Abstract

We demonstrated a four-beam combined laser system based on Brillouin amplification with a nanosecond output of 2.5 J at a 10 Hz repetition rate. We used simulations and experiments to assess factors affecting the energy extraction efficiency of non-collinear Brillouin amplification. Our results indicate that higher efficiency can be achieved by adding pump beams to the Brillouin amplification process, which enhances optical field intensity and interaction strength. To the best of our knowledge, this is the first demonstration of a multi-beam combination system based on Brillouin amplification with an output of joule level energy, high peak power and nanosecond pulses in 10Hz repetitive operation.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Two-beam combined 3.36  J, 100  Hz diode-pumped high beam quality Nd:YAG laser system

J. S. Qiu, X. X. Tang, Z. W. Fan, H. C. Wang, and H. Liu
Appl. Opt. 55(21) 5630-5633 (2016)

DiPOLE: a 10 J, 10 Hz cryogenic gas cooled multi-slab nanosecond Yb:YAG laser

Saumyabrata Banerjee, Klaus Ertel, Paul D. Mason, P. Jonathan Phillips, Mariastefania De Vido, Jodie M. Smith, Thomas J. Butcher, Cristina Hernandez-Gomez, R. Justin S. Greenhalgh, and John L. Collier
Opt. Express 23(15) 19542-19551 (2015)

High amplification and low noise achieved by a double-stage non-collinear Brillouin amplifier

Zhiwei Lu, Wei Gao, Weiming He, Zan Zhang, and Wuliji Hasi
Opt. Express 17(13) 10675-10680 (2009)

References

  • View by:
  • |
  • |
  • |

  1. A. Azhari, S. Sulaiman, and A. K. P. Rao, “A review on the application of peening processes for surface treatment,” IOP Conf. Series Mater. Sci. Eng. 114, 012002 (2016).
    [Crossref]
  2. L. Hackel, “Reliable laser technology for laser peening applications,” Conf. on Lasers Electro-Optics Optical Soc. Am. 3, CTu1D (2012).
  3. X. Fu, Q. Liu, P. Li, Z. Sui, T. Liu, and M. Gong, “High-efficiency 2 J, 20 Hz diode-pumped Nd:YAG active-mirror master oscillator power amplifier system,” Appl. Phys. Express 8(9), 092702 (2015).
    [Crossref]
  4. T. Liu, Z. Sui, L. Chen, Z. Li, Q. Liu, M. Gong, and X. Fu, “12 J, 10 Hz diode-pumped Nd:YAG distributed active mirror amplifier chain with ASE suppression,” Opt. Express 25(18), 21981–21992 (2017).
    [Crossref] [PubMed]
  5. U. Masood, M. Bussmann, T. E. Cowan, W. Enghardt, L. Karsch, F. Kroll, U. Schramm, and J. Pawelke, “A compact solution for ion beam therapy with laser accelerated protons,” Appl. Phys. B 117(1), 41–52 (2014).
    [Crossref]
  6. Z. Gan, L. Yu, S. Li, C. Wang, X. Liang, Y. Liu, W. Li, Z. Guo, Z. Fan, X. Yuan, L. Xu, Z. Liu, Y. Xu, J. Lu, H. Lu, D. Yin, Y. Leng, R. Li, and Z. Xu, “200 J high efficiency Ti:sapphire chirped pulse amplifier pumped by temporal dual-pulse,” Opt. Express 25(5), 5169–5178 (2017).
    [Crossref] [PubMed]
  7. M. Olumi and B. Maraghechi, “Spatiotemporal evolution of intense short Gaussian laser pulses in weakly relativistic magnetized plasma,” Contrib. Plasma Phys. 56(2), 104–112 (2016).
    [Crossref]
  8. H. J. Kong, S. Park, S. Cha, and J. S. Kim, “0.4 J/10 ns/10 kHz-4 kW coherent beam combined laser using stimulated Brillouin scattering phase conjugation mirrors for industrial applications,” Phys. Status Solidi 10(6), 962–966 (2013).
    [Crossref]
  9. S. Park, S. Cha, J. Oh, H. Lee, H. Ahn, K. S. Churn, and H. J. Kong, “Coherent beam combination using self-phase locked stimulated Brillouin scattering phase conjugate mirrors with a rotating wedge for high power laser generation,” Opt. Express 24(8), 8641–8646 (2016).
    [Crossref] [PubMed]
  10. A. McKay, D. J. Spence, D. W. Coutts, and R. P. Mildren, “Diamond-based concept for combining beams at very high average powers: Diamond-based concept for high power beam combining,” Laser Photonics Rev. 11(3), 1600130 (2017).
    [Crossref]
  11. R. K. Kirkwood, D. P. Turnbull, T. Chapman, S. C. Wilks, M. D. Rosen, R. A. London, L. A. Pickworth, A. Colaitis, W. H. Dunlop, P. Poole, J. Moody, D. Strozzi, P. Michel, L. Divol, O. Landen, B. MacGowan, B. Van Wonterghem, K. Fourinier, and B. Blue, “A plasma amplifier to combine multiple beams at NIF,” Phys. Plasmas 25(5), 056701 (2018).
    [Crossref]
  12. R. Kirwood, D. Turnbull, T. Chapman, S. Wilks, M. Rosen, R. London, L. Pickworth, W. Dunlop, J. Moody, D. Strozzi, P. Michel, L. Divol, B. MacGowan, B. Van Wonterghen, K. Fourinier, and B. Blue, “A Plasma Based Beam Combiner for Very High Fluence and Energy,” Nat. Phys. 14(1), 80–84 (2017).
    [Crossref]
  13. Y. Ding, Z. Lu, and W. He, “Study of beam combination by stimulated Brillouin scattering,” High Power Laser Part. Beams 14, 351 (2002).
  14. Z. Bai, H. Yuan, Z. Liu, P. Xu, Q. Gao, R. J. Williams, O. Kitzler, R. P. Mildren, Y. Wang, and Z. Lu, “Stimulated Brillouin scattering materials, experimental design and applications: A review,” Opt. Mater. 75, 626–645 (2018).
    [Crossref]
  15. Y. L. Wang, Z. W. Lu, S. Y. Wang, Z. X. Zheng, and W. M. He, “Investigation on a four-beam serial laser combination for a non-collinear scheme based on Brillouin amplification,” Wuli Xuebao 58, 831–836 (2009).
  16. Y. Chen, Z. Lu, Y. Wang, and W. He, “Phase matching for noncollinear Brillouin amplification based on controlling of frequency shift of Stokes seed,” Opt. Lett. 39(10), 3047–3049 (2014).
    [Crossref] [PubMed]
  17. S. Y. Wang, “Investigation of some key problems in serial laser beam combination based on Brillouin amplification,” Ph.D. thesis, Harbin Institute of Technology (2008).
  18. R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
    [Crossref] [PubMed]
  19. R. W. Boyd, Nonlinear Optics (Elsevier, 2003).
  20. A. L. Gaeta, M. D. Skeldon, P. Narum, and R. W. Boyd, “Observation of instabilities of laser beams counterpropagating through a Brillouin medium,” J. Opt. Soc. Am. B 6(9), 1709–1713 (1989).
    [Crossref]
  21. A. Kummrow, “Effect of optical breakdown on stimulated Brillouin scattering in focused beam cells,” J. Opt. Soc. Am. B 12(6), 1006–1011 (1995).
    [Crossref]

