D. Tosi, “Review and analysis of peak tracking techniques for fiber Bragg grating sensors,” Sensors (Basel) 17(10), 2368–2402 (2017).
[Crossref]
[PubMed]
G. Rajan, K. Bhowmik, J. Xi, and G.-D. Peng, “Etched polymer fibre Bragg gratings and their biomedical sensing applications,” Sensors (Basel) 17(10), 2336–2348 (2017).
[Crossref]
[PubMed]
S. Sridevi, K. S. Vasu, N. Jayaraman, S. Asokan, and A. K. Sood, “Optical bio-sensing devices based on etched fiber Bragg gratings coated with carbon nanotubes and graphene oxide along with a specific dendrimer,” Sens. Actuators B Chem. 195, 150–155 (2014).
[Crossref]
B. Shivananju, M. Varma, S. Asokan, S. Yamdagni, R. Fazuldeen, and S. Nithin, “Highly sensitive carbon nanotubes coated etched fiber Bragg grating sensor for humidity sensing,” IEEE Sens. J. 14(8), 2615–2619 (2014).
[Crossref]
Y. Wu, B.-C. Yao, Y. Cheng, Y.-J. Rao, Y. Gong, W. Zhang, Z. Wang, and Y. Chen, “Hybrid graphene-microfiber waveguide for chemical gas sensing,” IEEE J. Sel. Top. Quantum Electron. 20(1), 49–54 (2014).
[Crossref]
Y. Wu, B. Yao, A. Zhang, Y. Rao, Z. Wang, Y. Cheng, Y. Gong, W. Zhang, Y. Chen, and K. S. Chiang, “Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing,” Opt. Lett. 39(5), 1235–1237 (2014).
[Crossref]
[PubMed]
S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors (Basel) 12(2), 1898–1918 (2012).
[Crossref]
[PubMed]
B.-b. Luo, X.-j. Zhou, M.-f. Zhao, N.-b. Zhong, and S.-f. Wang, “Recent developments in microstructured fiber Bragg grating refractive index sensors,” J. Photonics Energy 1(1), 1–12 (018002) (2010).
B. Zhang and M. Kahrizi, “High-temperature resistance fiber Bragg grating temperature sensor fabrication,” IEEE Sens. J. 7(4), 586–591 (2007).
[Crossref]
A. Chryssis, S. Saini, S. Lee, and M. Dagenais, “Increased sensitivity and parametric discrimination using higher order modes of etched-core fiber Bragg grating sensors,” IEEE Photonics Technol. Lett. 18(1), 178–180 (2006).
[Crossref]
A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photonics Technol. Lett. 17(6), 1253–1255 (2005).
[Crossref]
A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Refractive index sensor based on microstructured fiber Bragg grating,” IEEE Photonics Technol. Lett. 17(6), 1250–1252 (2005).
[Crossref]
A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Thinned fiber Bragg gratings as refractive index sensors,” IEEE Sens. J. 5(6), 1288–1295 (2005).
[Crossref]
A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Microstructured fibre Bragg gratings: analysis and fabrication,” Electron. Lett. 41(8), 466–468 (2005).
[Crossref]
D. A. Pereira, O. Frazäo, and J. L. Santos, “Fiber Bragg grating sensing system for simultaneous measurement of salinity and temperature,” Opt. Eng. 43(2), 299–304 (2004).
[Crossref]
B. Lee, “Review of the present status of optical fiber sensors,” J. Optical Fiber Technology 9(2), 57–79 (2003).
[Crossref]
B.-O. Guan, H.-Y. Tam, X.-M. Tao, and X.-Y. Dong, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating,” IEEE Photonics Technol. Lett. 12(6), 675–677 (2000).
[Crossref]
K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[Crossref]
D. F. Penning, D. Weimer, and W. F. Rumpel, “Indices of refraction of HF and F2. II,” J. Chem. Phys. 59(5), 2496–2497 (1973).
