Abstract

We investigate the performance of terahertz (THz) quasi time-domain systems (QTDS) driven by electrically pulsed multi-mode laser diodes operating at 659 nm. We show that at the same average output power, a reduced duty cycle considerably increases the obtained bandwidth. In the presented experiment, the high frequency performance is improved by 50 dB/THz. We identify the broadening of the optical spectrum caused by pulsing the laser source to be responsible for the increased THz bandwidth.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Terahertz quasi time-domain spectroscopy based on telecom technology for 1550 nm

Robert B. Kohlhaas, Arno Rehn, Simon Nellen, Martin Koch, Martin Schell, Roman J. B. Dietz, and Jan C. Balzer
Opt. Express 25(11) 12851-12859 (2017)

Terahertz quasi time domain spectroscopy

Maik Scheller and Martin Koch
Opt. Express 17(20) 17723-17733 (2009)

Compact and low-cost THz QTDS system

Thorsten Probst, Arno Rehn, and Martin Koch
Opt. Express 23(17) 21972-21982 (2015)

References

  • View by:
  • |
  • |
  • |

  1. D. Grischkowsky, S. Keiding, M. V. Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006–2015 (1990).
    [Crossref]
  2. R. J. B. Dietz, B. Globisch, M. Gerhard, A. Velauthapillai, D. Stanze, H. Roehle, M. Koch, T. Göbel, and M. Schell, “64 µW pulsed terahertz emission from growth optimized InGaAs/InAlAs heterostructures with separated photoconductive and trapping regions,” Appl. Phys. Lett. 103, 061103 (2013).
    [Crossref]
  3. O. Peters, M. Schwerdtfeger, S. Wietzke, S. Sostmann, R. Scheunemann, R. Wilk, R. Holzwarth, M. Koch, and B. M. Fischer, “Terahertz spectroscopy for rubber production testing,” Polym. Test. 32, 932–936 (2013).
    [Crossref]
  4. N. Vieweg, F. Rettich, A. Deninger, H. Roehle, R. Dietz, T. Göbel, and M. Schell, “Terahertz-time domain spectrometer with 90 dB peak dynamic range,” J. Infrared Millim. Terahertz Waves 35, 823–832 (2014).
    [Crossref]
  5. U. Nandi, J. C. Norman, A. C. Gossard, H. Lu, and S. Preu, “1550-nm driven ErAs:In(Al)GaAs photoconductor-based terahertz time domain system with 6.5 THz bandwidth,” J. Infrared Millim. Terahertz Waves 39, 340–348 (2018).
    [Crossref]
  6. M. Stecher, C. Jördens, N. Krumbholz, C. Jansen, M. Scheller, R. Wilk, O. Peters, B. Scherger, B. Ewers, and M. Koch, Towards Industrial Inspection with THz Systems (Springer International Publishing, Cham, 2016), pp. 311–335.
  7. R. Gente, S. F. Busch, E. M. Stübling, L. M. Schneider, C. B. Hirschmann, J. C. Balzer, and M. Koch, “Quality control of sugar beet seeds with thz time-domain spectroscopy,” IEEE Trans. Terahertz Sci. Technol. 6, 754–756 (2016).
  8. T. Hochrein, “Markets, availability, notice, and technical performance of terahertz systems: historic development, present, and trends,” J. Infrared Millim. Terahertz Waves 36, 235–254 (2014).
    [Crossref]
  9. C. Jördens, T. Schlauch, M. Li, M. R. Hofmann, M. Bieler, and M. Koch, “All-semiconductor laser driven terahertz time-domain spectrometer,” Appl. Phys. B 93, 515–520 (2008).
    [Crossref]
  10. Z. Mihoubi, K. G. Wilcox, S. Elsmere, A. Quarterman, R. Rungsawang, I. Farrer, H. E. Beere, D. A. Ritchie, A. Tropper, and V. Apostolopoulos, “All-semiconductor room-temperature terahertz time domain spectrometer,” Opt. Lett. 33, 2125–2127 (2008).
    [Crossref] [PubMed]
  11. K. Merghem, S. F. Busch, F. Lelarge, M. Koch, A. Ramdane, and J. C. Balzer, “Terahertz time-domain spectroscopy system driven by a monolithic semiconductor laser,” J. Infrared Millim. Terahertz Waves 38, 958–962 (2017).
    [Crossref]
  12. M. Tani, S. Matsuura, K. Sakai, and M. Hangyo, “Multiple-frequency generation of sub-terahertz radiation by multimode LD journalof photoconductive antenna,” IEEE Microw. Guid. Wave Lett. 7, 282–284 (1997).
    [Crossref]
  13. M. Scheller and M. Koch, “Terahertz quasi time domain spectroscopy,” Opt. Express 17, 17723–17733 (2009).
    [Crossref] [PubMed]
  14. R. B. Kohlhaas, A. Rehn, S. Nellen, M. Koch, M. Schell, R. J. B. Dietz, and J. C. Balzer, “Terahertz quasi time-domain spectroscopy based on telecom technology for 1550 nm,” Opt. Express 25, 12851–12859 (2017).
    [Crossref] [PubMed]
  15. K. Shibuya, M. Tani, and M. Hangyo, “Enhancement of THz photomixing efficiency by using a pulse-modulated multimode laser diode,” in Joint 32nd International Conference on Infrared and Millimeter Waves and the 15th International Conference on Terahertz Electronics. IRMMW-THz., (IEEE, 2007), pp. 732–733.
  16. W. W. Chow, S. W. Koch, and M. I. Sargent, Semiconductor-laser physics (Springer Science & Business Media, 2012).
  17. B. Schmidtke, H. Braun, U. T. Schwarz, D. Queren, M. Schillgalies, S. Lutgen, and U. Strauß, “Time resolved measurement of longitudinal mode competition in 405 nm (Al, In)GaN laser diodes,” physica status solidic 6, S860–S863 (2009).
  18. T. Weig, T. Hager, G. Brüderl, U. Strauss, and U. T. Schwarz, “Longitudinal mode competition and mode clustering in (Al, In)GaN laser diodes,” Opt. Express 22, 27489–27503 (2014).
    [Crossref] [PubMed]
  19. N. Ogasawara and R. Ito, “Longitudinal mode competition and asymmetric gain saturation in semiconductor injection lasers. ii. theory,” Jpn. J. Appl. Phys. 27, 615 (1988).
    [Crossref]
  20. N. Ogasawara and R. Ito, “Longitudinal mode competition and asymmetric gain saturation in semiconductor injection lasers. i. experiment,” Jpn. J. Appl. Phys. 27, 607 (1988).
    [Crossref]
  21. M. Tani, O. Morikawa, S. Matsuura, and M. Hangyo, “Generation of terahertz radiation by photomixing with dual- and multiple-mode lasers,” Semicond. Sci. Technol. 20, S151–S163 (2005).
    [Crossref]

