Abstract

We present a technique to measure, in situ, the diameter of an optical fibre during etching using a fibre Bragg grating (FBG). Differential shifts between the fundamental mode, and the higher-order Bragg resonances generated by the etching process are used to determine the diameter of a standard optical fibre (SMF28) with a precision of ~200nm. Numerical simulations are also carried out to investigate the overlap of the evanescent field of the fundamental mode and higher-order modes (LP11, LP02, LP21 and LP12). These simulations were used to find and calibrate the diameter of the etched-cladding fibre. Subsequently, the technique was used to experimentally determine the refractive index of two buffered hydrofluoric (BHF) acid solutions, (20:1) and (7:1), to be ~1.360 ± 0.005 and ~1.370 ± 0.005 respectively @ ~1550nm. The refractive index of both BHF solutions is calibrated against known indices of liquids and solvents, including deionised water, methanol, acetone, ethanol, isopropanol, and ethylene glycol. The numerical simulations and experimental results are in very good agreement. We believe the approach presented in this work provides a controlled technique to achieve precise target diameter of the etched fibres in real time.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Theoretical and experimental study on etched fiber Bragg grating cladding mode resonances for ambient refractive index sensing

Na Chen, Binfeng Yun, Yiping Wang, and Yiping Cui
J. Opt. Soc. Am. B 24(3) 439-445 (2007)

Uniformly thinned optical fibers produced via HF etching with spectral and microscopic verification

Harpreet K. Bal, Zourab Brodzeli, Nicoleta M. Dragomir, Stephen F. Collins, and Fotios Sidiroglou
Appl. Opt. 51(13) 2282-2287 (2012)

Leaky mode integrated optical fibre refractometer

Alan C. Gray, Alexander Jantzen, Paul C. Gow, Devin H. Smith, Corin B. E. Gawith, Peter G. R. Smith, and Christopher Holmes
Opt. Express 26(7) 9155-9164 (2018)

References

  • View by:
  • |
  • |
  • |

  1. K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
    [Crossref]
  2. M. A. Davis and A. D. Kersey, “Fiber Bragg grating sensors for infrastructure sensing,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 1997), paper WL15.
  3. A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House Boston, 1999).
  4. A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Microstructured fibre Bragg gratings: analysis and fabrication,” Electron. Lett. 41(8), 466–468 (2005).
    [Crossref]
  5. R. Kashyap, Fiber Bragg gratings, 1st. ed. (Academic Press, 1999).
  6. B. Lee, “Review of the present status of optical fiber sensors,” J. Optical Fiber Technology 9(2), 57–79 (2003).
    [Crossref]
  7. B.-O. Guan, H.-Y. Tam, X.-M. Tao, and X.-Y. Dong, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating,” IEEE Photonics Technol. Lett. 12(6), 675–677 (2000).
    [Crossref]
  8. S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors (Basel) 12(2), 1898–1918 (2012).
    [Crossref] [PubMed]
  9. B. Zhang and M. Kahrizi, “High-temperature resistance fiber Bragg grating temperature sensor fabrication,” IEEE Sens. J. 7(4), 586–591 (2007).
    [Crossref]
  10. A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Thinned fiber Bragg gratings as refractive index sensors,” IEEE Sens. J. 5(6), 1288–1295 (2005).
    [Crossref]
  11. S. Sridevi, K. S. Vasu, N. Jayaraman, S. Asokan, and A. K. Sood, “Optical bio-sensing devices based on etched fiber Bragg gratings coated with carbon nanotubes and graphene oxide along with a specific dendrimer,” Sens. Actuators B Chem. 195, 150–155 (2014).
    [Crossref]
  12. B.-b. Luo, X.-j. Zhou, M.-f. Zhao, N.-b. Zhong, and S.-f. Wang, “Recent developments in microstructured fiber Bragg grating refractive index sensors,” J. Photonics Energy 1(1), 1–12 (018002) (2010).
  13. B. N. Shivananju, M. Renilkumar, G. R. Prashanth, S. Asokan, and M. M. Varma, “Detection limit of etched fiber Bragg grating sensors,” J. Lightwave Technol. 31(14), 2441–2447 (2013).
    [Crossref]
  14. A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Refractive index sensor based on microstructured fiber Bragg grating,” IEEE Photonics Technol. Lett. 17(6), 1250–1252 (2005).
    [Crossref]
  15. Y. Wu, B. Yao, A. Zhang, Y. Rao, Z. Wang, Y. Cheng, Y. Gong, W. Zhang, Y. Chen, and K. S. Chiang, “Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing,” Opt. Lett. 39(5), 1235–1237 (2014).
    [Crossref] [PubMed]
  16. B. Shivananju, M. Varma, S. Asokan, S. Yamdagni, R. Fazuldeen, and S. Nithin, “Highly sensitive carbon nanotubes coated etched fiber Bragg grating sensor for humidity sensing,” IEEE Sens. J. 14(8), 2615–2619 (2014).
    [Crossref]
  17. Y. Wu, B.-C. Yao, Y. Cheng, Y.-J. Rao, Y. Gong, W. Zhang, Z. Wang, and Y. Chen, “Hybrid graphene-microfiber waveguide for chemical gas sensing,” IEEE J. Sel. Top. Quantum Electron. 20(1), 49–54 (2014).
    [Crossref]
  18. K. T. Dinh, Y.-W. Song, S. Yamashita, and S. Y. Set, “Realization of all-fiber tunable filter & high optical power blocker using thinned fiber Bragg gratings coated with carbon nanotubes,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (Optical Society of America, 2007), paper OWG5.
  19. D. F. Penning, D. Weimer, and W. F. Rumpel, “Indices of refraction of HF and F2. II,” J. Chem. Phys. 59(5), 2496–2497 (1973).
    [Crossref]
  20. D. L. Drummond, “Refractive index of HF from 2.5 µm to 2.9 µm,” Appl. Opt. 21(23), 4331–4334 (1982).
    [Crossref] [PubMed]
  21. A. Chryssis, S. Saini, S. Lee, and M. Dagenais, “Increased sensitivity and parametric discrimination using higher order modes of etched-core fiber Bragg grating sensors,” IEEE Photonics Technol. Lett. 18(1), 178–180 (2006).
    [Crossref]
  22. M. Monerie, “Propagation in doubly clad single-mode fibers,” IEEE J. Quantum Electron. 18(4), 535–542 (1982).
    [Crossref]
  23. A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photonics Technol. Lett. 17(6), 1253–1255 (2005).
    [Crossref]
  24. “Refractive index database”, https://refractiveindex.info/
  25. D. A. Pereira, O. Frazäo, and J. L. Santos, “Fiber Bragg grating sensing system for simultaneous measurement of salinity and temperature,” Opt. Eng. 43(2), 299–304 (2004).
    [Crossref]
  26. Ibsen Photonics, https://ibsen.com/products/interrogation-monitors/
  27. D. Tosi, “Review and analysis of peak tracking techniques for fiber Bragg grating sensors,” Sensors (Basel) 17(10), 2368–2402 (2017).
    [Crossref] [PubMed]
  28. G. Rajan, K. Bhowmik, J. Xi, and G.-D. Peng, “Etched polymer fibre Bragg gratings and their biomedical sensing applications,” Sensors (Basel) 17(10), 2336–2348 (2017).
    [Crossref] [PubMed]