2018 (2)

R. K. Kirkwood, D. P. Turnbull, T. Chapman, S. C. Wilks, M. D. Rosen, R. A. London, L. A. Pickworth, A. Colaitis, W. H. Dunlop, P. Poole, J. Moody, D. Strozzi, P. Michel, L. Divol, O. Landen, B. MacGowan, B. Van Wonterghem, K. Fourinier, and B. Blue, “A plasma amplifier to combine multiple beams at NIF,” Phys. Plasmas 25(5), 056701 (2018).
[Crossref]

Z. Bai, H. Yuan, Z. Liu, P. Xu, Q. Gao, R. J. Williams, O. Kitzler, R. P. Mildren, Y. Wang, and Z. Lu, “Stimulated Brillouin scattering materials, experimental design and applications: A review,” Opt. Mater. 75, 626–645 (2018).
[Crossref]

2017 (4)

R. Kirwood, D. Turnbull, T. Chapman, S. Wilks, M. Rosen, R. London, L. Pickworth, W. Dunlop, J. Moody, D. Strozzi, P. Michel, L. Divol, B. MacGowan, B. Van Wonterghen, K. Fourinier, and B. Blue, “A Plasma Based Beam Combiner for Very High Fluence and Energy,” Nat. Phys. 14(1), 80–84 (2017).
[Crossref]

A. McKay, D. J. Spence, D. W. Coutts, and R. P. Mildren, “Diamond-based concept for combining beams at very high average powers: Diamond-based concept for high power beam combining,” Laser Photonics Rev. 11(3), 1600130 (2017).
[Crossref]

T. Liu, Z. Sui, L. Chen, Z. Li, Q. Liu, M. Gong, and X. Fu, “12 J, 10 Hz diode-pumped Nd:YAG distributed active mirror amplifier chain with ASE suppression,” Opt. Express 25(18), 21981–21992 (2017).
[Crossref] [PubMed]

Z. Gan, L. Yu, S. Li, C. Wang, X. Liang, Y. Liu, W. Li, Z. Guo, Z. Fan, X. Yuan, L. Xu, Z. Liu, Y. Xu, J. Lu, H. Lu, D. Yin, Y. Leng, R. Li, and Z. Xu, “200 J high efficiency Ti:sapphire chirped pulse amplifier pumped by temporal dual-pulse,” Opt. Express 25(5), 5169–5178 (2017).
[Crossref] [PubMed]

2016 (3)

M. Olumi and B. Maraghechi, “Spatiotemporal evolution of intense short Gaussian laser pulses in weakly relativistic magnetized plasma,” Contrib. Plasma Phys. 56(2), 104–112 (2016).
[Crossref]

S. Park, S. Cha, J. Oh, H. Lee, H. Ahn, K. S. Churn, and H. J. Kong, “Coherent beam combination using self-phase locked stimulated Brillouin scattering phase conjugate mirrors with a rotating wedge for high power laser generation,” Opt. Express 24(8), 8641–8646 (2016).
[Crossref] [PubMed]

A. Azhari, S. Sulaiman, and A. K. P. Rao, “A review on the application of peening processes for surface treatment,” IOP Conf. Series Mater. Sci. Eng. 114, 012002 (2016).
[Crossref]

2015 (1)

