Abstract

In this contribution, we investigate the use of holographic optical elements (HOEs) as progressive addition lenses (PALs). We design HOEs with high diffraction efficiency (DE) using the Fourier Modal Method (FMM) and optimize an optical system comprising two of these HOEs to fulfill the optical function of a 2 diopter (dpt) PAL. The resulting design is a holographic PAL (hPAL) exhibiting high DE and limited angular color error (CE) with a distribution of spherical power and astigmatism equivalent to its refractive counterpart. To our knowledge, our contribution is the first complete design of an hPAL. While our HOE design method is shown for PALs here, it has the potential to improve other applications of HOEs as well.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Measurement and comparison of the optical performance of an ophthalmic lens based on a Hartmann-Shack wavefront sensor in real viewing conditions

Chuanqing Zhou, Weichao Wang, Kun Yang, Xinyu Chai, and Qiushi Ren
Appl. Opt. 47(34) 6434-6441 (2008)

Method for the design and simulation of progressive addition spectacle lenses

Colin W. Fowler
Appl. Opt. 32(22) 4144-4146 (1993)

Design of a holographic lens for the infrared

Hsuan Chen, Robert R. Hershey, and Emmett N. Leith
Appl. Opt. 26(10) 1983-1988 (1987)

References

  • View by:
  • |
  • |
  • |

  1. A. Glasser and M. C. W. Campbell, “Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia,” Vision Res. 39(11), 1991–2015 (1999).
    [Crossref] [PubMed]
  2. G. Minkwitz, “On the surface astigmatism of a fixed symmetrical aspheric surface,” Opt. Acta (Lond.) 10(3), 223–227 (1963).
    [Crossref] [PubMed]
  3. D. J. Meister and S. W. Fisher, “Progress in the spectacle correction of presbyopia. Part 1: Design and development of progressive lenses,” Clin. Exp. Optom. 91(3), 240–250 (2008).
    [Crossref] [PubMed]
  4. J. E. Sheedy, C. Campbell, E. King-Smith, and J. R. Hayes, “Progressive powered lenses: the Minkwitz theorem,” Optom. Vis. Sci. 82(10), 916–922 (2005).
    [Crossref] [PubMed]
  5. D. J. Meister and S. W. Fisher, “Progress in the spectacle correction of presbyopia. Part 2: Modern progressive lens technologies,” Clin. Exp. Optom. 91(3), 251–264 (2008).
    [Crossref] [PubMed]
  6. F. Z. Fang, X. D. Zhang, A. Weckenmann, G. X. Zhang, and C. Evans, “Manufacturing and measurement of freeform optics,” CIRP Ann. Manuf. Technol. 62(2), 823–846 (2013).
    [Crossref]
  7. W. Osten, A. Faridian, P. Gao, K. Körner, D. Naik, G. Pedrini, A. K. Singh, M. Takeda, and M. Wilke, “Recent advances in digital holography [invited],” Appl. Opt. 53(27), G44–G63 (2014).
    [Crossref] [PubMed]
  8. M. Rostykus, M. Rossi, and C. Moser, “Compact lensless subpixel resolution large field of view microscope,” Opt. Lett. 43(8), 1654–1657 (2018).
    [Crossref] [PubMed]
  9. G. Li, D. Lee, Y. Jeong, J. Cho, and B. Lee, “Holographic display for see-through augmented reality using mirror-lens holographic optical element,” Opt. Lett. 41(11), 2486–2489 (2016).
    [Crossref] [PubMed]
  10. D. Jurbergs, F.-K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hönel, T. Rölle, M.-S. Weiser, and A. Volkov, “New recording materials for the holographic industry,” in Proc. SPIE 7233, Practical Holography XXIII: Materials and Applications(2009), pp. 72330K–72330K–72310.
  11. D. Vather, I. Naydenova, D. Cody, M. Zawadzka, S. Martin, E. Mihaylova, S. Curran, P. Duffy, J. Portillo, D. Connell, S. McDonnell, and V. Toal, “Serialized holography for brand protection and authentication,” Appl. Opt. 57(22), E131–E137 (2018).
    [Crossref] [PubMed]
  12. J. M. Russo, F. Dimov, J. Padiyar, and S. Coe-Sullivan, “Mass production of holographic transparent components for augmented and virtual reality applications,” in SPIE Digital Optical Technologies(SPIE2017), p. 9.
  13. F.-K. Bruder, T. Fäcke, F. Grote, R. Hagen, D. Hönel, E. Koch, C. Rewitz, G. Walze, and B. Wewer, “Mass production of volume holographic optical elements (vHOEs) using Bayfol(R) HX photopolymer film in a roll-to-roll copy process,” in SPIE OPTO(SPIE2017), p. 20.
  14. H. Gross, F. Blechinger, and B. Achtner, Handbook of Optical Systems, Survey of Optical Instruments (Wiley, 2008).
  15. B.-R. David, “Understanding diffraction in volume gratings and holograms,” in Holography - Basic Principles and Contemporary Applications, E. Mihaylova, ed. (InTech, 2013), p. Ch. 01.
  16. J. Marín-Sáez, J. Atencia, D. Chemisana, and M.-V. Collados, “Characterization of volume holographic optical elements recorded in Bayfol HX photopolymer for solar photovoltaic applications,” Opt. Express 24(6), A720–A730 (2016).
    [Crossref] [PubMed]
  17. J. Han, J. Liu, X. Yao, and Y. Wang, “Portable waveguide display system with a large field of view by integrating freeform elements and volume holograms,” Opt. Express 23(3), 3534–3549 (2015).
    [Crossref] [PubMed]
  18. C. A. Palmer, Diffraction Grating Handbook (Richardson Grating Laboratory, 2000).
  19. L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14(10), 2758–2767 (1997).
    [Crossref]
  20. J. Liu, R. T. Chen, B. M. Davies, and L. Li, “Modeling and design of planar slanted volume holographic gratings for wavelength-division-multiplexing applications,” Appl. Opt. 38(34), 6981–6986 (1999).
    [Crossref] [PubMed]
  21. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
    [Crossref]
  22. A. Zanutta, E. Orselli, T. Fäcke, and A. Bianco, “Photopolymer materials for volume phase holographic optical elements,” in International Conference on Space Optics — ICSO2016(SPIE2017), p. 9.
  23. B. J. Chang, “Dichromated gelatin holograms and their applications,” Opt. Eng. 29(5), 195642 (1980).
  24. S. Altmeyer, Y. Hu, P. Thiée, J. Matrisch, M. Wallentin, and J. Silbermann, “Multiplexing of transmission holograms in photopolymer,” in DGaO Proceedings(2013).
  25. R. F. Fischer and B. Tadic, Optical System Design (Mcgraw-hill, 2000).
  26. W. J. Smith, Modern optical engineering (McGraw-Hill, 1966).
  27. H. Goersch, Wörterbuch der Optometrie (DOZ-Verlag, 2004).