2018 (1)

U. Nandi, J. C. Norman, A. C. Gossard, H. Lu, and S. Preu, “1550-nm driven ErAs:In(Al)GaAs photoconductor-based terahertz time domain system with 6.5 THz bandwidth,” J. Infrared Millim. Terahertz Waves 39, 340–348 (2018).
[Crossref]

2017 (2)

K. Merghem, S. F. Busch, F. Lelarge, M. Koch, A. Ramdane, and J. C. Balzer, “Terahertz time-domain spectroscopy system driven by a monolithic semiconductor laser,” J. Infrared Millim. Terahertz Waves 38, 958–962 (2017).
[Crossref]

R. B. Kohlhaas, A. Rehn, S. Nellen, M. Koch, M. Schell, R. J. B. Dietz, and J. C. Balzer, “Terahertz quasi time-domain spectroscopy based on telecom technology for 1550 nm,” Opt. Express 25, 12851–12859 (2017).
[Crossref] [PubMed]

2016 (1)

R. Gente, S. F. Busch, E. M. Stübling, L. M. Schneider, C. B. Hirschmann, J. C. Balzer, and M. Koch, “Quality control of sugar beet seeds with thz time-domain spectroscopy,” IEEE Trans. Terahertz Sci. Technol. 6, 754–756 (2016).

2014 (3)

T. Hochrein, “Markets, availability, notice, and technical performance of terahertz systems: historic development, present, and trends,” J. Infrared Millim. Terahertz Waves 36, 235–254 (2014).
[Crossref]

N. Vieweg, F. Rettich, A. Deninger, H. Roehle, R. Dietz, T. Göbel, and M. Schell, “Terahertz-time domain spectrometer with 90 dB peak dynamic range,” J. Infrared Millim. Terahertz Waves 35, 823–832 (2014).
[Crossref]

T. Weig, T. Hager, G. Brüderl, U. Strauss, and U. T. Schwarz, “Longitudinal mode competition and mode clustering in (Al, In)GaN laser diodes,” Opt. Express 22, 27489–27503 (2014).
[Crossref] [PubMed]

2013 (2)

R. J. B. Dietz, B. Globisch, M. Gerhard, A. Velauthapillai, D. Stanze, H. Roehle, M. Koch, T. Göbel, and M. Schell, “64 µW pulsed terahertz emission from growth optimized InGaAs/InAlAs heterostructures with separated photoconductive and trapping regions,” Appl. Phys. Lett. 103, 061103 (2013).
[Crossref]

O. Peters, M. Schwerdtfeger, S. Wietzke, S. Sostmann, R. Scheunemann, R. Wilk, R. Holzwarth, M. Koch, and B. M. Fischer, “Terahertz spectroscopy for rubber production testing,” Polym. Test. 32, 932–936 (2013).
[Crossref]

2009 (2)

M. Scheller and M. Koch, “Terahertz quasi time domain spectroscopy,” Opt. Express 17, 17723–17733 (2009).
[Crossref] [PubMed]

B. Schmidtke, H. Braun, U. T. Schwarz, D. Queren, M. Schillgalies, S. Lutgen, and U. Strauß, “Time resolved measurement of longitudinal mode competition in 405 nm (Al, In)GaN laser diodes,” physica status solidic 6, S860–S863 (2009).

2008 (2)

2005 (1)

M. Tani, O. Morikawa, S. Matsuura, and M. Hangyo, “Generation of terahertz radiation by photomixing with dual- and multiple-mode lasers,” Semicond. Sci. Technol. 20, S151–S163 (2005).
[Crossref]

1997 (1)

M. Tani, S. Matsuura, K. Sakai, and M. Hangyo, “Multiple-frequency generation of sub-terahertz radiation by multimode LD journalof photoconductive antenna,” IEEE Microw. Guid. Wave Lett. 7, 282–284 (1997).
[Crossref]

1990 (1)

1988 (2)

N. Ogasawara and R. Ito, “Longitudinal mode competition and asymmetric gain saturation in semiconductor injection lasers. ii. theory,” Jpn. J. Appl. Phys. 27, 615 (1988).
[Crossref]

N. Ogasawara and R. Ito, “Longitudinal mode competition and asymmetric gain saturation in semiconductor injection lasers. i. experiment,” Jpn. J. Appl. Phys. 27, 607 (1988).
[Crossref]

Apostolopoulos, V.

Balzer, J. C.