X. Fu, Q. Liu, P. Li, Z. Sui, T. Liu, and M. Gong, “High-efficiency 2 J, 20 Hz diode-pumped Nd:YAG active-mirror master oscillator power amplifier system,” Appl. Phys. Express 8(9), 092702 (2015).
[Crossref]

2014 (2)

U. Masood, M. Bussmann, T. E. Cowan, W. Enghardt, L. Karsch, F. Kroll, U. Schramm, and J. Pawelke, “A compact solution for ion beam therapy with laser accelerated protons,” Appl. Phys. B 117(1), 41–52 (2014).
[Crossref]

Y. Chen, Z. Lu, Y. Wang, and W. He, “Phase matching for noncollinear Brillouin amplification based on controlling of frequency shift of Stokes seed,” Opt. Lett. 39(10), 3047–3049 (2014).
[Crossref] [PubMed]

2013 (1)

H. J. Kong, S. Park, S. Cha, and J. S. Kim, “0.4 J/10 ns/10 kHz-4 kW coherent beam combined laser using stimulated Brillouin scattering phase conjugation mirrors for industrial applications,” Phys. Status Solidi 10(6), 962–966 (2013).
[Crossref]

2012 (1)

L. Hackel, “Reliable laser technology for laser peening applications,” Conf. on Lasers Electro-Optics Optical Soc. Am. 3, CTu1D (2012).

2009 (1)

Y. L. Wang, Z. W. Lu, S. Y. Wang, Z. X. Zheng, and W. M. He, “Investigation on a four-beam serial laser combination for a non-collinear scheme based on Brillouin amplification,” Wuli Xuebao 58, 831–836 (2009).

2002 (1)

Y. Ding, Z. Lu, and W. He, “Study of beam combination by stimulated Brillouin scattering,” High Power Laser Part. Beams 14, 351 (2002).

1995 (1)

1990 (1)

R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
[Crossref] [PubMed]

1989 (1)

Ahn, H.

Azhari, A.

A. Azhari, S. Sulaiman, and A. K. P. Rao, “A review on the application of peening processes for surface treatment,” IOP Conf. Series Mater. Sci. Eng. 114, 012002 (2016).
[Crossref]

Bai, Z.

Z. Bai, H. Yuan, Z. Liu, P. Xu, Q. Gao, R. J. Williams, O. Kitzler, R. P. Mildren, Y. Wang, and Z. Lu, “Stimulated Brillouin scattering materials, experimental design and applications: A review,” Opt. Mater. 75, 626–645 (2018).
[Crossref]

Blue, B.

R. K. Kirkwood, D. P. Turnbull, T. Chapman, S. C. Wilks, M. D. Rosen, R. A. London, L. A. Pickworth, A. Colaitis, W. H. Dunlop, P. Poole, J. Moody, D. Strozzi, P. Michel, L. Divol, O. Landen, B. MacGowan, B. Van Wonterghem, K. Fourinier, and B. Blue, “A plasma amplifier to combine multiple beams at NIF,” Phys. Plasmas 25(5), 056701 (2018).
[Crossref]

R. Kirwood, D. Turnbull, T. Chapman, S. Wilks, M. Rosen, R. London, L. Pickworth, W. Dunlop, J. Moody, D. Strozzi, P. Michel, L. Divol, B. MacGowan, B. Van Wonterghen, K. Fourinier, and B. Blue, “A Plasma Based Beam Combiner for Very High Fluence and Energy,” Nat. Phys. 14(1), 80–84 (2017).
[Crossref]

Boyd, R. W.

Bussmann, M.

U. Masood, M. Bussmann, T. E. Cowan, W. Enghardt, L. Karsch, F. Kroll, U. Schramm, and J. Pawelke, “A compact solution for ion beam therapy with laser accelerated protons,” Appl. Phys. B 117(1), 41–52 (2014).
[Crossref]

Cha, S.

S. Park, S. Cha, J. Oh, H. Lee, H. Ahn, K. S. Churn, and H. J. Kong, “Coherent beam combination using self-phase locked stimulated Brillouin scattering phase conjugate mirrors with a rotating wedge for high power laser generation,” Opt. Express 24(8), 8641–8646 (2016).
[Crossref] [PubMed]

H. J. Kong, S. Park, S. Cha, and J. S. Kim, “0.4 J/10 ns/10 kHz-4 kW coherent beam combined laser using stimulated Brillouin scattering phase conjugation mirrors for industrial applications,” Phys. Status Solidi 10(6), 962–966 (2013).
[Crossref]

Chapman, T.

R. K. Kirkwood, D. P. Turnbull, T. Chapman, S. C. Wilks, M. D. Rosen, R. A. London, L. A. Pickworth, A. Colaitis, W. H. Dunlop, P. Poole, J. Moody, D. Strozzi, P. Michel, L. Divol, O. Landen, B. MacGowan, B. Van Wonterghem, K. Fourinier, and B. Blue, “A plasma amplifier to combine multiple beams at NIF,” Phys. Plasmas 25(5), 056701 (2018).
[Crossref]

R. Kirwood, D. Turnbull, T. Chapman, S. Wilks, M. Rosen, R. London, L. Pickworth, W. Dunlop, J. Moody, D. Strozzi, P. Michel, L. Divol, B. MacGowan, B. Van Wonterghen, K. Fourinier, and B. Blue, “A Plasma Based Beam Combiner for Very High Fluence and Energy,” Nat. Phys. 14(1), 80–84 (2017).
[Crossref]

Chen, L.

Chen, Y.

Churn, K. S.