2018 (2)

2016 (2)

2015 (1)

2014 (1)

2013 (1)

F. Z. Fang, X. D. Zhang, A. Weckenmann, G. X. Zhang, and C. Evans, “Manufacturing and measurement of freeform optics,” CIRP Ann. Manuf. Technol. 62(2), 823–846 (2013).
[Crossref]

2008 (2)

D. J. Meister and S. W. Fisher, “Progress in the spectacle correction of presbyopia. Part 2: Modern progressive lens technologies,” Clin. Exp. Optom. 91(3), 251–264 (2008).
[Crossref] [PubMed]

D. J. Meister and S. W. Fisher, “Progress in the spectacle correction of presbyopia. Part 1: Design and development of progressive lenses,” Clin. Exp. Optom. 91(3), 240–250 (2008).
[Crossref] [PubMed]

2005 (1)

J. E. Sheedy, C. Campbell, E. King-Smith, and J. R. Hayes, “Progressive powered lenses: the Minkwitz theorem,” Optom. Vis. Sci. 82(10), 916–922 (2005).
[Crossref] [PubMed]

1999 (2)

A. Glasser and M. C. W. Campbell, “Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia,” Vision Res. 39(11), 1991–2015 (1999).
[Crossref] [PubMed]

J. Liu, R. T. Chen, B. M. Davies, and L. Li, “Modeling and design of planar slanted volume holographic gratings for wavelength-division-multiplexing applications,” Appl. Opt. 38(34), 6981–6986 (1999).
[Crossref] [PubMed]

1997 (1)

1980 (1)

B. J. Chang, “Dichromated gelatin holograms and their applications,” Opt. Eng. 29(5), 195642 (1980).

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

1963 (1)

G. Minkwitz, “On the surface astigmatism of a fixed symmetrical aspheric surface,” Opt. Acta (Lond.) 10(3), 223–227 (1963).
[Crossref] [PubMed]

Altmeyer, S.