[Crossref]
S. Sridevi, K. S. Vasu, N. Jayaraman, S. Asokan, and A. K. Sood, “Optical bio-sensing devices based on etched fiber Bragg gratings coated with carbon nanotubes and graphene oxide along with a specific dendrimer,” Sens. Actuators B Chem. 195, 150–155 (2014).
[Crossref]
B. Shivananju, M. Varma, S. Asokan, S. Yamdagni, R. Fazuldeen, and S. Nithin, “Highly sensitive carbon nanotubes coated etched fiber Bragg grating sensor for humidity sensing,” IEEE Sens. J. 14(8), 2615–2619 (2014).
[Crossref]
B. N. Shivananju, M. Renilkumar, G. R. Prashanth, S. Asokan, and M. M. Varma, “Detection limit of etched fiber Bragg grating sensors,” J. Lightwave Technol. 31(14), 2441–2447 (2013).
[Crossref]
G. Rajan, K. Bhowmik, J. Xi, and G.-D. Peng, “Etched polymer fibre Bragg gratings and their biomedical sensing applications,” Sensors (Basel) 17(10), 2336–2348 (2017).
[Crossref]
[PubMed]
A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Refractive index sensor based on microstructured fiber Bragg grating,” IEEE Photonics Technol. Lett. 17(6), 1250–1252 (2005).
[Crossref]
A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Microstructured fibre Bragg gratings: analysis and fabrication,” Electron. Lett. 41(8), 466–468 (2005).
[Crossref]
A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Thinned fiber Bragg gratings as refractive index sensors,” IEEE Sens. J. 5(6), 1288–1295 (2005).
[Crossref]
Y. Wu, B.-C. Yao, Y. Cheng, Y.-J. Rao, Y. Gong, W. Zhang, Z. Wang, and Y. Chen, “Hybrid graphene-microfiber waveguide for chemical gas sensing,” IEEE J. Sel. Top. Quantum Electron. 20(1), 49–54 (2014).
[Crossref]
Y. Wu, B. Yao, A. Zhang, Y. Rao, Z. Wang, Y. Cheng, Y. Gong, W. Zhang, Y. Chen, and K. S. Chiang, “Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing,” Opt. Lett. 39(5), 1235–1237 (2014).
[Crossref]
[PubMed]
Y. Wu, B. Yao, A. Zhang, Y. Rao, Z. Wang, Y. Cheng, Y. Gong, W. Zhang, Y. Chen, and K. S. Chiang, “Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing,” Opt. Lett. 39(5), 1235–1237 (2014).
[Crossref]
[PubMed]
Y. Wu, B.-C. Yao, Y. Cheng, Y.-J. Rao, Y. Gong, W. Zhang, Z. Wang, and Y. Chen, “Hybrid graphene-microfiber waveguide for chemical gas sensing,” IEEE J. Sel. Top. Quantum Electron. 20(1), 49–54 (2014).
[Crossref]
Y. Wu, B. Yao, A. Zhang, Y. Rao, Z. Wang, Y. Cheng, Y. Gong, W. Zhang, Y. Chen, and K. S. Chiang, “Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing,” Opt. Lett. 39(5), 1235–1237 (2014).
[Crossref]
[PubMed]
A. Chryssis, S. Saini, S. Lee, and M. Dagenais, “Increased sensitivity and parametric discrimination using higher order modes of etched-core fiber Bragg grating sensors,” IEEE Photonics Technol. Lett. 18(1), 178–180 (2006).
[Crossref]
A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photonics Technol. Lett. 17(6), 1253–1255 (2005).
[Crossref]
A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Refractive index sensor based on microstructured fiber Bragg grating,” IEEE Photonics Technol. Lett. 17(6), 1250–1252 (2005).
[Crossref]
A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Microstructured fibre Bragg gratings: analysis and fabrication,” Electron. Lett. 41(8), 466–468 (2005).
[Crossref]
A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Thinned fiber Bragg gratings as refractive index sensors,” IEEE Sens. J. 5(6), 1288–1295 (2005).
