Abstract

Coherent phenomena have been widely suggested to play a role in efficient photosynthetic light harvesting and charge separation processes. To substantiate these ideas, separation of intramolecular vibrational coherences from purely electronic or mixed vibronic coherences is essential. To this end, polarization-controlled two-dimensional electronic spectroscopy has been shown to provide an effective selectivity. We show that analogous discrimination can be achieved in a transient grating experiment by employing the double-crossed polarization scheme. This is demonstrated in a study of bacterial reaction centers. Significantly faster acquisition times of these experiments make longer population time scans feasible, thereby achieving improved frequency resolution and allowing for accurate extraction of coherence frequencies and dephasing times. These parameters are crucial for the discussion on relevance of the measured coherences to energy or electron transfer phenomena.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Strongly coupled bacteriochlorin dyad studied using phase-modulated fluorescence-detected two-dimensional electronic spectroscopy

Vivek Tiwari, Yassel Acosta Matutes, Arkaprabha Konar, Zhanqian Yu, Marcin Ptaszek, David F. Bocian, Dewey Holten, Christine Kirmaier, and Jennifer P. Ogilvie
Opt. Express 26(17) 22327-22341 (2018)

Transient-grating frequency-resolved optical gating

John N. Sweetser, David N. Fittinghoff, and Rick Trebino
Opt. Lett. 22(8) 519-521 (1997)

Automated polarization-dependent multidimensional coherent spectroscopy phased using transient absorption

J. K. Wahlstrand, G. M. Wernsing, J. Paul, and A. D. Bristow
Opt. Express 27(22) 31790-31799 (2019)

References

  • View by:
  • |
  • |
  • |

  1. N. Lambert, Y. N. Chen, Y. C. Cheng, C. M. Li, G. Y. Chen, and F. Nori, “Quantum biology,” Nat. Phys. 9, 10–18 (2012).
    [Crossref]
  2. G. D. Scholes, G. R. Fleming, L. X. Chen, A. Aspuru-Guzik, A. Buchleitner, D. F. Coker, G. S. Engel, R. V. Grondelle, A. Ishizaki, D. M. Jonas, J. S. Lundeen, J. K. McCusker, S. Mukamel, J. P. Ogilvie, A. Olaya-Castro, M. A. Ratner, F. C. Spano, B. K. Whaley, and X. Zhu, “Using coherence to enhance function in chemical and biophysical systems,” Nature 543, 647–656 (2017).
    [Crossref] [PubMed]
  3. D. M. Jonas, M. J. Lang, Y. Nagasawa, T. Joo, and G. R. Fleming, “Pump-probe polarization anisotropy study of femtosecond energy transfer within the photosynthetic reaction center of Rhodobacter sphaeroides R26,” J. Phys. Chem. 100, 12660–12673 (1996).
    [Crossref]
  4. D. C. Arnett, C. C. Moser, P. L. Dutton, and N. F. Scherer, “The first events in photosynthesis: electronic coupling and energy transfer dynamics in the photosynthetic reaction center from Rhodobacter sphaeroides,” J. Phys. Chem. B 103, 2014–2032 (1999).
    [Crossref]
  5. M. Vos, M. Jones, C. Hunter, J. Breton, J. Lambry, and J. Martin, “Coherent dynamics during the primary electron-transfer reaction in membrane-bound reaction centers of Rhodobacter sphaeroides,” Biochemistry 33, 6750–6757 (1994).
    [Crossref] [PubMed]
  6. E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and G. D. Scholes, “Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature,” Nature 463, 644–647 (2010).
    [Crossref] [PubMed]
  7. S. Westenhoff, D. Paleček, P. Edlund, P. Smith, and D. Zigmantas, “Coherent picosecond exciton dynamics in a photosynthetic reaction center,” J. Am. Chem. Soc. 134, 16484–16487 (2012).
    [Crossref] [PubMed]
  8. F. D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S. S. Senlik, D. E. Wilcox, C. F. Yocum, L. Valkunas, D. Abramavicius, and J. P. Ogilvie, “Vibronic coherence in oxygenic photosynthesis,” Nat. Chem. 6, 706–711 (2014).
    [Crossref] [PubMed]
  9. J. Dostál, T. Mančal, F. Vácha, J. Pšenčík, and D. Zigmantas, “Unraveling the nature of coherent beatings in chlorosomes,” J. Chem. Phys. 140, 115103 (2014).
    [Crossref] [PubMed]
  10. G. Panitchayangkoon, D. V. Voronine, D. Abramavicius, J. R. Caram, N. H. C. Lewis, S. Mukamel, and G. S. Engel, “Direct evidence of quantum transport in photosynthetic light-harvesting complexes,” Proc. Natl. Acad. Sci. USA 108, 20908–20912 (2011).
    [Crossref] [PubMed]
  11. P. Hamm and M. Zanni, Concepts and Methods of 2D Infrared Spectroscopy, (Cambridge University Press, 2011).
    [Crossref]
  12. N. J. Cherepy, A. P. Shreve, L. J. Moore, S. G. Boxer, and R. A. Mathies, “Electronic and nuclear dynamics of the accessory bacteriochlorophylls in bacterial photosynthetic reaction centers from resonance Raman intensities,” J. Phys. Chem. B 101, 3250–3260 (1997).
    [Crossref]
  13. M. Rätsep, Z. L. Cai, J. R. Reimers, and A. Freiberg, “Demonstration and interpretation of significant asymmetry in the low-resolution and high-resolution Qy fluorescence and absorption spectra of bacteriochlorophyll a,” J. Chem. Phys. 134, 024506 (2011).
    [Crossref]
  14. V. Butkus, D. Zigmantas, L. Valkunas, and D. Abramavicius, “Vibrational vs. electronic coherences in 2D spectrum of molecular systems,” Chem. Phys. Lett. 545, 40–43 (2012).
    [Crossref]
  15. N. Christensson, H. F. Kauffmann, T. Pullerits, and T. Mančal, “Origin of long-lived coherences in light-harvesting complexes,” J. Phys. Chem. B 116, 7449–7454 (2012).
    [Crossref] [PubMed]
  16. V. Tiwari, W. K. Peters, and D. M. Jonas, “Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework,” Proc. Natl. Acad. Sci. 110, 1203–1208 (2013).
    [Crossref]
  17. J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6, 7755 (2015).
    [Crossref] [PubMed]
  18. D. Paleček, P. Edlund, S. Westenhoff, and D. Zigmantas, “Quantum coherence as a witness of vibronically hot energy transfer in bacterial reaction center,” Sci. Adv. 3, e1603141 (2017).
    [Crossref]
  19. E. Thyrhaug, R. Tempelaar, M. J. P. Alcocer, K. Žídek, D. Bína, J. Knoester, T. L. C. Jansen, and D. Zigmantas, “Identification and characterization of diverse coherences in the Fenna-Matthews-Olson complex,” Nat. Chem. 10, 780 (2018).
    [Crossref] [PubMed]
  20. J. Seibt, T. Hansen, and T. Pullerits, “3D spectroscopy of vibrational coherences in quantum dots: theory,” J. Phys. Chem. B 117, 11124–11133 (2013).
    [Crossref] [PubMed]
  21. H. Li, A. D. Bristow, M. E. Siemens, G. Moody, and S. T. Cundiff, “Unraveling quantum pathways using optical 3D Fourier-transform spectroscopy,” Nat. Commun. 4, 1390 (2013).
    [Crossref] [PubMed]
  22. V. Butkus, J. Alster, E. Bašinskaitė, R. Augulis, P. Neuhaus, L. Valkunas, H. L. Anderson, D. Abramavicius, and D. Zigmantas, “Discrimination of diverse coherences allows identification of electronic transitions of a molecular nanoring,” J. Phys. Chem. Lett. 8, 2344–2349 (2017).
    [Crossref] [PubMed]
  23. A. Zilian and J. C. Wright, “Polarization effects in four-wave mixing of isotropic samples,” Mol. Phys. 87, 1261–1272 (1996).
    [Crossref]
  24. R. Hochstrasser, “Two-dimensional IR-spectroscopy: polarization anisotropy effects,” Chem. Phys. 266, 273–284 (2001).
    [Crossref]
  25. G. S. Schlau-Cohen, A. Ishizaki, T. R. Calhoun, N. S. Ginsberg, M. Ballottari, R. Bassi, and G. R. Fleming, “Elucidation of the timescales and origins of quantum electronic coherence in LHCII,” Nat. Chem. 4, 389–395 (2012).
    [Crossref] [PubMed]
  26. S. S. Senlik, V. R. Policht, and J. P. Ogilvie, “Two-color nonlinear spectroscopy for the rapid acquisition of coherent dynamics,” J. Phys. Chem. Lett. 6, 2413–2420 (2015).
    [Crossref] [PubMed]
  27. S. Savikhin, D. R. Buck, and W. S. Struve, “Oscillating anisotropies in a bacteriochlorophyll protein: Evidence for quantum beating between exciton levels,” Chem. Phys. 223, 303–312 (1997).
    [Crossref]
  28. R. L. Carman, R. Y. Chiao, and P. L. Kelley, “Observation of degenerate stimulated four-photon interaction and four-wave parametric amplification,” Phys. Rev. Lett. 17, 1281–1283 (1966).
    [Crossref]
  29. H. Eichler, G. Enterlein, P. Glozbach, J. Munschau, and H. Stahl, “Power requirements and resolution of real-time holograms in saturable absorbers and absorbing liquids,” Appl. Opt. 11, 372–375 (1972).
    [Crossref] [PubMed]
  30. G. Eyring and M. D. Fayer, “A picosecond holographic grating approach to molecular dynamics in oriented liquid crystal films,” J. Chem. Phys. 81, 4314–4321 (1984).
    [Crossref]
  31. J. T. Fourkas, T. R. Brewer, H. Kim, and M. D. Fayer, “Picosecond time-resolved four-wave mixing experiments in sodium-seeded flames,” Opt. Lett. 16, 177–179 (1991).
    [Crossref] [PubMed]
  32. G. D. Goodno, G. Dadusc, and R. J. D. Miller, “Ultrafast heterodyne-detected transient-grating spectroscopy using diffractive optics,” J. Opt. Soc. Am. B 15, 1791–1794 (1998).
    [Crossref]
  33. C. N. Lincoln, J. Hayden, A. G. Pour, V. Perlík, F. Šanda, and J. Hauer, “A quantitative study of coherent vibrational dynamics probed by heterodyned transient grating spectroscopy,” Vib. Spectrosc. 85, 167–174 (2016).
    [Crossref]
  34. T. Brixner, T. Mančal, I. V. Stiopkin, and G. R. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys. 121, 4221–4236 (2004).
    [Crossref] [PubMed]
  35. D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem. 54, 425–463 (2003).
    [Crossref] [PubMed]
  36. H. Lee, Y. Cheng, and G. R. Fleming, “Coherence dynamics in photosynthesis: protein protection of excitonic coherence,” Science 1462, 1462–1465 (2007).
    [Crossref]
  37. I. S. Ryu, H. Dong, and G. R. Fleming, “Role of electronic-vibrational mixing in enhancing vibrational coherences in the ground electronic states of photosynthetic bacterial reaction center,” J. Phys. Chem. B 118, 1381–1388 (2014).
    [Crossref] [PubMed]
  38. J. A. Jackson, S. Lin, A. K. W. Taguchi, J. C. Williams, J. Allen, and N. W. Woodbury, “Energy transfer in Rhodobacter sphaeroides reaction centers with the initial electron donor oxidized or missing,” J. Phys. Chem. B 101, 5747–5754 (1997).
    [Crossref]
  39. C. Kirmaier, D. Holten, and W. W. Parson, “Temperature and detection-wavelength dependence of the picosecond electron-transfer kinetics measured in Rhodopseudomonas sphaeroides reaction centers. Resolution of new spectral and kinetic components in the primary charge-separation process,” Biochim. Biophys. Acta 810, 33–48 (1985).
    [Crossref]
  40. D. Paleček, “Quantum coherence for light harvesting,” Ph.D. thesis, Lund University (2015).
  41. V. Butkus, A. Gelzinis, R. Augulis, A. Gall, C. Büchel, B. Robert, D. Zigmantas, L. Valkunas, and D. Abramavicius, “Coherence and population dynamics of chlorophyll excitations in FCP complex: Two-dimensional spectroscopy study,” J. Chem. Phys. 142, 212414 (2015).
    [Crossref] [PubMed]
  42. M. K. Yetzbacher, N. Belabas, K. A. Kitney, and D. M. Jonas, “Propagation, beam geometry, and detection distortions of peak shapes in two-dimensional Fourier transform spectra,” J. Chem. Phys. 126, 044511 (2007).
    [Crossref]
  43. D. G. Osborne and K. J. Kubarych, “Rapid and accurate measurement of the frequency-frequency correlation function,” J. Phys. Chem. A 117, 5891–5898 (2013).
    [Crossref]
  44. J. M. Womick and A. M. Moran, “Vibronic enhancement of exciton sizes and energy transport in photosynthetic complexes,” J. Phys. Chem. B 115, 1347–1356 (2011).
    [Crossref] [PubMed]
  45. D. M. Jonas, “Vibrational and nonadiabatic coherence in 2D electronic spectroscopy, the Jahn-Teller effect, and energy transfer,” Ann. Rev. Phys. Chem. 69, 327–352 (2018).
    [Crossref]
  46. Y. Nagasawa, Y. Yoneda, S. Nambu, M. Muramatsu, E. Takeuchi, H. Tsumori, S. Morikawa, T. Katayama, and H. Miyasaka, “Coherent wavepacket motion in an ultrafast electron transfer system monitored by femtosecond degenerate four-wave-mixing and pump-probe spectroscopy,” Chem. Phys. 442, 68–76 (2014).
    [Crossref]
  47. R. Augulis and D. Zigmantas, “Two-dimensional electronic spectroscopy with double modulation lock-in detection: enhancement of sensitivity and noise resistance,” Opt. Express 19, 13126–13133 (2011).
    [Crossref] [PubMed]
  48. R. Augulis and D. Zigmantas, “Detector and dispersive delay calibration issues in broadband 2D electronic spectroscopy,” J. Opt. Soc. Am. B 30, 1770–1774 (2013).
    [Crossref]

