” Opt. Express 18(4), 3672–3686 (2010).
[Crossref] [PubMed]

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95(16), 161101 (2009).
[Crossref]

Pardo, F.

P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haïdar, and J. L. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett. 98(19), 191109 (2011).
[Crossref]

Pearson, J.

G. Wang, V. Yefremenko, V. Novosad, J. Pearson, R. Divan, C. L. Chang, L. Bleem, A. T. Crites, J. Mehl, B. A. Benson, T. Natoli, K. Story, S. S. Meyer, J. E. Carlstrom, J. McMahon, J. Sayre, J. Ruhl, E. George, N. Harrington, C. Reichardt, E. Shirokoff, E. Young, A. Lee, and W. Holzapfel, “An Absorber-coupled TES Bolometer for Measuring CMB Polarization,” Phys. Procedia 37, 1349–1354 (2012).
[Crossref]

Pelouard, J. L.

P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haïdar, and J. L. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett. 98(19), 191109 (2011).
[Crossref]

Pendry, J. B.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Peragut, F.

Polman, A.

E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental verification of n = 0 structures for visible light,” Phys. Rev. Lett. 110(1), 013902 (2013).
[Crossref] [PubMed]

R. de Waele, S. P. Burgos, H. A. Atwater, and A. Polman, “Negative refractive index in coaxial plasmon waveguides,” Opt. Express 18(12), 12770–12778 (2010).
[Crossref] [PubMed]

Portier, B.

P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haïdar, and J. L. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett. 98(19), 191109 (2011).
[Crossref]

Pramanik, S.

W. D. Newman, C. L. Cortes, J. Atkinson, S. Pramanik, R. G. DeCorby, and Z. Jacob, “Ferrell–Berreman Modes in Plasmonic Epsilon-near-Zero Media,” ACS Photonics 2(1), 2–7 (2015).
[Crossref]

Prunnila, M.

A. Varpula, A. V. Timofeev, A. Shchepetov, K. Grigoras, J. Hassel, J. Ahopelto, M. Ylilammi, and M. Prunnila, “Thermoelectric thermal detectors based on ultra-thin heavily doped single-crystal silicon membranes,” Appl. Phys. Lett. 110(26), 262101 (2017).
[Crossref]

Pu, M.

Qian, Z.

Z. Qian, S. Kang, V. Rajaram, and M. Rinaldi, “Narrowband MEMS resonant infrared detectors based on ultrathin perfect plasmonic absorbers,” 2016 IEEE SENSORS, 1, 16597228 (2016).

Rafol, S. B.

S. D. Gunapala, S. V. Bandara, J. K. Liu, J. M. Mumolo, S. B. Rafol, D. Z. Ting, A. Soibel, and C. Hill, “Quantum Well Infrared Photodetector Technology and Applications,” IEEE J. Sel. Top. Quantum Electron. 20(6), 154–165 (2014).
[Crossref]

Rajaram, V.

Z. Qian, S. Kang, V. Rajaram, and M. Rinaldi, “Narrowband MEMS resonant infrared detectors based on ultrathin perfect plasmonic absorbers,” 2016 IEEE SENSORS, 1, 16597228 (2016).

Reichardt, C.

G. Wang, V. Yefremenko, V. Novosad, J. Pearson, R. Divan, C. L. Chang, L. Bleem, A. T. Crites, J. Mehl, B. A. Benson, T. Natoli, K. Story, S. S. Meyer, J. E. Carlstrom, J. McMahon, J. Sayre, J. Ruhl, E. George, N. Harrington, C. Reichardt, E. Shirokoff, E. Young, A. Lee, and W. Holzapfel, “An Absorber-coupled TES Bolometer for Measuring CMB Polarization,” Phys. Procedia 37, 1349–1354 (2012).
[Crossref]

Reno, J. L.

G. C. Dyer, G. R. Aizin, J. L. Reno, E. A. Shaner, and S. J. Allen, “Novel tunable millimeter-wave grating-gated plasmonic detectors,” IEEE J. Sel. Top. Quantum Electron. 17(1), 85–91 (2011).
[Crossref]

G. C. Dyer, J. D. Crossno, G. R. Aizin, E. A. Shaner, M. C. Wanke, J. L. Reno, and S. J. Allen, “A plasmonic terahertz detector with a monolithic hot electron bolometer,” J. Phys. Condens. Matter 21(19), 195803 (2009).
[Crossref] [PubMed]

Rinaldi, M.

Z. Qian, S. Kang, V. Rajaram, and M. Rinaldi, “Narrowband MEMS resonant infrared detectors based on ultrathin perfect plasmonic absorbers,” 2016 IEEE SENSORS, 1, 16597228 (2016).

