Abstract

Detection of inter-layer and internal defects in semiconductor silicon (Si) wafers by non-contact, non-destructive and depth-resolving techniques with a high lateral and depth resolution is one of the challenging tasks in modern semiconductor industry. In this paper, we report that nonlinear optical harmonic generation can be of great virtue therein because it enables non-invasive inspection of inter-layer defects with sub-micrometer depth resolution in extensive penetration depth over several millimeters. Compared to existing inspection methods for inter-layer defects, such as ultrasound, photoacoustic and photothermal imaging, the proposed technique provides higher lateral and depth resolution as well as higher interfacial selectivity. For in-depth understanding of nonlinear harmonic generation at Si wafer surfaces, the spectral power distributions of third and fifth harmonics from Si wafers with various crystal orientations and dopants were carefully analyzed under different incident polarizations and excitation depths using a near-infrared (NIR) femtosecond laser as the excitation light source. We finally demonstrated that inter-layer defects inside stacked Si wafers, such as delamination or stacking faults, can be inspected with a high lateral and depth resolution in a non-contact and non-destructive manner. These findings will pave the way for nonlinear optical harmonic generation to the fields of interfacial studies of crystalline materials, high-resolution detection of sub-diffraction-limit surface defects, and high-resolution imaging of internal structures in stacked semiconductor devices.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Nonlinear third harmonic generation at crystalline sapphires

Gao Yi, Hyub Lee, Jiao Jiannan, Byung Jae Chun, Seunghwoi Han, Hyunwoong Kim, Yong Woo Kim, Donghwan Kim, Seung-Woo Kim, and Young-Jin Kim
Opt. Express 25(21) 26002-26010 (2017)

Multimodal nonlinear spectral microscopy based on a femtosecond Cr:forsterite laser

Shi-Wei Chu, I-Hsiu Chen, Tzu-Ming Liu, Ping Chin Chen, Chi-Kuang Sun, and Bai-Ling Lin
Opt. Lett. 26(23) 1909-1911 (2001)

Third harmonic generation microscopy

Jeff A. Squier, Michiel Müller, G. J. Brakenhoff, and Kent R. Wilson
Opt. Express 3(9) 315-324 (1998)

References

  • View by:
  • |
  • |
  • |

  1. M. M. Shulaker, G. Hills, R. S. Park, R. T. Howe, K. Saraswat, H. P. Wong, and S. Mitra, “Three-dimensional integration of nanotechnologies for computing and data storage on a single chip,” Nature 547(7661), 74–78 (2017).
    [Crossref] [PubMed]
  2. R. Jiro, M. Etsuro, T. Toshiro, and S. Yasushi, “Crystal-Originated Singularities on Si Wafer Surface after SC1 Cleaning,” Jpn. J. Appl. Phys. 29(2), L1947–L1949 (1990).
  3. T. Oe, Y. Nawa, N. Tsuda, and J. Yamada, “Nondestructive internal defect detection using photoacoustic and self-coupling effect,” Electron. Commun. Jpn. 93(7), 17–23 (2010).
    [Crossref]
  4. P. A. Wang, “Industrial Challenges For Thin Wafer Manufacturing,” in 4th World Conference on Photovoltaic Energy Conference, (IEEE 2006), pp. 1179–1182.
    [Crossref]
  5. S.-S. Ko, C.-S. Liu, and Y.-C. Lin, “Optical inspection system with tunable exposure unit for micro-crack detection in solar wafers,” Optik (Stuttg.) 124(19), 4030–4035 (2013).
    [Crossref]
  6. A. H. Aghamohammadi, A. S. Prabuwono, S. Sahran, and M. Mogharrebi, “Solar cell panel crack detection using Particle Swarm Optimization algorithm,” in International Conference on Pattern Analysis and Intelligence Robotics, (IEEE 2011), pp. 160–164.
  7. A. Belyaev, O. Polupan, S. Ostapenko, D. Hess, and J. P. Kalejs, “Resonance ultrasonic vibration diagnostics of elastic stress in full-size silicon wafers,” Semicond. Sci. Technol. 21(3), 254–260 (2006).
    [Crossref]
  8. O. Breitenstein, M. Langenkamp, O. Lang, and A. Schirrmacher, “Shunts due to laser scribing of solar cells evaluated by highly sensitive lock-in thermography,” Sol. Energy Mater. Sol. Cells 65(1), 55–62 (2001).
    [Crossref]
  9. Y. H. Wong, R. L. Thomas, and G. F. Hawkins, “Surface and subsurface structure of solids by laser photoacoustic spectroscopy,” Appl. Phys. Lett. 32(9), 538–539 (1978).
    [Crossref]
  10. G. Busse, “Optoacoustic and photothermal material inspection techniques,” Appl. Opt. 21(1), 107–110 (1982).
    [Crossref] [PubMed]
  11. J. Yang, S. Hwang, Y.-K. An, K. Lee, and H. Sohn, “Multi-spot laser lock-in thermography for real-time imaging of cracks in semiconductor chips during a manufacturing process,” J. Mater. Process. Technol. 229(Supplement C), 94–101 (2016).
    [Crossref]
  12. T. Kwon, K.-N. Joo, and S.-W. Kim, “Surface metrology of silicon wafers using a femtosecond pulse laser,” Proc. SPIE 7063, 706310 (2008).
    [Crossref]
  13. D. J. Moss, H. M. Driel, and J. E. Sipe, “Third harmonic generation as a structural diagnostic of ion‐implanted amorphous and crystalline silicon,” Appl. Phys. Lett. 48(17), 1150–1152 (1986).
    [Crossref]
  14. G. Yi, H. Lee, J. Jiannan, B. J. Chun, S. Han, H. Kim, Y. W. Kim, D. Kim, S. W. Kim, and Y. J. Kim, “Nonlinear third harmonic generation at crystalline sapphires,” Opt. Express 25(21), 26002–26010 (2017).
    [Crossref] [PubMed]
  15. T. Y. F. Tsang, “Optical third-harmonic generation at interfaces,” Phys. Rev. A 52(5), 4116–4125 (1995).
    [Crossref] [PubMed]
  16. M. J. Huttunen, P. Rasekh, R. W. Boyd, and K. Dolgaleva, “Using surface lattice resonances to engineer nonlinear optical processes in metal nanoparticle arrays,” Phys. Rev. A (Coll. Park) 97(5), 053817 (2018).
    [Crossref]
  17. D. von der Linde and K. Rzàzewski, “High-order optical harmonic generation from solid surfaces,” Appl. Phys. B 63(5), 499–506 (1996).
    [Crossref]
  18. H. Kim, S. Han, Y. W. Kim, S. Kim, and S.-W. Kim, “Generation of Coherent Extreme-Ultraviolet Radiation from Bulk Sapphire Crystal,” ACS Photonics 4(7), 1627–1632 (2017).
    [Crossref]
  19. G. Vampa, B. G. Ghamsari, S. Siadat Mousavi, T. J. Hammond, A. Olivieri, E. Lisicka-Skrek, A. Y. Naumov, D. M. Villeneuve, A. Staudte, P. Berini, and P. B. Corkum, “Plasmon-enhanced high-harmonic generation from silicon,” Nat. Phys. 13(7), 659–662 (2017).
    [Crossref]
  20. J. A. Hildebrand and L. K. Lam, “Directional acoustic microscopy for observation of elastic anisotropy,” Appl. Phys. Lett. 42(5), 413–415 (1983).
    [Crossref]
  21. G. Barucca, G. Majni, P. Mengucci, G. Leggieri, A. Luches, M. Martino, and A. Perrone, “New carbon nitride phase coherently grown on Si(111),” J. Appl. Phys. 86(4), 2014–2019 (1999).
    [Crossref]
  22. R. W. Boyd, Nonlinear Optics (Academic, 2008).
  23. M. Kopecký, J. Kub, F. Máca, J. Mašek, O. Pacherová, A. W. Rushforth, B. L. Gallagher, R. P. Campion, V. Novák, and T. Jungwirth, “Detection of stacking faults breaking the [110]/[110] symmetry in ferromagnetic semiconductors (Ga,Mn)As and (Ga,Mn)(As,P),” Phys. Rev. B Condens. Matter Mater. Phys. 83(23), 235324 (2011).
    [Crossref]
  24. D. Timmerman, J. Valenta, K. Dohnalová, W. D. A. M. de Boer, and T. Gregorkiewicz, “Step-like enhancement of luminescence quantum yield of silicon nanocrystals,” Nat. Nanotechnol. 6(11), 710–713 (2011).
    [Crossref] [PubMed]
  25. S. Evyatar, M. Raja, and H. Alex, “Extreme multiphoton luminescence in GaAs,” EPL 115(5), 57006 (2016).
    [Crossref]
  26. P. N. Saeta and N. A. Miller, “Distinguishing surface and bulk contributions to third-harmonic generation in silicon,” Appl. Phys. Lett. 79(17), 2704–2706 (2001).
    [Crossref]
  27. R. Hull, Properties of Crystalline Silicon (INSPEC, the Institution of Electrical Engineers, 1999).
  28. B. Weigelin, G.-J. Bakker, and P. Friedl, “Third harmonic generation microscopy of cells and tissue organization,” J. Cell Sci. 129(2), 245–255 (2016).
    [Crossref] [PubMed]
  29. N. Bloembergen, “Conservation laws in nonlinear optics,” J. Opt. Soc. Am. 70(12), 1429–1436 (1980).
    [Crossref]
  30. E. Hecht, Optics (Pearson Education, 2017).
  31. M. Abdelhamid, R. Singh, and M. Omar, “Review of Microcrack Detection Techniques for Silicon Solar Cells,” IEEE J. Photovolt. 4(1), 514–524 (2014).
    [Crossref]
  32. D.-M. Tsai, C.-C. Chang, and S.-M. Chao, “Micro-crack inspection in heterogeneously textured solar wafers using anisotropic diffusion,” Image Vis. Comput. 28(3), 491–501 (2010).
    [Crossref]
  33. W.-R. Yang, “Short-Time Discrete Wavelet Transform for wafer microcrack detection,” in IEEE International Symposium on Industrial Electronics, (IEEE, 2009), pp. 2069–2074.