2018 (2)

E. Thyrhaug, R. Tempelaar, M. J. P. Alcocer, K. Žídek, D. Bína, J. Knoester, T. L. C. Jansen, and D. Zigmantas, “Identification and characterization of diverse coherences in the Fenna-Matthews-Olson complex,” Nat. Chem. 10, 780 (2018).
[Crossref] [PubMed]

D. M. Jonas, “Vibrational and nonadiabatic coherence in 2D electronic spectroscopy, the Jahn-Teller effect, and energy transfer,” Ann. Rev. Phys. Chem. 69, 327–352 (2018).
[Crossref]

2017 (3)

V. Butkus, J. Alster, E. Bašinskaitė, R. Augulis, P. Neuhaus, L. Valkunas, H. L. Anderson, D. Abramavicius, and D. Zigmantas, “Discrimination of diverse coherences allows identification of electronic transitions of a molecular nanoring,” J. Phys. Chem. Lett. 8, 2344–2349 (2017).
[Crossref] [PubMed]

D. Paleček, P. Edlund, S. Westenhoff, and D. Zigmantas, “Quantum coherence as a witness of vibronically hot energy transfer in bacterial reaction center,” Sci. Adv. 3, e1603141 (2017).
[Crossref]

G. D. Scholes, G. R. Fleming, L. X. Chen, A. Aspuru-Guzik, A. Buchleitner, D. F. Coker, G. S. Engel, R. V. Grondelle, A. Ishizaki, D. M. Jonas, J. S. Lundeen, J. K. McCusker, S. Mukamel, J. P. Ogilvie, A. Olaya-Castro, M. A. Ratner, F. C. Spano, B. K. Whaley, and X. Zhu, “Using coherence to enhance function in chemical and biophysical systems,” Nature 543, 647–656 (2017).
[Crossref] [PubMed]

2016 (1)

C. N. Lincoln, J. Hayden, A. G. Pour, V. Perlík, F. Šanda, and J. Hauer, “A quantitative study of coherent vibrational dynamics probed by heterodyned transient grating spectroscopy,” Vib. Spectrosc. 85, 167–174 (2016).
[Crossref]

2015 (3)

S. S. Senlik, V. R. Policht, and J. P. Ogilvie, “Two-color nonlinear spectroscopy for the rapid acquisition of coherent dynamics,” J. Phys. Chem. Lett. 6, 2413–2420 (2015).
[Crossref] [PubMed]

J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6, 7755 (2015).
[Crossref] [PubMed]

V. Butkus, A. Gelzinis, R. Augulis, A. Gall, C. Büchel, B. Robert, D. Zigmantas, L. Valkunas, and D. Abramavicius, “Coherence and population dynamics of chlorophyll excitations in FCP complex: Two-dimensional spectroscopy study,” J. Chem. Phys. 142, 212414 (2015).
[Crossref] [PubMed]

2014 (4)

I. S. Ryu, H. Dong, and G. R. Fleming, “Role of electronic-vibrational mixing in enhancing vibrational coherences in the ground electronic states of photosynthetic bacterial reaction center,” J. Phys. Chem. B 118, 1381–1388 (2014).
[Crossref] [PubMed]

Y. Nagasawa, Y. Yoneda, S. Nambu, M. Muramatsu, E. Takeuchi, H. Tsumori, S. Morikawa, T. Katayama, and H. Miyasaka, “Coherent wavepacket motion in an ultrafast electron transfer system monitored by femtosecond degenerate four-wave-mixing and pump-probe spectroscopy,” Chem. Phys. 442, 68–76 (2014).
[Crossref]

F. D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S. S. Senlik, D. E. Wilcox, C. F. Yocum, L. Valkunas, D. Abramavicius, and J. P. Ogilvie, “Vibronic coherence in oxygenic photosynthesis,” Nat. Chem. 6, 706–711 (2014).
[Crossref] [PubMed]

J. Dostál, T. Mančal, F. Vácha, J. Pšenčík, and D. Zigmantas, “Unraveling the nature of coherent beatings in chlorosomes,” J. Chem. Phys. 140, 115103 (2014).
[Crossref] [PubMed]

2013 (5)

V. Tiwari, W. K. Peters, and D. M. Jonas, “Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework,” Proc. Natl. Acad. Sci. 110, 1203–1208 (2013).
[Crossref]

J. Seibt, T. Hansen, and T. Pullerits, “3D spectroscopy of vibrational coherences in quantum dots: theory,” J. Phys. Chem. B 117, 11124–11133 (2013).
[Crossref] [PubMed]

H. Li, A. D. Bristow, M. E. Siemens, G. Moody, and S. T. Cundiff, “Unraveling quantum pathways using optical 3D Fourier-transform spectroscopy,” Nat. Commun. 4, 1390 (2013).
[Crossref] [PubMed]

D. G. Osborne and K. J. Kubarych, “Rapid and accurate measurement of the frequency-frequency correlation function,” J. Phys. Chem. A 117, 5891–5898 (2013).
[Crossref]

R. Augulis and D. Zigmantas, “Detector and dispersive delay calibration issues in broadband 2D electronic spectroscopy,” J. Opt. Soc. Am. B 30, 1770–1774 (2013).
[Crossref]

2012 (5)

G. S. Schlau-Cohen, A. Ishizaki, T. R. Calhoun, N. S. Ginsberg, M. Ballottari, R. Bassi, and G. R. Fleming, “Elucidation of the timescales and origins of quantum electronic coherence in LHCII,” Nat. Chem. 4, 389–395 (2012).
[Crossref] [PubMed]

V. Butkus, D. Zigmantas, L. Valkunas, and D. Abramavicius, “Vibrational vs. electronic coherences in 2D spectrum of molecular systems,” Chem. Phys. Lett. 545, 40–43 (2012).
[Crossref]

N. Christensson, H. F. Kauffmann, T. Pullerits, and T. Mančal, “Origin of long-lived coherences in light-harvesting complexes,” J. Phys. Chem. B 116, 7449–7454 (2012).
[Crossref] [PubMed]

N. Lambert, Y. N. Chen, Y. C. Cheng, C. M. Li, G. Y. Chen, and F. Nori, “Quantum biology,” Nat. Phys. 9, 10–18 (2012).
[Crossref]

S. Westenhoff, D. Paleček, P. Edlund, P. Smith, and D. Zigmantas, “Coherent picosecond exciton dynamics in a photosynthetic reaction center,” J. Am. Chem. Soc. 134, 16484–16487 (2012).
[Crossref] [PubMed]

2011 (4)

M. Rätsep, Z. L. Cai, J. R. Reimers, and A. Freiberg, “Demonstration and interpretation of significant asymmetry in the low-resolution and high-resolution Qy fluorescence and absorption spectra of bacteriochlorophyll a,” J. Chem. Phys. 134, 024506 (2011).
[Crossref]

G. Panitchayangkoon, D. V. Voronine, D. Abramavicius, J. R. Caram, N. H. C. Lewis, S. Mukamel, and G. S. Engel, “Direct evidence of quantum transport in photosynthetic light-harvesting complexes,” Proc. Natl. Acad. Sci. USA 108, 20908–20912 (2011).
[Crossref] [PubMed]

J. M. Womick and A. M. Moran, “Vibronic enhancement of exciton sizes and energy transport in photosynthetic complexes,” J. Phys. Chem. B 115, 1347–1356 (2011).
[Crossref] [PubMed]

R. Augulis and D. Zigmantas, “Two-dimensional electronic spectroscopy with double modulation lock-in detection: enhancement of sensitivity and noise resistance,” Opt. Express 19, 13126–13133 (2011).
[Crossref] [PubMed]

2010 (1)

E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and G. D. Scholes, “Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature,” Nature 463, 644–647 (2010).
[Crossref] [PubMed]

2007 (2)

H. Lee, Y. Cheng, and G. R. Fleming, “Coherence dynamics in photosynthesis: protein protection of excitonic coherence,” Science 1462, 1462–1465 (2007).
[Crossref]

M. K. Yetzbacher, N. Belabas, K. A. Kitney, and D. M. Jonas, “Propagation, beam geometry, and detection distortions of peak shapes in two-dimensional Fourier transform spectra,” J. Chem. Phys. 126, 044511 (2007).
[Crossref]

2004 (1)

T. Brixner, T. Mančal, I. V. Stiopkin, and G. R. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys. 121, 4221–4236 (2004).
[Crossref] [PubMed]

2003 (1)

D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem. 54, 425–463 (2003).
[Crossref] [PubMed]

2001 (1)

R. Hochstrasser, “Two-dimensional IR-spectroscopy: polarization anisotropy effects,” Chem. Phys. 266, 273–284 (2001).
[Crossref]

1999 (1)

D. C. Arnett, C. C. Moser, P. L. Dutton, and N. F. Scherer, “The first events in photosynthesis: electronic coupling and energy transfer dynamics in the photosynthetic reaction center from Rhodobacter sphaeroides,” J. Phys. Chem. B 103, 2014–2032 (1999).
[Crossref]

1998 (1)

1997 (3)

S. Savikhin, D. R. Buck, and W. S. Struve, “Oscillating anisotropies in a bacteriochlorophyll protein: Evidence for quantum beating between exciton levels,” Chem. Phys. 223, 303–312 (1997).
[Crossref]

N. J. Cherepy, A. P. Shreve, L. J. Moore, S. G. Boxer, and R. A. Mathies, “Electronic and nuclear dynamics of the accessory bacteriochlorophylls in bacterial photosynthetic reaction centers from resonance Raman intensities,” J. Phys. Chem. B 101, 3250–3260 (1997).
[Crossref]

J. A. Jackson, S. Lin, A. K. W. Taguchi, J. C. Williams, J. Allen, and N. W. Woodbury, “Energy transfer in Rhodobacter sphaeroides reaction centers with the initial electron donor oxidized or missing,” J. Phys. Chem. B 101, 5747–5754 (1997).
[Crossref]

1996 (2)

D. M. Jonas, M. J. Lang, Y. Nagasawa, T. Joo, and G. R. Fleming, “Pump-probe polarization anisotropy study of femtosecond energy transfer within the photosynthetic reaction center of Rhodobacter sphaeroides R26,” J. Phys. Chem. 100, 12660–12673 (1996).
[Crossref]

A. Zilian and J. C. Wright, “Polarization effects in four-wave mixing of isotropic samples,” Mol. Phys. 87, 1261–1272 (1996).
[Crossref]

1994 (1)

M. Vos, M. Jones, C. Hunter, J. Breton, J. Lambry, and J. Martin, “Coherent dynamics during the primary electron-transfer reaction in membrane-bound reaction centers of Rhodobacter sphaeroides,” Biochemistry 33, 6750–6757 (1994).
[Crossref] [PubMed]

1991 (1)

1985 (1)

C. Kirmaier, D. Holten, and W. W. Parson, “Temperature and detection-wavelength dependence of the picosecond electron-transfer kinetics measured in Rhodopseudomonas sphaeroides reaction centers. Resolution of new spectral and kinetic components in the primary charge-separation process,” Biochim. Biophys. Acta 810, 33–48 (1985).
[Crossref]

1984 (1)

G. Eyring and M. D. Fayer, “A picosecond holographic grating approach to molecular dynamics in oriented liquid crystal films,” J. Chem. Phys. 81, 4314–4321 (1984).
[Crossref]

1972 (1)

1966 (1)

R. L. Carman, R. Y. Chiao, and P. L. Kelley, “Observation of degenerate stimulated four-photon interaction and four-wave parametric amplification,” Phys. Rev. Lett. 17, 1281–1283 (1966).
[Crossref]

Abramavicius, D.