[Crossref]
A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Microstructured fibre Bragg gratings: analysis and fabrication,” Electron. Lett. 41(8), 466–468 (2005).
[Crossref]
A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Thinned fiber Bragg gratings as refractive index sensors,” IEEE Sens. J. 5(6), 1288–1295 (2005).
[Crossref]
A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Refractive index sensor based on microstructured fiber Bragg grating,” IEEE Photonics Technol. Lett. 17(6), 1250–1252 (2005).
[Crossref]
A. Chryssis, S. Saini, S. Lee, and M. Dagenais, “Increased sensitivity and parametric discrimination using higher order modes of etched-core fiber Bragg grating sensors,” IEEE Photonics Technol. Lett. 18(1), 178–180 (2006).
[Crossref]
A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photonics Technol. Lett. 17(6), 1253–1255 (2005).
[Crossref]
B.-O. Guan, H.-Y. Tam, X.-M. Tao, and X.-Y. Dong, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating,” IEEE Photonics Technol. Lett. 12(6), 675–677 (2000).
[Crossref]
B. Shivananju, M. Varma, S. Asokan, S. Yamdagni, R. Fazuldeen, and S. Nithin, “Highly sensitive carbon nanotubes coated etched fiber Bragg grating sensor for humidity sensing,” IEEE Sens. J. 14(8), 2615–2619 (2014).
[Crossref]
D. A. Pereira, O. Frazäo, and J. L. Santos, “Fiber Bragg grating sensing system for simultaneous measurement of salinity and temperature,” Opt. Eng. 43(2), 299–304 (2004).
[Crossref]
A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Refractive index sensor based on microstructured fiber Bragg grating,” IEEE Photonics Technol. Lett. 17(6), 1250–1252 (2005).
[Crossref]
A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Thinned fiber Bragg gratings as refractive index sensors,” IEEE Sens. J. 5(6), 1288–1295 (2005).
[Crossref]
A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Microstructured fibre Bragg gratings: analysis and fabrication,” Electron. Lett. 41(8), 466–468 (2005).
[Crossref]
Y. Wu, B.-C. Yao, Y. Cheng, Y.-J. Rao, Y. Gong, W. Zhang, Z. Wang, and Y. Chen, “Hybrid graphene-microfiber waveguide for chemical gas sensing,” IEEE J. Sel. Top. Quantum Electron. 20(1), 49–54 (2014).
[Crossref]
Y. Wu, B. Yao, A. Zhang, Y. Rao, Z. Wang, Y. Cheng, Y. Gong, W. Zhang, Y. Chen, and K. S. Chiang, “Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing,” Opt. Lett. 39(5), 1235–1237 (2014).
[Crossref]
[PubMed]
B.-O. Guan, H.-Y. Tam, X.-M. Tao, and X.-Y. Dong, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating,” IEEE Photonics Technol. Lett. 12(6), 675–677 (2000).
[Crossref]
K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[Crossref]
A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Microstructured fibre Bragg gratings: analysis and fabrication,” Electron. Lett. 41(8), 466–468 (2005).
[Crossref]
A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Thinned fiber Bragg gratings as refractive index sensors,” IEEE Sens. J. 5(6), 1288–1295 (2005).
[Crossref]
A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Refractive index sensor based on microstructured fiber Bragg grating,” IEEE Photonics Technol. Lett. 17(6), 1250–1252 (2005).
[Crossref]
S. Sridevi, K. S. Vasu, N. Jayaraman, S. Asokan, and A. K. Sood, “Optical bio-sensing devices based on etched fiber Bragg gratings coated with carbon nanotubes and graphene oxide along with a specific dendrimer,” Sens. Actuators B Chem. 195, 150–155 (2014).
[Crossref]
B. Zhang and M. Kahrizi, “High-temperature resistance fiber Bragg grating temperature sensor fabrication,” IEEE Sens. J. 7(4), 586–591 (2007).