2018 (1)

M. J. Huttunen, P. Rasekh, R. W. Boyd, and K. Dolgaleva, “Using surface lattice resonances to engineer nonlinear optical processes in metal nanoparticle arrays,” Phys. Rev. A (Coll. Park) 97(5), 053817 (2018).
[Crossref]

2017 (4)

H. Kim, S. Han, Y. W. Kim, S. Kim, and S.-W. Kim, “Generation of Coherent Extreme-Ultraviolet Radiation from Bulk Sapphire Crystal,” ACS Photonics 4(7), 1627–1632 (2017).
[Crossref]

G. Vampa, B. G. Ghamsari, S. Siadat Mousavi, T. J. Hammond, A. Olivieri, E. Lisicka-Skrek, A. Y. Naumov, D. M. Villeneuve, A. Staudte, P. Berini, and P. B. Corkum, “Plasmon-enhanced high-harmonic generation from silicon,” Nat. Phys. 13(7), 659–662 (2017).
[Crossref]

G. Yi, H. Lee, J. Jiannan, B. J. Chun, S. Han, H. Kim, Y. W. Kim, D. Kim, S. W. Kim, and Y. J. Kim, “Nonlinear third harmonic generation at crystalline sapphires,” Opt. Express 25(21), 26002–26010 (2017).
[Crossref] [PubMed]

M. M. Shulaker, G. Hills, R. S. Park, R. T. Howe, K. Saraswat, H. P. Wong, and S. Mitra, “Three-dimensional integration of nanotechnologies for computing and data storage on a single chip,” Nature 547(7661), 74–78 (2017).
[Crossref] [PubMed]

2016 (3)

J. Yang, S. Hwang, Y.-K. An, K. Lee, and H. Sohn, “Multi-spot laser lock-in thermography for real-time imaging of cracks in semiconductor chips during a manufacturing process,” J. Mater. Process. Technol. 229(Supplement C), 94–101 (2016).
[Crossref]

S. Evyatar, M. Raja, and H. Alex, “Extreme multiphoton luminescence in GaAs,” EPL 115(5), 57006 (2016).
[Crossref]

B. Weigelin, G.-J. Bakker, and P. Friedl, “Third harmonic generation microscopy of cells and tissue organization,” J. Cell Sci. 129(2), 245–255 (2016).
[Crossref] [PubMed]

2014 (1)

M. Abdelhamid, R. Singh, and M. Omar, “Review of Microcrack Detection Techniques for Silicon Solar Cells,” IEEE J. Photovolt. 4(1), 514–524 (2014).
[Crossref]

2013 (1)

S.-S. Ko, C.-S. Liu, and Y.-C. Lin, “Optical inspection system with tunable exposure unit for micro-crack detection in solar wafers,” Optik (Stuttg.) 124(19), 4030–4035 (2013).
[Crossref]

2011 (2)

M. Kopecký, J. Kub, F. Máca, J. Mašek, O. Pacherová, A. W. Rushforth, B. L. Gallagher, R. P. Campion, V. Novák, and T. Jungwirth, “Detection of stacking faults breaking the [110]/[110] symmetry in ferromagnetic semiconductors (Ga,Mn)As and (Ga,Mn)(As,P),” Phys. Rev. B Condens. Matter Mater. Phys. 83(23), 235324 (2011).
[Crossref]

D. Timmerman, J. Valenta, K. Dohnalová, W. D. A. M. de Boer, and T. Gregorkiewicz, “Step-like enhancement of luminescence quantum yield of silicon nanocrystals,” Nat. Nanotechnol. 6(11), 710–713 (2011).
[Crossref] [PubMed]

2010 (2)

D.-M. Tsai, C.-C. Chang, and S.-M. Chao, “Micro-crack inspection in heterogeneously textured solar wafers using anisotropic diffusion,” Image Vis. Comput. 28(3), 491–501 (2010).
[Crossref]

T. Oe, Y. Nawa, N. Tsuda, and J. Yamada, “Nondestructive internal defect detection using photoacoustic and self-coupling effect,” Electron. Commun. Jpn. 93(7), 17–23 (2010).
[Crossref]

2008 (1)

T. Kwon, K.-N. Joo, and S.-W. Kim, “Surface metrology of silicon wafers using a femtosecond pulse laser,” Proc. SPIE 7063, 706310 (2008).
[Crossref]

2006 (1)

A. Belyaev, O. Polupan, S. Ostapenko, D. Hess, and J. P. Kalejs, “Resonance ultrasonic vibration diagnostics of elastic stress in full-size silicon wafers,” Semicond. Sci. Technol. 21(3), 254–260 (2006).
[Crossref]

2001 (2)

O. Breitenstein, M. Langenkamp, O. Lang, and A. Schirrmacher, “Shunts due to laser scribing of solar cells evaluated by highly sensitive lock-in thermography,” Sol. Energy Mater. Sol. Cells 65(1), 55–62 (2001).
[Crossref]

P. N. Saeta and N. A. Miller, “Distinguishing surface and bulk contributions to third-harmonic generation in silicon,” Appl. Phys. Lett. 79(17), 2704–2706 (2001).
[Crossref]

1999 (1)

G. Barucca, G. Majni, P. Mengucci, G. Leggieri, A. Luches, M. Martino, and A. Perrone, “New carbon nitride phase coherently grown on Si(111),” J. Appl. Phys. 86(4), 2014–2019 (1999).
[Crossref]

1996 (1)

D. von der Linde and K. Rzàzewski, “High-order optical harmonic generation from solid surfaces,” Appl. Phys. B 63(5), 499–506 (1996).
[Crossref]

1995 (1)

T. Y. F. Tsang, “Optical third-harmonic generation at interfaces,” Phys. Rev. A 52(5), 4116–4125 (1995).
[Crossref] [PubMed]

1990 (1)

R. Jiro, M. Etsuro, T. Toshiro, and S. Yasushi, “Crystal-Originated Singularities on Si Wafer Surface after SC1 Cleaning,” Jpn. J. Appl. Phys. 29(2), L1947–L1949 (1990).