R. B. Kohlhaas, A. Rehn, S. Nellen, M. Koch, M. Schell, R. J. B. Dietz, and J. C. Balzer, “Terahertz quasi time-domain spectroscopy based on telecom technology for 1550 nm,” Opt. Express 25, 12851–12859 (2017).
[Crossref] [PubMed]

K. Merghem, S. F. Busch, F. Lelarge, M. Koch, A. Ramdane, and J. C. Balzer, “Terahertz time-domain spectroscopy system driven by a monolithic semiconductor laser,” J. Infrared Millim. Terahertz Waves 38, 958–962 (2017).
[Crossref]

R. Gente, S. F. Busch, E. M. Stübling, L. M. Schneider, C. B. Hirschmann, J. C. Balzer, and M. Koch, “Quality control of sugar beet seeds with thz time-domain spectroscopy,” IEEE Trans. Terahertz Sci. Technol. 6, 754–756 (2016).

Beere, H. E.

Bieler, M.

C. Jördens, T. Schlauch, M. Li, M. R. Hofmann, M. Bieler, and M. Koch, “All-semiconductor laser driven terahertz time-domain spectrometer,” Appl. Phys. B 93, 515–520 (2008).
[Crossref]

Braun, H.

B. Schmidtke, H. Braun, U. T. Schwarz, D. Queren, M. Schillgalies, S. Lutgen, and U. Strauß, “Time resolved measurement of longitudinal mode competition in 405 nm (Al, In)GaN laser diodes,” physica status solidic 6, S860–S863 (2009).

Brüderl, G.

Busch, S. F.

K. Merghem, S. F. Busch, F. Lelarge, M. Koch, A. Ramdane, and J. C. Balzer, “Terahertz time-domain spectroscopy system driven by a monolithic semiconductor laser,” J. Infrared Millim. Terahertz Waves 38, 958–962 (2017).
[Crossref]

R. Gente, S. F. Busch, E. M. Stübling, L. M. Schneider, C. B. Hirschmann, J. C. Balzer, and M. Koch, “Quality control of sugar beet seeds with thz time-domain spectroscopy,” IEEE Trans. Terahertz Sci. Technol. 6, 754–756 (2016).

Chow, W. W.

W. W. Chow, S. W. Koch, and M. I. Sargent, Semiconductor-laser physics (Springer Science & Business Media, 2012).

Deninger, A.

N. Vieweg, F. Rettich, A. Deninger, H. Roehle, R. Dietz, T. Göbel, and M. Schell, “Terahertz-time domain spectrometer with 90 dB peak dynamic range,” J. Infrared Millim. Terahertz Waves 35, 823–832 (2014).
[Crossref]

Dietz, R.

N. Vieweg, F. Rettich, A. Deninger, H. Roehle, R. Dietz, T. Göbel, and M. Schell, “Terahertz-time domain spectrometer with 90 dB peak dynamic range,” J. Infrared Millim. Terahertz Waves 35, 823–832 (2014).
[Crossref]

Dietz, R. J. B.

R. B. Kohlhaas, A. Rehn, S. Nellen, M. Koch, M. Schell, R. J. B. Dietz, and J. C. Balzer, “Terahertz quasi time-domain spectroscopy based on telecom technology for 1550 nm,” Opt. Express 25, 12851–12859 (2017).
[Crossref] [PubMed]

R. J. B. Dietz, B. Globisch, M. Gerhard, A. Velauthapillai, D. Stanze, H. Roehle, M. Koch, T. Göbel, and M. Schell, “64 µW pulsed terahertz emission from growth optimized InGaAs/InAlAs heterostructures with separated photoconductive and trapping regions,” Appl. Phys. Lett. 103, 061103 (2013).
[Crossref]

Elsmere, S.

Ewers, B.

M. Stecher, C. Jördens, N. Krumbholz, C. Jansen, M. Scheller, R. Wilk, O. Peters, B. Scherger, B. Ewers, and M. Koch, Towards Industrial Inspection with THz Systems (Springer International Publishing, Cham, 2016), pp. 311–335.

Exter, M. V.

Farrer, I.

Fattinger, C.

Fischer, B. M.

O. Peters, M. Schwerdtfeger, S. Wietzke, S. Sostmann, R. Scheunemann, R. Wilk, R. Holzwarth, M. Koch, and B. M. Fischer, “Terahertz spectroscopy for rubber production testing,” Polym. Test. 32, 932–936 (2013).
[Crossref]

Gente, R.

R. Gente, S. F. Busch, E. M. Stübling, L. M. Schneider, C. B. Hirschmann, J. C. Balzer, and M. Koch, “Quality control of sugar beet seeds with thz time-domain spectroscopy,” IEEE Trans. Terahertz Sci. Technol. 6, 754–756 (2016).

Gerhard, M.

R. J. B. Dietz, B. Globisch, M. Gerhard, A. Velauthapillai, D. Stanze, H. Roehle, M. Koch, T. Göbel, and M. Schell, “64 µW pulsed terahertz emission from growth optimized InGaAs/InAlAs heterostructures with separated photoconductive and trapping regions,” Appl. Phys. Lett. 103, 061103 (2013).
[Crossref]

Globisch, B.

R. J. B. Dietz, B. Globisch, M. Gerhard, A. Velauthapillai, D. Stanze, H. Roehle, M. Koch, T. Göbel, and M. Schell, “64 µW pulsed terahertz emission from growth optimized InGaAs/InAlAs heterostructures with separated photoconductive and trapping regions,” Appl. Phys. Lett. 103, 061103 (2013).
[Crossref]

Göbel, T.

N. Vieweg, F. Rettich, A. Deninger, H. Roehle, R. Dietz, T. Göbel, and M. Schell, “Terahertz-time domain spectrometer with 90 dB peak dynamic range,” J. Infrared Millim. Terahertz Waves 35, 823–832 (2014).
[Crossref]

R. J. B. Dietz, B. Globisch, M. Gerhard, A. Velauthapillai, D. Stanze, H. Roehle, M. Koch, T. Göbel, and M. Schell, “64 µW pulsed terahertz emission from growth optimized InGaAs/InAlAs heterostructures with separated photoconductive and trapping regions,” Appl. Phys. Lett. 103, 061103 (2013).
[Crossref]

Gossard, A. C.