Rogalski, A.

A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys. 105(9), 091101 (2009).
[Crossref]

A. Rogalski, “Infrared detectors: an overview,” Infrared Phys. Technol. 43(3-5), 187–210 (2002).
[Crossref]

Rosenberg, J.

J. Rosenberg, R. V. Shenoi, S. Krishna, and O. Painter, “Design of plasmonic photonic crystal resonant cavities for polarization sensitive infrared photodetectors,” Opt. Express 18(4), 3672–3686 (2010).
[Crossref] [PubMed]

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95(16), 161101 (2009).
[Crossref]

Ruhl, J.

G. Wang, V. Yefremenko, V. Novosad, J. Pearson, R. Divan, C. L. Chang, L. Bleem, A. T. Crites, J. Mehl, B. A. Benson, T. Natoli, K. Story, S. S. Meyer, J. E. Carlstrom, J. McMahon, J. Sayre, J. Ruhl, E. George, N. Harrington, C. Reichardt, E. Shirokoff, E. Young, A. Lee, and W. Holzapfel, “An Absorber-coupled TES Bolometer for Measuring CMB Polarization,” Phys. Procedia 37, 1349–1354 (2012).
[Crossref]

Safaei, A.

S. Chandra, D. Franklin, J. Cozart, A. Safaei, and D. Chanda, “Adaptive multispectral infrared camouflage,” ACS Photonics 5(11), 4513–4519 (2018).
[Crossref]

A. Safaei, A. Vázquez-Guardado, D. Franklin, M. N. Leuenberger, and D. Chanda, “High-Efficiency Broadband Mid-Infrared Flat Lens,” Adv. Opt. Mater. 6(13), 1800216 (2018).
[Crossref]

A. Safaei, S. Chandra, A. Vázquez-Guardado, J. Calderon, D. Franklin, L. Tetard, L. Zhai, M. N. Leuenberger, and D. Chanda, “Dynamically tunable extraordinary light absorption in monolayer graphene,” Phys. Rev. B 96(16), 165431 (2017).
[Crossref]

A. Vázquez-Guardado, A. Safaei, S. Modak, D. Franklin, and D. Chanda, “Hybrid coupling mechanism in a system supporting high order diffraction, plasmonic, and cavity resonances,” Phys. Rev. Lett. 113(26), 263902 (2014).
[Crossref] [PubMed]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Sawada, T.

T. D. Dao, S. Ishii, T. Yokoyama, T. Sawada, R. P. Sugavaneshwar, K. Chen, Y. Wada, T. Nabatame, and T. Nagao, “Hole array perfect absorbers for spectrally selective midwavelength infrared pyroelectric detectors,” ACS Photonics 3(7), 1271–1278 (2016).
[Crossref]

Sayre, J.

G. Wang, V. Yefremenko, V. Novosad, J. Pearson, R. Divan, C. L. Chang, L. Bleem, A. T. Crites, J. Mehl, B. A. Benson, T. Natoli, K. Story, S. S. Meyer, J. E. Carlstrom, J. McMahon, J. Sayre, J. Ruhl, E. George, N. Harrington, C. Reichardt, E. Shirokoff, E. Young, A. Lee, and W. Holzapfel, “An Absorber-coupled TES Bolometer for Measuring CMB Polarization,” Phys. Procedia 37, 1349–1354 (2012).
[Crossref]

Seniutinas, G.

Y. Nishijima, A. Balčytis, S. Naganuma, G. Seniutinas, and S. Juodkazis, “Tailoring metal and insulator contributions in plasmonic perfect absorber metasurfaces,” ACS Applied Nano Materials 1(7), 3557–3564 (2018).
[Crossref]

Seo, M.-K.

J. K. Yang, M.-K. Seo, I. K. Hwang, S. B. Kim, and Y. H. Lee, “Polarization-selective resonant photonic crystal photodetector,” Appl. Phys. Lett. 93(21), 211103 (2008).
[Crossref]

Shaner, E. A.

G. C. Dyer, G. R. Aizin, J. L. Reno, E. A. Shaner, and S. J. Allen, “Novel tunable millimeter-wave grating-gated plasmonic detectors,” IEEE J. Sel. Top. Quantum Electron. 17(1), 85–91 (2011).
[Crossref]

G. C. Dyer, J. D. Crossno, G. R. Aizin, E. A. Shaner, M. C. Wanke, J. L. Reno, and S. J. Allen, “A plasmonic terahertz detector with a monolithic hot electron bolometer,” J. Phys. Condens. Matter 21(19), 195803 (2009).
[Crossref] [PubMed]

Shchepetov, A.