1986 (1)

D. J. Moss, H. M. Driel, and J. E. Sipe, “Third harmonic generation as a structural diagnostic of ion‐implanted amorphous and crystalline silicon,” Appl. Phys. Lett. 48(17), 1150–1152 (1986).
[Crossref]

1983 (1)

J. A. Hildebrand and L. K. Lam, “Directional acoustic microscopy for observation of elastic anisotropy,” Appl. Phys. Lett. 42(5), 413–415 (1983).
[Crossref]

1982 (1)

1980 (1)

1978 (1)

Y. H. Wong, R. L. Thomas, and G. F. Hawkins, “Surface and subsurface structure of solids by laser photoacoustic spectroscopy,” Appl. Phys. Lett. 32(9), 538–539 (1978).
[Crossref]

Abdelhamid, M.

M. Abdelhamid, R. Singh, and M. Omar, “Review of Microcrack Detection Techniques for Silicon Solar Cells,” IEEE J. Photovolt. 4(1), 514–524 (2014).
[Crossref]

Alex, H.

S. Evyatar, M. Raja, and H. Alex, “Extreme multiphoton luminescence in GaAs,” EPL 115(5), 57006 (2016).
[Crossref]

An, Y.-K.

J. Yang, S. Hwang, Y.-K. An, K. Lee, and H. Sohn, “Multi-spot laser lock-in thermography for real-time imaging of cracks in semiconductor chips during a manufacturing process,” J. Mater. Process. Technol. 229(Supplement C), 94–101 (2016).
[Crossref]

Bakker, G.-J.

B. Weigelin, G.-J. Bakker, and P. Friedl, “Third harmonic generation microscopy of cells and tissue organization,” J. Cell Sci. 129(2), 245–255 (2016).
[Crossref] [PubMed]

Barucca, G.

G. Barucca, G. Majni, P. Mengucci, G. Leggieri, A. Luches, M. Martino, and A. Perrone, “New carbon nitride phase coherently grown on Si(111),” J. Appl. Phys. 86(4), 2014–2019 (1999).
[Crossref]

Belyaev, A.

A. Belyaev, O. Polupan, S. Ostapenko, D. Hess, and J. P. Kalejs, “Resonance ultrasonic vibration diagnostics of elastic stress in full-size silicon wafers,” Semicond. Sci. Technol. 21(3), 254–260 (2006).
[Crossref]

Berini, P.

G. Vampa, B. G. Ghamsari, S. Siadat Mousavi, T. J. Hammond, A. Olivieri, E. Lisicka-Skrek, A. Y. Naumov, D. M. Villeneuve, A. Staudte, P. Berini, and P. B. Corkum, “Plasmon-enhanced high-harmonic generation from silicon,” Nat. Phys. 13(7), 659–662 (2017).
[Crossref]

Bloembergen, N.

Boyd, R. W.

M. J. Huttunen, P. Rasekh, R. W. Boyd, and K. Dolgaleva, “Using surface lattice resonances to engineer nonlinear optical processes in metal nanoparticle arrays,” Phys. Rev. A (Coll. Park) 97(5), 053817 (2018).
[Crossref]

Breitenstein, O.

O. Breitenstein, M. Langenkamp, O. Lang, and A. Schirrmacher, “Shunts due to laser scribing of solar cells evaluated by highly sensitive lock-in thermography,” Sol. Energy Mater. Sol. Cells 65(1), 55–62 (2001).
[Crossref]

Busse, G.

Campion, R. P.

M. Kopecký, J. Kub, F. Máca, J. Mašek, O. Pacherová, A. W. Rushforth, B. L. Gallagher, R. P. Campion, V. Novák, and T. Jungwirth, “Detection of stacking faults breaking the [110]/[110] symmetry in ferromagnetic semiconductors (Ga,Mn)As and (Ga,Mn)(As,P),” Phys. Rev. B Condens. Matter Mater. Phys. 83(23), 235324 (2011).
[Crossref]

Chang, C.-C.

D.-M. Tsai, C.-C. Chang, and S.-M. Chao, “Micro-crack inspection in heterogeneously textured solar wafers using anisotropic diffusion,” Image Vis. Comput. 28(3), 491–501 (2010).
[Crossref]

Chao, S.-M.

D.-M. Tsai, C.-C. Chang, and S.-M. Chao, “Micro-crack inspection in heterogeneously textured solar wafers using anisotropic diffusion,” Image Vis. Comput. 28(3), 491–501 (2010).
[Crossref]

Chun, B. J.

Corkum, P. B.

G. Vampa, B. G. Ghamsari, S. Siadat Mousavi, T. J. Hammond, A. Olivieri, E. Lisicka-Skrek, A. Y. Naumov, D. M. Villeneuve, A. Staudte, P. Berini, and P. B. Corkum, “Plasmon-enhanced high-harmonic generation from silicon,” Nat. Phys. 13(7), 659–662 (2017).
[Crossref]

de Boer, W. D. A. M.

D. Timmerman, J. Valenta, K. Dohnalová, W. D. A. M. de Boer, and T. Gregorkiewicz, “Step-like enhancement of luminescence quantum yield of silicon nanocrystals,” Nat. Nanotechnol. 6(11), 710–713 (2011).
[Crossref] [PubMed]

Dohnalová, K.

D. Timmerman, J. Valenta, K. Dohnalová, W. D. A. M. de Boer, and T. Gregorkiewicz, “Step-like enhancement of luminescence quantum yield of silicon nanocrystals,” Nat. Nanotechnol. 6(11), 710–713 (2011).
[Crossref] [PubMed]

Dolgaleva, K.

M. J. Huttunen, P. Rasekh, R. W. Boyd, and K. Dolgaleva, “Using surface lattice resonances to engineer nonlinear optical processes in metal nanoparticle arrays,” Phys. Rev. A (Coll. Park) 97(5), 053817 (2018).
[Crossref]

Driel, H. M.

D. J. Moss, H. M. Driel, and J. E. Sipe, “Third harmonic generation as a structural diagnostic of ion‐implanted amorphous and crystalline silicon,” Appl. Phys. Lett. 48(17), 1150–1152 (1986).
[Crossref]

Etsuro, M.

R. Jiro, M. Etsuro, T. Toshiro, and S. Yasushi, “Crystal-Originated Singularities on Si Wafer Surface after SC1 Cleaning,” Jpn. J. Appl. Phys. 29(2), L1947–L1949 (1990).

Evyatar, S.

S. Evyatar, M. Raja, and H. Alex, “Extreme multiphoton luminescence in GaAs,” EPL 115(5), 57006 (2016).
[Crossref]

Friedl, P.