V. Butkus, J. Alster, E. Bašinskaitė, R. Augulis, P. Neuhaus, L. Valkunas, H. L. Anderson, D. Abramavicius, and D. Zigmantas, “Discrimination of diverse coherences allows identification of electronic transitions of a molecular nanoring,” J. Phys. Chem. Lett. 8, 2344–2349 (2017).
[Crossref] [PubMed]

V. Butkus, A. Gelzinis, R. Augulis, A. Gall, C. Büchel, B. Robert, D. Zigmantas, L. Valkunas, and D. Abramavicius, “Coherence and population dynamics of chlorophyll excitations in FCP complex: Two-dimensional spectroscopy study,” J. Chem. Phys. 142, 212414 (2015).
[Crossref] [PubMed]

F. D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S. S. Senlik, D. E. Wilcox, C. F. Yocum, L. Valkunas, D. Abramavicius, and J. P. Ogilvie, “Vibronic coherence in oxygenic photosynthesis,” Nat. Chem. 6, 706–711 (2014).
[Crossref] [PubMed]

V. Butkus, D. Zigmantas, L. Valkunas, and D. Abramavicius, “Vibrational vs. electronic coherences in 2D spectrum of molecular systems,” Chem. Phys. Lett. 545, 40–43 (2012).
[Crossref]

G. Panitchayangkoon, D. V. Voronine, D. Abramavicius, J. R. Caram, N. H. C. Lewis, S. Mukamel, and G. S. Engel, “Direct evidence of quantum transport in photosynthetic light-harvesting complexes,” Proc. Natl. Acad. Sci. USA 108, 20908–20912 (2011).
[Crossref] [PubMed]

Alcocer, M. J. P.

E. Thyrhaug, R. Tempelaar, M. J. P. Alcocer, K. Žídek, D. Bína, J. Knoester, T. L. C. Jansen, and D. Zigmantas, “Identification and characterization of diverse coherences in the Fenna-Matthews-Olson complex,” Nat. Chem. 10, 780 (2018).
[Crossref] [PubMed]

Allen, J.

J. A. Jackson, S. Lin, A. K. W. Taguchi, J. C. Williams, J. Allen, and N. W. Woodbury, “Energy transfer in Rhodobacter sphaeroides reaction centers with the initial electron donor oxidized or missing,” J. Phys. Chem. B 101, 5747–5754 (1997).
[Crossref]

Alster, J.

V. Butkus, J. Alster, E. Bašinskaitė, R. Augulis, P. Neuhaus, L. Valkunas, H. L. Anderson, D. Abramavicius, and D. Zigmantas, “Discrimination of diverse coherences allows identification of electronic transitions of a molecular nanoring,” J. Phys. Chem. Lett. 8, 2344–2349 (2017).
[Crossref] [PubMed]

Anderson, H. L.

V. Butkus, J. Alster, E. Bašinskaitė, R. Augulis, P. Neuhaus, L. Valkunas, H. L. Anderson, D. Abramavicius, and D. Zigmantas, “Discrimination of diverse coherences allows identification of electronic transitions of a molecular nanoring,” J. Phys. Chem. Lett. 8, 2344–2349 (2017).
[Crossref] [PubMed]

Arnett, D. C.

D. C. Arnett, C. C. Moser, P. L. Dutton, and N. F. Scherer, “The first events in photosynthesis: electronic coupling and energy transfer dynamics in the photosynthetic reaction center from Rhodobacter sphaeroides,” J. Phys. Chem. B 103, 2014–2032 (1999).
[Crossref]

Aspuru-Guzik, A.

G. D. Scholes, G. R. Fleming, L. X. Chen, A. Aspuru-Guzik, A. Buchleitner, D. F. Coker, G. S. Engel, R. V. Grondelle, A. Ishizaki, D. M. Jonas, J. S. Lundeen, J. K. McCusker, S. Mukamel, J. P. Ogilvie, A. Olaya-Castro, M. A. Ratner, F. C. Spano, B. K. Whaley, and X. Zhu, “Using coherence to enhance function in chemical and biophysical systems,” Nature 543, 647–656 (2017).
[Crossref] [PubMed]

Augulis, R.

V. Butkus, J. Alster, E. Bašinskaitė, R. Augulis, P. Neuhaus, L. Valkunas, H. L. Anderson, D. Abramavicius, and D. Zigmantas, “Discrimination of diverse coherences allows identification of electronic transitions of a molecular nanoring,” J. Phys. Chem. Lett. 8, 2344–2349 (2017).
[Crossref] [PubMed]

V. Butkus, A. Gelzinis, R. Augulis, A. Gall, C. Büchel, B. Robert, D. Zigmantas, L. Valkunas, and D. Abramavicius, “Coherence and population dynamics of chlorophyll excitations in FCP complex: Two-dimensional spectroscopy study,” J. Chem. Phys. 142, 212414 (2015).
[Crossref] [PubMed]

R. Augulis and D. Zigmantas, “Detector and dispersive delay calibration issues in broadband 2D electronic spectroscopy,” J. Opt. Soc. Am. B 30, 1770–1774 (2013).
[Crossref]

R. Augulis and D. Zigmantas, “Two-dimensional electronic spectroscopy with double modulation lock-in detection: enhancement of sensitivity and noise resistance,” Opt. Express 19, 13126–13133 (2011).
[Crossref] [PubMed]

Ballottari, M.

G. S. Schlau-Cohen, A. Ishizaki, T. R. Calhoun, N. S. Ginsberg, M. Ballottari, R. Bassi, and G. R. Fleming, “Elucidation of the timescales and origins of quantum electronic coherence in LHCII,” Nat. Chem. 4, 389–395 (2012).
[Crossref] [PubMed]

Bašinskaite, E.

V. Butkus, J. Alster, E. Bašinskaitė, R. Augulis, P. Neuhaus, L. Valkunas, H. L. Anderson, D. Abramavicius, and D. Zigmantas, “Discrimination of diverse coherences allows identification of electronic transitions of a molecular nanoring,” J. Phys. Chem. Lett. 8, 2344–2349 (2017).
[Crossref] [PubMed]

Bassi, R.

G. S. Schlau-Cohen, A. Ishizaki, T. R. Calhoun, N. S. Ginsberg, M. Ballottari, R. Bassi, and G. R. Fleming, “Elucidation of the timescales and origins of quantum electronic coherence in LHCII,” Nat. Chem. 4, 389–395 (2012).
[Crossref] [PubMed]

Belabas, N.

M. K. Yetzbacher, N. Belabas, K. A. Kitney, and D. M. Jonas, “Propagation, beam geometry, and detection distortions of peak shapes in two-dimensional Fourier transform spectra,” J. Chem. Phys. 126, 044511 (2007).
[Crossref]

Berlepsch, H. von

J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6, 7755 (2015).
[Crossref] [PubMed]

Bína, D.

E. Thyrhaug, R. Tempelaar, M. J. P. Alcocer, K. Žídek, D. Bína, J. Knoester, T. L. C. Jansen, and D. Zigmantas, “Identification and characterization of diverse coherences in the Fenna-Matthews-Olson complex,” Nat. Chem. 10, 780 (2018).
[Crossref] [PubMed]

Boxer, S. G.

N. J. Cherepy, A. P. Shreve, L. J. Moore, S. G. Boxer, and R. A. Mathies, “Electronic and nuclear dynamics of the accessory bacteriochlorophylls in bacterial photosynthetic reaction centers from resonance Raman intensities,” J. Phys. Chem. B 101, 3250–3260 (1997).
[Crossref]

Breton, J.

M. Vos, M. Jones, C. Hunter, J. Breton, J. Lambry, and J. Martin, “Coherent dynamics during the primary electron-transfer reaction in membrane-bound reaction centers of Rhodobacter sphaeroides,” Biochemistry 33, 6750–6757 (1994).
[Crossref] [PubMed]

Brewer, T. R.

Bristow, A. D.

H. Li, A. D. Bristow, M. E. Siemens, G. Moody, and S. T. Cundiff, “Unraveling quantum pathways using optical 3D Fourier-transform spectroscopy,” Nat. Commun. 4, 1390 (2013).
[Crossref] [PubMed]

Brixner, T.

T. Brixner, T. Mančal, I. V. Stiopkin, and G. R. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys. 121, 4221–4236 (2004).
[Crossref] [PubMed]

Brumer, P.

E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and G. D. Scholes, “Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature,” Nature 463, 644–647 (2010).
[Crossref] [PubMed]

Büchel, C.

V. Butkus, A. Gelzinis, R. Augulis, A. Gall, C. Büchel, B. Robert, D. Zigmantas, L. Valkunas, and D. Abramavicius, “Coherence and population dynamics of chlorophyll excitations in FCP complex: Two-dimensional spectroscopy study,” J. Chem. Phys. 142, 212414 (2015).
[Crossref] [PubMed]

Buchleitner, A.

G. D. Scholes, G. R. Fleming, L. X. Chen, A. Aspuru-Guzik, A. Buchleitner, D. F. Coker, G. S. Engel, R. V. Grondelle, A. Ishizaki, D. M. Jonas, J. S. Lundeen, J. K. McCusker, S. Mukamel, J. P. Ogilvie, A. Olaya-Castro, M. A. Ratner, F. C. Spano, B. K. Whaley, and X. Zhu, “Using coherence to enhance function in chemical and biophysical systems,” Nature 543, 647–656 (2017).
[Crossref] [PubMed]

Buck, D. R.

S. Savikhin, D. R. Buck, and W. S. Struve, “Oscillating anisotropies in a bacteriochlorophyll protein: Evidence for quantum beating between exciton levels,” Chem. Phys. 223, 303–312 (1997).
[Crossref]

Butkus, V.

V. Butkus, J. Alster, E. Bašinskaitė, R. Augulis, P. Neuhaus, L. Valkunas, H. L. Anderson, D. Abramavicius, and D. Zigmantas, “Discrimination of diverse coherences allows identification of electronic transitions of a molecular nanoring,” J. Phys. Chem. Lett. 8, 2344–2349 (2017).
[Crossref] [PubMed]

V. Butkus, A. Gelzinis, R. Augulis, A. Gall, C. Büchel, B. Robert, D. Zigmantas, L. Valkunas, and D. Abramavicius, “Coherence and population dynamics of chlorophyll excitations in FCP complex: Two-dimensional spectroscopy study,” J. Chem. Phys. 142, 212414 (2015).
[Crossref] [PubMed]

F. D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S. S. Senlik, D. E. Wilcox, C. F. Yocum, L. Valkunas, D. Abramavicius, and J. P. Ogilvie, “Vibronic coherence in oxygenic photosynthesis,” Nat. Chem. 6, 706–711 (2014).
[Crossref] [PubMed]

V. Butkus, D. Zigmantas, L. Valkunas, and D. Abramavicius, “Vibrational vs. electronic coherences in 2D spectrum of molecular systems,” Chem. Phys. Lett. 545, 40–43 (2012).
[Crossref]

Cai, Z. L.

M. Rätsep, Z. L. Cai, J. R. Reimers, and A. Freiberg, “Demonstration and interpretation of significant asymmetry in the low-resolution and high-resolution Qy fluorescence and absorption spectra of bacteriochlorophyll a,” J. Chem. Phys. 134, 024506 (2011).
[Crossref]

Calhoun, T. R.

G. S. Schlau-Cohen, A. Ishizaki, T. R. Calhoun, N. S. Ginsberg, M. Ballottari, R. Bassi, and G. R. Fleming, “Elucidation of the timescales and origins of quantum electronic coherence in LHCII,” Nat. Chem. 4, 389–395 (2012).
[Crossref] [PubMed]

Caram, J. R.

G. Panitchayangkoon, D. V. Voronine, D. Abramavicius, J. R. Caram, N. H. C. Lewis, S. Mukamel, and G. S. Engel, “Direct evidence of quantum transport in photosynthetic light-harvesting complexes,” Proc. Natl. Acad. Sci. USA 108, 20908–20912 (2011).
[Crossref] [PubMed]

Carman, R. L.

R. L. Carman, R. Y. Chiao, and P. L. Kelley, “Observation of degenerate stimulated four-photon interaction and four-wave parametric amplification,” Phys. Rev. Lett. 17, 1281–1283 (1966).
[Crossref]

Caycedo-Soler, F.

J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6, 7755 (2015).
[Crossref] [PubMed]

Chen, G. Y.

N. Lambert, Y. N. Chen, Y. C. Cheng, C. M. Li, G. Y. Chen, and F. Nori, “Quantum biology,” Nat. Phys. 9, 10–18 (2012).
[Crossref]

Chen, L. X.

G. D. Scholes, G. R. Fleming, L. X. Chen, A. Aspuru-Guzik, A. Buchleitner, D. F. Coker, G. S. Engel, R. V. Grondelle, A. Ishizaki, D. M. Jonas, J. S. Lundeen, J. K. McCusker, S. Mukamel, J. P. Ogilvie, A. Olaya-Castro, M. A. Ratner, F. C. Spano, B. K. Whaley, and X. Zhu, “Using coherence to enhance function in chemical and biophysical systems,” Nature 543, 647–656 (2017).
[Crossref] [PubMed]

Chen, Y. N.

N. Lambert, Y. N. Chen, Y. C. Cheng, C. M. Li, G. Y. Chen, and F. Nori, “Quantum biology,” Nat. Phys. 9, 10–18 (2012).
[Crossref]

Cheng, Y.

H. Lee, Y. Cheng, and G. R. Fleming, “Coherence dynamics in photosynthesis: protein protection of excitonic coherence,” Science 1462, 1462–1465 (2007).
[Crossref]

Cheng, Y. C.