[Crossref]
B. Lee, “Review of the present status of optical fiber sensors,” J. Optical Fiber Technology 9(2), 57–79 (2003).
[Crossref]
A. Chryssis, S. Saini, S. Lee, and M. Dagenais, “Increased sensitivity and parametric discrimination using higher order modes of etched-core fiber Bragg grating sensors,” IEEE Photonics Technol. Lett. 18(1), 178–180 (2006).
[Crossref]
A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photonics Technol. Lett. 17(6), 1253–1255 (2005).
[Crossref]
A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photonics Technol. Lett. 17(6), 1253–1255 (2005).
[Crossref]
B.-b. Luo, X.-j. Zhou, M.-f. Zhao, N.-b. Zhong, and S.-f. Wang, “Recent developments in microstructured fiber Bragg grating refractive index sensors,” J. Photonics Energy 1(1), 1–12 (018002) (2010).
K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[Crossref]
S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors (Basel) 12(2), 1898–1918 (2012).
[Crossref]
[PubMed]
M. Monerie, “Propagation in doubly clad single-mode fibers,” IEEE J. Quantum Electron. 18(4), 535–542 (1982).
[Crossref]
B. Shivananju, M. Varma, S. Asokan, S. Yamdagni, R. Fazuldeen, and S. Nithin, “Highly sensitive carbon nanotubes coated etched fiber Bragg grating sensor for humidity sensing,” IEEE Sens. J. 14(8), 2615–2619 (2014).
[Crossref]
G. Rajan, K. Bhowmik, J. Xi, and G.-D. Peng, “Etched polymer fibre Bragg gratings and their biomedical sensing applications,” Sensors (Basel) 17(10), 2336–2348 (2017).
[Crossref]
[PubMed]
D. F. Penning, D. Weimer, and W. F. Rumpel, “Indices of refraction of HF and F2. II,” J. Chem. Phys. 59(5), 2496–2497 (1973).
[Crossref]
D. A. Pereira, O. Frazäo, and J. L. Santos, “Fiber Bragg grating sensing system for simultaneous measurement of salinity and temperature,” Opt. Eng. 43(2), 299–304 (2004).
[Crossref]
G. Rajan, K. Bhowmik, J. Xi, and G.-D. Peng, “Etched polymer fibre Bragg gratings and their biomedical sensing applications,” Sensors (Basel) 17(10), 2336–2348 (2017).
[Crossref]
[PubMed]
Y. Wu, B. Yao, A. Zhang, Y. Rao, Z. Wang, Y. Cheng, Y. Gong, W. Zhang, Y. Chen, and K. S. Chiang, “Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing,” Opt. Lett. 39(5), 1235–1237 (2014).
[Crossref]
[PubMed]
Y. Wu, B.-C. Yao, Y. Cheng, Y.-J. Rao, Y. Gong, W. Zhang, Z. Wang, and Y. Chen, “Hybrid graphene-microfiber waveguide for chemical gas sensing,” IEEE J. Sel. Top. Quantum Electron. 20(1), 49–54 (2014).
[Crossref]
D. F. Penning, D. Weimer, and W. F. Rumpel, “Indices of refraction of HF and F2. II,” J. Chem. Phys. 59(5), 2496–2497 (1973).
[Crossref]
A. Chryssis, S. Saini, S. Lee, and M. Dagenais, “Increased sensitivity and parametric discrimination using higher order modes of etched-core fiber Bragg grating sensors,” IEEE Photonics Technol. Lett. 18(1), 178–180 (2006).
[Crossref]
A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photonics Technol. Lett. 17(6), 1253–1255 (2005).
[Crossref]
D. A. Pereira, O. Frazäo, and J. L. Santos, “Fiber Bragg grating sensing system for simultaneous measurement of salinity and temperature,” Opt. Eng. 43(2), 299–304 (2004).
[Crossref]
B. Shivananju, M. Varma, S. Asokan, S. Yamdagni, R. Fazuldeen, and S. Nithin, “Highly sensitive carbon nanotubes coated etched fiber Bragg grating sensor for humidity sensing,” IEEE Sens. J. 14(8), 2615–2619 (2014).