U. Nandi, J. C. Norman, A. C. Gossard, H. Lu, and S. Preu, “1550-nm driven ErAs:In(Al)GaAs photoconductor-based terahertz time domain system with 6.5 THz bandwidth,” J. Infrared Millim. Terahertz Waves 39, 340–348 (2018).
[Crossref]

Grischkowsky, D.

Hager, T.

Hangyo, M.

M. Tani, O. Morikawa, S. Matsuura, and M. Hangyo, “Generation of terahertz radiation by photomixing with dual- and multiple-mode lasers,” Semicond. Sci. Technol. 20, S151–S163 (2005).
[Crossref]

M. Tani, S. Matsuura, K. Sakai, and M. Hangyo, “Multiple-frequency generation of sub-terahertz radiation by multimode LD journalof photoconductive antenna,” IEEE Microw. Guid. Wave Lett. 7, 282–284 (1997).
[Crossref]

K. Shibuya, M. Tani, and M. Hangyo, “Enhancement of THz photomixing efficiency by using a pulse-modulated multimode laser diode,” in Joint 32nd International Conference on Infrared and Millimeter Waves and the 15th International Conference on Terahertz Electronics. IRMMW-THz., (IEEE, 2007), pp. 732–733.

Hirschmann, C. B.

R. Gente, S. F. Busch, E. M. Stübling, L. M. Schneider, C. B. Hirschmann, J. C. Balzer, and M. Koch, “Quality control of sugar beet seeds with thz time-domain spectroscopy,” IEEE Trans. Terahertz Sci. Technol. 6, 754–756 (2016).

Hochrein, T.

T. Hochrein, “Markets, availability, notice, and technical performance of terahertz systems: historic development, present, and trends,” J. Infrared Millim. Terahertz Waves 36, 235–254 (2014).
[Crossref]

Hofmann, M. R.

C. Jördens, T. Schlauch, M. Li, M. R. Hofmann, M. Bieler, and M. Koch, “All-semiconductor laser driven terahertz time-domain spectrometer,” Appl. Phys. B 93, 515–520 (2008).
[Crossref]

Holzwarth, R.

O. Peters, M. Schwerdtfeger, S. Wietzke, S. Sostmann, R. Scheunemann, R. Wilk, R. Holzwarth, M. Koch, and B. M. Fischer, “Terahertz spectroscopy for rubber production testing,” Polym. Test. 32, 932–936 (2013).
[Crossref]

Ito, R.

N. Ogasawara and R. Ito, “Longitudinal mode competition and asymmetric gain saturation in semiconductor injection lasers. ii. theory,” Jpn. J. Appl. Phys. 27, 615 (1988).
[Crossref]

N. Ogasawara and R. Ito, “Longitudinal mode competition and asymmetric gain saturation in semiconductor injection lasers. i. experiment,” Jpn. J. Appl. Phys. 27, 607 (1988).
[Crossref]

Jansen, C.

M. Stecher, C. Jördens, N. Krumbholz, C. Jansen, M. Scheller, R. Wilk, O. Peters, B. Scherger, B. Ewers, and M. Koch, Towards Industrial Inspection with THz Systems (Springer International Publishing, Cham, 2016), pp. 311–335.

Jördens, C.

C. Jördens, T. Schlauch, M. Li, M. R. Hofmann, M. Bieler, and M. Koch, “All-semiconductor laser driven terahertz time-domain spectrometer,” Appl. Phys. B 93, 515–520 (2008).
[Crossref]

M. Stecher, C. Jördens, N. Krumbholz, C. Jansen, M. Scheller, R. Wilk, O. Peters, B. Scherger, B. Ewers, and M. Koch, Towards Industrial Inspection with THz Systems (Springer International Publishing, Cham, 2016), pp. 311–335.

Keiding, S.

Koch, M.

R. B. Kohlhaas, A. Rehn, S. Nellen, M. Koch, M. Schell, R. J. B. Dietz, and J. C. Balzer, “Terahertz quasi time-domain spectroscopy based on telecom technology for 1550 nm,” Opt. Express 25, 12851–12859 (2017).
[Crossref] [PubMed]

K. Merghem, S. F. Busch, F. Lelarge, M. Koch, A. Ramdane, and J. C. Balzer, “Terahertz time-domain spectroscopy system driven by a monolithic semiconductor laser,” J. Infrared Millim. Terahertz Waves 38, 958–962 (2017).
[Crossref]

R. Gente, S. F. Busch, E. M. Stübling, L. M. Schneider, C. B. Hirschmann, J. C. Balzer, and M. Koch, “Quality control of sugar beet seeds with thz time-domain spectroscopy,” IEEE Trans. Terahertz Sci. Technol. 6, 754–756 (2016).

O. Peters, M. Schwerdtfeger, S. Wietzke, S. Sostmann, R. Scheunemann, R. Wilk, R. Holzwarth, M. Koch, and B. M. Fischer, “Terahertz spectroscopy for rubber production testing,” Polym. Test. 32, 932–936 (2013).
[Crossref]

R. J. B. Dietz, B. Globisch, M. Gerhard, A. Velauthapillai, D. Stanze, H. Roehle, M. Koch, T. Göbel, and M. Schell, “64 µW pulsed terahertz emission from growth optimized InGaAs/InAlAs heterostructures with separated photoconductive and trapping regions,” Appl. Phys. Lett. 103, 061103 (2013).
[Crossref]

M. Scheller and M. Koch, “Terahertz quasi time domain spectroscopy,” Opt. Express 17, 17723–17733 (2009).
[Crossref] [PubMed]

C. Jördens, T. Schlauch, M. Li, M. R. Hofmann, M. Bieler, and M. Koch, “All-semiconductor laser driven terahertz time-domain spectrometer,” Appl. Phys. B 93, 515–520 (2008).
[Crossref]

M. Stecher, C. Jördens, N. Krumbholz, C. Jansen, M. Scheller, R. Wilk, O. Peters, B. Scherger, B. Ewers, and M. Koch, Towards Industrial Inspection with THz Systems (Springer International Publishing, Cham, 2016), pp. 311–335.