N. Lambert, Y. N. Chen, Y. C. Cheng, C. M. Li, G. Y. Chen, and F. Nori, “Quantum biology,” Nat. Phys. 9, 10–18 (2012).
[Crossref]

Cherepy, N. J.

N. J. Cherepy, A. P. Shreve, L. J. Moore, S. G. Boxer, and R. A. Mathies, “Electronic and nuclear dynamics of the accessory bacteriochlorophylls in bacterial photosynthetic reaction centers from resonance Raman intensities,” J. Phys. Chem. B 101, 3250–3260 (1997).
[Crossref]

Chiao, R. Y.

R. L. Carman, R. Y. Chiao, and P. L. Kelley, “Observation of degenerate stimulated four-photon interaction and four-wave parametric amplification,” Phys. Rev. Lett. 17, 1281–1283 (1966).
[Crossref]

Christensson, N.

N. Christensson, H. F. Kauffmann, T. Pullerits, and T. Mančal, “Origin of long-lived coherences in light-harvesting complexes,” J. Phys. Chem. B 116, 7449–7454 (2012).
[Crossref] [PubMed]

Coker, D. F.

G. D. Scholes, G. R. Fleming, L. X. Chen, A. Aspuru-Guzik, A. Buchleitner, D. F. Coker, G. S. Engel, R. V. Grondelle, A. Ishizaki, D. M. Jonas, J. S. Lundeen, J. K. McCusker, S. Mukamel, J. P. Ogilvie, A. Olaya-Castro, M. A. Ratner, F. C. Spano, B. K. Whaley, and X. Zhu, “Using coherence to enhance function in chemical and biophysical systems,” Nature 543, 647–656 (2017).
[Crossref] [PubMed]

Collini, E.

E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and G. D. Scholes, “Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature,” Nature 463, 644–647 (2010).
[Crossref] [PubMed]

Cundiff, S. T.

H. Li, A. D. Bristow, M. E. Siemens, G. Moody, and S. T. Cundiff, “Unraveling quantum pathways using optical 3D Fourier-transform spectroscopy,” Nat. Commun. 4, 1390 (2013).
[Crossref] [PubMed]

Curmi, P. M. G.

E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and G. D. Scholes, “Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature,” Nature 463, 644–647 (2010).
[Crossref] [PubMed]

Dadusc, G.

Dong, H.

I. S. Ryu, H. Dong, and G. R. Fleming, “Role of electronic-vibrational mixing in enhancing vibrational coherences in the ground electronic states of photosynthetic bacterial reaction center,” J. Phys. Chem. B 118, 1381–1388 (2014).
[Crossref] [PubMed]

Dostál, J.

J. Dostál, T. Mančal, F. Vácha, J. Pšenčík, and D. Zigmantas, “Unraveling the nature of coherent beatings in chlorosomes,” J. Chem. Phys. 140, 115103 (2014).
[Crossref] [PubMed]

Dutton, P. L.

D. C. Arnett, C. C. Moser, P. L. Dutton, and N. F. Scherer, “The first events in photosynthesis: electronic coupling and energy transfer dynamics in the photosynthetic reaction center from Rhodobacter sphaeroides,” J. Phys. Chem. B 103, 2014–2032 (1999).
[Crossref]

Edlund, P.

D. Paleček, P. Edlund, S. Westenhoff, and D. Zigmantas, “Quantum coherence as a witness of vibronically hot energy transfer in bacterial reaction center,” Sci. Adv. 3, e1603141 (2017).
[Crossref]

S. Westenhoff, D. Paleček, P. Edlund, P. Smith, and D. Zigmantas, “Coherent picosecond exciton dynamics in a photosynthetic reaction center,” J. Am. Chem. Soc. 134, 16484–16487 (2012).
[Crossref] [PubMed]

Eichler, H.

Engel, G. S.

G. D. Scholes, G. R. Fleming, L. X. Chen, A. Aspuru-Guzik, A. Buchleitner, D. F. Coker, G. S. Engel, R. V. Grondelle, A. Ishizaki, D. M. Jonas, J. S. Lundeen, J. K. McCusker, S. Mukamel, J. P. Ogilvie, A. Olaya-Castro, M. A. Ratner, F. C. Spano, B. K. Whaley, and X. Zhu, “Using coherence to enhance function in chemical and biophysical systems,” Nature 543, 647–656 (2017).
[Crossref] [PubMed]

G. Panitchayangkoon, D. V. Voronine, D. Abramavicius, J. R. Caram, N. H. C. Lewis, S. Mukamel, and G. S. Engel, “Direct evidence of quantum transport in photosynthetic light-harvesting complexes,” Proc. Natl. Acad. Sci. USA 108, 20908–20912 (2011).
[Crossref] [PubMed]

Enterlein, G.

Eyring, G.

G. Eyring and M. D. Fayer, “A picosecond holographic grating approach to molecular dynamics in oriented liquid crystal films,” J. Chem. Phys. 81, 4314–4321 (1984).
[Crossref]

Fayer, M. D.

J. T. Fourkas, T. R. Brewer, H. Kim, and M. D. Fayer, “Picosecond time-resolved four-wave mixing experiments in sodium-seeded flames,” Opt. Lett. 16, 177–179 (1991).
[Crossref] [PubMed]

G. Eyring and M. D. Fayer, “A picosecond holographic grating approach to molecular dynamics in oriented liquid crystal films,” J. Chem. Phys. 81, 4314–4321 (1984).
[Crossref]

Fleming, G. R.

G. D. Scholes, G. R. Fleming, L. X. Chen, A. Aspuru-Guzik, A. Buchleitner, D. F. Coker, G. S. Engel, R. V. Grondelle, A. Ishizaki, D. M. Jonas, J. S. Lundeen, J. K. McCusker, S. Mukamel, J. P. Ogilvie, A. Olaya-Castro, M. A. Ratner, F. C. Spano, B. K. Whaley, and X. Zhu, “Using coherence to enhance function in chemical and biophysical systems,” Nature 543, 647–656 (2017).
[Crossref] [PubMed]

I. S. Ryu, H. Dong, and G. R. Fleming, “Role of electronic-vibrational mixing in enhancing vibrational coherences in the ground electronic states of photosynthetic bacterial reaction center,” J. Phys. Chem. B 118, 1381–1388 (2014).
[Crossref] [PubMed]

G. S. Schlau-Cohen, A. Ishizaki, T. R. Calhoun, N. S. Ginsberg, M. Ballottari, R. Bassi, and G. R. Fleming, “Elucidation of the timescales and origins of quantum electronic coherence in LHCII,” Nat. Chem. 4, 389–395 (2012).
[Crossref] [PubMed]

H. Lee, Y. Cheng, and G. R. Fleming, “Coherence dynamics in photosynthesis: protein protection of excitonic coherence,” Science 1462, 1462–1465 (2007).
[Crossref]

T. Brixner, T. Mančal, I. V. Stiopkin, and G. R. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys. 121, 4221–4236 (2004).
[Crossref] [PubMed]

D. M. Jonas, M. J. Lang, Y. Nagasawa, T. Joo, and G. R. Fleming, “Pump-probe polarization anisotropy study of femtosecond energy transfer within the photosynthetic reaction center of Rhodobacter sphaeroides R26,” J. Phys. Chem. 100, 12660–12673 (1996).
[Crossref]

Fourkas, J. T.

Freiberg, A.

M. Rätsep, Z. L. Cai, J. R. Reimers, and A. Freiberg, “Demonstration and interpretation of significant asymmetry in the low-resolution and high-resolution Qy fluorescence and absorption spectra of bacteriochlorophyll a,” J. Chem. Phys. 134, 024506 (2011).
[Crossref]

Fuller, F. D.

F. D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S. S. Senlik, D. E. Wilcox, C. F. Yocum, L. Valkunas, D. Abramavicius, and J. P. Ogilvie, “Vibronic coherence in oxygenic photosynthesis,” Nat. Chem. 6, 706–711 (2014).
[Crossref] [PubMed]

Gall, A.

V. Butkus, A. Gelzinis, R. Augulis, A. Gall, C. Büchel, B. Robert, D. Zigmantas, L. Valkunas, and D. Abramavicius, “Coherence and population dynamics of chlorophyll excitations in FCP complex: Two-dimensional spectroscopy study,” J. Chem. Phys. 142, 212414 (2015).
[Crossref] [PubMed]

Gelzinis, A.

V. Butkus, A. Gelzinis, R. Augulis, A. Gall, C. Büchel, B. Robert, D. Zigmantas, L. Valkunas, and D. Abramavicius, “Coherence and population dynamics of chlorophyll excitations in FCP complex: Two-dimensional spectroscopy study,” J. Chem. Phys. 142, 212414 (2015).
[Crossref] [PubMed]

F. D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S. S. Senlik, D. E. Wilcox, C. F. Yocum, L. Valkunas, D. Abramavicius, and J. P. Ogilvie, “Vibronic coherence in oxygenic photosynthesis,” Nat. Chem. 6, 706–711 (2014).
[Crossref] [PubMed]

Ginsberg, N. S.

G. S. Schlau-Cohen, A. Ishizaki, T. R. Calhoun, N. S. Ginsberg, M. Ballottari, R. Bassi, and G. R. Fleming, “Elucidation of the timescales and origins of quantum electronic coherence in LHCII,” Nat. Chem. 4, 389–395 (2012).
[Crossref] [PubMed]

Glozbach, P.

Goodno, G. D.

Grondelle, R. V.

G. D. Scholes, G. R. Fleming, L. X. Chen, A. Aspuru-Guzik, A. Buchleitner, D. F. Coker, G. S. Engel, R. V. Grondelle, A. Ishizaki, D. M. Jonas, J. S. Lundeen, J. K. McCusker, S. Mukamel, J. P. Ogilvie, A. Olaya-Castro, M. A. Ratner, F. C. Spano, B. K. Whaley, and X. Zhu, “Using coherence to enhance function in chemical and biophysical systems,” Nature 543, 647–656 (2017).
[Crossref] [PubMed]

Hamm, P.

P. Hamm and M. Zanni, Concepts and Methods of 2D Infrared Spectroscopy, (Cambridge University Press, 2011).
[Crossref]

Hansen, T.

J. Seibt, T. Hansen, and T. Pullerits, “3D spectroscopy of vibrational coherences in quantum dots: theory,” J. Phys. Chem. B 117, 11124–11133 (2013).
[Crossref] [PubMed]

Hauer, J.

C. N. Lincoln, J. Hayden, A. G. Pour, V. Perlík, F. Šanda, and J. Hauer, “A quantitative study of coherent vibrational dynamics probed by heterodyned transient grating spectroscopy,” Vib. Spectrosc. 85, 167–174 (2016).
[Crossref]

J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6, 7755 (2015).
[Crossref] [PubMed]

Hayden, J.

C. N. Lincoln, J. Hayden, A. G. Pour, V. Perlík, F. Šanda, and J. Hauer, “A quantitative study of coherent vibrational dynamics probed by heterodyned transient grating spectroscopy,” Vib. Spectrosc. 85, 167–174 (2016).
[Crossref]

Hochstrasser, R.

R. Hochstrasser, “Two-dimensional IR-spectroscopy: polarization anisotropy effects,” Chem. Phys. 266, 273–284 (2001).
[Crossref]

Holten, D.

C. Kirmaier, D. Holten, and W. W. Parson, “Temperature and detection-wavelength dependence of the picosecond electron-transfer kinetics measured in Rhodopseudomonas sphaeroides reaction centers. Resolution of new spectral and kinetic components in the primary charge-separation process,” Biochim. Biophys. Acta 810, 33–48 (1985).
[Crossref]

Huelga, S. F.

J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6, 7755 (2015).
[Crossref] [PubMed]

Hunter, C.

M. Vos, M. Jones, C. Hunter, J. Breton, J. Lambry, and J. Martin, “Coherent dynamics during the primary electron-transfer reaction in membrane-bound reaction centers of Rhodobacter sphaeroides,” Biochemistry 33, 6750–6757 (1994).
[Crossref] [PubMed]

Ishizaki, A.

G. D. Scholes, G. R. Fleming, L. X. Chen, A. Aspuru-Guzik, A. Buchleitner, D. F. Coker, G. S. Engel, R. V. Grondelle, A. Ishizaki, D. M. Jonas, J. S. Lundeen, J. K. McCusker, S. Mukamel, J. P. Ogilvie, A. Olaya-Castro, M. A. Ratner, F. C. Spano, B. K. Whaley, and X. Zhu, “Using coherence to enhance function in chemical and biophysical systems,” Nature 543, 647–656 (2017).
[Crossref] [PubMed]

G. S. Schlau-Cohen, A. Ishizaki, T. R. Calhoun, N. S. Ginsberg, M. Ballottari, R. Bassi, and G. R. Fleming, “Elucidation of the timescales and origins of quantum electronic coherence in LHCII,” Nat. Chem. 4, 389–395 (2012).
[Crossref] [PubMed]

Jackson, J. A.

J. A. Jackson, S. Lin, A. K. W. Taguchi, J. C. Williams, J. Allen, and N. W. Woodbury, “Energy transfer in Rhodobacter sphaeroides reaction centers with the initial electron donor oxidized or missing,” J. Phys. Chem. B 101, 5747–5754 (1997).
[Crossref]

Jansen, T. L. C.