Colaitis, A.

R. K. Kirkwood, D. P. Turnbull, T. Chapman, S. C. Wilks, M. D. Rosen, R. A. London, L. A. Pickworth, A. Colaitis, W. H. Dunlop, P. Poole, J. Moody, D. Strozzi, P. Michel, L. Divol, O. Landen, B. MacGowan, B. Van Wonterghem, K. Fourinier, and B. Blue, “A plasma amplifier to combine multiple beams at NIF,” Phys. Plasmas 25(5), 056701 (2018).
[Crossref]

Coutts, D. W.

A. McKay, D. J. Spence, D. W. Coutts, and R. P. Mildren, “Diamond-based concept for combining beams at very high average powers: Diamond-based concept for high power beam combining,” Laser Photonics Rev. 11(3), 1600130 (2017).
[Crossref]

Cowan, T. E.

U. Masood, M. Bussmann, T. E. Cowan, W. Enghardt, L. Karsch, F. Kroll, U. Schramm, and J. Pawelke, “A compact solution for ion beam therapy with laser accelerated protons,” Appl. Phys. B 117(1), 41–52 (2014).
[Crossref]

Ding, Y.

Y. Ding, Z. Lu, and W. He, “Study of beam combination by stimulated Brillouin scattering,” High Power Laser Part. Beams 14, 351 (2002).

Divol, L.

R. K. Kirkwood, D. P. Turnbull, T. Chapman, S. C. Wilks, M. D. Rosen, R. A. London, L. A. Pickworth, A. Colaitis, W. H. Dunlop, P. Poole, J. Moody, D. Strozzi, P. Michel, L. Divol, O. Landen, B. MacGowan, B. Van Wonterghem, K. Fourinier, and B. Blue, “A plasma amplifier to combine multiple beams at NIF,” Phys. Plasmas 25(5), 056701 (2018).
[Crossref]

R. Kirwood, D. Turnbull, T. Chapman, S. Wilks, M. Rosen, R. London, L. Pickworth, W. Dunlop, J. Moody, D. Strozzi, P. Michel, L. Divol, B. MacGowan, B. Van Wonterghen, K. Fourinier, and B. Blue, “A Plasma Based Beam Combiner for Very High Fluence and Energy,” Nat. Phys. 14(1), 80–84 (2017).
[Crossref]

Dunlop, W.

R. Kirwood, D. Turnbull, T. Chapman, S. Wilks, M. Rosen, R. London, L. Pickworth, W. Dunlop, J. Moody, D. Strozzi, P. Michel, L. Divol, B. MacGowan, B. Van Wonterghen, K. Fourinier, and B. Blue, “A Plasma Based Beam Combiner for Very High Fluence and Energy,” Nat. Phys. 14(1), 80–84 (2017).
[Crossref]

Dunlop, W. H.

R. K. Kirkwood, D. P. Turnbull, T. Chapman, S. C. Wilks, M. D. Rosen, R. A. London, L. A. Pickworth, A. Colaitis, W. H. Dunlop, P. Poole, J. Moody, D. Strozzi, P. Michel, L. Divol, O. Landen, B. MacGowan, B. Van Wonterghem, K. Fourinier, and B. Blue, “A plasma amplifier to combine multiple beams at NIF,” Phys. Plasmas 25(5), 056701 (2018).
[Crossref]

Enghardt, W.

U. Masood, M. Bussmann, T. E. Cowan, W. Enghardt, L. Karsch, F. Kroll, U. Schramm, and J. Pawelke, “A compact solution for ion beam therapy with laser accelerated protons,” Appl. Phys. B 117(1), 41–52 (2014).
[Crossref]

Fan, Z.

Fourinier, K.

R. K. Kirkwood, D. P. Turnbull, T. Chapman, S. C. Wilks, M. D. Rosen, R. A. London, L. A. Pickworth, A. Colaitis, W. H. Dunlop, P. Poole, J. Moody, D. Strozzi, P. Michel, L. Divol, O. Landen, B. MacGowan, B. Van Wonterghem, K. Fourinier, and B. Blue, “A plasma amplifier to combine multiple beams at NIF,” Phys. Plasmas 25(5), 056701 (2018).
[Crossref]

R. Kirwood, D. Turnbull, T. Chapman, S. Wilks, M. Rosen, R. London, L. Pickworth, W. Dunlop, J. Moody, D. Strozzi, P. Michel, L. Divol, B. MacGowan, B. Van Wonterghen, K. Fourinier, and B. Blue, “A Plasma Based Beam Combiner for Very High Fluence and Energy,” Nat. Phys. 14(1), 80–84 (2017).
[Crossref]

Fu, X.

T. Liu, Z. Sui, L. Chen, Z. Li, Q. Liu, M. Gong, and X. Fu, “12 J, 10 Hz diode-pumped Nd:YAG distributed active mirror amplifier chain with ASE suppression,” Opt. Express 25(18), 21981–21992 (2017).
[Crossref] [PubMed]

X. Fu, Q. Liu, P. Li, Z. Sui, T. Liu, and M. Gong, “High-efficiency 2 J, 20 Hz diode-pumped Nd:YAG active-mirror master oscillator power amplifier system,” Appl. Phys. Express 8(9), 092702 (2015).
[Crossref]

Gaeta, A. L.

Gan, Z.

Gao, Q.