A. Varpula, A. V. Timofeev, A. Shchepetov, K. Grigoras, J. Hassel, J. Ahopelto, M. Ylilammi, and M. Prunnila, “Thermoelectric thermal detectors based on ultra-thin heavily doped single-crystal silicon membranes,” Appl. Phys. Lett. 110(26), 262101 (2017).
[Crossref]

Shea, R. P.

A. S. Gawarikar, R. P. Shea, and J. J. Talghader, “High detectivity uncooled thermal detectors with resonant cavity coupled absorption in the long-wave infrared,” IEEE Trans. Electron Dev. 60(8), 2586–2591 (2013).
[Crossref]

J. J. Talghader, A. S. Gawarikar, and R. P. Shea, “Spectral selectivity in infrared thermal detection,” Light Sci. Appl. 1(8), e24 (2012).
[Crossref]

Sheen, C. S.

M. Ou-Yang, C. S. Sheen, and J. S. Shie, “Parameter extraction of resistive thermal microsensors by AC electrical method,” IEEE Trans. Instrum. Meas. 47(2), 403–408 (1998).
[Crossref]

Shenoi, R. V.

J. Rosenberg, R. V. Shenoi, S. Krishna, and O. Painter, “Design of plasmonic photonic crystal resonant cavities for polarization sensitive infrared photodetectors,” Opt. Express 18(4), 3672–3686 (2010).
[Crossref] [PubMed]

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95(16), 161101 (2009).
[Crossref]

Shie, J. S.

M. Ou-Yang, C. S. Sheen, and J. S. Shie, “Parameter extraction of resistive thermal microsensors by AC electrical method,” IEEE Trans. Instrum. Meas. 47(2), 403–408 (1998).
[Crossref]

Y. M. Chen, J. S. Shie, and T. Hwang, “Parameter extraction of resistive thermal sensors,” Sens. Actuators A Phys. 55(1), 43–47 (1996).
[Crossref]

Shirokoff, E.

G. Wang, V. Yefremenko, V. Novosad, J. Pearson, R. Divan, C. L. Chang, L. Bleem, A. T. Crites, J. Mehl, B. A. Benson, T. Natoli, K. Story, S. S. Meyer, J. E. Carlstrom, J. McMahon, J. Sayre, J. Ruhl, E. George, N. Harrington, C. Reichardt, E. Shirokoff, E. Young, A. Lee, and W. Holzapfel, “An Absorber-coupled TES Bolometer for Measuring CMB Polarization,” Phys. Procedia 37, 1349–1354 (2012).
[Crossref]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Soibel, A.

S. D. Gunapala, S. V. Bandara, J. K. Liu, J. M. Mumolo, S. B. Rafol, D. Z. Ting, A. Soibel, and C. Hill, “Quantum Well Infrared Photodetector Technology and Applications,” IEEE J. Sel. Top. Quantum Electron. 20(6), 154–165 (2014).
[Crossref]

Sriram, S.

Stanley, R.

R. Stanley, “Plasmonics in the mid-infrared,” Nat. Photonics 6(7), 409–411 (2012).
[Crossref]

Stenger, V.

Story, K.

G. Wang, V. Yefremenko, V. Novosad, J. Pearson, R. Divan, C. L. Chang, L. Bleem, A. T. Crites, J. Mehl, B. A. Benson, T. Natoli, K. Story, S. S. Meyer, J. E. Carlstrom, J. McMahon, J. Sayre, J. Ruhl, E. George, N. Harrington, C. Reichardt, E. Shirokoff, E. Young, A. Lee, and W. Holzapfel, “An Absorber-coupled TES Bolometer for Measuring CMB Polarization,” Phys. Procedia 37, 1349–1354 (2012).
[Crossref]

Suen, J. Y.

Sugavaneshwar, R. P.

T. D. Dao, S. Ishii, T. Yokoyama, T. Sawada, R. P. Sugavaneshwar, K. Chen, Y. Wada, T. Nabatame, and T. Nagao, “Hole array perfect absorbers for spectrally selective midwavelength infrared pyroelectric detectors,” ACS Photonics 3(7), 1271–1278 (2016).
[Crossref]

Sundararaman, R.

A. M. Brown, R. Sundararaman, P. Narang, W. A. Goddard, and H. A. Atwater, “Nonradiative plasmon decay and hot carrier dynamics: effects of phonons, surfaces, and geometry,” ACS Nano 10(1), 957–966 (2016).
[Crossref] [PubMed]

R. Sundararaman, P. Narang, A. S. Jermyn, W. A. Goddard, and H. A. Atwater, “Theoretical predictions for hot-carrier generation from surface plasmon decay,” Nat. Commun. 5(1), 5788 (2014).
[Crossref] [PubMed]

Talghader, J. J.