E. Thyrhaug, R. Tempelaar, M. J. P. Alcocer, K. Žídek, D. Bína, J. Knoester, T. L. C. Jansen, and D. Zigmantas, “Identification and characterization of diverse coherences in the Fenna-Matthews-Olson complex,” Nat. Chem. 10, 780 (2018).
[Crossref] [PubMed]

Jonas, D. M.

D. M. Jonas, “Vibrational and nonadiabatic coherence in 2D electronic spectroscopy, the Jahn-Teller effect, and energy transfer,” Ann. Rev. Phys. Chem. 69, 327–352 (2018).
[Crossref]

G. D. Scholes, G. R. Fleming, L. X. Chen, A. Aspuru-Guzik, A. Buchleitner, D. F. Coker, G. S. Engel, R. V. Grondelle, A. Ishizaki, D. M. Jonas, J. S. Lundeen, J. K. McCusker, S. Mukamel, J. P. Ogilvie, A. Olaya-Castro, M. A. Ratner, F. C. Spano, B. K. Whaley, and X. Zhu, “Using coherence to enhance function in chemical and biophysical systems,” Nature 543, 647–656 (2017).
[Crossref] [PubMed]

V. Tiwari, W. K. Peters, and D. M. Jonas, “Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework,” Proc. Natl. Acad. Sci. 110, 1203–1208 (2013).
[Crossref]

M. K. Yetzbacher, N. Belabas, K. A. Kitney, and D. M. Jonas, “Propagation, beam geometry, and detection distortions of peak shapes in two-dimensional Fourier transform spectra,” J. Chem. Phys. 126, 044511 (2007).
[Crossref]

D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem. 54, 425–463 (2003).
[Crossref] [PubMed]

D. M. Jonas, M. J. Lang, Y. Nagasawa, T. Joo, and G. R. Fleming, “Pump-probe polarization anisotropy study of femtosecond energy transfer within the photosynthetic reaction center of Rhodobacter sphaeroides R26,” J. Phys. Chem. 100, 12660–12673 (1996).
[Crossref]

Jones, M.

M. Vos, M. Jones, C. Hunter, J. Breton, J. Lambry, and J. Martin, “Coherent dynamics during the primary electron-transfer reaction in membrane-bound reaction centers of Rhodobacter sphaeroides,” Biochemistry 33, 6750–6757 (1994).
[Crossref] [PubMed]

Joo, T.

D. M. Jonas, M. J. Lang, Y. Nagasawa, T. Joo, and G. R. Fleming, “Pump-probe polarization anisotropy study of femtosecond energy transfer within the photosynthetic reaction center of Rhodobacter sphaeroides R26,” J. Phys. Chem. 100, 12660–12673 (1996).
[Crossref]

Katayama, T.

Y. Nagasawa, Y. Yoneda, S. Nambu, M. Muramatsu, E. Takeuchi, H. Tsumori, S. Morikawa, T. Katayama, and H. Miyasaka, “Coherent wavepacket motion in an ultrafast electron transfer system monitored by femtosecond degenerate four-wave-mixing and pump-probe spectroscopy,” Chem. Phys. 442, 68–76 (2014).
[Crossref]

Kauffmann, H. F.

N. Christensson, H. F. Kauffmann, T. Pullerits, and T. Mančal, “Origin of long-lived coherences in light-harvesting complexes,” J. Phys. Chem. B 116, 7449–7454 (2012).
[Crossref] [PubMed]

Kelley, P. L.

R. L. Carman, R. Y. Chiao, and P. L. Kelley, “Observation of degenerate stimulated four-photon interaction and four-wave parametric amplification,” Phys. Rev. Lett. 17, 1281–1283 (1966).
[Crossref]

Kim, H.

Kirmaier, C.

C. Kirmaier, D. Holten, and W. W. Parson, “Temperature and detection-wavelength dependence of the picosecond electron-transfer kinetics measured in Rhodopseudomonas sphaeroides reaction centers. Resolution of new spectral and kinetic components in the primary charge-separation process,” Biochim. Biophys. Acta 810, 33–48 (1985).
[Crossref]

Kitney, K. A.

M. K. Yetzbacher, N. Belabas, K. A. Kitney, and D. M. Jonas, “Propagation, beam geometry, and detection distortions of peak shapes in two-dimensional Fourier transform spectra,” J. Chem. Phys. 126, 044511 (2007).
[Crossref]

Knoester, J.

E. Thyrhaug, R. Tempelaar, M. J. P. Alcocer, K. Žídek, D. Bína, J. Knoester, T. L. C. Jansen, and D. Zigmantas, “Identification and characterization of diverse coherences in the Fenna-Matthews-Olson complex,” Nat. Chem. 10, 780 (2018).
[Crossref] [PubMed]

Kubarych, K. J.

D. G. Osborne and K. J. Kubarych, “Rapid and accurate measurement of the frequency-frequency correlation function,” J. Phys. Chem. A 117, 5891–5898 (2013).
[Crossref]

Lambert, N.

N. Lambert, Y. N. Chen, Y. C. Cheng, C. M. Li, G. Y. Chen, and F. Nori, “Quantum biology,” Nat. Phys. 9, 10–18 (2012).
[Crossref]

Lambry, J.

M. Vos, M. Jones, C. Hunter, J. Breton, J. Lambry, and J. Martin, “Coherent dynamics during the primary electron-transfer reaction in membrane-bound reaction centers of Rhodobacter sphaeroides,” Biochemistry 33, 6750–6757 (1994).
[Crossref] [PubMed]

Lang, M. J.

D. M. Jonas, M. J. Lang, Y. Nagasawa, T. Joo, and G. R. Fleming, “Pump-probe polarization anisotropy study of femtosecond energy transfer within the photosynthetic reaction center of Rhodobacter sphaeroides R26,” J. Phys. Chem. 100, 12660–12673 (1996).
[Crossref]

Lee, H.

H. Lee, Y. Cheng, and G. R. Fleming, “Coherence dynamics in photosynthesis: protein protection of excitonic coherence,” Science 1462, 1462–1465 (2007).
[Crossref]

Lewis, N. H. C.

G. Panitchayangkoon, D. V. Voronine, D. Abramavicius, J. R. Caram, N. H. C. Lewis, S. Mukamel, and G. S. Engel, “Direct evidence of quantum transport in photosynthetic light-harvesting complexes,” Proc. Natl. Acad. Sci. USA 108, 20908–20912 (2011).
[Crossref] [PubMed]

Li, C. M.

N. Lambert, Y. N. Chen, Y. C. Cheng, C. M. Li, G. Y. Chen, and F. Nori, “Quantum biology,” Nat. Phys. 9, 10–18 (2012).
[Crossref]

Li, H.

H. Li, A. D. Bristow, M. E. Siemens, G. Moody, and S. T. Cundiff, “Unraveling quantum pathways using optical 3D Fourier-transform spectroscopy,” Nat. Commun. 4, 1390 (2013).
[Crossref] [PubMed]

Lim, J.

J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6, 7755 (2015).
[Crossref] [PubMed]

Lin, S.

J. A. Jackson, S. Lin, A. K. W. Taguchi, J. C. Williams, J. Allen, and N. W. Woodbury, “Energy transfer in Rhodobacter sphaeroides reaction centers with the initial electron donor oxidized or missing,” J. Phys. Chem. B 101, 5747–5754 (1997).
[Crossref]

Lincoln, C. N.

C. N. Lincoln, J. Hayden, A. G. Pour, V. Perlík, F. Šanda, and J. Hauer, “A quantitative study of coherent vibrational dynamics probed by heterodyned transient grating spectroscopy,” Vib. Spectrosc. 85, 167–174 (2016).
[Crossref]

J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6, 7755 (2015).
[Crossref] [PubMed]

Lundeen, J. S.

G. D. Scholes, G. R. Fleming, L. X. Chen, A. Aspuru-Guzik, A. Buchleitner, D. F. Coker, G. S. Engel, R. V. Grondelle, A. Ishizaki, D. M. Jonas, J. S. Lundeen, J. K. McCusker, S. Mukamel, J. P. Ogilvie, A. Olaya-Castro, M. A. Ratner, F. C. Spano, B. K. Whaley, and X. Zhu, “Using coherence to enhance function in chemical and biophysical systems,” Nature 543, 647–656 (2017).
[Crossref] [PubMed]

Mancal, T.

J. Dostál, T. Mančal, F. Vácha, J. Pšenčík, and D. Zigmantas, “Unraveling the nature of coherent beatings in chlorosomes,” J. Chem. Phys. 140, 115103 (2014).
[Crossref] [PubMed]

N. Christensson, H. F. Kauffmann, T. Pullerits, and T. Mančal, “Origin of long-lived coherences in light-harvesting complexes,” J. Phys. Chem. B 116, 7449–7454 (2012).
[Crossref] [PubMed]

T. Brixner, T. Mančal, I. V. Stiopkin, and G. R. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys. 121, 4221–4236 (2004).
[Crossref] [PubMed]

Martin, J.

M. Vos, M. Jones, C. Hunter, J. Breton, J. Lambry, and J. Martin, “Coherent dynamics during the primary electron-transfer reaction in membrane-bound reaction centers of Rhodobacter sphaeroides,” Biochemistry 33, 6750–6757 (1994).
[Crossref] [PubMed]

Mathies, R. A.

N. J. Cherepy, A. P. Shreve, L. J. Moore, S. G. Boxer, and R. A. Mathies, “Electronic and nuclear dynamics of the accessory bacteriochlorophylls in bacterial photosynthetic reaction centers from resonance Raman intensities,” J. Phys. Chem. B 101, 3250–3260 (1997).
[Crossref]

McCusker, J. K.

G. D. Scholes, G. R. Fleming, L. X. Chen, A. Aspuru-Guzik, A. Buchleitner, D. F. Coker, G. S. Engel, R. V. Grondelle, A. Ishizaki, D. M. Jonas, J. S. Lundeen, J. K. McCusker, S. Mukamel, J. P. Ogilvie, A. Olaya-Castro, M. A. Ratner, F. C. Spano, B. K. Whaley, and X. Zhu, “Using coherence to enhance function in chemical and biophysical systems,” Nature 543, 647–656 (2017).
[Crossref] [PubMed]

Miller, R. J. D.

Miyasaka, H.

Y. Nagasawa, Y. Yoneda, S. Nambu, M. Muramatsu, E. Takeuchi, H. Tsumori, S. Morikawa, T. Katayama, and H. Miyasaka, “Coherent wavepacket motion in an ultrafast electron transfer system monitored by femtosecond degenerate four-wave-mixing and pump-probe spectroscopy,” Chem. Phys. 442, 68–76 (2014).
[Crossref]

Moody, G.

H. Li, A. D. Bristow, M. E. Siemens, G. Moody, and S. T. Cundiff, “Unraveling quantum pathways using optical 3D Fourier-transform spectroscopy,” Nat. Commun. 4, 1390 (2013).
[Crossref] [PubMed]

Moore, L. J.

N. J. Cherepy, A. P. Shreve, L. J. Moore, S. G. Boxer, and R. A. Mathies, “Electronic and nuclear dynamics of the accessory bacteriochlorophylls in bacterial photosynthetic reaction centers from resonance Raman intensities,” J. Phys. Chem. B 101, 3250–3260 (1997).
[Crossref]

Moran, A. M.

J. M. Womick and A. M. Moran, “Vibronic enhancement of exciton sizes and energy transport in photosynthetic complexes,” J. Phys. Chem. B 115, 1347–1356 (2011).
[Crossref] [PubMed]

Morikawa, S.

Y. Nagasawa, Y. Yoneda, S. Nambu, M. Muramatsu, E. Takeuchi, H. Tsumori, S. Morikawa, T. Katayama, and H. Miyasaka, “Coherent wavepacket motion in an ultrafast electron transfer system monitored by femtosecond degenerate four-wave-mixing and pump-probe spectroscopy,” Chem. Phys. 442, 68–76 (2014).
[Crossref]

Moser, C. C.

D. C. Arnett, C. C. Moser, P. L. Dutton, and N. F. Scherer, “The first events in photosynthesis: electronic coupling and energy transfer dynamics in the photosynthetic reaction center from Rhodobacter sphaeroides,” J. Phys. Chem. B 103, 2014–2032 (1999).
[Crossref]

Mukamel, S.

G. D. Scholes, G. R. Fleming, L. X. Chen, A. Aspuru-Guzik, A. Buchleitner, D. F. Coker, G. S. Engel, R. V. Grondelle, A. Ishizaki, D. M. Jonas, J. S. Lundeen, J. K. McCusker, S. Mukamel, J. P. Ogilvie, A. Olaya-Castro, M. A. Ratner, F. C. Spano, B. K. Whaley, and X. Zhu, “Using coherence to enhance function in chemical and biophysical systems,” Nature 543, 647–656 (2017).
[Crossref] [PubMed]

G. Panitchayangkoon, D. V. Voronine, D. Abramavicius, J. R. Caram, N. H. C. Lewis, S. Mukamel, and G. S. Engel, “Direct evidence of quantum transport in photosynthetic light-harvesting complexes,” Proc. Natl. Acad. Sci. USA 108, 20908–20912 (2011).
[Crossref] [PubMed]

Munschau, J.