2017 (2)

D. Tosi, “Review and analysis of peak tracking techniques for fiber Bragg grating sensors,” Sensors (Basel) 17(10), 2368–2402 (2017).
[Crossref] [PubMed]

G. Rajan, K. Bhowmik, J. Xi, and G.-D. Peng, “Etched polymer fibre Bragg gratings and their biomedical sensing applications,” Sensors (Basel) 17(10), 2336–2348 (2017).
[Crossref] [PubMed]

2014 (4)

S. Sridevi, K. S. Vasu, N. Jayaraman, S. Asokan, and A. K. Sood, “Optical bio-sensing devices based on etched fiber Bragg gratings coated with carbon nanotubes and graphene oxide along with a specific dendrimer,” Sens. Actuators B Chem. 195, 150–155 (2014).
[Crossref]

B. Shivananju, M. Varma, S. Asokan, S. Yamdagni, R. Fazuldeen, and S. Nithin, “Highly sensitive carbon nanotubes coated etched fiber Bragg grating sensor for humidity sensing,” IEEE Sens. J. 14(8), 2615–2619 (2014).
[Crossref]

Y. Wu, B.-C. Yao, Y. Cheng, Y.-J. Rao, Y. Gong, W. Zhang, Z. Wang, and Y. Chen, “Hybrid graphene-microfiber waveguide for chemical gas sensing,” IEEE J. Sel. Top. Quantum Electron. 20(1), 49–54 (2014).
[Crossref]

Y. Wu, B. Yao, A. Zhang, Y. Rao, Z. Wang, Y. Cheng, Y. Gong, W. Zhang, Y. Chen, and K. S. Chiang, “Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing,” Opt. Lett. 39(5), 1235–1237 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (1)

S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors (Basel) 12(2), 1898–1918 (2012).
[Crossref] [PubMed]

2010 (1)

B.-b. Luo, X.-j. Zhou, M.-f. Zhao, N.-b. Zhong, and S.-f. Wang, “Recent developments in microstructured fiber Bragg grating refractive index sensors,” J. Photonics Energy 1(1), 1–12 (018002) (2010).