B. Weigelin, G.-J. Bakker, and P. Friedl, “Third harmonic generation microscopy of cells and tissue organization,” J. Cell Sci. 129(2), 245–255 (2016).
[Crossref] [PubMed]

Gallagher, B. L.

M. Kopecký, J. Kub, F. Máca, J. Mašek, O. Pacherová, A. W. Rushforth, B. L. Gallagher, R. P. Campion, V. Novák, and T. Jungwirth, “Detection of stacking faults breaking the [110]/[110] symmetry in ferromagnetic semiconductors (Ga,Mn)As and (Ga,Mn)(As,P),” Phys. Rev. B Condens. Matter Mater. Phys. 83(23), 235324 (2011).
[Crossref]

Ghamsari, B. G.

G. Vampa, B. G. Ghamsari, S. Siadat Mousavi, T. J. Hammond, A. Olivieri, E. Lisicka-Skrek, A. Y. Naumov, D. M. Villeneuve, A. Staudte, P. Berini, and P. B. Corkum, “Plasmon-enhanced high-harmonic generation from silicon,” Nat. Phys. 13(7), 659–662 (2017).
[Crossref]

Gregorkiewicz, T.

D. Timmerman, J. Valenta, K. Dohnalová, W. D. A. M. de Boer, and T. Gregorkiewicz, “Step-like enhancement of luminescence quantum yield of silicon nanocrystals,” Nat. Nanotechnol. 6(11), 710–713 (2011).
[Crossref] [PubMed]

Hammond, T. J.

G. Vampa, B. G. Ghamsari, S. Siadat Mousavi, T. J. Hammond, A. Olivieri, E. Lisicka-Skrek, A. Y. Naumov, D. M. Villeneuve, A. Staudte, P. Berini, and P. B. Corkum, “Plasmon-enhanced high-harmonic generation from silicon,” Nat. Phys. 13(7), 659–662 (2017).
[Crossref]

Han, S.

H. Kim, S. Han, Y. W. Kim, S. Kim, and S.-W. Kim, “Generation of Coherent Extreme-Ultraviolet Radiation from Bulk Sapphire Crystal,” ACS Photonics 4(7), 1627–1632 (2017).
[Crossref]

G. Yi, H. Lee, J. Jiannan, B. J. Chun, S. Han, H. Kim, Y. W. Kim, D. Kim, S. W. Kim, and Y. J. Kim, “Nonlinear third harmonic generation at crystalline sapphires,” Opt. Express 25(21), 26002–26010 (2017).
[Crossref] [PubMed]

Hawkins, G. F.

Y. H. Wong, R. L. Thomas, and G. F. Hawkins, “Surface and subsurface structure of solids by laser photoacoustic spectroscopy,” Appl. Phys. Lett. 32(9), 538–539 (1978).
[Crossref]

Hess, D.

A. Belyaev, O. Polupan, S. Ostapenko, D. Hess, and J. P. Kalejs, “Resonance ultrasonic vibration diagnostics of elastic stress in full-size silicon wafers,” Semicond. Sci. Technol. 21(3), 254–260 (2006).
[Crossref]

Hildebrand, J. A.

J. A. Hildebrand and L. K. Lam, “Directional acoustic microscopy for observation of elastic anisotropy,” Appl. Phys. Lett. 42(5), 413–415 (1983).
[Crossref]

Hills, G.

M. M. Shulaker, G. Hills, R. S. Park, R. T. Howe, K. Saraswat, H. P. Wong, and S. Mitra, “Three-dimensional integration of nanotechnologies for computing and data storage on a single chip,” Nature 547(7661), 74–78 (2017).
[Crossref] [PubMed]

Howe, R. T.

M. M. Shulaker, G. Hills, R. S. Park, R. T. Howe, K. Saraswat, H. P. Wong, and S. Mitra, “Three-dimensional integration of nanotechnologies for computing and data storage on a single chip,” Nature 547(7661), 74–78 (2017).
[Crossref] [PubMed]

Huttunen, M. J.

M. J. Huttunen, P. Rasekh, R. W. Boyd, and K. Dolgaleva, “Using surface lattice resonances to engineer nonlinear optical processes in metal nanoparticle arrays,” Phys. Rev. A (Coll. Park) 97(5), 053817 (2018).
[Crossref]

Hwang, S.

J. Yang, S. Hwang, Y.-K. An, K. Lee, and H. Sohn, “Multi-spot laser lock-in thermography for real-time imaging of cracks in semiconductor chips during a manufacturing process,” J. Mater. Process. Technol. 229(Supplement C), 94–101 (2016).
[Crossref]

Jiannan, J.

Jiro, R.

R. Jiro, M. Etsuro, T. Toshiro, and S. Yasushi, “Crystal-Originated Singularities on Si Wafer Surface after SC1 Cleaning,” Jpn. J. Appl. Phys. 29(2), L1947–L1949 (1990).

Joo, K.-N.

T. Kwon, K.-N. Joo, and S.-W. Kim, “Surface metrology of silicon wafers using a femtosecond pulse laser,” Proc. SPIE 7063, 706310 (2008).
[Crossref]

Jungwirth, T.

M. Kopecký, J. Kub, F. Máca, J. Mašek, O. Pacherová, A. W. Rushforth, B. L. Gallagher, R. P. Campion, V. Novák, and T. Jungwirth, “Detection of stacking faults breaking the [110]/[110] symmetry in ferromagnetic semiconductors (Ga,Mn)As and (Ga,Mn)(As,P),” Phys. Rev. B Condens. Matter Mater. Phys. 83(23), 235324 (2011).
[Crossref]

Kalejs, J. P.

A. Belyaev, O. Polupan, S. Ostapenko, D. Hess, and J. P. Kalejs, “Resonance ultrasonic vibration diagnostics of elastic stress in full-size silicon wafers,” Semicond. Sci. Technol. 21(3), 254–260 (2006).
[Crossref]

Kim, D.

Kim, H.

G. Yi, H. Lee, J. Jiannan, B. J. Chun, S. Han, H. Kim, Y. W. Kim, D. Kim, S. W. Kim, and Y. J. Kim, “Nonlinear third harmonic generation at crystalline sapphires,” Opt. Express 25(21), 26002–26010 (2017).
[Crossref] [PubMed]

H. Kim, S. Han, Y. W. Kim, S. Kim, and S.-W. Kim, “Generation of Coherent Extreme-Ultraviolet Radiation from Bulk Sapphire Crystal,” ACS Photonics 4(7), 1627–1632 (2017).
[Crossref]

Kim, S.

H. Kim, S. Han, Y. W. Kim, S. Kim, and S.-W. Kim, “Generation of Coherent Extreme-Ultraviolet Radiation from Bulk Sapphire Crystal,” ACS Photonics 4(7), 1627–1632 (2017).
[Crossref]

Kim, S. W.

Kim, S.-W.

H. Kim, S. Han, Y. W. Kim, S. Kim, and S.-W. Kim, “Generation of Coherent Extreme-Ultraviolet Radiation from Bulk Sapphire Crystal,” ACS Photonics 4(7), 1627–1632 (2017).
[Crossref]

T. Kwon, K.-N. Joo, and S.-W. Kim, “Surface metrology of silicon wafers using a femtosecond pulse laser,” Proc. SPIE 7063, 706310 (2008).
[Crossref]

Kim, Y. J.

Kim, Y. W.

G. Yi, H. Lee, J. Jiannan, B. J. Chun, S. Han, H. Kim, Y. W. Kim, D. Kim, S. W. Kim, and Y. J. Kim, “Nonlinear third harmonic generation at crystalline sapphires,” Opt. Express 25(21), 26002–26010 (2017).
[Crossref] [PubMed]

H. Kim, S. Han, Y. W. Kim, S. Kim, and S.-W. Kim, “Generation of Coherent Extreme-Ultraviolet Radiation from Bulk Sapphire Crystal,” ACS Photonics 4(7), 1627–1632 (2017).
[Crossref]

Ko, S.-S.