Koch, S. W.

W. W. Chow, S. W. Koch, and M. I. Sargent, Semiconductor-laser physics (Springer Science & Business Media, 2012).

Kohlhaas, R. B.

Krumbholz, N.

M. Stecher, C. Jördens, N. Krumbholz, C. Jansen, M. Scheller, R. Wilk, O. Peters, B. Scherger, B. Ewers, and M. Koch, Towards Industrial Inspection with THz Systems (Springer International Publishing, Cham, 2016), pp. 311–335.

Lelarge, F.

K. Merghem, S. F. Busch, F. Lelarge, M. Koch, A. Ramdane, and J. C. Balzer, “Terahertz time-domain spectroscopy system driven by a monolithic semiconductor laser,” J. Infrared Millim. Terahertz Waves 38, 958–962 (2017).
[Crossref]

Li, M.

C. Jördens, T. Schlauch, M. Li, M. R. Hofmann, M. Bieler, and M. Koch, “All-semiconductor laser driven terahertz time-domain spectrometer,” Appl. Phys. B 93, 515–520 (2008).
[Crossref]

Lu, H.

U. Nandi, J. C. Norman, A. C. Gossard, H. Lu, and S. Preu, “1550-nm driven ErAs:In(Al)GaAs photoconductor-based terahertz time domain system with 6.5 THz bandwidth,” J. Infrared Millim. Terahertz Waves 39, 340–348 (2018).
[Crossref]

Lutgen, S.

B. Schmidtke, H. Braun, U. T. Schwarz, D. Queren, M. Schillgalies, S. Lutgen, and U. Strauß, “Time resolved measurement of longitudinal mode competition in 405 nm (Al, In)GaN laser diodes,” physica status solidic 6, S860–S863 (2009).

Matsuura, S.

M. Tani, O. Morikawa, S. Matsuura, and M. Hangyo, “Generation of terahertz radiation by photomixing with dual- and multiple-mode lasers,” Semicond. Sci. Technol. 20, S151–S163 (2005).
[Crossref]

M. Tani, S. Matsuura, K. Sakai, and M. Hangyo, “Multiple-frequency generation of sub-terahertz radiation by multimode LD journalof photoconductive antenna,” IEEE Microw. Guid. Wave Lett. 7, 282–284 (1997).
[Crossref]

Merghem, K.

K. Merghem, S. F. Busch, F. Lelarge, M. Koch, A. Ramdane, and J. C. Balzer, “Terahertz time-domain spectroscopy system driven by a monolithic semiconductor laser,” J. Infrared Millim. Terahertz Waves 38, 958–962 (2017).
[Crossref]

Mihoubi, Z.

Morikawa, O.

M. Tani, O. Morikawa, S. Matsuura, and M. Hangyo, “Generation of terahertz radiation by photomixing with dual- and multiple-mode lasers,” Semicond. Sci. Technol. 20, S151–S163 (2005).
[Crossref]

Nandi, U.

U. Nandi, J. C. Norman, A. C. Gossard, H. Lu, and S. Preu, “1550-nm driven ErAs:In(Al)GaAs photoconductor-based terahertz time domain system with 6.5 THz bandwidth,” J. Infrared Millim. Terahertz Waves 39, 340–348 (2018).
[Crossref]

Nellen, S.

Norman, J. C.

U. Nandi, J. C. Norman, A. C. Gossard, H. Lu, and S. Preu, “1550-nm driven ErAs:In(Al)GaAs photoconductor-based terahertz time domain system with 6.5 THz bandwidth,” J. Infrared Millim. Terahertz Waves 39, 340–348 (2018).
[Crossref]

Ogasawara, N.

N. Ogasawara and R. Ito, “Longitudinal mode competition and asymmetric gain saturation in semiconductor injection lasers. i. experiment,” Jpn. J. Appl. Phys. 27, 607 (1988).
[Crossref]

N. Ogasawara and R. Ito, “Longitudinal mode competition and asymmetric gain saturation in semiconductor injection lasers. ii. theory,” Jpn. J. Appl. Phys. 27, 615 (1988).
[Crossref]

Peters, O.

O. Peters, M. Schwerdtfeger, S. Wietzke, S. Sostmann, R. Scheunemann, R. Wilk, R. Holzwarth, M. Koch, and B. M. Fischer, “Terahertz spectroscopy for rubber production testing,” Polym. Test. 32, 932–936 (2013).
[Crossref]

M. Stecher, C. Jördens, N. Krumbholz, C. Jansen, M. Scheller, R. Wilk, O. Peters, B. Scherger, B. Ewers, and M. Koch, Towards Industrial Inspection with THz Systems (Springer International Publishing, Cham, 2016), pp. 311–335.

Preu, S.

U. Nandi, J. C. Norman, A. C. Gossard, H. Lu, and S. Preu, “1550-nm driven ErAs:In(Al)GaAs photoconductor-based terahertz time domain system with 6.5 THz bandwidth,” J. Infrared Millim. Terahertz Waves 39, 340–348 (2018).
[Crossref]

Quarterman, A.

Queren, D.