Muramatsu, M.

Y. Nagasawa, Y. Yoneda, S. Nambu, M. Muramatsu, E. Takeuchi, H. Tsumori, S. Morikawa, T. Katayama, and H. Miyasaka, “Coherent wavepacket motion in an ultrafast electron transfer system monitored by femtosecond degenerate four-wave-mixing and pump-probe spectroscopy,” Chem. Phys. 442, 68–76 (2014).
[Crossref]

Nagasawa, Y.

Y. Nagasawa, Y. Yoneda, S. Nambu, M. Muramatsu, E. Takeuchi, H. Tsumori, S. Morikawa, T. Katayama, and H. Miyasaka, “Coherent wavepacket motion in an ultrafast electron transfer system monitored by femtosecond degenerate four-wave-mixing and pump-probe spectroscopy,” Chem. Phys. 442, 68–76 (2014).
[Crossref]

D. M. Jonas, M. J. Lang, Y. Nagasawa, T. Joo, and G. R. Fleming, “Pump-probe polarization anisotropy study of femtosecond energy transfer within the photosynthetic reaction center of Rhodobacter sphaeroides R26,” J. Phys. Chem. 100, 12660–12673 (1996).
[Crossref]

Nambu, S.

Y. Nagasawa, Y. Yoneda, S. Nambu, M. Muramatsu, E. Takeuchi, H. Tsumori, S. Morikawa, T. Katayama, and H. Miyasaka, “Coherent wavepacket motion in an ultrafast electron transfer system monitored by femtosecond degenerate four-wave-mixing and pump-probe spectroscopy,” Chem. Phys. 442, 68–76 (2014).
[Crossref]

Neuhaus, P.

V. Butkus, J. Alster, E. Bašinskaitė, R. Augulis, P. Neuhaus, L. Valkunas, H. L. Anderson, D. Abramavicius, and D. Zigmantas, “Discrimination of diverse coherences allows identification of electronic transitions of a molecular nanoring,” J. Phys. Chem. Lett. 8, 2344–2349 (2017).
[Crossref] [PubMed]

Nori, F.

N. Lambert, Y. N. Chen, Y. C. Cheng, C. M. Li, G. Y. Chen, and F. Nori, “Quantum biology,” Nat. Phys. 9, 10–18 (2012).
[Crossref]

Ogilvie, J. P.

G. D. Scholes, G. R. Fleming, L. X. Chen, A. Aspuru-Guzik, A. Buchleitner, D. F. Coker, G. S. Engel, R. V. Grondelle, A. Ishizaki, D. M. Jonas, J. S. Lundeen, J. K. McCusker, S. Mukamel, J. P. Ogilvie, A. Olaya-Castro, M. A. Ratner, F. C. Spano, B. K. Whaley, and X. Zhu, “Using coherence to enhance function in chemical and biophysical systems,” Nature 543, 647–656 (2017).
[Crossref] [PubMed]

S. S. Senlik, V. R. Policht, and J. P. Ogilvie, “Two-color nonlinear spectroscopy for the rapid acquisition of coherent dynamics,” J. Phys. Chem. Lett. 6, 2413–2420 (2015).
[Crossref] [PubMed]

F. D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S. S. Senlik, D. E. Wilcox, C. F. Yocum, L. Valkunas, D. Abramavicius, and J. P. Ogilvie, “Vibronic coherence in oxygenic photosynthesis,” Nat. Chem. 6, 706–711 (2014).
[Crossref] [PubMed]

Olaya-Castro, A.

G. D. Scholes, G. R. Fleming, L. X. Chen, A. Aspuru-Guzik, A. Buchleitner, D. F. Coker, G. S. Engel, R. V. Grondelle, A. Ishizaki, D. M. Jonas, J. S. Lundeen, J. K. McCusker, S. Mukamel, J. P. Ogilvie, A. Olaya-Castro, M. A. Ratner, F. C. Spano, B. K. Whaley, and X. Zhu, “Using coherence to enhance function in chemical and biophysical systems,” Nature 543, 647–656 (2017).
[Crossref] [PubMed]

Osborne, D. G.

D. G. Osborne and K. J. Kubarych, “Rapid and accurate measurement of the frequency-frequency correlation function,” J. Phys. Chem. A 117, 5891–5898 (2013).
[Crossref]

Palecek, D.

D. Paleček, P. Edlund, S. Westenhoff, and D. Zigmantas, “Quantum coherence as a witness of vibronically hot energy transfer in bacterial reaction center,” Sci. Adv. 3, e1603141 (2017).
[Crossref]

J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6, 7755 (2015).
[Crossref] [PubMed]

S. Westenhoff, D. Paleček, P. Edlund, P. Smith, and D. Zigmantas, “Coherent picosecond exciton dynamics in a photosynthetic reaction center,” J. Am. Chem. Soc. 134, 16484–16487 (2012).
[Crossref] [PubMed]

D. Paleček, “Quantum coherence for light harvesting,” Ph.D. thesis, Lund University (2015).

Pan, J.

F. D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S. S. Senlik, D. E. Wilcox, C. F. Yocum, L. Valkunas, D. Abramavicius, and J. P. Ogilvie, “Vibronic coherence in oxygenic photosynthesis,” Nat. Chem. 6, 706–711 (2014).
[Crossref] [PubMed]

Panitchayangkoon, G.

G. Panitchayangkoon, D. V. Voronine, D. Abramavicius, J. R. Caram, N. H. C. Lewis, S. Mukamel, and G. S. Engel, “Direct evidence of quantum transport in photosynthetic light-harvesting complexes,” Proc. Natl. Acad. Sci. USA 108, 20908–20912 (2011).
[Crossref] [PubMed]

Parson, W. W.

C. Kirmaier, D. Holten, and W. W. Parson, “Temperature and detection-wavelength dependence of the picosecond electron-transfer kinetics measured in Rhodopseudomonas sphaeroides reaction centers. Resolution of new spectral and kinetic components in the primary charge-separation process,” Biochim. Biophys. Acta 810, 33–48 (1985).
[Crossref]

Perlík, V.

C. N. Lincoln, J. Hayden, A. G. Pour, V. Perlík, F. Šanda, and J. Hauer, “A quantitative study of coherent vibrational dynamics probed by heterodyned transient grating spectroscopy,” Vib. Spectrosc. 85, 167–174 (2016).
[Crossref]

Peters, W. K.

V. Tiwari, W. K. Peters, and D. M. Jonas, “Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework,” Proc. Natl. Acad. Sci. 110, 1203–1208 (2013).
[Crossref]

Plenio, M. B.

J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6, 7755 (2015).
[Crossref] [PubMed]

Policht, V. R.

S. S. Senlik, V. R. Policht, and J. P. Ogilvie, “Two-color nonlinear spectroscopy for the rapid acquisition of coherent dynamics,” J. Phys. Chem. Lett. 6, 2413–2420 (2015).
[Crossref] [PubMed]

Pour, A. G.

C. N. Lincoln, J. Hayden, A. G. Pour, V. Perlík, F. Šanda, and J. Hauer, “A quantitative study of coherent vibrational dynamics probed by heterodyned transient grating spectroscopy,” Vib. Spectrosc. 85, 167–174 (2016).
[Crossref]

Prior, J.

J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6, 7755 (2015).
[Crossref] [PubMed]

Pšencík, J.

J. Dostál, T. Mančal, F. Vácha, J. Pšenčík, and D. Zigmantas, “Unraveling the nature of coherent beatings in chlorosomes,” J. Chem. Phys. 140, 115103 (2014).
[Crossref] [PubMed]

Pullerits, T.

J. Seibt, T. Hansen, and T. Pullerits, “3D spectroscopy of vibrational coherences in quantum dots: theory,” J. Phys. Chem. B 117, 11124–11133 (2013).
[Crossref] [PubMed]

N. Christensson, H. F. Kauffmann, T. Pullerits, and T. Mančal, “Origin of long-lived coherences in light-harvesting complexes,” J. Phys. Chem. B 116, 7449–7454 (2012).
[Crossref] [PubMed]

Ratner, M. A.

G. D. Scholes, G. R. Fleming, L. X. Chen, A. Aspuru-Guzik, A. Buchleitner, D. F. Coker, G. S. Engel, R. V. Grondelle, A. Ishizaki, D. M. Jonas, J. S. Lundeen, J. K. McCusker, S. Mukamel, J. P. Ogilvie, A. Olaya-Castro, M. A. Ratner, F. C. Spano, B. K. Whaley, and X. Zhu, “Using coherence to enhance function in chemical and biophysical systems,” Nature 543, 647–656 (2017).
[Crossref] [PubMed]

Rätsep, M.

M. Rätsep, Z. L. Cai, J. R. Reimers, and A. Freiberg, “Demonstration and interpretation of significant asymmetry in the low-resolution and high-resolution Qy fluorescence and absorption spectra of bacteriochlorophyll a,” J. Chem. Phys. 134, 024506 (2011).
[Crossref]

Reimers, J. R.

M. Rätsep, Z. L. Cai, J. R. Reimers, and A. Freiberg, “Demonstration and interpretation of significant asymmetry in the low-resolution and high-resolution Qy fluorescence and absorption spectra of bacteriochlorophyll a,” J. Chem. Phys. 134, 024506 (2011).
[Crossref]

Robert, B.

V. Butkus, A. Gelzinis, R. Augulis, A. Gall, C. Büchel, B. Robert, D. Zigmantas, L. Valkunas, and D. Abramavicius, “Coherence and population dynamics of chlorophyll excitations in FCP complex: Two-dimensional spectroscopy study,” J. Chem. Phys. 142, 212414 (2015).
[Crossref] [PubMed]

Ryu, I. S.

I. S. Ryu, H. Dong, and G. R. Fleming, “Role of electronic-vibrational mixing in enhancing vibrational coherences in the ground electronic states of photosynthetic bacterial reaction center,” J. Phys. Chem. B 118, 1381–1388 (2014).
[Crossref] [PubMed]

Šanda, F.

C. N. Lincoln, J. Hayden, A. G. Pour, V. Perlík, F. Šanda, and J. Hauer, “A quantitative study of coherent vibrational dynamics probed by heterodyned transient grating spectroscopy,” Vib. Spectrosc. 85, 167–174 (2016).
[Crossref]

Savikhin, S.

S. Savikhin, D. R. Buck, and W. S. Struve, “Oscillating anisotropies in a bacteriochlorophyll protein: Evidence for quantum beating between exciton levels,” Chem. Phys. 223, 303–312 (1997).
[Crossref]

Scherer, N. F.

D. C. Arnett, C. C. Moser, P. L. Dutton, and N. F. Scherer, “The first events in photosynthesis: electronic coupling and energy transfer dynamics in the photosynthetic reaction center from Rhodobacter sphaeroides,” J. Phys. Chem. B 103, 2014–2032 (1999).
[Crossref]

Schlau-Cohen, G. S.

G. S. Schlau-Cohen, A. Ishizaki, T. R. Calhoun, N. S. Ginsberg, M. Ballottari, R. Bassi, and G. R. Fleming, “Elucidation of the timescales and origins of quantum electronic coherence in LHCII,” Nat. Chem. 4, 389–395 (2012).
[Crossref] [PubMed]

Scholes, G. D.

G. D. Scholes, G. R. Fleming, L. X. Chen, A. Aspuru-Guzik, A. Buchleitner, D. F. Coker, G. S. Engel, R. V. Grondelle, A. Ishizaki, D. M. Jonas, J. S. Lundeen, J. K. McCusker, S. Mukamel, J. P. Ogilvie, A. Olaya-Castro, M. A. Ratner, F. C. Spano, B. K. Whaley, and X. Zhu, “Using coherence to enhance function in chemical and biophysical systems,” Nature 543, 647–656 (2017).
[Crossref] [PubMed]

E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and G. D. Scholes, “Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature,” Nature 463, 644–647 (2010).
[Crossref] [PubMed]

Seibt, J.

J. Seibt, T. Hansen, and T. Pullerits, “3D spectroscopy of vibrational coherences in quantum dots: theory,” J. Phys. Chem. B 117, 11124–11133 (2013).
[Crossref] [PubMed]

Senlik, S. S.

S. S. Senlik, V. R. Policht, and J. P. Ogilvie, “Two-color nonlinear spectroscopy for the rapid acquisition of coherent dynamics,” J. Phys. Chem. Lett. 6, 2413–2420 (2015).
[Crossref] [PubMed]

F. D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S. S. Senlik, D. E. Wilcox, C. F. Yocum, L. Valkunas, D. Abramavicius, and J. P. Ogilvie, “Vibronic coherence in oxygenic photosynthesis,” Nat. Chem. 6, 706–711 (2014).
[Crossref] [PubMed]

Shreve, A. P.

N. J. Cherepy, A. P. Shreve, L. J. Moore, S. G. Boxer, and R. A. Mathies, “Electronic and nuclear dynamics of the accessory bacteriochlorophylls in bacterial photosynthetic reaction centers from resonance Raman intensities,” J. Phys. Chem. B 101, 3250–3260 (1997).
[Crossref]

Siemens, M. E.