S.-S. Ko, C.-S. Liu, and Y.-C. Lin, “Optical inspection system with tunable exposure unit for micro-crack detection in solar wafers,” Optik (Stuttg.) 124(19), 4030–4035 (2013).
[Crossref]

Kopecký, M.

M. Kopecký, J. Kub, F. Máca, J. Mašek, O. Pacherová, A. W. Rushforth, B. L. Gallagher, R. P. Campion, V. Novák, and T. Jungwirth, “Detection of stacking faults breaking the [110]/[110] symmetry in ferromagnetic semiconductors (Ga,Mn)As and (Ga,Mn)(As,P),” Phys. Rev. B Condens. Matter Mater. Phys. 83(23), 235324 (2011).
[Crossref]

Kub, J.

M. Kopecký, J. Kub, F. Máca, J. Mašek, O. Pacherová, A. W. Rushforth, B. L. Gallagher, R. P. Campion, V. Novák, and T. Jungwirth, “Detection of stacking faults breaking the [110]/[110] symmetry in ferromagnetic semiconductors (Ga,Mn)As and (Ga,Mn)(As,P),” Phys. Rev. B Condens. Matter Mater. Phys. 83(23), 235324 (2011).
[Crossref]

Kwon, T.

T. Kwon, K.-N. Joo, and S.-W. Kim, “Surface metrology of silicon wafers using a femtosecond pulse laser,” Proc. SPIE 7063, 706310 (2008).
[Crossref]

Lam, L. K.

J. A. Hildebrand and L. K. Lam, “Directional acoustic microscopy for observation of elastic anisotropy,” Appl. Phys. Lett. 42(5), 413–415 (1983).
[Crossref]

Lang, O.

O. Breitenstein, M. Langenkamp, O. Lang, and A. Schirrmacher, “Shunts due to laser scribing of solar cells evaluated by highly sensitive lock-in thermography,” Sol. Energy Mater. Sol. Cells 65(1), 55–62 (2001).
[Crossref]

Langenkamp, M.

O. Breitenstein, M. Langenkamp, O. Lang, and A. Schirrmacher, “Shunts due to laser scribing of solar cells evaluated by highly sensitive lock-in thermography,” Sol. Energy Mater. Sol. Cells 65(1), 55–62 (2001).
[Crossref]

Lee, H.

Lee, K.

J. Yang, S. Hwang, Y.-K. An, K. Lee, and H. Sohn, “Multi-spot laser lock-in thermography for real-time imaging of cracks in semiconductor chips during a manufacturing process,” J. Mater. Process. Technol. 229(Supplement C), 94–101 (2016).
[Crossref]

Leggieri, G.

G. Barucca, G. Majni, P. Mengucci, G. Leggieri, A. Luches, M. Martino, and A. Perrone, “New carbon nitride phase coherently grown on Si(111),” J. Appl. Phys. 86(4), 2014–2019 (1999).
[Crossref]

Lin, Y.-C.

S.-S. Ko, C.-S. Liu, and Y.-C. Lin, “Optical inspection system with tunable exposure unit for micro-crack detection in solar wafers,” Optik (Stuttg.) 124(19), 4030–4035 (2013).
[Crossref]

Lisicka-Skrek, E.

G. Vampa, B. G. Ghamsari, S. Siadat Mousavi, T. J. Hammond, A. Olivieri, E. Lisicka-Skrek, A. Y. Naumov, D. M. Villeneuve, A. Staudte, P. Berini, and P. B. Corkum, “Plasmon-enhanced high-harmonic generation from silicon,” Nat. Phys. 13(7), 659–662 (2017).
[Crossref]

Liu, C.-S.

S.-S. Ko, C.-S. Liu, and Y.-C. Lin, “Optical inspection system with tunable exposure unit for micro-crack detection in solar wafers,” Optik (Stuttg.) 124(19), 4030–4035 (2013).
[Crossref]

Luches, A.

G. Barucca, G. Majni, P. Mengucci, G. Leggieri, A. Luches, M. Martino, and A. Perrone, “New carbon nitride phase coherently grown on Si(111),” J. Appl. Phys. 86(4), 2014–2019 (1999).
[Crossref]

Máca, F.

M. Kopecký, J. Kub, F. Máca, J. Mašek, O. Pacherová, A. W. Rushforth, B. L. Gallagher, R. P. Campion, V. Novák, and T. Jungwirth, “Detection of stacking faults breaking the [110]/[110] symmetry in ferromagnetic semiconductors (Ga,Mn)As and (Ga,Mn)(As,P),” Phys. Rev. B Condens. Matter Mater. Phys. 83(23), 235324 (2011).
[Crossref]

Majni, G.

G. Barucca, G. Majni, P. Mengucci, G. Leggieri, A. Luches, M. Martino, and A. Perrone, “New carbon nitride phase coherently grown on Si(111),” J. Appl. Phys. 86(4), 2014–2019 (1999).
[Crossref]

Martino, M.

G. Barucca, G. Majni, P. Mengucci, G. Leggieri, A. Luches, M. Martino, and A. Perrone, “New carbon nitride phase coherently grown on Si(111),” J. Appl. Phys. 86(4), 2014–2019 (1999).
[Crossref]

Mašek, J.

M. Kopecký, J. Kub, F. Máca, J. Mašek, O. Pacherová, A. W. Rushforth, B. L. Gallagher, R. P. Campion, V. Novák, and T. Jungwirth, “Detection of stacking faults breaking the [110]/[110] symmetry in ferromagnetic semiconductors (Ga,Mn)As and (Ga,Mn)(As,P),” Phys. Rev. B Condens. Matter Mater. Phys. 83(23), 235324 (2011).
[Crossref]

Mengucci, P.

G. Barucca, G. Majni, P. Mengucci, G. Leggieri, A. Luches, M. Martino, and A. Perrone, “New carbon nitride phase coherently grown on Si(111),” J. Appl. Phys. 86(4), 2014–2019 (1999).
[Crossref]

Miller, N. A.

P. N. Saeta and N. A. Miller, “Distinguishing surface and bulk contributions to third-harmonic generation in silicon,” Appl. Phys. Lett. 79(17), 2704–2706 (2001).
[Crossref]

Mitra, S.

M. M. Shulaker, G. Hills, R. S. Park, R. T. Howe, K. Saraswat, H. P. Wong, and S. Mitra, “Three-dimensional integration of nanotechnologies for computing and data storage on a single chip,” Nature 547(7661), 74–78 (2017).
[Crossref] [PubMed]

Moss, D. J.

D. J. Moss, H. M. Driel, and J. E. Sipe, “Third harmonic generation as a structural diagnostic of ion‐implanted amorphous and crystalline silicon,” Appl. Phys. Lett. 48(17), 1150–1152 (1986).
[Crossref]

Naumov, A. Y.

G. Vampa, B. G. Ghamsari, S. Siadat Mousavi, T. J. Hammond, A. Olivieri, E. Lisicka-Skrek, A. Y. Naumov, D. M. Villeneuve, A. Staudte, P. Berini, and P. B. Corkum, “Plasmon-enhanced high-harmonic generation from silicon,” Nat. Phys. 13(7), 659–662 (2017).
[Crossref]

Nawa, Y.

T. Oe, Y. Nawa, N. Tsuda, and J. Yamada, “Nondestructive internal defect detection using photoacoustic and self-coupling effect,” Electron. Commun. Jpn. 93(7), 17–23 (2010).
[Crossref]

Novák, V.