[Crossref]
S. Sridevi, K. S. Vasu, N. Jayaraman, S. Asokan, and A. K. Sood, “Optical bio-sensing devices based on etched fiber Bragg gratings coated with carbon nanotubes and graphene oxide along with a specific dendrimer,” Sens. Actuators B Chem. 195, 150–155 (2014).
[Crossref]
S. Sridevi, K. S. Vasu, N. Jayaraman, S. Asokan, and A. K. Sood, “Optical bio-sensing devices based on etched fiber Bragg gratings coated with carbon nanotubes and graphene oxide along with a specific dendrimer,” Sens. Actuators B Chem. 195, 150–155 (2014).
[Crossref]
B.-O. Guan, H.-Y. Tam, X.-M. Tao, and X.-Y. Dong, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating,” IEEE Photonics Technol. Lett. 12(6), 675–677 (2000).
[Crossref]
B.-O. Guan, H.-Y. Tam, X.-M. Tao, and X.-Y. Dong, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating,” IEEE Photonics Technol. Lett. 12(6), 675–677 (2000).
[Crossref]
D. Tosi, “Review and analysis of peak tracking techniques for fiber Bragg grating sensors,” Sensors (Basel) 17(10), 2368–2402 (2017).
[Crossref]
[PubMed]
B. Shivananju, M. Varma, S. Asokan, S. Yamdagni, R. Fazuldeen, and S. Nithin, “Highly sensitive carbon nanotubes coated etched fiber Bragg grating sensor for humidity sensing,” IEEE Sens. J. 14(8), 2615–2619 (2014).
[Crossref]
S. Sridevi, K. S. Vasu, N. Jayaraman, S. Asokan, and A. K. Sood, “Optical bio-sensing devices based on etched fiber Bragg gratings coated with carbon nanotubes and graphene oxide along with a specific dendrimer,” Sens. Actuators B Chem. 195, 150–155 (2014).
[Crossref]
B.-b. Luo, X.-j. Zhou, M.-f. Zhao, N.-b. Zhong, and S.-f. Wang, “Recent developments in microstructured fiber Bragg grating refractive index sensors,” J. Photonics Energy 1(1), 1–12 (018002) (2010).
Y. Wu, B.-C. Yao, Y. Cheng, Y.-J. Rao, Y. Gong, W. Zhang, Z. Wang, and Y. Chen, “Hybrid graphene-microfiber waveguide for chemical gas sensing,” IEEE J. Sel. Top. Quantum Electron. 20(1), 49–54 (2014).
[Crossref]
Y. Wu, B. Yao, A. Zhang, Y. Rao, Z. Wang, Y. Cheng, Y. Gong, W. Zhang, Y. Chen, and K. S. Chiang, “Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing,” Opt. Lett. 39(5), 1235–1237 (2014).
[Crossref]
[PubMed]
D. F. Penning, D. Weimer, and W. F. Rumpel, “Indices of refraction of HF and F2. II,” J. Chem. Phys. 59(5), 2496–2497 (1973).
[Crossref]
Y. Wu, B.-C. Yao, Y. Cheng, Y.-J. Rao, Y. Gong, W. Zhang, Z. Wang, and Y. Chen, “Hybrid graphene-microfiber waveguide for chemical gas sensing,” IEEE J. Sel. Top. Quantum Electron. 20(1), 49–54 (2014).
[Crossref]
Y. Wu, B. Yao, A. Zhang, Y. Rao, Z. Wang, Y. Cheng, Y. Gong, W. Zhang, Y. Chen, and K. S. Chiang, “Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing,” Opt. Lett. 39(5), 1235–1237 (2014).
[Crossref]
[PubMed]
G. Rajan, K. Bhowmik, J. Xi, and G.-D. Peng, “Etched polymer fibre Bragg gratings and their biomedical sensing applications,” Sensors (Basel) 17(10), 2336–2348 (2017).