B. Schmidtke, H. Braun, U. T. Schwarz, D. Queren, M. Schillgalies, S. Lutgen, and U. Strauß, “Time resolved measurement of longitudinal mode competition in 405 nm (Al, In)GaN laser diodes,” physica status solidic 6, S860–S863 (2009).

Ramdane, A.

K. Merghem, S. F. Busch, F. Lelarge, M. Koch, A. Ramdane, and J. C. Balzer, “Terahertz time-domain spectroscopy system driven by a monolithic semiconductor laser,” J. Infrared Millim. Terahertz Waves 38, 958–962 (2017).
[Crossref]

Rehn, A.

Rettich, F.

N. Vieweg, F. Rettich, A. Deninger, H. Roehle, R. Dietz, T. Göbel, and M. Schell, “Terahertz-time domain spectrometer with 90 dB peak dynamic range,” J. Infrared Millim. Terahertz Waves 35, 823–832 (2014).
[Crossref]

Ritchie, D. A.

Roehle, H.

N. Vieweg, F. Rettich, A. Deninger, H. Roehle, R. Dietz, T. Göbel, and M. Schell, “Terahertz-time domain spectrometer with 90 dB peak dynamic range,” J. Infrared Millim. Terahertz Waves 35, 823–832 (2014).
[Crossref]

R. J. B. Dietz, B. Globisch, M. Gerhard, A. Velauthapillai, D. Stanze, H. Roehle, M. Koch, T. Göbel, and M. Schell, “64 µW pulsed terahertz emission from growth optimized InGaAs/InAlAs heterostructures with separated photoconductive and trapping regions,” Appl. Phys. Lett. 103, 061103 (2013).
[Crossref]

Rungsawang, R.

Sakai, K.

M. Tani, S. Matsuura, K. Sakai, and M. Hangyo, “Multiple-frequency generation of sub-terahertz radiation by multimode LD journalof photoconductive antenna,” IEEE Microw. Guid. Wave Lett. 7, 282–284 (1997).
[Crossref]

Sargent, M. I.

W. W. Chow, S. W. Koch, and M. I. Sargent, Semiconductor-laser physics (Springer Science & Business Media, 2012).

Schell, M.

R. B. Kohlhaas, A. Rehn, S. Nellen, M. Koch, M. Schell, R. J. B. Dietz, and J. C. Balzer, “Terahertz quasi time-domain spectroscopy based on telecom technology for 1550 nm,” Opt. Express 25, 12851–12859 (2017).
[Crossref] [PubMed]

N. Vieweg, F. Rettich, A. Deninger, H. Roehle, R. Dietz, T. Göbel, and M. Schell, “Terahertz-time domain spectrometer with 90 dB peak dynamic range,” J. Infrared Millim. Terahertz Waves 35, 823–832 (2014).
[Crossref]

R. J. B. Dietz, B. Globisch, M. Gerhard, A. Velauthapillai, D. Stanze, H. Roehle, M. Koch, T. Göbel, and M. Schell, “64 µW pulsed terahertz emission from growth optimized InGaAs/InAlAs heterostructures with separated photoconductive and trapping regions,” Appl. Phys. Lett. 103, 061103 (2013).
[Crossref]

Scheller, M.

M. Scheller and M. Koch, “Terahertz quasi time domain spectroscopy,” Opt. Express 17, 17723–17733 (2009).
[Crossref] [PubMed]

M. Stecher, C. Jördens, N. Krumbholz, C. Jansen, M. Scheller, R. Wilk, O. Peters, B. Scherger, B. Ewers, and M. Koch, Towards Industrial Inspection with THz Systems (Springer International Publishing, Cham, 2016), pp. 311–335.

Scherger, B.

M. Stecher, C. Jördens, N. Krumbholz, C. Jansen, M. Scheller, R. Wilk, O. Peters, B. Scherger, B. Ewers, and M. Koch, Towards Industrial Inspection with THz Systems (Springer International Publishing, Cham, 2016), pp. 311–335.

Scheunemann, R.

O. Peters, M. Schwerdtfeger, S. Wietzke, S. Sostmann, R. Scheunemann, R. Wilk, R. Holzwarth, M. Koch, and B. M. Fischer, “Terahertz spectroscopy for rubber production testing,” Polym. Test. 32, 932–936 (2013).
[Crossref]

Schillgalies, M.

B. Schmidtke, H. Braun, U. T. Schwarz, D. Queren, M. Schillgalies, S. Lutgen, and U. Strauß, “Time resolved measurement of longitudinal mode competition in 405 nm (Al, In)GaN laser diodes,” physica status solidic 6, S860–S863 (2009).

Schlauch, T.

C. Jördens, T. Schlauch, M. Li, M. R. Hofmann, M. Bieler, and M. Koch, “All-semiconductor laser driven terahertz time-domain spectrometer,” Appl. Phys. B 93, 515–520 (2008).
[Crossref]

Schmidtke, B.

B. Schmidtke, H. Braun, U. T. Schwarz, D. Queren, M. Schillgalies, S. Lutgen, and U. Strauß, “Time resolved measurement of longitudinal mode competition in 405 nm (Al, In)GaN laser diodes,” physica status solidic 6, S860–S863 (2009).

Schneider, L. M.

R. Gente, S. F. Busch, E. M. Stübling, L. M. Schneider, C. B. Hirschmann, J. C. Balzer, and M. Koch, “Quality control of sugar beet seeds with thz time-domain spectroscopy,” IEEE Trans. Terahertz Sci. Technol. 6, 754–756 (2016).

Schwarz, U. T.