S. Altmeyer, Y. Hu, P. Thiée, J. Matrisch, M. Wallentin, and J. Silbermann, “Multiplexing of transmission holograms in photopolymer,” in DGaO Proceedings(2013).

Atencia, J.

Campbell, C.

J. E. Sheedy, C. Campbell, E. King-Smith, and J. R. Hayes, “Progressive powered lenses: the Minkwitz theorem,” Optom. Vis. Sci. 82(10), 916–922 (2005).
[Crossref] [PubMed]

Campbell, M. C. W.

A. Glasser and M. C. W. Campbell, “Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia,” Vision Res. 39(11), 1991–2015 (1999).
[Crossref] [PubMed]

Chang, B. J.

B. J. Chang, “Dichromated gelatin holograms and their applications,” Opt. Eng. 29(5), 195642 (1980).

Chemisana, D.

Chen, R. T.

Cho, J.

Cody, D.

Collados, M.-V.

Connell, D.

Curran, S.

Davies, B. M.

Duffy, P.

Evans, C.

F. Z. Fang, X. D. Zhang, A. Weckenmann, G. X. Zhang, and C. Evans, “Manufacturing and measurement of freeform optics,” CIRP Ann. Manuf. Technol. 62(2), 823–846 (2013).
[Crossref]

Fang, F. Z.

F. Z. Fang, X. D. Zhang, A. Weckenmann, G. X. Zhang, and C. Evans, “Manufacturing and measurement of freeform optics,” CIRP Ann. Manuf. Technol. 62(2), 823–846 (2013).
[Crossref]

Faridian, A.

Fisher, S. W.

D. J. Meister and S. W. Fisher, “Progress in the spectacle correction of presbyopia. Part 2: Modern progressive lens technologies,” Clin. Exp. Optom. 91(3), 251–264 (2008).
[Crossref] [PubMed]

D. J. Meister and S. W. Fisher, “Progress in the spectacle correction of presbyopia. Part 1: Design and development of progressive lenses,” Clin. Exp. Optom. 91(3), 240–250 (2008).
[Crossref] [PubMed]

Gao, P.

Glasser, A.

A. Glasser and M. C. W. Campbell, “Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia,” Vision Res. 39(11), 1991–2015 (1999).
[Crossref] [PubMed]

Han, J.

Hayes, J. R.

J. E. Sheedy, C. Campbell, E. King-Smith, and J. R. Hayes, “Progressive powered lenses: the Minkwitz theorem,” Optom. Vis. Sci. 82(10), 916–922 (2005).
[Crossref] [PubMed]

Hu, Y.

S. Altmeyer, Y. Hu, P. Thiée, J. Matrisch, M. Wallentin, and J. Silbermann, “Multiplexing of transmission holograms in photopolymer,” in DGaO Proceedings(2013).

Jeong, Y.

King-Smith, E.

J. E. Sheedy, C. Campbell, E. King-Smith, and J. R. Hayes, “Progressive powered lenses: the Minkwitz theorem,” Optom. Vis. Sci. 82(10), 916–922 (2005).
[Crossref] [PubMed]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

Körner, K.

Lee, B.

Lee, D.

Li, G.

Li, L.

Liu, J.

Marín-Sáez, J.

Martin, S.

Matrisch, J.

S. Altmeyer, Y. Hu, P. Thiée, J. Matrisch, M. Wallentin, and J. Silbermann, “Multiplexing of transmission holograms in photopolymer,” in DGaO Proceedings(2013).

McDonnell, S.

Meister, D. J.

D. J. Meister and S. W. Fisher, “Progress in the spectacle correction of presbyopia. Part 2: Modern progressive lens technologies,” Clin. Exp. Optom. 91(3), 251–264 (2008).
[Crossref] [PubMed]

D. J. Meister and S. W. Fisher, “Progress in the spectacle correction of presbyopia. Part 1: Design and development of progressive lenses,” Clin. Exp. Optom. 91(3), 240–250 (2008).
[Crossref] [PubMed]

Mihaylova, E.

Minkwitz, G.

G. Minkwitz, “On the surface astigmatism of a fixed symmetrical aspheric surface,” Opt. Acta (Lond.) 10(3), 223–227 (1963).
[Crossref] [PubMed]

Moser, C.

Naik, D.

Naydenova, I.

Osten, W.

Pedrini, G.

Portillo, J.

Rossi, M.

Rostykus, M.

Sheedy, J. E.

J. E. Sheedy, C. Campbell, E. King-Smith, and J. R. Hayes, “Progressive powered lenses: the Minkwitz theorem,” Optom. Vis. Sci. 82(10), 916–922 (2005).
[Crossref] [PubMed]

Silbermann, J.