[Crossref]
[PubMed]
B. Shivananju, M. Varma, S. Asokan, S. Yamdagni, R. Fazuldeen, and S. Nithin, “Highly sensitive carbon nanotubes coated etched fiber Bragg grating sensor for humidity sensing,” IEEE Sens. J. 14(8), 2615–2619 (2014).
[Crossref]
Y. Wu, B. Yao, A. Zhang, Y. Rao, Z. Wang, Y. Cheng, Y. Gong, W. Zhang, Y. Chen, and K. S. Chiang, “Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing,” Opt. Lett. 39(5), 1235–1237 (2014).
[Crossref]
[PubMed]
Y. Wu, B.-C. Yao, Y. Cheng, Y.-J. Rao, Y. Gong, W. Zhang, Z. Wang, and Y. Chen, “Hybrid graphene-microfiber waveguide for chemical gas sensing,” IEEE J. Sel. Top. Quantum Electron. 20(1), 49–54 (2014).
[Crossref]
Y. Wu, B. Yao, A. Zhang, Y. Rao, Z. Wang, Y. Cheng, Y. Gong, W. Zhang, Y. Chen, and K. S. Chiang, “Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing,” Opt. Lett. 39(5), 1235–1237 (2014).
[Crossref]
[PubMed]
B. Zhang and M. Kahrizi, “High-temperature resistance fiber Bragg grating temperature sensor fabrication,” IEEE Sens. J. 7(4), 586–591 (2007).
[Crossref]
Y. Wu, B.-C. Yao, Y. Cheng, Y.-J. Rao, Y. Gong, W. Zhang, Z. Wang, and Y. Chen, “Hybrid graphene-microfiber waveguide for chemical gas sensing,” IEEE J. Sel. Top. Quantum Electron. 20(1), 49–54 (2014).
[Crossref]
Y. Wu, B. Yao, A. Zhang, Y. Rao, Z. Wang, Y. Cheng, Y. Gong, W. Zhang, Y. Chen, and K. S. Chiang, “Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing,” Opt. Lett. 39(5), 1235–1237 (2014).
[Crossref]
[PubMed]
B.-b. Luo, X.-j. Zhou, M.-f. Zhao, N.-b. Zhong, and S.-f. Wang, “Recent developments in microstructured fiber Bragg grating refractive index sensors,” J. Photonics Energy 1(1), 1–12 (018002) (2010).
B.-b. Luo, X.-j. Zhou, M.-f. Zhao, N.-b. Zhong, and S.-f. Wang, “Recent developments in microstructured fiber Bragg grating refractive index sensors,” J. Photonics Energy 1(1), 1–12 (018002) (2010).
B.-b. Luo, X.-j. Zhou, M.-f. Zhao, N.-b. Zhong, and S.-f. Wang, “Recent developments in microstructured fiber Bragg grating refractive index sensors,” J. Photonics Energy 1(1), 1–12 (018002) (2010).
A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Microstructured fibre Bragg gratings: analysis and fabrication,” Electron. Lett. 41(8), 466–468 (2005).
[Crossref]
M. Monerie, “Propagation in doubly clad single-mode fibers,” IEEE J. Quantum Electron. 18(4), 535–542 (1982).
[Crossref]
Y. Wu, B.-C. Yao, Y. Cheng, Y.-J. Rao, Y. Gong, W. Zhang, Z. Wang, and Y. Chen, “Hybrid graphene-microfiber waveguide for chemical gas sensing,” IEEE J. Sel. Top. Quantum Electron. 20(1), 49–54 (2014).
[Crossref]
A. Chryssis, S. Saini, S. Lee, and M. Dagenais, “Increased sensitivity and parametric discrimination using higher order modes of etched-core fiber Bragg grating sensors,” IEEE Photonics Technol. Lett. 18(1), 178–180 (2006).
[Crossref]
A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Refractive index sensor based on microstructured fiber Bragg grating,” IEEE Photonics Technol. Lett. 17(6), 1250–1252 (2005).