T. Weig, T. Hager, G. Brüderl, U. Strauss, and U. T. Schwarz, “Longitudinal mode competition and mode clustering in (Al, In)GaN laser diodes,” Opt. Express 22, 27489–27503 (2014).
[Crossref] [PubMed]

B. Schmidtke, H. Braun, U. T. Schwarz, D. Queren, M. Schillgalies, S. Lutgen, and U. Strauß, “Time resolved measurement of longitudinal mode competition in 405 nm (Al, In)GaN laser diodes,” physica status solidic 6, S860–S863 (2009).

Schwerdtfeger, M.

O. Peters, M. Schwerdtfeger, S. Wietzke, S. Sostmann, R. Scheunemann, R. Wilk, R. Holzwarth, M. Koch, and B. M. Fischer, “Terahertz spectroscopy for rubber production testing,” Polym. Test. 32, 932–936 (2013).
[Crossref]

Shibuya, K.

K. Shibuya, M. Tani, and M. Hangyo, “Enhancement of THz photomixing efficiency by using a pulse-modulated multimode laser diode,” in Joint 32nd International Conference on Infrared and Millimeter Waves and the 15th International Conference on Terahertz Electronics. IRMMW-THz., (IEEE, 2007), pp. 732–733.

Sostmann, S.

O. Peters, M. Schwerdtfeger, S. Wietzke, S. Sostmann, R. Scheunemann, R. Wilk, R. Holzwarth, M. Koch, and B. M. Fischer, “Terahertz spectroscopy for rubber production testing,” Polym. Test. 32, 932–936 (2013).
[Crossref]

Stanze, D.

R. J. B. Dietz, B. Globisch, M. Gerhard, A. Velauthapillai, D. Stanze, H. Roehle, M. Koch, T. Göbel, and M. Schell, “64 µW pulsed terahertz emission from growth optimized InGaAs/InAlAs heterostructures with separated photoconductive and trapping regions,” Appl. Phys. Lett. 103, 061103 (2013).
[Crossref]

Stecher, M.

M. Stecher, C. Jördens, N. Krumbholz, C. Jansen, M. Scheller, R. Wilk, O. Peters, B. Scherger, B. Ewers, and M. Koch, Towards Industrial Inspection with THz Systems (Springer International Publishing, Cham, 2016), pp. 311–335.

Strauss, U.

Strauß, U.

B. Schmidtke, H. Braun, U. T. Schwarz, D. Queren, M. Schillgalies, S. Lutgen, and U. Strauß, “Time resolved measurement of longitudinal mode competition in 405 nm (Al, In)GaN laser diodes,” physica status solidic 6, S860–S863 (2009).

Stübling, E. M.

R. Gente, S. F. Busch, E. M. Stübling, L. M. Schneider, C. B. Hirschmann, J. C. Balzer, and M. Koch, “Quality control of sugar beet seeds with thz time-domain spectroscopy,” IEEE Trans. Terahertz Sci. Technol. 6, 754–756 (2016).

Tani, M.

M. Tani, O. Morikawa, S. Matsuura, and M. Hangyo, “Generation of terahertz radiation by photomixing with dual- and multiple-mode lasers,” Semicond. Sci. Technol. 20, S151–S163 (2005).
[Crossref]

M. Tani, S. Matsuura, K. Sakai, and M. Hangyo, “Multiple-frequency generation of sub-terahertz radiation by multimode LD journalof photoconductive antenna,” IEEE Microw. Guid. Wave Lett. 7, 282–284 (1997).
[Crossref]

K. Shibuya, M. Tani, and M. Hangyo, “Enhancement of THz photomixing efficiency by using a pulse-modulated multimode laser diode,” in Joint 32nd International Conference on Infrared and Millimeter Waves and the 15th International Conference on Terahertz Electronics. IRMMW-THz., (IEEE, 2007), pp. 732–733.

Tropper, A.

Velauthapillai, A.

R. J. B. Dietz, B. Globisch, M. Gerhard, A. Velauthapillai, D. Stanze, H. Roehle, M. Koch, T. Göbel, and M. Schell, “64 µW pulsed terahertz emission from growth optimized InGaAs/InAlAs heterostructures with separated photoconductive and trapping regions,” Appl. Phys. Lett. 103, 061103 (2013).
[Crossref]

Vieweg, N.

N. Vieweg, F. Rettich, A. Deninger, H. Roehle, R. Dietz, T. Göbel, and M. Schell, “Terahertz-time domain spectrometer with 90 dB peak dynamic range,” J. Infrared Millim. Terahertz Waves 35, 823–832 (2014).
[Crossref]

Weig, T.

Wietzke, S.

O. Peters, M. Schwerdtfeger, S. Wietzke, S. Sostmann, R. Scheunemann, R. Wilk, R. Holzwarth, M. Koch, and B. M. Fischer, “Terahertz spectroscopy for rubber production testing,” Polym. Test. 32, 932–936 (2013).
[Crossref]

Wilcox, K. G.

Wilk, R.

O. Peters, M. Schwerdtfeger, S. Wietzke, S. Sostmann, R. Scheunemann, R. Wilk, R. Holzwarth, M. Koch, and B. M. Fischer, “Terahertz spectroscopy for rubber production testing,” Polym. Test. 32, 932–936 (2013).
[Crossref]

M. Stecher, C. Jördens, N. Krumbholz, C. Jansen, M. Scheller, R. Wilk, O. Peters, B. Scherger, B. Ewers, and M. Koch, Towards Industrial Inspection with THz Systems (Springer International Publishing, Cham, 2016), pp. 311–335.