2007 (1)

B. Zhang and M. Kahrizi, “High-temperature resistance fiber Bragg grating temperature sensor fabrication,” IEEE Sens. J. 7(4), 586–591 (2007).
[Crossref]

2006 (1)

A. Chryssis, S. Saini, S. Lee, and M. Dagenais, “Increased sensitivity and parametric discrimination using higher order modes of etched-core fiber Bragg grating sensors,” IEEE Photonics Technol. Lett. 18(1), 178–180 (2006).
[Crossref]

2005 (4)

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photonics Technol. Lett. 17(6), 1253–1255 (2005).
[Crossref]

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Refractive index sensor based on microstructured fiber Bragg grating,” IEEE Photonics Technol. Lett. 17(6), 1250–1252 (2005).
[Crossref]

A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Thinned fiber Bragg gratings as refractive index sensors,” IEEE Sens. J. 5(6), 1288–1295 (2005).
[Crossref]

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Microstructured fibre Bragg gratings: analysis and fabrication,” Electron. Lett. 41(8), 466–468 (2005).
[Crossref]

2004 (1)

D. A. Pereira, O. Frazäo, and J. L. Santos, “Fiber Bragg grating sensing system for simultaneous measurement of salinity and temperature,” Opt. Eng. 43(2), 299–304 (2004).
[Crossref]

2003 (1)

B. Lee, “Review of the present status of optical fiber sensors,” J. Optical Fiber Technology 9(2), 57–79 (2003).
[Crossref]

2000 (1)

B.-O. Guan, H.-Y. Tam, X.-M. Tao, and X.-Y. Dong, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating,” IEEE Photonics Technol. Lett. 12(6), 675–677 (2000).
[Crossref]

1997 (1)

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[Crossref]

1982 (2)

M. Monerie, “Propagation in doubly clad single-mode fibers,” IEEE J. Quantum Electron. 18(4), 535–542 (1982).
[Crossref]

D. L. Drummond, “Refractive index of HF from 2.5 µm to 2.9 µm,” Appl. Opt. 21(23), 4331–4334 (1982).
[Crossref] [PubMed]

1973 (1)

D. F. Penning, D. Weimer, and W. F. Rumpel, “Indices of refraction of HF and F2. II,” J. Chem. Phys. 59(5), 2496–2497 (1973).
[Crossref]

Asokan, S.

S. Sridevi, K. S. Vasu, N. Jayaraman, S. Asokan, and A. K. Sood, “Optical bio-sensing devices based on etched fiber Bragg gratings coated with carbon nanotubes and graphene oxide along with a specific dendrimer,” Sens. Actuators B Chem. 195, 150–155 (2014).
[Crossref]

B. Shivananju, M. Varma, S. Asokan, S. Yamdagni, R. Fazuldeen, and S. Nithin, “Highly sensitive carbon nanotubes coated etched fiber Bragg grating sensor for humidity sensing,” IEEE Sens. J. 14(8), 2615–2619 (2014).
[Crossref]

B. N. Shivananju, M. Renilkumar, G. R. Prashanth, S. Asokan, and M. M. Varma, “Detection limit of etched fiber Bragg grating sensors,” J. Lightwave Technol. 31(14), 2441–2447 (2013).
[Crossref]

Bhowmik, K.

G. Rajan, K. Bhowmik, J. Xi, and G.-D. Peng, “Etched polymer fibre Bragg gratings and their biomedical sensing applications,” Sensors (Basel) 17(10), 2336–2348 (2017).
[Crossref] [PubMed]

Campopiano, S.

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Refractive index sensor based on microstructured fiber Bragg grating,” IEEE Photonics Technol. Lett. 17(6), 1250–1252 (2005).
[Crossref]

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Microstructured fibre Bragg gratings: analysis and fabrication,” Electron. Lett. 41(8), 466–468 (2005).
[Crossref]

A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Thinned fiber Bragg gratings as refractive index sensors,” IEEE Sens. J. 5(6), 1288–1295 (2005).
[Crossref]

Chen, Y.

Y. Wu, B.-C. Yao, Y. Cheng, Y.-J. Rao, Y. Gong, W. Zhang, Z. Wang, and Y. Chen, “Hybrid graphene-microfiber waveguide for chemical gas sensing,” IEEE J. Sel. Top. Quantum Electron. 20(1), 49–54 (2014).
[Crossref]

Y. Wu, B. Yao, A. Zhang, Y. Rao, Z. Wang, Y. Cheng, Y. Gong, W. Zhang, Y. Chen, and K. S. Chiang, “Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing,” Opt. Lett. 39(5), 1235–1237 (2014).
[Crossref] [PubMed]

Cheng, Y.