H. Li, A. D. Bristow, M. E. Siemens, G. Moody, and S. T. Cundiff, “Unraveling quantum pathways using optical 3D Fourier-transform spectroscopy,” Nat. Commun. 4, 1390 (2013).
[Crossref] [PubMed]

Smith, P.

S. Westenhoff, D. Paleček, P. Edlund, P. Smith, and D. Zigmantas, “Coherent picosecond exciton dynamics in a photosynthetic reaction center,” J. Am. Chem. Soc. 134, 16484–16487 (2012).
[Crossref] [PubMed]

Spano, F. C.

G. D. Scholes, G. R. Fleming, L. X. Chen, A. Aspuru-Guzik, A. Buchleitner, D. F. Coker, G. S. Engel, R. V. Grondelle, A. Ishizaki, D. M. Jonas, J. S. Lundeen, J. K. McCusker, S. Mukamel, J. P. Ogilvie, A. Olaya-Castro, M. A. Ratner, F. C. Spano, B. K. Whaley, and X. Zhu, “Using coherence to enhance function in chemical and biophysical systems,” Nature 543, 647–656 (2017).
[Crossref] [PubMed]

Stahl, H.

Stiopkin, I. V.

T. Brixner, T. Mančal, I. V. Stiopkin, and G. R. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys. 121, 4221–4236 (2004).
[Crossref] [PubMed]

Struve, W. S.

S. Savikhin, D. R. Buck, and W. S. Struve, “Oscillating anisotropies in a bacteriochlorophyll protein: Evidence for quantum beating between exciton levels,” Chem. Phys. 223, 303–312 (1997).
[Crossref]

Taguchi, A. K. W.

J. A. Jackson, S. Lin, A. K. W. Taguchi, J. C. Williams, J. Allen, and N. W. Woodbury, “Energy transfer in Rhodobacter sphaeroides reaction centers with the initial electron donor oxidized or missing,” J. Phys. Chem. B 101, 5747–5754 (1997).
[Crossref]

Takeuchi, E.

Y. Nagasawa, Y. Yoneda, S. Nambu, M. Muramatsu, E. Takeuchi, H. Tsumori, S. Morikawa, T. Katayama, and H. Miyasaka, “Coherent wavepacket motion in an ultrafast electron transfer system monitored by femtosecond degenerate four-wave-mixing and pump-probe spectroscopy,” Chem. Phys. 442, 68–76 (2014).
[Crossref]

Tempelaar, R.

E. Thyrhaug, R. Tempelaar, M. J. P. Alcocer, K. Žídek, D. Bína, J. Knoester, T. L. C. Jansen, and D. Zigmantas, “Identification and characterization of diverse coherences in the Fenna-Matthews-Olson complex,” Nat. Chem. 10, 780 (2018).
[Crossref] [PubMed]

Thyrhaug, E.

E. Thyrhaug, R. Tempelaar, M. J. P. Alcocer, K. Žídek, D. Bína, J. Knoester, T. L. C. Jansen, and D. Zigmantas, “Identification and characterization of diverse coherences in the Fenna-Matthews-Olson complex,” Nat. Chem. 10, 780 (2018).
[Crossref] [PubMed]

Tiwari, V.

V. Tiwari, W. K. Peters, and D. M. Jonas, “Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework,” Proc. Natl. Acad. Sci. 110, 1203–1208 (2013).
[Crossref]

Tsumori, H.

Y. Nagasawa, Y. Yoneda, S. Nambu, M. Muramatsu, E. Takeuchi, H. Tsumori, S. Morikawa, T. Katayama, and H. Miyasaka, “Coherent wavepacket motion in an ultrafast electron transfer system monitored by femtosecond degenerate four-wave-mixing and pump-probe spectroscopy,” Chem. Phys. 442, 68–76 (2014).
[Crossref]

Vácha, F.

J. Dostál, T. Mančal, F. Vácha, J. Pšenčík, and D. Zigmantas, “Unraveling the nature of coherent beatings in chlorosomes,” J. Chem. Phys. 140, 115103 (2014).
[Crossref] [PubMed]

Valkunas, L.

V. Butkus, J. Alster, E. Bašinskaitė, R. Augulis, P. Neuhaus, L. Valkunas, H. L. Anderson, D. Abramavicius, and D. Zigmantas, “Discrimination of diverse coherences allows identification of electronic transitions of a molecular nanoring,” J. Phys. Chem. Lett. 8, 2344–2349 (2017).
[Crossref] [PubMed]

V. Butkus, A. Gelzinis, R. Augulis, A. Gall, C. Büchel, B. Robert, D. Zigmantas, L. Valkunas, and D. Abramavicius, “Coherence and population dynamics of chlorophyll excitations in FCP complex: Two-dimensional spectroscopy study,” J. Chem. Phys. 142, 212414 (2015).
[Crossref] [PubMed]

F. D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S. S. Senlik, D. E. Wilcox, C. F. Yocum, L. Valkunas, D. Abramavicius, and J. P. Ogilvie, “Vibronic coherence in oxygenic photosynthesis,” Nat. Chem. 6, 706–711 (2014).
[Crossref] [PubMed]

V. Butkus, D. Zigmantas, L. Valkunas, and D. Abramavicius, “Vibrational vs. electronic coherences in 2D spectrum of molecular systems,” Chem. Phys. Lett. 545, 40–43 (2012).
[Crossref]

Voronine, D. V.

G. Panitchayangkoon, D. V. Voronine, D. Abramavicius, J. R. Caram, N. H. C. Lewis, S. Mukamel, and G. S. Engel, “Direct evidence of quantum transport in photosynthetic light-harvesting complexes,” Proc. Natl. Acad. Sci. USA 108, 20908–20912 (2011).
[Crossref] [PubMed]

Vos, M.

M. Vos, M. Jones, C. Hunter, J. Breton, J. Lambry, and J. Martin, “Coherent dynamics during the primary electron-transfer reaction in membrane-bound reaction centers of Rhodobacter sphaeroides,” Biochemistry 33, 6750–6757 (1994).
[Crossref] [PubMed]

Westenhoff, S.

D. Paleček, P. Edlund, S. Westenhoff, and D. Zigmantas, “Quantum coherence as a witness of vibronically hot energy transfer in bacterial reaction center,” Sci. Adv. 3, e1603141 (2017).
[Crossref]

S. Westenhoff, D. Paleček, P. Edlund, P. Smith, and D. Zigmantas, “Coherent picosecond exciton dynamics in a photosynthetic reaction center,” J. Am. Chem. Soc. 134, 16484–16487 (2012).
[Crossref] [PubMed]

Whaley, B. K.

G. D. Scholes, G. R. Fleming, L. X. Chen, A. Aspuru-Guzik, A. Buchleitner, D. F. Coker, G. S. Engel, R. V. Grondelle, A. Ishizaki, D. M. Jonas, J. S. Lundeen, J. K. McCusker, S. Mukamel, J. P. Ogilvie, A. Olaya-Castro, M. A. Ratner, F. C. Spano, B. K. Whaley, and X. Zhu, “Using coherence to enhance function in chemical and biophysical systems,” Nature 543, 647–656 (2017).
[Crossref] [PubMed]

Wilcox, D. E.

F. D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S. S. Senlik, D. E. Wilcox, C. F. Yocum, L. Valkunas, D. Abramavicius, and J. P. Ogilvie, “Vibronic coherence in oxygenic photosynthesis,” Nat. Chem. 6, 706–711 (2014).
[Crossref] [PubMed]

Wilk, K. E.

E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and G. D. Scholes, “Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature,” Nature 463, 644–647 (2010).
[Crossref] [PubMed]

Williams, J. C.

J. A. Jackson, S. Lin, A. K. W. Taguchi, J. C. Williams, J. Allen, and N. W. Woodbury, “Energy transfer in Rhodobacter sphaeroides reaction centers with the initial electron donor oxidized or missing,” J. Phys. Chem. B 101, 5747–5754 (1997).
[Crossref]

Womick, J. M.

J. M. Womick and A. M. Moran, “Vibronic enhancement of exciton sizes and energy transport in photosynthetic complexes,” J. Phys. Chem. B 115, 1347–1356 (2011).
[Crossref] [PubMed]

Wong, C. Y.

E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and G. D. Scholes, “Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature,” Nature 463, 644–647 (2010).
[Crossref] [PubMed]

Woodbury, N. W.

J. A. Jackson, S. Lin, A. K. W. Taguchi, J. C. Williams, J. Allen, and N. W. Woodbury, “Energy transfer in Rhodobacter sphaeroides reaction centers with the initial electron donor oxidized or missing,” J. Phys. Chem. B 101, 5747–5754 (1997).
[Crossref]

Wright, J. C.

A. Zilian and J. C. Wright, “Polarization effects in four-wave mixing of isotropic samples,” Mol. Phys. 87, 1261–1272 (1996).
[Crossref]

Yetzbacher, M. K.

M. K. Yetzbacher, N. Belabas, K. A. Kitney, and D. M. Jonas, “Propagation, beam geometry, and detection distortions of peak shapes in two-dimensional Fourier transform spectra,” J. Chem. Phys. 126, 044511 (2007).
[Crossref]

Yocum, C. F.

F. D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S. S. Senlik, D. E. Wilcox, C. F. Yocum, L. Valkunas, D. Abramavicius, and J. P. Ogilvie, “Vibronic coherence in oxygenic photosynthesis,” Nat. Chem. 6, 706–711 (2014).
[Crossref] [PubMed]

Yoneda, Y.

Y. Nagasawa, Y. Yoneda, S. Nambu, M. Muramatsu, E. Takeuchi, H. Tsumori, S. Morikawa, T. Katayama, and H. Miyasaka, “Coherent wavepacket motion in an ultrafast electron transfer system monitored by femtosecond degenerate four-wave-mixing and pump-probe spectroscopy,” Chem. Phys. 442, 68–76 (2014).
[Crossref]

Zanni, M.

P. Hamm and M. Zanni, Concepts and Methods of 2D Infrared Spectroscopy, (Cambridge University Press, 2011).
[Crossref]

Zhu, X.

G. D. Scholes, G. R. Fleming, L. X. Chen, A. Aspuru-Guzik, A. Buchleitner, D. F. Coker, G. S. Engel, R. V. Grondelle, A. Ishizaki, D. M. Jonas, J. S. Lundeen, J. K. McCusker, S. Mukamel, J. P. Ogilvie, A. Olaya-Castro, M. A. Ratner, F. C. Spano, B. K. Whaley, and X. Zhu, “Using coherence to enhance function in chemical and biophysical systems,” Nature 543, 647–656 (2017).
[Crossref] [PubMed]

Žídek, K.

E. Thyrhaug, R. Tempelaar, M. J. P. Alcocer, K. Žídek, D. Bína, J. Knoester, T. L. C. Jansen, and D. Zigmantas, “Identification and characterization of diverse coherences in the Fenna-Matthews-Olson complex,” Nat. Chem. 10, 780 (2018).
[Crossref] [PubMed]

Zigmantas, D.

E. Thyrhaug, R. Tempelaar, M. J. P. Alcocer, K. Žídek, D. Bína, J. Knoester, T. L. C. Jansen, and D. Zigmantas, “Identification and characterization of diverse coherences in the Fenna-Matthews-Olson complex,” Nat. Chem. 10, 780 (2018).
[Crossref] [PubMed]

V. Butkus, J. Alster, E. Bašinskaitė, R. Augulis, P. Neuhaus, L. Valkunas, H. L. Anderson, D. Abramavicius, and D. Zigmantas, “Discrimination of diverse coherences allows identification of electronic transitions of a molecular nanoring,” J. Phys. Chem. Lett. 8, 2344–2349 (2017).
[Crossref] [PubMed]

D. Paleček, P. Edlund, S. Westenhoff, and D. Zigmantas, “Quantum coherence as a witness of vibronically hot energy transfer in bacterial reaction center,” Sci. Adv. 3, e1603141 (2017).
[Crossref]

J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6, 7755 (2015).
[Crossref] [PubMed]

V. Butkus, A. Gelzinis, R. Augulis, A. Gall, C. Büchel, B. Robert, D. Zigmantas, L. Valkunas, and D. Abramavicius, “Coherence and population dynamics of chlorophyll excitations in FCP complex: Two-dimensional spectroscopy study,” J. Chem. Phys. 142, 212414 (2015).
[Crossref] [PubMed]

J. Dostál, T. Mančal, F. Vácha, J. Pšenčík, and D. Zigmantas, “Unraveling the nature of coherent beatings in chlorosomes,” J. Chem. Phys. 140, 115103 (2014).
[Crossref] [PubMed]

R. Augulis and D. Zigmantas, “Detector and dispersive delay calibration issues in broadband 2D electronic spectroscopy,” J. Opt. Soc. Am. B 30, 1770–1774 (2013).
[Crossref]

S. Westenhoff, D. Paleček, P. Edlund, P. Smith, and D. Zigmantas, “Coherent picosecond exciton dynamics in a photosynthetic reaction center,” J. Am. Chem. Soc. 134, 16484–16487 (2012).
[Crossref] [PubMed]

V. Butkus, D. Zigmantas, L. Valkunas, and D. Abramavicius, “Vibrational vs. electronic coherences in 2D spectrum of molecular systems,” Chem. Phys. Lett. 545, 40–43 (2012).
[Crossref]

R. Augulis and D. Zigmantas, “Two-dimensional electronic spectroscopy with double modulation lock-in detection: enhancement of sensitivity and noise resistance,” Opt. Express 19, 13126–13133 (2011).
[Crossref] [PubMed]

Zilian, A.