Z. Bai, H. Yuan, Z. Liu, P. Xu, Q. Gao, R. J. Williams, O. Kitzler, R. P. Mildren, Y. Wang, and Z. Lu, “Stimulated Brillouin scattering materials, experimental design and applications: A review,” Opt. Mater. 75, 626–645 (2018).
[Crossref]

Gong, M.

T. Liu, Z. Sui, L. Chen, Z. Li, Q. Liu, M. Gong, and X. Fu, “12 J, 10 Hz diode-pumped Nd:YAG distributed active mirror amplifier chain with ASE suppression,” Opt. Express 25(18), 21981–21992 (2017).
[Crossref] [PubMed]

X. Fu, Q. Liu, P. Li, Z. Sui, T. Liu, and M. Gong, “High-efficiency 2 J, 20 Hz diode-pumped Nd:YAG active-mirror master oscillator power amplifier system,” Appl. Phys. Express 8(9), 092702 (2015).
[Crossref]

Guo, Z.

Hackel, L.

L. Hackel, “Reliable laser technology for laser peening applications,” Conf. on Lasers Electro-Optics Optical Soc. Am. 3, CTu1D (2012).

He, W.

Y. Chen, Z. Lu, Y. Wang, and W. He, “Phase matching for noncollinear Brillouin amplification based on controlling of frequency shift of Stokes seed,” Opt. Lett. 39(10), 3047–3049 (2014).
[Crossref] [PubMed]

Y. Ding, Z. Lu, and W. He, “Study of beam combination by stimulated Brillouin scattering,” High Power Laser Part. Beams 14, 351 (2002).

He, W. M.

Y. L. Wang, Z. W. Lu, S. Y. Wang, Z. X. Zheng, and W. M. He, “Investigation on a four-beam serial laser combination for a non-collinear scheme based on Brillouin amplification,” Wuli Xuebao 58, 831–836 (2009).

Karsch, L.

U. Masood, M. Bussmann, T. E. Cowan, W. Enghardt, L. Karsch, F. Kroll, U. Schramm, and J. Pawelke, “A compact solution for ion beam therapy with laser accelerated protons,” Appl. Phys. B 117(1), 41–52 (2014).
[Crossref]

Kim, J. S.

H. J. Kong, S. Park, S. Cha, and J. S. Kim, “0.4 J/10 ns/10 kHz-4 kW coherent beam combined laser using stimulated Brillouin scattering phase conjugation mirrors for industrial applications,” Phys. Status Solidi 10(6), 962–966 (2013).
[Crossref]

Kirkwood, R. K.

R. K. Kirkwood, D. P. Turnbull, T. Chapman, S. C. Wilks, M. D. Rosen, R. A. London, L. A. Pickworth, A. Colaitis, W. H. Dunlop, P. Poole, J. Moody, D. Strozzi, P. Michel, L. Divol, O. Landen, B. MacGowan, B. Van Wonterghem, K. Fourinier, and B. Blue, “A plasma amplifier to combine multiple beams at NIF,” Phys. Plasmas 25(5), 056701 (2018).
[Crossref]

Kirwood, R.

R. Kirwood, D. Turnbull, T. Chapman, S. Wilks, M. Rosen, R. London, L. Pickworth, W. Dunlop, J. Moody, D. Strozzi, P. Michel, L. Divol, B. MacGowan, B. Van Wonterghen, K. Fourinier, and B. Blue, “A Plasma Based Beam Combiner for Very High Fluence and Energy,” Nat. Phys. 14(1), 80–84 (2017).
[Crossref]

Kitzler, O.

Z. Bai, H. Yuan, Z. Liu, P. Xu, Q. Gao, R. J. Williams, O. Kitzler, R. P. Mildren, Y. Wang, and Z. Lu, “Stimulated Brillouin scattering materials, experimental design and applications: A review,” Opt. Mater. 75, 626–645 (2018).
[Crossref]

Kong, H. J.

S. Park, S. Cha, J. Oh, H. Lee, H. Ahn, K. S. Churn, and H. J. Kong, “Coherent beam combination using self-phase locked stimulated Brillouin scattering phase conjugate mirrors with a rotating wedge for high power laser generation,” Opt. Express 24(8), 8641–8646 (2016).
[Crossref] [PubMed]

H. J. Kong, S. Park, S. Cha, and J. S. Kim, “0.4 J/10 ns/10 kHz-4 kW coherent beam combined laser using stimulated Brillouin scattering phase conjugation mirrors for industrial applications,” Phys. Status Solidi 10(6), 962–966 (2013).
[Crossref]

Kroll, F.

U. Masood, M. Bussmann, T. E. Cowan, W. Enghardt, L. Karsch, F. Kroll, U. Schramm, and J. Pawelke, “A compact solution for ion beam therapy with laser accelerated protons,” Appl. Phys. B 117(1), 41–52 (2014).
[Crossref]

Kummrow, A.

Landen, O.

R. K. Kirkwood, D. P. Turnbull, T. Chapman, S. C. Wilks, M. D. Rosen, R. A. London, L. A. Pickworth, A. Colaitis, W. H. Dunlop, P. Poole, J. Moody, D. Strozzi, P. Michel, L. Divol, O. Landen, B. MacGowan, B. Van Wonterghem, K. Fourinier, and B. Blue, “A plasma amplifier to combine multiple beams at NIF,” Phys. Plasmas 25(5), 056701 (2018).
[Crossref]

Lee, H.

Leng, Y.

Li, P.