Y. Wu, B. Yao, A. Zhang, Y. Rao, Z. Wang, Y. Cheng, Y. Gong, W. Zhang, Y. Chen, and K. S. Chiang, “Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing,” Opt. Lett. 39(5), 1235–1237 (2014).
[Crossref] [PubMed]

Y. Wu, B.-C. Yao, Y. Cheng, Y.-J. Rao, Y. Gong, W. Zhang, Z. Wang, and Y. Chen, “Hybrid graphene-microfiber waveguide for chemical gas sensing,” IEEE J. Sel. Top. Quantum Electron. 20(1), 49–54 (2014).
[Crossref]

Chiang, K. S.

Chryssis, A.

A. Chryssis, S. Saini, S. Lee, and M. Dagenais, “Increased sensitivity and parametric discrimination using higher order modes of etched-core fiber Bragg grating sensors,” IEEE Photonics Technol. Lett. 18(1), 178–180 (2006).
[Crossref]

Chryssis, A. N.

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photonics Technol. Lett. 17(6), 1253–1255 (2005).
[Crossref]

Cusano, A.

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Refractive index sensor based on microstructured fiber Bragg grating,” IEEE Photonics Technol. Lett. 17(6), 1250–1252 (2005).
[Crossref]

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Microstructured fibre Bragg gratings: analysis and fabrication,” Electron. Lett. 41(8), 466–468 (2005).
[Crossref]

A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Thinned fiber Bragg gratings as refractive index sensors,” IEEE Sens. J. 5(6), 1288–1295 (2005).
[Crossref]

Cutolo, A.

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Microstructured fibre Bragg gratings: analysis and fabrication,” Electron. Lett. 41(8), 466–468 (2005).
[Crossref]

A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Thinned fiber Bragg gratings as refractive index sensors,” IEEE Sens. J. 5(6), 1288–1295 (2005).
[Crossref]

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Refractive index sensor based on microstructured fiber Bragg grating,” IEEE Photonics Technol. Lett. 17(6), 1250–1252 (2005).
[Crossref]

Dagenais, M.

A. Chryssis, S. Saini, S. Lee, and M. Dagenais, “Increased sensitivity and parametric discrimination using higher order modes of etched-core fiber Bragg grating sensors,” IEEE Photonics Technol. Lett. 18(1), 178–180 (2006).
[Crossref]

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photonics Technol. Lett. 17(6), 1253–1255 (2005).
[Crossref]

Dong, X.-Y.

B.-O. Guan, H.-Y. Tam, X.-M. Tao, and X.-Y. Dong, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating,” IEEE Photonics Technol. Lett. 12(6), 675–677 (2000).
[Crossref]

Drummond, D. L.

Fazuldeen, R.

B. Shivananju, M. Varma, S. Asokan, S. Yamdagni, R. Fazuldeen, and S. Nithin, “Highly sensitive carbon nanotubes coated etched fiber Bragg grating sensor for humidity sensing,” IEEE Sens. J. 14(8), 2615–2619 (2014).
[Crossref]

Frazäo, O.

D. A. Pereira, O. Frazäo, and J. L. Santos, “Fiber Bragg grating sensing system for simultaneous measurement of salinity and temperature,” Opt. Eng. 43(2), 299–304 (2004).
[Crossref]

Giordano, M.

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Refractive index sensor based on microstructured fiber Bragg grating,” IEEE Photonics Technol. Lett. 17(6), 1250–1252 (2005).
[Crossref]

A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Thinned fiber Bragg gratings as refractive index sensors,” IEEE Sens. J. 5(6), 1288–1295 (2005).
[Crossref]

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Microstructured fibre Bragg gratings: analysis and fabrication,” Electron. Lett. 41(8), 466–468 (2005).
[Crossref]

Gong, Y.

Y. Wu, B.-C. Yao, Y. Cheng, Y.-J. Rao, Y. Gong, W. Zhang, Z. Wang, and Y. Chen, “Hybrid graphene-microfiber waveguide for chemical gas sensing,” IEEE J. Sel. Top. Quantum Electron. 20(1), 49–54 (2014).
[Crossref]

Y. Wu, B. Yao, A. Zhang, Y. Rao, Z. Wang, Y. Cheng, Y. Gong, W. Zhang, Y. Chen, and K. S. Chiang, “Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing,” Opt. Lett. 39(5), 1235–1237 (2014).
[Crossref] [PubMed]

Guan, B.-O.

B.-O. Guan, H.-Y. Tam, X.-M. Tao, and X.-Y. Dong, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating,” IEEE Photonics Technol. Lett. 12(6), 675–677 (2000).
[Crossref]

Hill, K. O.

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[Crossref]

Iadicicco, A.

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Microstructured fibre Bragg gratings: analysis and fabrication,” Electron. Lett. 41(8), 466–468 (2005).
[Crossref]

A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Thinned fiber Bragg gratings as refractive index sensors,” IEEE Sens. J. 5(6), 1288–1295 (2005).
[Crossref]

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Refractive index sensor based on microstructured fiber Bragg grating,” IEEE Photonics Technol. Lett. 17(6), 1250–1252 (2005).
[Crossref]

Jayaraman, N.