S. Altmeyer, Y. Hu, P. Thiée, J. Matrisch, M. Wallentin, and J. Silbermann, “Multiplexing of transmission holograms in photopolymer,” in DGaO Proceedings(2013).

Singh, A. K.

Takeda, M.

Thiée, P.

S. Altmeyer, Y. Hu, P. Thiée, J. Matrisch, M. Wallentin, and J. Silbermann, “Multiplexing of transmission holograms in photopolymer,” in DGaO Proceedings(2013).

Toal, V.

Vather, D.

Wallentin, M.

S. Altmeyer, Y. Hu, P. Thiée, J. Matrisch, M. Wallentin, and J. Silbermann, “Multiplexing of transmission holograms in photopolymer,” in DGaO Proceedings(2013).

Wang, Y.

Weckenmann, A.

F. Z. Fang, X. D. Zhang, A. Weckenmann, G. X. Zhang, and C. Evans, “Manufacturing and measurement of freeform optics,” CIRP Ann. Manuf. Technol. 62(2), 823–846 (2013).
[Crossref]

Wilke, M.

Yao, X.

Zawadzka, M.

Zhang, G. X.

F. Z. Fang, X. D. Zhang, A. Weckenmann, G. X. Zhang, and C. Evans, “Manufacturing and measurement of freeform optics,” CIRP Ann. Manuf. Technol. 62(2), 823–846 (2013).
[Crossref]

Zhang, X. D.

F. Z. Fang, X. D. Zhang, A. Weckenmann, G. X. Zhang, and C. Evans, “Manufacturing and measurement of freeform optics,” CIRP Ann. Manuf. Technol. 62(2), 823–846 (2013).
[Crossref]

Appl. Opt. (3)

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

CIRP Ann. Manuf. Technol. (1)

F. Z. Fang, X. D. Zhang, A. Weckenmann, G. X. Zhang, and C. Evans, “Manufacturing and measurement of freeform optics,” CIRP Ann. Manuf. Technol. 62(2), 823–846 (2013).
[Crossref]

Clin. Exp. Optom. (2)

D. J. Meister and S. W. Fisher, “Progress in the spectacle correction of presbyopia. Part 2: Modern progressive lens technologies,” Clin. Exp. Optom. 91(3), 251–264 (2008).
[Crossref] [PubMed]

D. J. Meister and S. W. Fisher, “Progress in the spectacle correction of presbyopia. Part 1: Design and development of progressive lenses,” Clin. Exp. Optom. 91(3), 240–250 (2008).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

Opt. Acta (Lond.) (1)

G. Minkwitz, “On the surface astigmatism of a fixed symmetrical aspheric surface,” Opt. Acta (Lond.) 10(3), 223–227 (1963).
[Crossref] [PubMed]

Opt. Eng. (1)

B. J. Chang, “Dichromated gelatin holograms and their applications,” Opt. Eng. 29(5), 195642 (1980).

Opt. Express (2)

Opt. Lett. (2)

Optom. Vis. Sci. (1)

J. E. Sheedy, C. Campbell, E. King-Smith, and J. R. Hayes, “Progressive powered lenses: the Minkwitz theorem,” Optom. Vis. Sci. 82(10), 916–922 (2005).
[Crossref] [PubMed]

Vision Res. (1)

A. Glasser and M. C. W. Campbell, “Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia,” Vision Res. 39(11), 1991–2015 (1999).
[Crossref] [PubMed]

Other (11)

D. Jurbergs, F.-K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hönel, T. Rölle, M.-S. Weiser, and A. Volkov, “New recording materials for the holographic industry,” in Proc. SPIE 7233, Practical Holography XXIII: Materials and Applications(2009), pp. 72330K–72330K–72310.

C. A. Palmer, Diffraction Grating Handbook (Richardson Grating Laboratory, 2000).

J. M. Russo, F. Dimov, J. Padiyar, and S. Coe-Sullivan, “Mass production of holographic transparent components for augmented and virtual reality applications,” in SPIE Digital Optical Technologies(SPIE2017), p. 9.

F.-K. Bruder, T. Fäcke, F. Grote, R. Hagen, D. Hönel, E. Koch, C. Rewitz, G. Walze, and B. Wewer, “Mass production of volume holographic optical elements (vHOEs) using Bayfol(R) HX photopolymer film in a roll-to-roll copy process,” in SPIE OPTO(SPIE2017), p. 20.