[Crossref]
A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photonics Technol. Lett. 17(6), 1253–1255 (2005).
[Crossref]
B.-O. Guan, H.-Y. Tam, X.-M. Tao, and X.-Y. Dong, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating,” IEEE Photonics Technol. Lett. 12(6), 675–677 (2000).
[Crossref]
B. Zhang and M. Kahrizi, “High-temperature resistance fiber Bragg grating temperature sensor fabrication,” IEEE Sens. J. 7(4), 586–591 (2007).
[Crossref]
A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Thinned fiber Bragg gratings as refractive index sensors,” IEEE Sens. J. 5(6), 1288–1295 (2005).
[Crossref]
B. Shivananju, M. Varma, S. Asokan, S. Yamdagni, R. Fazuldeen, and S. Nithin, “Highly sensitive carbon nanotubes coated etched fiber Bragg grating sensor for humidity sensing,” IEEE Sens. J. 14(8), 2615–2619 (2014).
[Crossref]
D. F. Penning, D. Weimer, and W. F. Rumpel, “Indices of refraction of HF and F2. II,” J. Chem. Phys. 59(5), 2496–2497 (1973).
[Crossref]
B. N. Shivananju, M. Renilkumar, G. R. Prashanth, S. Asokan, and M. M. Varma, “Detection limit of etched fiber Bragg grating sensors,” J. Lightwave Technol. 31(14), 2441–2447 (2013).
[Crossref]
K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[Crossref]
B. Lee, “Review of the present status of optical fiber sensors,” J. Optical Fiber Technology 9(2), 57–79 (2003).
[Crossref]
B.-b. Luo, X.-j. Zhou, M.-f. Zhao, N.-b. Zhong, and S.-f. Wang, “Recent developments in microstructured fiber Bragg grating refractive index sensors,” J. Photonics Energy 1(1), 1–12 (018002) (2010).
D. A. Pereira, O. Frazäo, and J. L. Santos, “Fiber Bragg grating sensing system for simultaneous measurement of salinity and temperature,” Opt. Eng. 43(2), 299–304 (2004).
[Crossref]
Y. Wu, B. Yao, A. Zhang, Y. Rao, Z. Wang, Y. Cheng, Y. Gong, W. Zhang, Y. Chen, and K. S. Chiang, “Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing,” Opt. Lett. 39(5), 1235–1237 (2014).
[Crossref]
[PubMed]
S. Sridevi, K. S. Vasu, N. Jayaraman, S. Asokan, and A. K. Sood, “Optical bio-sensing devices based on etched fiber Bragg gratings coated with carbon nanotubes and graphene oxide along with a specific dendrimer,” Sens. Actuators B Chem. 195, 150–155 (2014).
[Crossref]
S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors (Basel) 12(2), 1898–1918 (2012).
[Crossref]
[PubMed]
D. Tosi, “Review and analysis of peak tracking techniques for fiber Bragg grating sensors,” Sensors (Basel) 17(10), 2368–2402 (2017).
[Crossref]
[PubMed]
G. Rajan, K. Bhowmik, J. Xi, and G.-D. Peng, “Etched polymer fibre Bragg gratings and their biomedical sensing applications,” Sensors (Basel) 17(10), 2336–2348 (2017).
[Crossref]
[PubMed]
Ibsen Photonics, https://ibsen.com/products/interrogation-monitors/
“Refractive index database”, https://refractiveindex.info/
M. A. Davis and A. D. Kersey, “Fiber Bragg grating sensors for infrastructure sensing,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 1997), paper WL15.
A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House Boston, 1999).
R. Kashyap, Fiber Bragg gratings, 1st. ed. (Academic Press, 1999).
K. T. Dinh, Y.-W. Song, S. Yamashita, and S. Y. Set, “Realization of all-fiber tunable filter & high optical power blocker using thinned fiber Bragg gratings coated with carbon nanotubes,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (Optical Society of America, 2007), paper OWG5.