S. Sridevi, K. S. Vasu, N. Jayaraman, S. Asokan, and A. K. Sood, “Optical bio-sensing devices based on etched fiber Bragg gratings coated with carbon nanotubes and graphene oxide along with a specific dendrimer,” Sens. Actuators B Chem. 195, 150–155 (2014).
[Crossref]

Kahrizi, M.

B. Zhang and M. Kahrizi, “High-temperature resistance fiber Bragg grating temperature sensor fabrication,” IEEE Sens. J. 7(4), 586–591 (2007).
[Crossref]

Lee, B.

B. Lee, “Review of the present status of optical fiber sensors,” J. Optical Fiber Technology 9(2), 57–79 (2003).
[Crossref]

Lee, S.

A. Chryssis, S. Saini, S. Lee, and M. Dagenais, “Increased sensitivity and parametric discrimination using higher order modes of etched-core fiber Bragg grating sensors,” IEEE Photonics Technol. Lett. 18(1), 178–180 (2006).
[Crossref]

Lee, S. B.

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photonics Technol. Lett. 17(6), 1253–1255 (2005).
[Crossref]

Lee, S. M.

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photonics Technol. Lett. 17(6), 1253–1255 (2005).
[Crossref]

Luo, B.-b.

B.-b. Luo, X.-j. Zhou, M.-f. Zhao, N.-b. Zhong, and S.-f. Wang, “Recent developments in microstructured fiber Bragg grating refractive index sensors,” J. Photonics Energy 1(1), 1–12 (018002) (2010).

Meltz, G.

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[Crossref]

Mihailov, S. J.

S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors (Basel) 12(2), 1898–1918 (2012).
[Crossref] [PubMed]

Monerie, M.

M. Monerie, “Propagation in doubly clad single-mode fibers,” IEEE J. Quantum Electron. 18(4), 535–542 (1982).
[Crossref]

Nithin, S.

B. Shivananju, M. Varma, S. Asokan, S. Yamdagni, R. Fazuldeen, and S. Nithin, “Highly sensitive carbon nanotubes coated etched fiber Bragg grating sensor for humidity sensing,” IEEE Sens. J. 14(8), 2615–2619 (2014).
[Crossref]

Peng, G.-D.

G. Rajan, K. Bhowmik, J. Xi, and G.-D. Peng, “Etched polymer fibre Bragg gratings and their biomedical sensing applications,” Sensors (Basel) 17(10), 2336–2348 (2017).
[Crossref] [PubMed]

Penning, D. F.

D. F. Penning, D. Weimer, and W. F. Rumpel, “Indices of refraction of HF and F2. II,” J. Chem. Phys. 59(5), 2496–2497 (1973).
[Crossref]

Pereira, D. A.

D. A. Pereira, O. Frazäo, and J. L. Santos, “Fiber Bragg grating sensing system for simultaneous measurement of salinity and temperature,” Opt. Eng. 43(2), 299–304 (2004).
[Crossref]

Prashanth, G. R.

Rajan, G.

G. Rajan, K. Bhowmik, J. Xi, and G.-D. Peng, “Etched polymer fibre Bragg gratings and their biomedical sensing applications,” Sensors (Basel) 17(10), 2336–2348 (2017).
[Crossref] [PubMed]

Rao, Y.

Rao, Y.-J.

Y. Wu, B.-C. Yao, Y. Cheng, Y.-J. Rao, Y. Gong, W. Zhang, Z. Wang, and Y. Chen, “Hybrid graphene-microfiber waveguide for chemical gas sensing,” IEEE J. Sel. Top. Quantum Electron. 20(1), 49–54 (2014).
[Crossref]

Renilkumar, M.

Rumpel, W. F.

D. F. Penning, D. Weimer, and W. F. Rumpel, “Indices of refraction of HF and F2. II,” J. Chem. Phys. 59(5), 2496–2497 (1973).
[Crossref]

Saini, S.

A. Chryssis, S. Saini, S. Lee, and M. Dagenais, “Increased sensitivity and parametric discrimination using higher order modes of etched-core fiber Bragg grating sensors,” IEEE Photonics Technol. Lett. 18(1), 178–180 (2006).
[Crossref]

Saini, S. S.

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photonics Technol. Lett. 17(6), 1253–1255 (2005).
[Crossref]

Santos, J. L.

D. A. Pereira, O. Frazäo, and J. L. Santos, “Fiber Bragg grating sensing system for simultaneous measurement of salinity and temperature,” Opt. Eng. 43(2), 299–304 (2004).
[Crossref]

Shivananju, B.