M. Kopecký, J. Kub, F. Máca, J. Mašek, O. Pacherová, A. W. Rushforth, B. L. Gallagher, R. P. Campion, V. Novák, and T. Jungwirth, “Detection of stacking faults breaking the [110]/[110] symmetry in ferromagnetic semiconductors (Ga,Mn)As and (Ga,Mn)(As,P),” Phys. Rev. B Condens. Matter Mater. Phys. 83(23), 235324 (2011).
[Crossref]

Oe, T.

T. Oe, Y. Nawa, N. Tsuda, and J. Yamada, “Nondestructive internal defect detection using photoacoustic and self-coupling effect,” Electron. Commun. Jpn. 93(7), 17–23 (2010).
[Crossref]

Olivieri, A.

G. Vampa, B. G. Ghamsari, S. Siadat Mousavi, T. J. Hammond, A. Olivieri, E. Lisicka-Skrek, A. Y. Naumov, D. M. Villeneuve, A. Staudte, P. Berini, and P. B. Corkum, “Plasmon-enhanced high-harmonic generation from silicon,” Nat. Phys. 13(7), 659–662 (2017).
[Crossref]

Omar, M.

M. Abdelhamid, R. Singh, and M. Omar, “Review of Microcrack Detection Techniques for Silicon Solar Cells,” IEEE J. Photovolt. 4(1), 514–524 (2014).
[Crossref]

Ostapenko, S.

A. Belyaev, O. Polupan, S. Ostapenko, D. Hess, and J. P. Kalejs, “Resonance ultrasonic vibration diagnostics of elastic stress in full-size silicon wafers,” Semicond. Sci. Technol. 21(3), 254–260 (2006).
[Crossref]

Pacherová, O.

M. Kopecký, J. Kub, F. Máca, J. Mašek, O. Pacherová, A. W. Rushforth, B. L. Gallagher, R. P. Campion, V. Novák, and T. Jungwirth, “Detection of stacking faults breaking the [110]/[110] symmetry in ferromagnetic semiconductors (Ga,Mn)As and (Ga,Mn)(As,P),” Phys. Rev. B Condens. Matter Mater. Phys. 83(23), 235324 (2011).
[Crossref]

Park, R. S.

M. M. Shulaker, G. Hills, R. S. Park, R. T. Howe, K. Saraswat, H. P. Wong, and S. Mitra, “Three-dimensional integration of nanotechnologies for computing and data storage on a single chip,” Nature 547(7661), 74–78 (2017).
[Crossref] [PubMed]

Perrone, A.

G. Barucca, G. Majni, P. Mengucci, G. Leggieri, A. Luches, M. Martino, and A. Perrone, “New carbon nitride phase coherently grown on Si(111),” J. Appl. Phys. 86(4), 2014–2019 (1999).
[Crossref]

Polupan, O.

A. Belyaev, O. Polupan, S. Ostapenko, D. Hess, and J. P. Kalejs, “Resonance ultrasonic vibration diagnostics of elastic stress in full-size silicon wafers,” Semicond. Sci. Technol. 21(3), 254–260 (2006).
[Crossref]

Raja, M.

S. Evyatar, M. Raja, and H. Alex, “Extreme multiphoton luminescence in GaAs,” EPL 115(5), 57006 (2016).
[Crossref]

Rasekh, P.

M. J. Huttunen, P. Rasekh, R. W. Boyd, and K. Dolgaleva, “Using surface lattice resonances to engineer nonlinear optical processes in metal nanoparticle arrays,” Phys. Rev. A (Coll. Park) 97(5), 053817 (2018).
[Crossref]

Rushforth, A. W.

M. Kopecký, J. Kub, F. Máca, J. Mašek, O. Pacherová, A. W. Rushforth, B. L. Gallagher, R. P. Campion, V. Novák, and T. Jungwirth, “Detection of stacking faults breaking the [110]/[110] symmetry in ferromagnetic semiconductors (Ga,Mn)As and (Ga,Mn)(As,P),” Phys. Rev. B Condens. Matter Mater. Phys. 83(23), 235324 (2011).
[Crossref]

Rzàzewski, K.

D. von der Linde and K. Rzàzewski, “High-order optical harmonic generation from solid surfaces,” Appl. Phys. B 63(5), 499–506 (1996).
[Crossref]

Saeta, P. N.

P. N. Saeta and N. A. Miller, “Distinguishing surface and bulk contributions to third-harmonic generation in silicon,” Appl. Phys. Lett. 79(17), 2704–2706 (2001).
[Crossref]

Saraswat, K.

M. M. Shulaker, G. Hills, R. S. Park, R. T. Howe, K. Saraswat, H. P. Wong, and S. Mitra, “Three-dimensional integration of nanotechnologies for computing and data storage on a single chip,” Nature 547(7661), 74–78 (2017).
[Crossref] [PubMed]

Schirrmacher, A.

O. Breitenstein, M. Langenkamp, O. Lang, and A. Schirrmacher, “Shunts due to laser scribing of solar cells evaluated by highly sensitive lock-in thermography,” Sol. Energy Mater. Sol. Cells 65(1), 55–62 (2001).
[Crossref]

Shulaker, M. M.

M. M. Shulaker, G. Hills, R. S. Park, R. T. Howe, K. Saraswat, H. P. Wong, and S. Mitra, “Three-dimensional integration of nanotechnologies for computing and data storage on a single chip,” Nature 547(7661), 74–78 (2017).
[Crossref] [PubMed]

Siadat Mousavi, S.

G. Vampa, B. G. Ghamsari, S. Siadat Mousavi, T. J. Hammond, A. Olivieri, E. Lisicka-Skrek, A. Y. Naumov, D. M. Villeneuve, A. Staudte, P. Berini, and P. B. Corkum, “Plasmon-enhanced high-harmonic generation from silicon,” Nat. Phys. 13(7), 659–662 (2017).
[Crossref]

Singh, R.

M. Abdelhamid, R. Singh, and M. Omar, “Review of Microcrack Detection Techniques for Silicon Solar Cells,” IEEE J. Photovolt. 4(1), 514–524 (2014).
[Crossref]

Sipe, J. E.

D. J. Moss, H. M. Driel, and J. E. Sipe, “Third harmonic generation as a structural diagnostic of ion‐implanted amorphous and crystalline silicon,” Appl. Phys. Lett. 48(17), 1150–1152 (1986).
[Crossref]

Sohn, H.

J. Yang, S. Hwang, Y.-K. An, K. Lee, and H. Sohn, “Multi-spot laser lock-in thermography for real-time imaging of cracks in semiconductor chips during a manufacturing process,” J. Mater. Process. Technol. 229(Supplement C), 94–101 (2016).
[Crossref]

Staudte, A.

G. Vampa, B. G. Ghamsari, S. Siadat Mousavi, T. J. Hammond, A. Olivieri, E. Lisicka-Skrek, A. Y. Naumov, D. M. Villeneuve, A. Staudte, P. Berini, and P. B. Corkum, “Plasmon-enhanced high-harmonic generation from silicon,” Nat. Phys. 13(7), 659–662 (2017).
[Crossref]

Thomas, R. L.

Y. H. Wong, R. L. Thomas, and G. F. Hawkins, “Surface and subsurface structure of solids by laser photoacoustic spectroscopy,” Appl. Phys. Lett. 32(9), 538–539 (1978).
[Crossref]

Timmerman, D.

D. Timmerman, J. Valenta, K. Dohnalová, W. D. A. M. de Boer, and T. Gregorkiewicz, “Step-like enhancement of luminescence quantum yield of silicon nanocrystals,” Nat. Nanotechnol. 6(11), 710–713 (2011).
[Crossref] [PubMed]

Toshiro, T.