A. S. Gawarikar, R. P. Shea, and J. J. Talghader, “High detectivity uncooled thermal detectors with resonant cavity coupled absorption in the long-wave infrared,” IEEE Trans. Electron Dev. 60(8), 2586–2591 (2013).
[Crossref]

J. J. Talghader, A. S. Gawarikar, and R. P. Shea, “Spectral selectivity in infrared thermal detection,” Light Sci. Appl. 1(8), e24 (2012).
[Crossref]

Taliercio, T.

Tetard, L.

A. Safaei, S. Chandra, A. Vázquez-Guardado, J. Calderon, D. Franklin, L. Tetard, L. Zhai, M. N. Leuenberger, and D. Chanda, “Dynamically tunable extraordinary light absorption in monolayer graphene,” Phys. Rev. B 96(16), 165431 (2017).
[Crossref]

Timofeev, A. V.

A. Varpula, A. V. Timofeev, A. Shchepetov, K. Grigoras, J. Hassel, J. Ahopelto, M. Ylilammi, and M. Prunnila, “Thermoelectric thermal detectors based on ultra-thin heavily doped single-crystal silicon membranes,” Appl. Phys. Lett. 110(26), 262101 (2017).
[Crossref]

Ting, D. Z.

S. D. Gunapala, S. V. Bandara, J. K. Liu, J. M. Mumolo, S. B. Rafol, D. Z. Ting, A. Soibel, and C. Hill, “Quantum Well Infrared Photodetector Technology and Applications,” IEEE J. Sel. Top. Quantum Electron. 20(6), 154–165 (2014).
[Crossref]

Vandervelde, T. E.

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95(16), 161101 (2009).
[Crossref]

Varpula, A.

A. Varpula, A. V. Timofeev, A. Shchepetov, K. Grigoras, J. Hassel, J. Ahopelto, M. Ylilammi, and M. Prunnila, “Thermoelectric thermal detectors based on ultra-thin heavily doped single-crystal silicon membranes,” Appl. Phys. Lett. 110(26), 262101 (2017).
[Crossref]

Vázquez-Guardado, A.

A. Safaei, A. Vázquez-Guardado, D. Franklin, M. N. Leuenberger, and D. Chanda, “High-Efficiency Broadband Mid-Infrared Flat Lens,” Adv. Opt. Mater. 6(13), 1800216 (2018).
[Crossref]

A. Safaei, S. Chandra, A. Vázquez-Guardado, J. Calderon, D. Franklin, L. Tetard, L. Zhai, M. N. Leuenberger, and D. Chanda, “Dynamically tunable extraordinary light absorption in monolayer graphene,” Phys. Rev. B 96(16), 165431 (2017).
[Crossref]

A. Vázquez-Guardado, A. Safaei, S. Modak, D. Franklin, and D. Chanda, “Hybrid coupling mechanism in a system supporting high order diffraction, plasmonic, and cavity resonances,” Phys. Rev. Lett. 113(26), 263902 (2014).
[Crossref] [PubMed]

Veronis, G.

Vesseur, E. J. R.

E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental verification of n = 0 structures for visible light,” Phys. Rev. Lett. 110(1), 013902 (2013).
[Crossref] [PubMed]

Wada, Y.

T. D. Dao, S. Ishii, T. Yokoyama, T. Sawada, R. P. Sugavaneshwar, K. Chen, Y. Wada, T. Nabatame, and T. Nagao, “Hole array perfect absorbers for spectrally selective midwavelength infrared pyroelectric detectors,” ACS Photonics 3(7), 1271–1278 (2016).
[Crossref]

Wang, G.

G. Wang, V. Yefremenko, V. Novosad, J. Pearson, R. Divan, C. L. Chang, L. Bleem, A. T. Crites, J. Mehl, B. A. Benson, T. Natoli, K. Story, S. S. Meyer, J. E. Carlstrom, J. McMahon, J. Sayre, J. Ruhl, E. George, N. Harrington, C. Reichardt, E. Shirokoff, E. Young, A. Lee, and W. Holzapfel, “An Absorber-coupled TES Bolometer for Measuring CMB Polarization,” Phys. Procedia 37, 1349–1354 (2012).
[Crossref]

Wanke, M. C.

G. C. Dyer, J. D. Crossno, G. R. Aizin, E. A. Shaner, M. C. Wanke, J. L. Reno, and S. J. Allen, “A plasmonic terahertz detector with a monolithic hot electron bolometer,” J. Phys. Condens. Matter 21(19), 195803 (2009).
[Crossref] [PubMed]

Wegener, M.