B. Shivananju, M. Varma, S. Asokan, S. Yamdagni, R. Fazuldeen, and S. Nithin, “Highly sensitive carbon nanotubes coated etched fiber Bragg grating sensor for humidity sensing,” IEEE Sens. J. 14(8), 2615–2619 (2014).
[Crossref]

Shivananju, B. N.

Sood, A. K.

S. Sridevi, K. S. Vasu, N. Jayaraman, S. Asokan, and A. K. Sood, “Optical bio-sensing devices based on etched fiber Bragg gratings coated with carbon nanotubes and graphene oxide along with a specific dendrimer,” Sens. Actuators B Chem. 195, 150–155 (2014).
[Crossref]

Sridevi, S.

S. Sridevi, K. S. Vasu, N. Jayaraman, S. Asokan, and A. K. Sood, “Optical bio-sensing devices based on etched fiber Bragg gratings coated with carbon nanotubes and graphene oxide along with a specific dendrimer,” Sens. Actuators B Chem. 195, 150–155 (2014).
[Crossref]

Tam, H.-Y.

B.-O. Guan, H.-Y. Tam, X.-M. Tao, and X.-Y. Dong, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating,” IEEE Photonics Technol. Lett. 12(6), 675–677 (2000).
[Crossref]

Tao, X.-M.

B.-O. Guan, H.-Y. Tam, X.-M. Tao, and X.-Y. Dong, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating,” IEEE Photonics Technol. Lett. 12(6), 675–677 (2000).
[Crossref]

Tosi, D.

D. Tosi, “Review and analysis of peak tracking techniques for fiber Bragg grating sensors,” Sensors (Basel) 17(10), 2368–2402 (2017).
[Crossref] [PubMed]

Varma, M.

B. Shivananju, M. Varma, S. Asokan, S. Yamdagni, R. Fazuldeen, and S. Nithin, “Highly sensitive carbon nanotubes coated etched fiber Bragg grating sensor for humidity sensing,” IEEE Sens. J. 14(8), 2615–2619 (2014).
[Crossref]

Varma, M. M.

Vasu, K. S.

S. Sridevi, K. S. Vasu, N. Jayaraman, S. Asokan, and A. K. Sood, “Optical bio-sensing devices based on etched fiber Bragg gratings coated with carbon nanotubes and graphene oxide along with a specific dendrimer,” Sens. Actuators B Chem. 195, 150–155 (2014).
[Crossref]

Wang, S.-f.

B.-b. Luo, X.-j. Zhou, M.-f. Zhao, N.-b. Zhong, and S.-f. Wang, “Recent developments in microstructured fiber Bragg grating refractive index sensors,” J. Photonics Energy 1(1), 1–12 (018002) (2010).

Wang, Z.

Y. Wu, B.-C. Yao, Y. Cheng, Y.-J. Rao, Y. Gong, W. Zhang, Z. Wang, and Y. Chen, “Hybrid graphene-microfiber waveguide for chemical gas sensing,” IEEE J. Sel. Top. Quantum Electron. 20(1), 49–54 (2014).
[Crossref]

Y. Wu, B. Yao, A. Zhang, Y. Rao, Z. Wang, Y. Cheng, Y. Gong, W. Zhang, Y. Chen, and K. S. Chiang, “Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing,” Opt. Lett. 39(5), 1235–1237 (2014).
[Crossref] [PubMed]

Weimer, D.

D. F. Penning, D. Weimer, and W. F. Rumpel, “Indices of refraction of HF and F2. II,” J. Chem. Phys. 59(5), 2496–2497 (1973).
[Crossref]

Wu, Y.

Y. Wu, B.-C. Yao, Y. Cheng, Y.-J. Rao, Y. Gong, W. Zhang, Z. Wang, and Y. Chen, “Hybrid graphene-microfiber waveguide for chemical gas sensing,” IEEE J. Sel. Top. Quantum Electron. 20(1), 49–54 (2014).
[Crossref]

Y. Wu, B. Yao, A. Zhang, Y. Rao, Z. Wang, Y. Cheng, Y. Gong, W. Zhang, Y. Chen, and K. S. Chiang, “Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing,” Opt. Lett. 39(5), 1235–1237 (2014).
[Crossref] [PubMed]

Xi, J.

G. Rajan, K. Bhowmik, J. Xi, and G.-D. Peng, “Etched polymer fibre Bragg gratings and their biomedical sensing applications,” Sensors (Basel) 17(10), 2336–2348 (2017).
[Crossref] [PubMed]

Yamdagni, S.

B. Shivananju, M. Varma, S. Asokan, S. Yamdagni, R. Fazuldeen, and S. Nithin, “Highly sensitive carbon nanotubes coated etched fiber Bragg grating sensor for humidity sensing,” IEEE Sens. J. 14(8), 2615–2619 (2014).
[Crossref]

Yao, B.