R. Jiro, M. Etsuro, T. Toshiro, and S. Yasushi, “Crystal-Originated Singularities on Si Wafer Surface after SC1 Cleaning,” Jpn. J. Appl. Phys. 29(2), L1947–L1949 (1990).

Tsai, D.-M.

D.-M. Tsai, C.-C. Chang, and S.-M. Chao, “Micro-crack inspection in heterogeneously textured solar wafers using anisotropic diffusion,” Image Vis. Comput. 28(3), 491–501 (2010).
[Crossref]

Tsang, T. Y. F.

T. Y. F. Tsang, “Optical third-harmonic generation at interfaces,” Phys. Rev. A 52(5), 4116–4125 (1995).
[Crossref] [PubMed]

Tsuda, N.

T. Oe, Y. Nawa, N. Tsuda, and J. Yamada, “Nondestructive internal defect detection using photoacoustic and self-coupling effect,” Electron. Commun. Jpn. 93(7), 17–23 (2010).
[Crossref]

Valenta, J.

D. Timmerman, J. Valenta, K. Dohnalová, W. D. A. M. de Boer, and T. Gregorkiewicz, “Step-like enhancement of luminescence quantum yield of silicon nanocrystals,” Nat. Nanotechnol. 6(11), 710–713 (2011).
[Crossref] [PubMed]

Vampa, G.

G. Vampa, B. G. Ghamsari, S. Siadat Mousavi, T. J. Hammond, A. Olivieri, E. Lisicka-Skrek, A. Y. Naumov, D. M. Villeneuve, A. Staudte, P. Berini, and P. B. Corkum, “Plasmon-enhanced high-harmonic generation from silicon,” Nat. Phys. 13(7), 659–662 (2017).
[Crossref]

Villeneuve, D. M.

G. Vampa, B. G. Ghamsari, S. Siadat Mousavi, T. J. Hammond, A. Olivieri, E. Lisicka-Skrek, A. Y. Naumov, D. M. Villeneuve, A. Staudte, P. Berini, and P. B. Corkum, “Plasmon-enhanced high-harmonic generation from silicon,” Nat. Phys. 13(7), 659–662 (2017).
[Crossref]

von der Linde, D.

D. von der Linde and K. Rzàzewski, “High-order optical harmonic generation from solid surfaces,” Appl. Phys. B 63(5), 499–506 (1996).
[Crossref]

Weigelin, B.

B. Weigelin, G.-J. Bakker, and P. Friedl, “Third harmonic generation microscopy of cells and tissue organization,” J. Cell Sci. 129(2), 245–255 (2016).
[Crossref] [PubMed]

Wong, H. P.

M. M. Shulaker, G. Hills, R. S. Park, R. T. Howe, K. Saraswat, H. P. Wong, and S. Mitra, “Three-dimensional integration of nanotechnologies for computing and data storage on a single chip,” Nature 547(7661), 74–78 (2017).
[Crossref] [PubMed]

Wong, Y. H.

Y. H. Wong, R. L. Thomas, and G. F. Hawkins, “Surface and subsurface structure of solids by laser photoacoustic spectroscopy,” Appl. Phys. Lett. 32(9), 538–539 (1978).
[Crossref]

Yamada, J.

T. Oe, Y. Nawa, N. Tsuda, and J. Yamada, “Nondestructive internal defect detection using photoacoustic and self-coupling effect,” Electron. Commun. Jpn. 93(7), 17–23 (2010).
[Crossref]

Yang, J.

J. Yang, S. Hwang, Y.-K. An, K. Lee, and H. Sohn, “Multi-spot laser lock-in thermography for real-time imaging of cracks in semiconductor chips during a manufacturing process,” J. Mater. Process. Technol. 229(Supplement C), 94–101 (2016).
[Crossref]

Yang, W.-R.

W.-R. Yang, “Short-Time Discrete Wavelet Transform for wafer microcrack detection,” in IEEE International Symposium on Industrial Electronics, (IEEE, 2009), pp. 2069–2074.

Yasushi, S.

R. Jiro, M. Etsuro, T. Toshiro, and S. Yasushi, “Crystal-Originated Singularities on Si Wafer Surface after SC1 Cleaning,” Jpn. J. Appl. Phys. 29(2), L1947–L1949 (1990).

Yi, G.

ACS Photonics (1)

H. Kim, S. Han, Y. W. Kim, S. Kim, and S.-W. Kim, “Generation of Coherent Extreme-Ultraviolet Radiation from Bulk Sapphire Crystal,” ACS Photonics 4(7), 1627–1632 (2017).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

D. von der Linde and K. Rzàzewski, “High-order optical harmonic generation from solid surfaces,” Appl. Phys. B 63(5), 499–506 (1996).
[Crossref]

Appl. Phys. Lett. (4)

Y. H. Wong, R. L. Thomas, and G. F. Hawkins, “Surface and subsurface structure of solids by laser photoacoustic spectroscopy,” Appl. Phys. Lett. 32(9), 538–539 (1978).
[Crossref]

D. J. Moss, H. M. Driel, and J. E. Sipe, “Third harmonic generation as a structural diagnostic of ion‐implanted amorphous and crystalline silicon,” Appl. Phys. Lett. 48(17), 1150–1152 (1986).
[Crossref]

J. A. Hildebrand and L. K. Lam, “Directional acoustic microscopy for observation of elastic anisotropy,” Appl. Phys. Lett. 42(5), 413–415 (1983).
[Crossref]

P. N. Saeta and N. A. Miller, “Distinguishing surface and bulk contributions to third-harmonic generation in silicon,” Appl. Phys. Lett. 79(17), 2704–2706 (2001).
[Crossref]

Electron. Commun. Jpn. (1)

T. Oe, Y. Nawa, N. Tsuda, and J. Yamada, “Nondestructive internal defect detection using photoacoustic and self-coupling effect,” Electron. Commun. Jpn. 93(7), 17–23 (2010).
[Crossref]

EPL (1)

S. Evyatar, M. Raja, and H. Alex, “Extreme multiphoton luminescence in GaAs,” EPL 115(5), 57006 (2016).
[Crossref]

IEEE J. Photovolt. (1)

M. Abdelhamid, R. Singh, and M. Omar, “Review of Microcrack Detection Techniques for Silicon Solar Cells,” IEEE J. Photovolt. 4(1), 514–524 (2014).
[Crossref]

Image Vis. Comput. (1)

D.-M. Tsai, C.-C. Chang, and S.-M. Chao, “Micro-crack inspection in heterogeneously textured solar wafers using anisotropic diffusion,” Image Vis. Comput. 28(3), 491–501 (2010).
[Crossref]

J. Appl. Phys. (1)

G. Barucca, G. Majni, P. Mengucci, G. Leggieri, A. Luches, M. Martino, and A. Perrone, “New carbon nitride phase coherently grown on Si(111),” J. Appl. Phys. 86(4), 2014–2019 (1999).
[Crossref]

J. Cell Sci. (1)

B. Weigelin, G.-J. Bakker, and P. Friedl, “Third harmonic generation microscopy of cells and tissue organization,” J. Cell Sci. 129(2), 245–255 (2016).
[Crossref] [PubMed]

J. Mater. Process. Technol. (1)

J. Yang, S. Hwang, Y.-K. An, K. Lee, and H. Sohn, “Multi-spot laser lock-in thermography for real-time imaging of cracks in semiconductor chips during a manufacturing process,” J. Mater. Process. Technol. 229(Supplement C), 94–101 (2016).
[Crossref]

J. Opt. Soc. Am. (1)

Jpn. J. Appl. Phys. (1)

R. Jiro, M. Etsuro, T. Toshiro, and S. Yasushi, “Crystal-Originated Singularities on Si Wafer Surface after SC1 Cleaning,” Jpn. J. Appl. Phys. 29(2), L1947–L1949 (1990).