F. B. P. Niesler, J. K. Gansel, S. Fischbach, and M. Wegener, “Metamaterial metal-based bolometers,” Appl. Phys. Lett. 100(20), 203508 (2012).
[Crossref]

White, J. S.

Wong, C. W.

T. Gu, A. Andryieuski, Y. Hao, Y. Li, J. Hone, C. W. Wong, A. Lavrinenko, T. Low, and T. F. Heinz, “Photonic and plasmonic guided modes in graphene–silicon photonic crystals,” ACS Photonics 2(11), 1552–1558 (2015).
[Crossref]

Xiong, W.

M. Mahjouri-Samani, Y. S. Zhou, X. N. He, W. Xiong, P. Hilger, and Y. F. Lu, “Plasmonic-enhanced carbon nanotube infrared bolometers,” Nanotechnology 24(3), 035502 (2013).
[Crossref] [PubMed]

Yang, J. K.

J. K. Yang, M.-K. Seo, I. K. Hwang, S. B. Kim, and Y. H. Lee, “Polarization-selective resonant photonic crystal photodetector,” Appl. Phys. Lett. 93(21), 211103 (2008).
[Crossref]

Ye, Z.

X. Hu, M. Li, Z. Ye, W. Y. Leung, K.-M. Ho, and S. Y. Lin, “Design of midinfrared photodetectors enhanced by resonant cavities with subwavelength metallic gratings,” Appl. Phys. Lett. 93(24), 241108 (2008).
[Crossref]

Yefremenko, V.

G. Wang, V. Yefremenko, V. Novosad, J. Pearson, R. Divan, C. L. Chang, L. Bleem, A. T. Crites, J. Mehl, B. A. Benson, T. Natoli, K. Story, S. S. Meyer, J. E. Carlstrom, J. McMahon, J. Sayre, J. Ruhl, E. George, N. Harrington, C. Reichardt, E. Shirokoff, E. Young, A. Lee, and W. Holzapfel, “An Absorber-coupled TES Bolometer for Measuring CMB Polarization,” Phys. Procedia 37, 1349–1354 (2012).
[Crossref]

Ylilammi, M.

A. Varpula, A. V. Timofeev, A. Shchepetov, K. Grigoras, J. Hassel, J. Ahopelto, M. Ylilammi, and M. Prunnila, “Thermoelectric thermal detectors based on ultra-thin heavily doped single-crystal silicon membranes,” Appl. Phys. Lett. 110(26), 262101 (2017).
[Crossref]

Yokoyama, T.

T. D. Dao, S. Ishii, T. Yokoyama, T. Sawada, R. P. Sugavaneshwar, K. Chen, Y. Wada, T. Nabatame, and T. Nagao, “Hole array perfect absorbers for spectrally selective midwavelength infrared pyroelectric detectors,” ACS Photonics 3(7), 1271–1278 (2016).
[Crossref]

Young, E.

G. Wang, V. Yefremenko, V. Novosad, J. Pearson, R. Divan, C. L. Chang, L. Bleem, A. T. Crites, J. Mehl, B. A. Benson, T. Natoli, K. Story, S. S. Meyer, J. E. Carlstrom, J. McMahon, J. Sayre, J. Ruhl, E. George, N. Harrington, C. Reichardt, E. Shirokoff, E. Young, A. Lee, and W. Holzapfel, “An Absorber-coupled TES Bolometer for Measuring CMB Polarization,” Phys. Procedia 37, 1349–1354 (2012).
[Crossref]

Yu, Z.

Zhai, L.

A. Safaei, S. Chandra, A. Vázquez-Guardado, J. Calderon, D. Franklin, L. Tetard, L. Zhai, M. N. Leuenberger, and D. Chanda, “Dynamically tunable extraordinary light absorption in monolayer graphene,” Phys. Rev. B 96(16), 165431 (2017).
[Crossref]

Zhou, Y. S.

M. Mahjouri-Samani, Y. S. Zhou, X. N. He, W. Xiong, P. Hilger, and Y. F. Lu, “Plasmonic-enhanced carbon nanotube infrared bolometers,” Nanotechnology 24(3), 035502 (2013).
[Crossref] [PubMed]

Ziolkowski, R. W.

R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(4), 046608 (2004).
[Crossref] [PubMed]

2016 IEEE SENSORS, (1)

Z. Qian, S. Kang, V. Rajaram, and M. Rinaldi, “Narrowband MEMS resonant infrared detectors based on ultrathin perfect plasmonic absorbers,” 2016 IEEE SENSORS, 1, 16597228 (2016).