Yao, B.-C.

Y. Wu, B.-C. Yao, Y. Cheng, Y.-J. Rao, Y. Gong, W. Zhang, Z. Wang, and Y. Chen, “Hybrid graphene-microfiber waveguide for chemical gas sensing,” IEEE J. Sel. Top. Quantum Electron. 20(1), 49–54 (2014).
[Crossref]

Zhang, A.

Zhang, B.

B. Zhang and M. Kahrizi, “High-temperature resistance fiber Bragg grating temperature sensor fabrication,” IEEE Sens. J. 7(4), 586–591 (2007).
[Crossref]

Zhang, W.

Y. Wu, B.-C. Yao, Y. Cheng, Y.-J. Rao, Y. Gong, W. Zhang, Z. Wang, and Y. Chen, “Hybrid graphene-microfiber waveguide for chemical gas sensing,” IEEE J. Sel. Top. Quantum Electron. 20(1), 49–54 (2014).
[Crossref]

Y. Wu, B. Yao, A. Zhang, Y. Rao, Z. Wang, Y. Cheng, Y. Gong, W. Zhang, Y. Chen, and K. S. Chiang, “Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing,” Opt. Lett. 39(5), 1235–1237 (2014).
[Crossref] [PubMed]

Zhao, M.-f.

B.-b. Luo, X.-j. Zhou, M.-f. Zhao, N.-b. Zhong, and S.-f. Wang, “Recent developments in microstructured fiber Bragg grating refractive index sensors,” J. Photonics Energy 1(1), 1–12 (018002) (2010).

Zhong, N.-b.

B.-b. Luo, X.-j. Zhou, M.-f. Zhao, N.-b. Zhong, and S.-f. Wang, “Recent developments in microstructured fiber Bragg grating refractive index sensors,” J. Photonics Energy 1(1), 1–12 (018002) (2010).

Zhou, X.-j.

B.-b. Luo, X.-j. Zhou, M.-f. Zhao, N.-b. Zhong, and S.-f. Wang, “Recent developments in microstructured fiber Bragg grating refractive index sensors,” J. Photonics Energy 1(1), 1–12 (018002) (2010).

Appl. Opt. (1)

Electron. Lett. (1)

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Microstructured fibre Bragg gratings: analysis and fabrication,” Electron. Lett. 41(8), 466–468 (2005).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Monerie, “Propagation in doubly clad single-mode fibers,” IEEE J. Quantum Electron. 18(4), 535–542 (1982).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Wu, B.-C. Yao, Y. Cheng, Y.-J. Rao, Y. Gong, W. Zhang, Z. Wang, and Y. Chen, “Hybrid graphene-microfiber waveguide for chemical gas sensing,” IEEE J. Sel. Top. Quantum Electron. 20(1), 49–54 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (4)

A. Chryssis, S. Saini, S. Lee, and M. Dagenais, “Increased sensitivity and parametric discrimination using higher order modes of etched-core fiber Bragg grating sensors,” IEEE Photonics Technol. Lett. 18(1), 178–180 (2006).
[Crossref]

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Refractive index sensor based on microstructured fiber Bragg grating,” IEEE Photonics Technol. Lett. 17(6), 1250–1252 (2005).
[Crossref]

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photonics Technol. Lett. 17(6), 1253–1255 (2005).
[Crossref]

B.-O. Guan, H.-Y. Tam, X.-M. Tao, and X.-Y. Dong, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating,” IEEE Photonics Technol. Lett. 12(6), 675–677 (2000).
[Crossref]

IEEE Sens. J. (3)

B. Zhang and M. Kahrizi, “High-temperature resistance fiber Bragg grating temperature sensor fabrication,” IEEE Sens. J. 7(4), 586–591 (2007).
[Crossref]

A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Thinned fiber Bragg gratings as refractive index sensors,” IEEE Sens. J. 5(6), 1288–1295 (2005).
[Crossref]

B. Shivananju, M. Varma, S. Asokan, S. Yamdagni, R. Fazuldeen, and S. Nithin, “Highly sensitive carbon nanotubes coated etched fiber Bragg grating sensor for humidity sensing,” IEEE Sens. J. 14(8), 2615–2619 (2014).
[Crossref]

J. Chem. Phys. (1)

D. F. Penning, D. Weimer, and W. F. Rumpel, “Indices of refraction of HF and F2. II,” J. Chem. Phys. 59(5), 2496–2497 (1973).
[Crossref]

J. Lightwave Technol. (2)

B. N. Shivananju, M. Renilkumar, G. R. Prashanth, S. Asokan, and M. M. Varma, “Detection limit of etched fiber Bragg grating sensors,” J. Lightwave Technol. 31(14), 2441–2447 (2013).
[Crossref]

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[Crossref]

J. Optical Fiber Technology (1)

B. Lee, “Review of the present status of optical fiber sensors,” J. Optical Fiber Technology 9(2), 57–79 (2003).
[Crossref]

J. Photonics Energy (1)

B.-b. Luo, X.-j. Zhou, M.-f. Zhao, N.-b. Zhong, and S.-f. Wang, “Recent developments in microstructured fiber Bragg grating refractive index sensors,” J. Photonics Energy 1(1), 1–12 (018002) (2010).