Nat. Nanotechnol. (1)

D. Timmerman, J. Valenta, K. Dohnalová, W. D. A. M. de Boer, and T. Gregorkiewicz, “Step-like enhancement of luminescence quantum yield of silicon nanocrystals,” Nat. Nanotechnol. 6(11), 710–713 (2011).
[Crossref] [PubMed]

Nat. Phys. (1)

G. Vampa, B. G. Ghamsari, S. Siadat Mousavi, T. J. Hammond, A. Olivieri, E. Lisicka-Skrek, A. Y. Naumov, D. M. Villeneuve, A. Staudte, P. Berini, and P. B. Corkum, “Plasmon-enhanced high-harmonic generation from silicon,” Nat. Phys. 13(7), 659–662 (2017).
[Crossref]

Nature (1)

M. M. Shulaker, G. Hills, R. S. Park, R. T. Howe, K. Saraswat, H. P. Wong, and S. Mitra, “Three-dimensional integration of nanotechnologies for computing and data storage on a single chip,” Nature 547(7661), 74–78 (2017).
[Crossref] [PubMed]

Opt. Express (1)

Optik (Stuttg.) (1)

S.-S. Ko, C.-S. Liu, and Y.-C. Lin, “Optical inspection system with tunable exposure unit for micro-crack detection in solar wafers,” Optik (Stuttg.) 124(19), 4030–4035 (2013).
[Crossref]

Phys. Rev. A (1)

T. Y. F. Tsang, “Optical third-harmonic generation at interfaces,” Phys. Rev. A 52(5), 4116–4125 (1995).
[Crossref] [PubMed]

Phys. Rev. A (Coll. Park) (1)

M. J. Huttunen, P. Rasekh, R. W. Boyd, and K. Dolgaleva, “Using surface lattice resonances to engineer nonlinear optical processes in metal nanoparticle arrays,” Phys. Rev. A (Coll. Park) 97(5), 053817 (2018).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (1)

M. Kopecký, J. Kub, F. Máca, J. Mašek, O. Pacherová, A. W. Rushforth, B. L. Gallagher, R. P. Campion, V. Novák, and T. Jungwirth, “Detection of stacking faults breaking the [110]/[110] symmetry in ferromagnetic semiconductors (Ga,Mn)As and (Ga,Mn)(As,P),” Phys. Rev. B Condens. Matter Mater. Phys. 83(23), 235324 (2011).
[Crossref]

Proc. SPIE (1)

T. Kwon, K.-N. Joo, and S.-W. Kim, “Surface metrology of silicon wafers using a femtosecond pulse laser,” Proc. SPIE 7063, 706310 (2008).
[Crossref]

Semicond. Sci. Technol. (1)

A. Belyaev, O. Polupan, S. Ostapenko, D. Hess, and J. P. Kalejs, “Resonance ultrasonic vibration diagnostics of elastic stress in full-size silicon wafers,” Semicond. Sci. Technol. 21(3), 254–260 (2006).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

O. Breitenstein, M. Langenkamp, O. Lang, and A. Schirrmacher, “Shunts due to laser scribing of solar cells evaluated by highly sensitive lock-in thermography,” Sol. Energy Mater. Sol. Cells 65(1), 55–62 (2001).
[Crossref]

Other (6)

A. H. Aghamohammadi, A. S. Prabuwono, S. Sahran, and M. Mogharrebi, “Solar cell panel crack detection using Particle Swarm Optimization algorithm,” in International Conference on Pattern Analysis and Intelligence Robotics, (IEEE 2011), pp. 160–164.

P. A. Wang, “Industrial Challenges For Thin Wafer Manufacturing,” in 4th World Conference on Photovoltaic Energy Conference, (IEEE 2006), pp. 1179–1182.
[Crossref]

R. Hull, Properties of Crystalline Silicon (INSPEC, the Institution of Electrical Engineers, 1999).

R. W. Boyd, Nonlinear Optics (Academic, 2008).

E. Hecht, Optics (Pearson Education, 2017).

W.-R. Yang, “Short-Time Discrete Wavelet Transform for wafer microcrack detection,” in IEEE International Symposium on Industrial Electronics, (IEEE, 2009), pp. 2069–2074.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Nonlinear optical harmonic generation in a single crystalline Si and its application to internal/inter-layer defect inspection. (a) Digital image of stacked Si wafers. The scale bar corresponds to 10 mm. The insets show the schematics of perfect interface between stacked wafers and representative inter-layer defects including bumps, sub-wavelength dust, and delamination. (b) Optical transmission spectrum of a 5.0-mm-thick Si wafer. (c) Optical system. (d) Atomic structure of an intrinsic (100) crystalline Si. Input polarization state and excitation depth were controlled to characterize the nonlinear optical processes from Si wafers with different doping and cutting planes. The presence of internal defect will induce nonlinear optical harmonic generation and results in lower incident laser transmission at the fundamental wavelength. Abbreviations: HWP: half-wave plate, LPF: long-pass filter, OL: objective lens, BS: beam splitter, LPF: short-pass filter, PD: amplified photo-detector and EMCCD: electron multiplying charge-coupled device.
Fig. 2
Fig. 2 Characterization of third and fifth harmonic generation from Si wafers with different crystalline orientation and doping concentration. (a) Schematic for TH and FH excitation. (b) Energy diagram for THG and FHG. (c) Normalized spectra of incident femtosecond pulse laser, its TH, and FH. (d) Normalized TH spectra. (e) Intensity vs. pump power plot for TH. (f) Photon energy spectra of TH for bandwidth characterization. (g) Normalized FH spectra. (h) Intensity vs. pump power plot for FH. (i) Photon energy spectra for FH for bandwidth characterization.
Fig. 3
Fig. 3 Crystallographic orientation dependence of third and fifth harmonics. (a) Experimental setup for measuring crystalline-orientation-dependent TH and FH intensity. (b) Schematics for testing TH intensity dependence on the input polarization state. (c-g) TH intensity spectra from Si wafers with different doping and crystal orientation under different input polarization states. Breaks are inserted from 550 to 750 nm to show a magnified view around TH and SH. (h-l) FH intensity spectra from Si wafers with different doping and crystal orientation under different input polarization states.
Fig. 4
Fig. 4 Third and fifth harmonics at different excitation depths inside Si wafers. (a,b) Isotropic and front views of the excitation-depth-dependent THG and FHG from Si wafer. (c-g) TH intensity maps at different excitation depths for Si wafers under different crystal cuts and doping concentrations. (h-l) FH intensity maps at different excitation depths for Si wafers under different crystal cuts and doping concentrations. White dotted lines are guidelines for the location of the Si-air interface.
Fig. 5
Fig. 5 Detection of inter-layer defects in stacked Si wafers based on the energy conservation in nonlinear optical harmonic generations. (a,b) Experimental concepts for non-destructive inspection of inter-layer defects in stacked Si wafers. The spectra in (b) show the RF power of the spectral peaks (corresponding to the pulse repetition rate of the fundamental femtosecond laser) detected by the PD at different focal depths. (c) Relative power distribution change among the fundamental, its TH, and FH when the femtosecond laser pulses are focused to the bottom surface of a Si wafer. (d,e) Linear- and logarithm-scale RF spectra at the fundamental wavelength. (f) Depth-resolved intensity map of the transmitted fundamental-wavelength laser beam at different excitation depths; the yellow dots show the RF spectral peak intensity at different focal depths inside Si wafers.

Metrics