H. Gross, F. Blechinger, and B. Achtner, Handbook of Optical Systems, Survey of Optical Instruments (Wiley, 2008).

B.-R. David, “Understanding diffraction in volume gratings and holograms,” in Holography - Basic Principles and Contemporary Applications, E. Mihaylova, ed. (InTech, 2013), p. Ch. 01.

S. Altmeyer, Y. Hu, P. Thiée, J. Matrisch, M. Wallentin, and J. Silbermann, “Multiplexing of transmission holograms in photopolymer,” in DGaO Proceedings(2013).

R. F. Fischer and B. Tadic, Optical System Design (Mcgraw-hill, 2000).

W. J. Smith, Modern optical engineering (McGraw-Hill, 1966).

H. Goersch, Wörterbuch der Optometrie (DOZ-Verlag, 2004).

A. Zanutta, E. Orselli, T. Fäcke, and A. Bianco, “Photopolymer materials for volume phase holographic optical elements,” in International Conference on Space Optics — ICSO2016(SPIE2017), p. 9.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Spherical power (a) and astigmatism (b) of a refractive 2 dpt PAL with a lens diameter of 50 mm. The spherical power distribution consists of a zone for far vision at a spherical power of about 0 dpt in the upper half of the lens and a zone for near vision at about 2 dpt in the lower part of the lens. Both zones are connected by a continuous increase in spherical power known as the progressive corridor.
Fig. 2
Fig. 2 Illustration of the considered optical system. For each eye rotation denoted by rotation angle θ, a principal ray can be drawn by connecting the rotational center of the eye M and the center of the pupil. The grating dispersion induced by HOE B is cancelled by the grating dispersion induced by HOE A as the grating vectors shown in the Ewald spheres are of equal magnitude and opposite direction.
Fig. 3
Fig. 3 Estimation of required angular bandwidth. We assume that at all lens positions the available angular bandwidth is centered on the principal rays (blue rays, center red ray). For a parallel ray bundle (red rays) limited by the finite pupil size the outmost rays are detuned by +/− φ. In other words, the required angular bandwidth is +/− φ. For typical PAL and eye geometries, an angular bandwidth of about +/− 1.7° around each principal ray is required.
Fig. 4
Fig. 4 FMM simulation of HOE DE as a function of wavelength and angle of incidence (AOI) for a grating period of 1.0 µm (a), 1.5 µm (b), 2.0 µm (c), 2.4 µm (d), 2.7 µm (e) and 3.0 µm (f). All HOEs have a grating thickness of 25 µm and a refractive index modulation of 0.02. For this parameter configuration, it is possible to achieve high DE for the entire VIS for grating periods from 2.0 µm to 2.7 µm. However, the black rectangle for part (d), which is the preferable configuration, indicates that the required angular bandwidth of +/− 1.7° is achieved only for a limited wavelength range. Part (g) shows that the required wavelength and angular bandwidth, denoted as a black rectangle, can be achieved by multiplexing two of the HOEs shown in (d) into the same holographic film.
Fig. 5
Fig. 5 CE of the hPAL over the lens surface (a) and along the x = 0 mm centerline of the lens (b) in a.u. From a benchmark device, we know that CE of about 25 to 30 a.u. are noticed by the eye. Values of close to 25 a.u. are only seen in regions featuring high astigmatism at −20 mm < x < −10 mm as well as 10 mm < x < 20 mm and −20 mm < y < −10 mm, but not in the near and far vision zones or the progressive corridor. In the progressive corridor at −15 mm < y < 0 mm shown in (b) the CE is even below absolute values of 10 a.u.
Fig. 6
Fig. 6 Grating periods of HOE A (a) and HOE B (b) of a 2 dpt additional power hPAL. The variation of less than +/− 0.1 µm from the desired value of 2.4 µm in both cases ensures that the requirements for high DE discussed in the previous section are met.
Fig. 7
Fig. 7 Spherical power (a) and astigmatism (b) of a 2 dpt additional power hPAL. Comparison with Fig. 1 yields that both distributions qualitatively match the ones of a refractive PAL.
Fig. 8
Fig. 8 Comparison of spherical power and astigmatism of the refractive PAL introduced in Fig. 1 and the hPAL introduced in Fig. 7 along the x = 0 mm (a) and y = −23 mm (b) line on the lens. Quantitatively, the performance of the refractive PAL and the hPAL differ e.g. by different rate of increased spherical power and the level of astigmatism in the progressive corridor between y = - 15 mm and y = 0 mm.

Metrics