X. Fu, Q. Liu, P. Li, Z. Sui, T. Liu, and M. Gong, “High-efficiency 2 J, 20 Hz diode-pumped Nd:YAG active-mirror master oscillator power amplifier system,” Appl. Phys. Express 8(9), 092702 (2015).
[Crossref]

Li, R.

Li, S.

Li, W.

Li, Z.

Liang, X.

Liu, Q.

T. Liu, Z. Sui, L. Chen, Z. Li, Q. Liu, M. Gong, and X. Fu, “12 J, 10 Hz diode-pumped Nd:YAG distributed active mirror amplifier chain with ASE suppression,” Opt. Express 25(18), 21981–21992 (2017).
[Crossref] [PubMed]

X. Fu, Q. Liu, P. Li, Z. Sui, T. Liu, and M. Gong, “High-efficiency 2 J, 20 Hz diode-pumped Nd:YAG active-mirror master oscillator power amplifier system,” Appl. Phys. Express 8(9), 092702 (2015).
[Crossref]

Liu, T.

T. Liu, Z. Sui, L. Chen, Z. Li, Q. Liu, M. Gong, and X. Fu, “12 J, 10 Hz diode-pumped Nd:YAG distributed active mirror amplifier chain with ASE suppression,” Opt. Express 25(18), 21981–21992 (2017).
[Crossref] [PubMed]

X. Fu, Q. Liu, P. Li, Z. Sui, T. Liu, and M. Gong, “High-efficiency 2 J, 20 Hz diode-pumped Nd:YAG active-mirror master oscillator power amplifier system,” Appl. Phys. Express 8(9), 092702 (2015).
[Crossref]

Liu, Y.

Liu, Z.

Z. Bai, H. Yuan, Z. Liu, P. Xu, Q. Gao, R. J. Williams, O. Kitzler, R. P. Mildren, Y. Wang, and Z. Lu, “Stimulated Brillouin scattering materials, experimental design and applications: A review,” Opt. Mater. 75, 626–645 (2018).
[Crossref]

Z. Gan, L. Yu, S. Li, C. Wang, X. Liang, Y. Liu, W. Li, Z. Guo, Z. Fan, X. Yuan, L. Xu, Z. Liu, Y. Xu, J. Lu, H. Lu, D. Yin, Y. Leng, R. Li, and Z. Xu, “200 J high efficiency Ti:sapphire chirped pulse amplifier pumped by temporal dual-pulse,” Opt. Express 25(5), 5169–5178 (2017).
[Crossref] [PubMed]

London, R.

R. Kirwood, D. Turnbull, T. Chapman, S. Wilks, M. Rosen, R. London, L. Pickworth, W. Dunlop, J. Moody, D. Strozzi, P. Michel, L. Divol, B. MacGowan, B. Van Wonterghen, K. Fourinier, and B. Blue, “A Plasma Based Beam Combiner for Very High Fluence and Energy,” Nat. Phys. 14(1), 80–84 (2017).
[Crossref]

London, R. A.

R. K. Kirkwood, D. P. Turnbull, T. Chapman, S. C. Wilks, M. D. Rosen, R. A. London, L. A. Pickworth, A. Colaitis, W. H. Dunlop, P. Poole, J. Moody, D. Strozzi, P. Michel, L. Divol, O. Landen, B. MacGowan, B. Van Wonterghem, K. Fourinier, and B. Blue, “A plasma amplifier to combine multiple beams at NIF,” Phys. Plasmas 25(5), 056701 (2018).
[Crossref]

Lu, H.

Lu, J.

Lu, Z.

Z. Bai, H. Yuan, Z. Liu, P. Xu, Q. Gao, R. J. Williams, O. Kitzler, R. P. Mildren, Y. Wang, and Z. Lu, “Stimulated Brillouin scattering materials, experimental design and applications: A review,” Opt. Mater. 75, 626–645 (2018).
[Crossref]

Y. Chen, Z. Lu, Y. Wang, and W. He, “Phase matching for noncollinear Brillouin amplification based on controlling of frequency shift of Stokes seed,” Opt. Lett. 39(10), 3047–3049 (2014).
[Crossref] [PubMed]

Y. Ding, Z. Lu, and W. He, “Study of beam combination by stimulated Brillouin scattering,” High Power Laser Part. Beams 14, 351 (2002).

Lu, Z. W.

Y. L. Wang, Z. W. Lu, S. Y. Wang, Z. X. Zheng, and W. M. He, “Investigation on a four-beam serial laser combination for a non-collinear scheme based on Brillouin amplification,” Wuli Xuebao 58, 831–836 (2009).

MacGowan, B.

R. K. Kirkwood, D. P. Turnbull, T. Chapman, S. C. Wilks, M. D. Rosen, R. A. London, L. A. Pickworth, A. Colaitis, W. H. Dunlop, P. Poole, J. Moody, D. Strozzi, P. Michel, L. Divol, O. Landen, B. MacGowan, B. Van Wonterghem, K. Fourinier, and B. Blue, “A plasma amplifier to combine multiple beams at NIF,” Phys. Plasmas 25(5), 056701 (2018).
[Crossref]

R. Kirwood, D. Turnbull, T. Chapman, S. Wilks, M. Rosen, R. London, L. Pickworth, W. Dunlop, J. Moody, D. Strozzi, P. Michel, L. Divol, B. MacGowan, B. Van Wonterghen, K. Fourinier, and B. Blue, “A Plasma Based Beam Combiner for Very High Fluence and Energy,” Nat. Phys. 14(1), 80–84 (2017).
[Crossref]

Maraghechi, B.