ACS Applied Nano Materials (1)

Y. Nishijima, A. Balčytis, S. Naganuma, G. Seniutinas, and S. Juodkazis, “Tailoring metal and insulator contributions in plasmonic perfect absorber metasurfaces,” ACS Applied Nano Materials 1(7), 3557–3564 (2018).
[Crossref]

ACS Nano (1)

A. M. Brown, R. Sundararaman, P. Narang, W. A. Goddard, and H. A. Atwater, “Nonradiative plasmon decay and hot carrier dynamics: effects of phonons, surfaces, and geometry,” ACS Nano 10(1), 957–966 (2016).
[Crossref] [PubMed]

ACS Photonics (5)

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers fabricated by colloidal mask etching of Al–Al2O3–Al trilayers,” ACS Photonics 2(7), 964–970 (2015).
[Crossref]

T. D. Dao, S. Ishii, T. Yokoyama, T. Sawada, R. P. Sugavaneshwar, K. Chen, Y. Wada, T. Nabatame, and T. Nagao, “Hole array perfect absorbers for spectrally selective midwavelength infrared pyroelectric detectors,” ACS Photonics 3(7), 1271–1278 (2016).
[Crossref]

T. Gu, A. Andryieuski, Y. Hao, Y. Li, J. Hone, C. W. Wong, A. Lavrinenko, T. Low, and T. F. Heinz, “Photonic and plasmonic guided modes in graphene–silicon photonic crystals,” ACS Photonics 2(11), 1552–1558 (2015).
[Crossref]

W. D. Newman, C. L. Cortes, J. Atkinson, S. Pramanik, R. G. DeCorby, and Z. Jacob, “Ferrell–Berreman Modes in Plasmonic Epsilon-near-Zero Media,” ACS Photonics 2(1), 2–7 (2015).
[Crossref]

S. Chandra, D. Franklin, J. Cozart, A. Safaei, and D. Chanda, “Adaptive multispectral infrared camouflage,” ACS Photonics 5(11), 4513–4519 (2018).
[Crossref]

Adv. Opt. Mater. (1)

A. Safaei, A. Vázquez-Guardado, D. Franklin, M. N. Leuenberger, and D. Chanda, “High-Efficiency Broadband Mid-Infrared Flat Lens,” Adv. Opt. Mater. 6(13), 1800216 (2018).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (7)

F. B. P. Niesler, J. K. Gansel, S. Fischbach, and M. Wegener, “Metamaterial metal-based bolometers,” Appl. Phys. Lett. 100(20), 203508 (2012).
[Crossref]

A. Varpula, A. V. Timofeev, A. Shchepetov, K. Grigoras, J. Hassel, J. Ahopelto, M. Ylilammi, and M. Prunnila, “Thermoelectric thermal detectors based on ultra-thin heavily doped single-crystal silicon membranes,” Appl. Phys. Lett. 110(26), 262101 (2017).
[Crossref]

J. K. Yang, M.-K. Seo, I. K. Hwang, S. B. Kim, and Y. H. Lee, “Polarization-selective resonant photonic crystal photodetector,” Appl. Phys. Lett. 93(21), 211103 (2008).
[Crossref]

X. Hu, M. Li, Z. Ye, W. Y. Leung, K.-M. Ho, and S. Y. Lin, “Design of midinfrared photodetectors enhanced by resonant cavities with subwavelength metallic gratings,” Appl. Phys. Lett. 93(24), 241108 (2008).
[Crossref]

D. D. Coon, R. P. G. Karunasiri, and L. Z. Liu, “Narrow band infrared detection in multiquantum well structures,” Appl. Phys. Lett. 47(3), 289–291 (1985).
[Crossref]

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95(16), 161101 (2009).
[Crossref]

P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haïdar, and J. L. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett. 98(19), 191109 (2011).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

G. C. Dyer, G. R. Aizin, J. L. Reno, E. A. Shaner, and S. J. Allen, “Novel tunable millimeter-wave grating-gated plasmonic detectors,” IEEE J. Sel. Top. Quantum Electron. 17(1), 85–91 (2011).
[Crossref]

S. D. Gunapala, S. V. Bandara, J. K. Liu, J. M. Mumolo, S. B. Rafol, D. Z. Ting, A. Soibel, and C. Hill, “Quantum Well Infrared Photodetector Technology and Applications,” IEEE J. Sel. Top. Quantum Electron. 20(6), 154–165 (2014).
[Crossref]

IEEE Trans. Electron Dev. (1)

A. S. Gawarikar, R. P. Shea, and J. J. Talghader, “High detectivity uncooled thermal detectors with resonant cavity coupled absorption in the long-wave infrared,” IEEE Trans. Electron Dev. 60(8), 2586–2591 (2013).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

M. Ou-Yang, C. S. Sheen, and J. S. Shie, “Parameter extraction of resistive thermal microsensors by AC electrical method,” IEEE Trans. Instrum. Meas. 47(2), 403–408 (1998).
[Crossref]