A. Zilian and J. C. Wright, “Polarization effects in four-wave mixing of isotropic samples,” Mol. Phys. 87, 1261–1272 (1996).
[Crossref]

Ann. Rev. Phys. Chem. (1)

D. M. Jonas, “Vibrational and nonadiabatic coherence in 2D electronic spectroscopy, the Jahn-Teller effect, and energy transfer,” Ann. Rev. Phys. Chem. 69, 327–352 (2018).
[Crossref]

Annu. Rev. Phys. Chem. (1)

D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem. 54, 425–463 (2003).
[Crossref] [PubMed]

Appl. Opt. (1)

Biochemistry (1)

M. Vos, M. Jones, C. Hunter, J. Breton, J. Lambry, and J. Martin, “Coherent dynamics during the primary electron-transfer reaction in membrane-bound reaction centers of Rhodobacter sphaeroides,” Biochemistry 33, 6750–6757 (1994).
[Crossref] [PubMed]

Biochim. Biophys. Acta (1)

C. Kirmaier, D. Holten, and W. W. Parson, “Temperature and detection-wavelength dependence of the picosecond electron-transfer kinetics measured in Rhodopseudomonas sphaeroides reaction centers. Resolution of new spectral and kinetic components in the primary charge-separation process,” Biochim. Biophys. Acta 810, 33–48 (1985).
[Crossref]

Chem. Phys. (3)

S. Savikhin, D. R. Buck, and W. S. Struve, “Oscillating anisotropies in a bacteriochlorophyll protein: Evidence for quantum beating between exciton levels,” Chem. Phys. 223, 303–312 (1997).
[Crossref]

R. Hochstrasser, “Two-dimensional IR-spectroscopy: polarization anisotropy effects,” Chem. Phys. 266, 273–284 (2001).
[Crossref]

Y. Nagasawa, Y. Yoneda, S. Nambu, M. Muramatsu, E. Takeuchi, H. Tsumori, S. Morikawa, T. Katayama, and H. Miyasaka, “Coherent wavepacket motion in an ultrafast electron transfer system monitored by femtosecond degenerate four-wave-mixing and pump-probe spectroscopy,” Chem. Phys. 442, 68–76 (2014).
[Crossref]

Chem. Phys. Lett. (1)

V. Butkus, D. Zigmantas, L. Valkunas, and D. Abramavicius, “Vibrational vs. electronic coherences in 2D spectrum of molecular systems,” Chem. Phys. Lett. 545, 40–43 (2012).
[Crossref]

J. Am. Chem. Soc. (1)

S. Westenhoff, D. Paleček, P. Edlund, P. Smith, and D. Zigmantas, “Coherent picosecond exciton dynamics in a photosynthetic reaction center,” J. Am. Chem. Soc. 134, 16484–16487 (2012).
[Crossref] [PubMed]

J. Chem. Phys. (6)

J. Dostál, T. Mančal, F. Vácha, J. Pšenčík, and D. Zigmantas, “Unraveling the nature of coherent beatings in chlorosomes,” J. Chem. Phys. 140, 115103 (2014).
[Crossref] [PubMed]

M. Rätsep, Z. L. Cai, J. R. Reimers, and A. Freiberg, “Demonstration and interpretation of significant asymmetry in the low-resolution and high-resolution Qy fluorescence and absorption spectra of bacteriochlorophyll a,” J. Chem. Phys. 134, 024506 (2011).
[Crossref]

G. Eyring and M. D. Fayer, “A picosecond holographic grating approach to molecular dynamics in oriented liquid crystal films,” J. Chem. Phys. 81, 4314–4321 (1984).
[Crossref]

V. Butkus, A. Gelzinis, R. Augulis, A. Gall, C. Büchel, B. Robert, D. Zigmantas, L. Valkunas, and D. Abramavicius, “Coherence and population dynamics of chlorophyll excitations in FCP complex: Two-dimensional spectroscopy study,” J. Chem. Phys. 142, 212414 (2015).
[Crossref] [PubMed]

M. K. Yetzbacher, N. Belabas, K. A. Kitney, and D. M. Jonas, “Propagation, beam geometry, and detection distortions of peak shapes in two-dimensional Fourier transform spectra,” J. Chem. Phys. 126, 044511 (2007).
[Crossref]

T. Brixner, T. Mančal, I. V. Stiopkin, and G. R. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys. 121, 4221–4236 (2004).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. (1)

D. M. Jonas, M. J. Lang, Y. Nagasawa, T. Joo, and G. R. Fleming, “Pump-probe polarization anisotropy study of femtosecond energy transfer within the photosynthetic reaction center of Rhodobacter sphaeroides R26,” J. Phys. Chem. 100, 12660–12673 (1996).
[Crossref]

J. Phys. Chem. A (1)

D. G. Osborne and K. J. Kubarych, “Rapid and accurate measurement of the frequency-frequency correlation function,” J. Phys. Chem. A 117, 5891–5898 (2013).
[Crossref]

J. Phys. Chem. B (7)

J. M. Womick and A. M. Moran, “Vibronic enhancement of exciton sizes and energy transport in photosynthetic complexes,” J. Phys. Chem. B 115, 1347–1356 (2011).
[Crossref] [PubMed]

D. C. Arnett, C. C. Moser, P. L. Dutton, and N. F. Scherer, “The first events in photosynthesis: electronic coupling and energy transfer dynamics in the photosynthetic reaction center from Rhodobacter sphaeroides,” J. Phys. Chem. B 103, 2014–2032 (1999).
[Crossref]

N. J. Cherepy, A. P. Shreve, L. J. Moore, S. G. Boxer, and R. A. Mathies, “Electronic and nuclear dynamics of the accessory bacteriochlorophylls in bacterial photosynthetic reaction centers from resonance Raman intensities,” J. Phys. Chem. B 101, 3250–3260 (1997).
[Crossref]

N. Christensson, H. F. Kauffmann, T. Pullerits, and T. Mančal, “Origin of long-lived coherences in light-harvesting complexes,” J. Phys. Chem. B 116, 7449–7454 (2012).
[Crossref] [PubMed]

J. Seibt, T. Hansen, and T. Pullerits, “3D spectroscopy of vibrational coherences in quantum dots: theory,” J. Phys. Chem. B 117, 11124–11133 (2013).
[Crossref] [PubMed]

I. S. Ryu, H. Dong, and G. R. Fleming, “Role of electronic-vibrational mixing in enhancing vibrational coherences in the ground electronic states of photosynthetic bacterial reaction center,” J. Phys. Chem. B 118, 1381–1388 (2014).
[Crossref] [PubMed]

J. A. Jackson, S. Lin, A. K. W. Taguchi, J. C. Williams, J. Allen, and N. W. Woodbury, “Energy transfer in Rhodobacter sphaeroides reaction centers with the initial electron donor oxidized or missing,” J. Phys. Chem. B 101, 5747–5754 (1997).
[Crossref]

J. Phys. Chem. Lett. (2)

V. Butkus, J. Alster, E. Bašinskaitė, R. Augulis, P. Neuhaus, L. Valkunas, H. L. Anderson, D. Abramavicius, and D. Zigmantas, “Discrimination of diverse coherences allows identification of electronic transitions of a molecular nanoring,” J. Phys. Chem. Lett. 8, 2344–2349 (2017).
[Crossref] [PubMed]

S. S. Senlik, V. R. Policht, and J. P. Ogilvie, “Two-color nonlinear spectroscopy for the rapid acquisition of coherent dynamics,” J. Phys. Chem. Lett. 6, 2413–2420 (2015).
[Crossref] [PubMed]

Mol. Phys. (1)

A. Zilian and J. C. Wright, “Polarization effects in four-wave mixing of isotropic samples,” Mol. Phys. 87, 1261–1272 (1996).
[Crossref]

Nat. Chem. (3)

E. Thyrhaug, R. Tempelaar, M. J. P. Alcocer, K. Žídek, D. Bína, J. Knoester, T. L. C. Jansen, and D. Zigmantas, “Identification and characterization of diverse coherences in the Fenna-Matthews-Olson complex,” Nat. Chem. 10, 780 (2018).
[Crossref] [PubMed]

G. S. Schlau-Cohen, A. Ishizaki, T. R. Calhoun, N. S. Ginsberg, M. Ballottari, R. Bassi, and G. R. Fleming, “Elucidation of the timescales and origins of quantum electronic coherence in LHCII,” Nat. Chem. 4, 389–395 (2012).
[Crossref] [PubMed]

F. D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S. S. Senlik, D. E. Wilcox, C. F. Yocum, L. Valkunas, D. Abramavicius, and J. P. Ogilvie, “Vibronic coherence in oxygenic photosynthesis,” Nat. Chem. 6, 706–711 (2014).
[Crossref] [PubMed]

Nat. Commun. (2)

J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6, 7755 (2015).
[Crossref] [PubMed]

H. Li, A. D. Bristow, M. E. Siemens, G. Moody, and S. T. Cundiff, “Unraveling quantum pathways using optical 3D Fourier-transform spectroscopy,” Nat. Commun. 4, 1390 (2013).
[Crossref] [PubMed]

Nat. Phys. (1)

N. Lambert, Y. N. Chen, Y. C. Cheng, C. M. Li, G. Y. Chen, and F. Nori, “Quantum biology,” Nat. Phys. 9, 10–18 (2012).
[Crossref]

Nature (2)

G. D. Scholes, G. R. Fleming, L. X. Chen, A. Aspuru-Guzik, A. Buchleitner, D. F. Coker, G. S. Engel, R. V. Grondelle, A. Ishizaki, D. M. Jonas, J. S. Lundeen, J. K. McCusker, S. Mukamel, J. P. Ogilvie, A. Olaya-Castro, M. A. Ratner, F. C. Spano, B. K. Whaley, and X. Zhu, “Using coherence to enhance function in chemical and biophysical systems,” Nature 543, 647–656 (2017).
[Crossref] [PubMed]

E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and G. D. Scholes, “Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature,” Nature 463, 644–647 (2010).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

R. L. Carman, R. Y. Chiao, and P. L. Kelley, “Observation of degenerate stimulated four-photon interaction and four-wave parametric amplification,” Phys. Rev. Lett. 17, 1281–1283 (1966).
[Crossref]

Proc. Natl. Acad. Sci. (1)

V. Tiwari, W. K. Peters, and D. M. Jonas, “Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework,” Proc. Natl. Acad. Sci. 110, 1203–1208 (2013).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

G. Panitchayangkoon, D. V. Voronine, D. Abramavicius, J. R. Caram, N. H. C. Lewis, S. Mukamel, and G. S. Engel, “Direct evidence of quantum transport in photosynthetic light-harvesting complexes,” Proc. Natl. Acad. Sci. USA 108, 20908–20912 (2011).
[Crossref] [PubMed]

Sci. Adv. (1)

D. Paleček, P. Edlund, S. Westenhoff, and D. Zigmantas, “Quantum coherence as a witness of vibronically hot energy transfer in bacterial reaction center,” Sci. Adv. 3, e1603141 (2017).
[Crossref]

Science (1)

H. Lee, Y. Cheng, and G. R. Fleming, “Coherence dynamics in photosynthesis: protein protection of excitonic coherence,” Science 1462, 1462–1465 (2007).
[Crossref]

Vib. Spectrosc. (1)

C. N. Lincoln, J. Hayden, A. G. Pour, V. Perlík, F. Šanda, and J. Hauer, “A quantitative study of coherent vibrational dynamics probed by heterodyned transient grating spectroscopy,” Vib. Spectrosc. 85, 167–174 (2016).
[Crossref]

Other (2)

D. Paleček, “Quantum coherence for light harvesting,” Ph.D. thesis, Lund University (2015).

P. Hamm and M. Zanni, Concepts and Methods of 2D Infrared Spectroscopy, (Cambridge University Press, 2011).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1 Comparison of the frequency modes associated with the B band (integrated over the whole band) of RCsph. The resonant Raman spectrum was reproduced from Ref. [12] (dashed line). Similar information about Raman frequencies can be extracted from 2DES, however typically with lower resolution (dotted line). Performing a long scan in TG experiment (solid line) improves the frequency resolution, making it similar to RR. The lower amplitude of the higher-frequency modes in all-parallel polarization 2DES and TG experiments is mainly caused by the spectrally limited pulses.
Fig. 2
Fig. 2 DC-TG compared to the corresponding DC-2D signal. (A) DC-TG kinetic scan at detection frequency ω3 = 13100 cm−1 matching the H excitonic transition. (B) Comparison of the DC-TG (solid line) with the DC-2D kinetic trace from the upper B-H cross-peak (dashed line) demonstrates the correspondence between the two. (C) Amplitudes of Fourier transforms carried out on the traces (A, B) identify the coherences excited via vibronically coupled states.

Metrics