M. Olumi and B. Maraghechi, “Spatiotemporal evolution of intense short Gaussian laser pulses in weakly relativistic magnetized plasma,” Contrib. Plasma Phys. 56(2), 104–112 (2016).
[Crossref]

Masood, U.

U. Masood, M. Bussmann, T. E. Cowan, W. Enghardt, L. Karsch, F. Kroll, U. Schramm, and J. Pawelke, “A compact solution for ion beam therapy with laser accelerated protons,” Appl. Phys. B 117(1), 41–52 (2014).
[Crossref]

McKay, A.

A. McKay, D. J. Spence, D. W. Coutts, and R. P. Mildren, “Diamond-based concept for combining beams at very high average powers: Diamond-based concept for high power beam combining,” Laser Photonics Rev. 11(3), 1600130 (2017).
[Crossref]

Michel, P.

R. K. Kirkwood, D. P. Turnbull, T. Chapman, S. C. Wilks, M. D. Rosen, R. A. London, L. A. Pickworth, A. Colaitis, W. H. Dunlop, P. Poole, J. Moody, D. Strozzi, P. Michel, L. Divol, O. Landen, B. MacGowan, B. Van Wonterghem, K. Fourinier, and B. Blue, “A plasma amplifier to combine multiple beams at NIF,” Phys. Plasmas 25(5), 056701 (2018).
[Crossref]

R. Kirwood, D. Turnbull, T. Chapman, S. Wilks, M. Rosen, R. London, L. Pickworth, W. Dunlop, J. Moody, D. Strozzi, P. Michel, L. Divol, B. MacGowan, B. Van Wonterghen, K. Fourinier, and B. Blue, “A Plasma Based Beam Combiner for Very High Fluence and Energy,” Nat. Phys. 14(1), 80–84 (2017).
[Crossref]

Mildren, R. P.

Z. Bai, H. Yuan, Z. Liu, P. Xu, Q. Gao, R. J. Williams, O. Kitzler, R. P. Mildren, Y. Wang, and Z. Lu, “Stimulated Brillouin scattering materials, experimental design and applications: A review,” Opt. Mater. 75, 626–645 (2018).
[Crossref]

A. McKay, D. J. Spence, D. W. Coutts, and R. P. Mildren, “Diamond-based concept for combining beams at very high average powers: Diamond-based concept for high power beam combining,” Laser Photonics Rev. 11(3), 1600130 (2017).
[Crossref]

Moody, J.

R. K. Kirkwood, D. P. Turnbull, T. Chapman, S. C. Wilks, M. D. Rosen, R. A. London, L. A. Pickworth, A. Colaitis, W. H. Dunlop, P. Poole, J. Moody, D. Strozzi, P. Michel, L. Divol, O. Landen, B. MacGowan, B. Van Wonterghem, K. Fourinier, and B. Blue, “A plasma amplifier to combine multiple beams at NIF,” Phys. Plasmas 25(5), 056701 (2018).
[Crossref]

R. Kirwood, D. Turnbull, T. Chapman, S. Wilks, M. Rosen, R. London, L. Pickworth, W. Dunlop, J. Moody, D. Strozzi, P. Michel, L. Divol, B. MacGowan, B. Van Wonterghen, K. Fourinier, and B. Blue, “A Plasma Based Beam Combiner for Very High Fluence and Energy,” Nat. Phys. 14(1), 80–84 (2017).
[Crossref]

Narum, P.

Oh, J.

Olumi, M.

M. Olumi and B. Maraghechi, “Spatiotemporal evolution of intense short Gaussian laser pulses in weakly relativistic magnetized plasma,” Contrib. Plasma Phys. 56(2), 104–112 (2016).
[Crossref]

Park, S.

S. Park, S. Cha, J. Oh, H. Lee, H. Ahn, K. S. Churn, and H. J. Kong, “Coherent beam combination using self-phase locked stimulated Brillouin scattering phase conjugate mirrors with a rotating wedge for high power laser generation,” Opt. Express 24(8), 8641–8646 (2016).
[Crossref] [PubMed]

H. J. Kong, S. Park, S. Cha, and J. S. Kim, “0.4 J/10 ns/10 kHz-4 kW coherent beam combined laser using stimulated Brillouin scattering phase conjugation mirrors for industrial applications,” Phys. Status Solidi 10(6), 962–966 (2013).
[Crossref]

Pawelke, J.

U. Masood, M. Bussmann, T. E. Cowan, W. Enghardt, L. Karsch, F. Kroll, U. Schramm, and J. Pawelke, “A compact solution for ion beam therapy with laser accelerated protons,” Appl. Phys. B 117(1), 41–52 (2014).
[Crossref]

Pickworth, L.

R. Kirwood, D. Turnbull, T. Chapman, S. Wilks, M. Rosen, R. London, L. Pickworth, W. Dunlop, J. Moody, D. Strozzi, P. Michel, L. Divol, B. MacGowan, B. Van Wonterghen, K. Fourinier, and B. Blue, “A Plasma Based Beam Combiner for Very High Fluence and Energy,” Nat. Phys. 14(1), 80–84 (2017).
[Crossref]

Pickworth, L. A.