Infrared Phys. (1)

K. C. Liddiard, “Thin-film resistance bolometer ir detectors,” Infrared Phys. 24(1), 57–64 (1984).
[Crossref]

Infrared Phys. Technol. (2)

A. Rogalski, “Infrared detectors: an overview,” Infrared Phys. Technol. 43(3-5), 187–210 (2002).
[Crossref]

D. M. T. Kuo, A. B. Fang, and Y. C. Chang, “Theoretical modeling of dark current and photo-response for quantum well and quantum dot infrared detectors,” Infrared Phys. Technol. 42(3-5), 433–442 (2001).
[Crossref]

J. Appl. Phys. (1)

A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys. 105(9), 091101 (2009).
[Crossref]

J. Phys. Condens. Matter (1)

G. C. Dyer, J. D. Crossno, G. R. Aizin, E. A. Shaner, M. C. Wanke, J. L. Reno, and S. J. Allen, “A plasmonic terahertz detector with a monolithic hot electron bolometer,” J. Phys. Condens. Matter 21(19), 195803 (2009).
[Crossref] [PubMed]

Journal of Sensors and Sensor Systems (1)

U. Dillner, E. Kessler, and H. G. Meyer, “Figures of merit of thermoelectric and bolometric thermal radiation sensors,” Journal of Sensors and Sensor Systems 2(1), 85–94 (2013).
[Crossref]

Light Sci. Appl. (1)

J. J. Talghader, A. S. Gawarikar, and R. P. Shea, “Spectral selectivity in infrared thermal detection,” Light Sci. Appl. 1(8), e24 (2012).
[Crossref]

Nano Lett. (1)

J. B. Herzog, M. W. Knight, and D. Natelson, “Thermoplasmonics: quantifying plasmonic heating in single nanowires,” Nano Lett. 14(2), 499–503 (2014).
[Crossref] [PubMed]

Nanotechnology (1)

M. Mahjouri-Samani, Y. S. Zhou, X. N. He, W. Xiong, P. Hilger, and Y. F. Lu, “Plasmonic-enhanced carbon nanotube infrared bolometers,” Nanotechnology 24(3), 035502 (2013).
[Crossref] [PubMed]

Nat. Commun. (2)

R. Sundararaman, P. Narang, A. S. Jermyn, W. A. Goddard, and H. A. Atwater, “Theoretical predictions for hot-carrier generation from surface plasmon decay,” Nat. Commun. 5(1), 5788 (2014).
[Crossref] [PubMed]

A. M. Mahmoud and N. Engheta, “Wave-matter interactions in epsilon-and-mu-near-zero structures,” Nat. Commun. 5(1), 5638 (2014).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
[Crossref] [PubMed]

Nat. Photonics (1)

R. Stanley, “Plasmonics in the mid-infrared,” Nat. Photonics 6(7), 409–411 (2012).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Optica (2)

Phys. Procedia (1)

G. Wang, V. Yefremenko, V. Novosad, J. Pearson, R. Divan, C. L. Chang, L. Bleem, A. T. Crites, J. Mehl, B. A. Benson, T. Natoli, K. Story, S. S. Meyer, J. E. Carlstrom, J. McMahon, J. Sayre, J. Ruhl, E. George, N. Harrington, C. Reichardt, E. Shirokoff, E. Young, A. Lee, and W. Holzapfel, “An Absorber-coupled TES Bolometer for Measuring CMB Polarization,” Phys. Procedia 37, 1349–1354 (2012).
[Crossref]

Phys. Rev. B (1)

A. Safaei, S. Chandra, A. Vázquez-Guardado, J. Calderon, D. Franklin, L. Tetard, L. Zhai, M. N. Leuenberger, and D. Chanda, “Dynamically tunable extraordinary light absorption in monolayer graphene,” Phys. Rev. B 96(16), 165431 (2017).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(4), 046608 (2004).
[Crossref] [PubMed]

Phys. Rev. Lett. (3)

E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental verification of n = 0 structures for visible light,” Phys. Rev. Lett. 110(1), 013902 (2013).
[Crossref] [PubMed]

A. Vázquez-Guardado, A. Safaei, S. Modak, D. Franklin, and D. Chanda, “Hybrid coupling mechanism in a system supporting high order diffraction, plasmonic, and cavity resonances,” Phys. Rev. Lett. 113(26), 263902 (2014).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

F. J. García de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79(4), 1267–1290 (2007).
[Crossref]

Sci. Adv. (1)

D. Li and D. Pacifici, “Strong amplitude and phase modulation of optical spatial coherence with surface plasmon polaritons,” Sci. Adv. 3(10), e1700133 (2017).
[Crossref] [PubMed]

Science (1)

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Sens. Actuators A Phys. (1)

Y. M. Chen, J. S. Shie, and T. Hwang, “Parameter extraction of resistive thermal sensors,” Sens. Actuators A Phys. 55(1), 43–47 (1996).
[Crossref]

Other (11)

E. D. Palik, Handbook of Optical-Constants (Academic, 1984).

P. W. Kruse, Uncooled thermal imaging: arrays, systems, and applications / Paul W. Kruse, Tutorial texts in optical engineering: v. TT 51 (Bellingham, Wash., USA, SPIE 2001).