Appl. Phys. B (1)

C. Jördens, T. Schlauch, M. Li, M. R. Hofmann, M. Bieler, and M. Koch, “All-semiconductor laser driven terahertz time-domain spectrometer,” Appl. Phys. B 93, 515–520 (2008).
[Crossref]

Appl. Phys. Lett. (1)

R. J. B. Dietz, B. Globisch, M. Gerhard, A. Velauthapillai, D. Stanze, H. Roehle, M. Koch, T. Göbel, and M. Schell, “64 µW pulsed terahertz emission from growth optimized InGaAs/InAlAs heterostructures with separated photoconductive and trapping regions,” Appl. Phys. Lett. 103, 061103 (2013).
[Crossref]

IEEE Microw. Guid. Wave Lett. (1)

M. Tani, S. Matsuura, K. Sakai, and M. Hangyo, “Multiple-frequency generation of sub-terahertz radiation by multimode LD journalof photoconductive antenna,” IEEE Microw. Guid. Wave Lett. 7, 282–284 (1997).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

R. Gente, S. F. Busch, E. M. Stübling, L. M. Schneider, C. B. Hirschmann, J. C. Balzer, and M. Koch, “Quality control of sugar beet seeds with thz time-domain spectroscopy,” IEEE Trans. Terahertz Sci. Technol. 6, 754–756 (2016).

J. Infrared Millim. Terahertz Waves (4)

T. Hochrein, “Markets, availability, notice, and technical performance of terahertz systems: historic development, present, and trends,” J. Infrared Millim. Terahertz Waves 36, 235–254 (2014).
[Crossref]

N. Vieweg, F. Rettich, A. Deninger, H. Roehle, R. Dietz, T. Göbel, and M. Schell, “Terahertz-time domain spectrometer with 90 dB peak dynamic range,” J. Infrared Millim. Terahertz Waves 35, 823–832 (2014).
[Crossref]

U. Nandi, J. C. Norman, A. C. Gossard, H. Lu, and S. Preu, “1550-nm driven ErAs:In(Al)GaAs photoconductor-based terahertz time domain system with 6.5 THz bandwidth,” J. Infrared Millim. Terahertz Waves 39, 340–348 (2018).
[Crossref]

K. Merghem, S. F. Busch, F. Lelarge, M. Koch, A. Ramdane, and J. C. Balzer, “Terahertz time-domain spectroscopy system driven by a monolithic semiconductor laser,” J. Infrared Millim. Terahertz Waves 38, 958–962 (2017).
[Crossref]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (2)

N. Ogasawara and R. Ito, “Longitudinal mode competition and asymmetric gain saturation in semiconductor injection lasers. ii. theory,” Jpn. J. Appl. Phys. 27, 615 (1988).
[Crossref]

N. Ogasawara and R. Ito, “Longitudinal mode competition and asymmetric gain saturation in semiconductor injection lasers. i. experiment,” Jpn. J. Appl. Phys. 27, 607 (1988).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

physica status solidic (1)

B. Schmidtke, H. Braun, U. T. Schwarz, D. Queren, M. Schillgalies, S. Lutgen, and U. Strauß, “Time resolved measurement of longitudinal mode competition in 405 nm (Al, In)GaN laser diodes,” physica status solidic 6, S860–S863 (2009).

Polym. Test. (1)

O. Peters, M. Schwerdtfeger, S. Wietzke, S. Sostmann, R. Scheunemann, R. Wilk, R. Holzwarth, M. Koch, and B. M. Fischer, “Terahertz spectroscopy for rubber production testing,” Polym. Test. 32, 932–936 (2013).
[Crossref]

Semicond. Sci. Technol. (1)

M. Tani, O. Morikawa, S. Matsuura, and M. Hangyo, “Generation of terahertz radiation by photomixing with dual- and multiple-mode lasers,” Semicond. Sci. Technol. 20, S151–S163 (2005).
[Crossref]

Other (3)

M. Stecher, C. Jördens, N. Krumbholz, C. Jansen, M. Scheller, R. Wilk, O. Peters, B. Scherger, B. Ewers, and M. Koch, Towards Industrial Inspection with THz Systems (Springer International Publishing, Cham, 2016), pp. 311–335.

K. Shibuya, M. Tani, and M. Hangyo, “Enhancement of THz photomixing efficiency by using a pulse-modulated multimode laser diode,” in Joint 32nd International Conference on Infrared and Millimeter Waves and the 15th International Conference on Terahertz Electronics. IRMMW-THz., (IEEE, 2007), pp. 732–733.

W. W. Chow, S. W. Koch, and M. I. Sargent, Semiconductor-laser physics (Springer Science & Business Media, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 The laser diode is driven by a short pulse current source at a repetition rate of 2 MHz. Besides, the setup is very similar to THz-TDS or THz-QTDS setups: the laser beam is split in two and guided to the photoconductive transmitter (Tx) and receiver (Rx) antennas, respectively. The laser beam of the detector arm can be delayed to sample the THz time-domain waveform.
Fig. 2
Fig. 2 a) Comparing the THz spectra at two far-apart duty cycles reveals the effect of pulsed laser diode operation. The maximum amplitude stays approximately the same, but the total bandwidth is considerably increased. By performing a fit through the peaks after the maximum at about 0.22 THz, the roll-off constant fRO can be determined (examplary fits are visualized with dashed lines).
Fig. 3
Fig. 3 Examplary optical spectra for low and high duty cycles. A lower duty cycle and correspondingly higher peak current in the diode leads to a broader optical spectrum. The 10 dB widths are marked.
Fig. 4
Fig. 4 The roll-off frequencies of the THz spectra at different duty cycles correlate strongly with the 10 dB widths of the corresponding optical spectra (Pearson correlation coefficient R = 0.9676).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

f RO 1 ( D ) = f RO , 0 1 + M 1 D + 1 D 3 dB ,
f RO , 0 1 = ( 2.3 ± 22.9 ) dB/THz ,
M = ( 26 ± 17 ) dB/THz ,
D 3 dB = 0.81 ± 0.08.
J det ( ω ) [ I ¯ ( ω ) ] 2 ω H ( ω ) ,

Metrics