Opt. Eng. (1)

D. A. Pereira, O. Frazäo, and J. L. Santos, “Fiber Bragg grating sensing system for simultaneous measurement of salinity and temperature,” Opt. Eng. 43(2), 299–304 (2004).
[Crossref]

Opt. Lett. (1)

Sens. Actuators B Chem. (1)

S. Sridevi, K. S. Vasu, N. Jayaraman, S. Asokan, and A. K. Sood, “Optical bio-sensing devices based on etched fiber Bragg gratings coated with carbon nanotubes and graphene oxide along with a specific dendrimer,” Sens. Actuators B Chem. 195, 150–155 (2014).
[Crossref]

Sensors (Basel) (3)

S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors (Basel) 12(2), 1898–1918 (2012).
[Crossref] [PubMed]

D. Tosi, “Review and analysis of peak tracking techniques for fiber Bragg grating sensors,” Sensors (Basel) 17(10), 2368–2402 (2017).
[Crossref] [PubMed]

G. Rajan, K. Bhowmik, J. Xi, and G.-D. Peng, “Etched polymer fibre Bragg gratings and their biomedical sensing applications,” Sensors (Basel) 17(10), 2336–2348 (2017).
[Crossref] [PubMed]

Other (6)

Ibsen Photonics, https://ibsen.com/products/interrogation-monitors/

“Refractive index database”, https://refractiveindex.info/

M. A. Davis and A. D. Kersey, “Fiber Bragg grating sensors for infrastructure sensing,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 1997), paper WL15.

A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House Boston, 1999).

R. Kashyap, Fiber Bragg gratings, 1st. ed. (Academic Press, 1999).

K. T. Dinh, Y.-W. Song, S. Yamashita, and S. Y. Set, “Realization of all-fiber tunable filter & high optical power blocker using thinned fiber Bragg gratings coated with carbon nanotubes,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (Optical Society of America, 2007), paper OWG5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic representation of a Fibre Bragg grating before and after being cladding etched.
Fig. 2
Fig. 2 The propagating mode profile of a progressively etched standard optical fibre, SMF28, and its refractive index profile for different diameters; Dfibre = 9.0μm, 12.0μm, and 15.0μm in BHF acid (n = 1.360 to be demonstrated below) for the fundamental mode LP01 a), c), e), and the first-higher-order mode LP11 b), d), f) at λ = 1550.0nm.
Fig. 3
Fig. 3 Fraction of model power (FMP) in the outer-cladding as a function of different fibre diameters and various refractive indices of the surrounding region for; a) LP01. b) LP11. c) LP02. d) LP21 @ λ = 1550.0nm.
Fig. 4
Fig. 4 Schematic of the experimental setup. (insert) i) Microscope image of an etched uniform FBG with diameter Dfibre ~11.0 ± 0.2μm.
Fig. 5
Fig. 5 a) i,ii) Transmission spectra of uniform FBG, measured in situ, during etching at two different stages of the etching process, and estimated etched FBG diameters of Dfibre~26µm and 22µm (based on an etch-rate estimate of 4.5µm/hour). b) Measured (symbols) and simulated (solid-lines) results of the wavelength shifts, ΔλLPxy, against fibre diameter for the fundamental and higher-order modes Bragg grating resonances using BHF (20:1) acid solution at λB = 1550.0nm. c) The first derivative of relative shifts of the higher-order modes and fundamental mode (ΔλLP01-LPxy) as a function of fibre diameter.
Fig. 6
Fig. 6 Measured (symbols) and simulated (lines) results of relative wavelength shifts of; a) LP01 mode at λ B LP01 = 1534.4nm and 1560.0nm with Dfibre = 11.0μm and 10.0μm, respectively, using (20:1) BHF acid solution. b) LP11 mode at λ B LP01 = 1534.4nm (solid line) and λ B LP01 = 1544.0nm (dashed lines), against different external refractive indices applied on etched FBG with Dfibre = 11.0μm using (20:1) BHF acid and Dfibre = 9.7μm using (7:1) BHF acid.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

λ B =2 n eff Λ
Δ λ B λ B = Δn eff n eff + ΔΛ Λ
Δ λ B =2Δ n eff Λ
Δ λ LPxy =2( n eff LP01 n eff LPxy )Λ
Γ outercladding =1( Γ core + Γ innercladding )

Metrics