R. Wood, Monolithic Silicon Microbolometer Arrays, Uncooled Infrared Imaging Arrays and Systems (Academic, 1997), Vol. 47.

E. L. Dereniak and G. D. Boreman, Infrared Detectors and Systems (John Wiley & Sons, Inc., 1996).

F. Niklaus, C. Jansson, A. Decharat, J.-E. Källhammer, H. Pettersson, and G. Stemme, “Uncooled infrared bolometer arrays operating in a low to medium vacuum atmosphere: performance model and tradeoffs,” in Infrared Technology and Applications XXXIII, (SPIE, 2007)

D. Chanda, A. Safaei, and M. N. Leuenberger, “Optical detector device with patterned graphene layer and related methods,” US Patent App. 15/782,948 (2018).

D. Chanda, S. Modak, J. Lee, and A. Safaei, “Optical frequency-selective absorber-based infrared detector, methods, and applications,” US Patent App. 15/538,746 (2018).

A. Safaei, S. Chandra, M. N. Leuenberger, and D. Chanda, “Wide Angle Dynamically Tunable Enhanced Infrared Absorption on Large Area Nanopatterned Graphene.” ArXiv e-prints 2018; http://adsabs.harvard.edu/abs/2018arXiv180600837S (accessed Jun 03, 2018).

H. Paudel, A. Safaei, and M. Leuenberger, “Nanoplasmonics in Metallic Nanostructures and Dirac Systems” (IntechOpen, 2017) Chap 3.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

S. Modak, A. Safaei, and D. Chanda, Cavity Induced Tunable Extraordinary Transmission: A Unique Way of Funneling Light through Subwavelength Apertures.” ArXiv e-prints 2017; http://adsabs.harvard.edu/#abs/2017arXiv171000392M (accessed October 01, 2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Cavity-coupled quasi-3D plasmonic crystal “Light Funnel” (a) schematic illustration (top) and computed (bottom) 3D pointing vector of the incident radiation (λres = 4.4 μm). (b) Predicted transmission of the hole array (dashed-blue) and hole-disk array (blue) through the subwavelength hole and hole-disk array of period P = 1.14 µm, diameter D = 0.76 µm and relief depth RD = 280 nm. The absorption with full-wave electromagnetic simulation (black) of the cavity-coupled system along with the analytical coupled dipole approximation (CDA) prediction (black-dotted) have been overlaid for comparison for cavity thickness L = 0.87 µm (λres = 4.4 μm). The corresponding experimental verification of absorption is plotted in (purple).
Fig. 2
Fig. 2 Structural parameters for study of angle dependence of resonance wavelength: P = 1140nm, D = 760nm, RD = 280nm and L = 1040nm with resonance wavelength = 4.8µm. (a) (top) Rigorous coupled wave analysis (RCWA) prediction and (bottom) experimentally measured angular absorption of the plasmonic crystal (b) Current density (J) (left) and loss profile of the metal (right) at resonance wavelength.
Fig. 3
Fig. 3 (a) 3D cartoon depicting the structure of the detector, (b) upper gold film formatted in the form of a serpentine pattern (superlattice) to form a path with significant resistance and contact pads for interfacing with external biasing circuit (c) SEM image of the fabricated detector with hole-disk nano-pattern and gold film in the form of serpentine pattern and (d) interfacing circuit in voltage divider bias mode, as used in the experiments.
Fig. 4
Fig. 4 (a) Normalized black-body spectrum along with frequency selective absorption spectra of three detectors at 4.2 µm (m = 1), 4.5 µm (m = 2) and 4.8 µm (m = 3). (b) Normalized detector output ∆Vm/Rm for m = 1 to 3. Inset shows the absorbed incident power of the detectors at a constant source temperature of 1200°C. The individual detector response follows the absorbed incident power. (c) Predicted (with Simulink model) and measured specific detectivity of the frequency selective detectors. (d) Simulated (dotted blue) and measured (with 3 ω method) detector frequency response. The measured 3 dB roll-off indicates a response time of 100 µs.

Metrics