R. K. Kirkwood, D. P. Turnbull, T. Chapman, S. C. Wilks, M. D. Rosen, R. A. London, L. A. Pickworth, A. Colaitis, W. H. Dunlop, P. Poole, J. Moody, D. Strozzi, P. Michel, L. Divol, O. Landen, B. MacGowan, B. Van Wonterghem, K. Fourinier, and B. Blue, “A plasma amplifier to combine multiple beams at NIF,” Phys. Plasmas 25(5), 056701 (2018).
[Crossref]

Poole, P.

R. K. Kirkwood, D. P. Turnbull, T. Chapman, S. C. Wilks, M. D. Rosen, R. A. London, L. A. Pickworth, A. Colaitis, W. H. Dunlop, P. Poole, J. Moody, D. Strozzi, P. Michel, L. Divol, O. Landen, B. MacGowan, B. Van Wonterghem, K. Fourinier, and B. Blue, “A plasma amplifier to combine multiple beams at NIF,” Phys. Plasmas 25(5), 056701 (2018).
[Crossref]

Rao, A. K. P.

A. Azhari, S. Sulaiman, and A. K. P. Rao, “A review on the application of peening processes for surface treatment,” IOP Conf. Series Mater. Sci. Eng. 114, 012002 (2016).
[Crossref]

Rosen, M.

R. Kirwood, D. Turnbull, T. Chapman, S. Wilks, M. Rosen, R. London, L. Pickworth, W. Dunlop, J. Moody, D. Strozzi, P. Michel, L. Divol, B. MacGowan, B. Van Wonterghen, K. Fourinier, and B. Blue, “A Plasma Based Beam Combiner for Very High Fluence and Energy,” Nat. Phys. 14(1), 80–84 (2017).
[Crossref]

Rosen, M. D.

R. K. Kirkwood, D. P. Turnbull, T. Chapman, S. C. Wilks, M. D. Rosen, R. A. London, L. A. Pickworth, A. Colaitis, W. H. Dunlop, P. Poole, J. Moody, D. Strozzi, P. Michel, L. Divol, O. Landen, B. MacGowan, B. Van Wonterghem, K. Fourinier, and B. Blue, “A plasma amplifier to combine multiple beams at NIF,” Phys. Plasmas 25(5), 056701 (2018).
[Crossref]

Rzaewski, K.

R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
[Crossref] [PubMed]

Schramm, U.

U. Masood, M. Bussmann, T. E. Cowan, W. Enghardt, L. Karsch, F. Kroll, U. Schramm, and J. Pawelke, “A compact solution for ion beam therapy with laser accelerated protons,” Appl. Phys. B 117(1), 41–52 (2014).
[Crossref]

Skeldon, M. D.

Spence, D. J.

A. McKay, D. J. Spence, D. W. Coutts, and R. P. Mildren, “Diamond-based concept for combining beams at very high average powers: Diamond-based concept for high power beam combining,” Laser Photonics Rev. 11(3), 1600130 (2017).
[Crossref]

Strozzi, D.

R. K. Kirkwood, D. P. Turnbull, T. Chapman, S. C. Wilks, M. D. Rosen, R. A. London, L. A. Pickworth, A. Colaitis, W. H. Dunlop, P. Poole, J. Moody, D. Strozzi, P. Michel, L. Divol, O. Landen, B. MacGowan, B. Van Wonterghem, K. Fourinier, and B. Blue, “A plasma amplifier to combine multiple beams at NIF,” Phys. Plasmas 25(5), 056701 (2018).
[Crossref]

R. Kirwood, D. Turnbull, T. Chapman, S. Wilks, M. Rosen, R. London, L. Pickworth, W. Dunlop, J. Moody, D. Strozzi, P. Michel, L. Divol, B. MacGowan, B. Van Wonterghen, K. Fourinier, and B. Blue, “A Plasma Based Beam Combiner for Very High Fluence and Energy,” Nat. Phys. 14(1), 80–84 (2017).
[Crossref]

Sui, Z.

T. Liu, Z. Sui, L. Chen, Z. Li, Q. Liu, M. Gong, and X. Fu, “12 J, 10 Hz diode-pumped Nd:YAG distributed active mirror amplifier chain with ASE suppression,” Opt. Express 25(18), 21981–21992 (2017).
[Crossref] [PubMed]

X. Fu, Q. Liu, P. Li, Z. Sui, T. Liu, and M. Gong, “High-efficiency 2 J, 20 Hz diode-pumped Nd:YAG active-mirror master oscillator power amplifier system,” Appl. Phys. Express 8(9), 092702 (2015).
[Crossref]

Sulaiman, S.

A. Azhari, S. Sulaiman, and A. K. P. Rao, “A review on the application of peening processes for surface treatment,” IOP Conf. Series Mater. Sci. Eng. 114, 012002 (2016).
[Crossref]

Turnbull, D.

R. Kirwood, D. Turnbull, T. Chapman, S. Wilks, M. Rosen, R. London, L. Pickworth, W. Dunlop, J. Moody, D. Strozzi, P. Michel, L. Divol, B. MacGowan, B. Van Wonterghen, K. Fourinier, and B. Blue, “A Plasma Based Beam Combiner for Very High Fluence and Energy,” Nat. Phys. 14(1), 80–84 (2017).
[Crossref]

Turnbull, D. P.

R. K. Kirkwood, D. P. Turnbull, T. Chapman, S. C. Wilks, M. D. Rosen, R. A. London, L. A. Pickworth, A. Colaitis, W. H. Dunlop, P. Poole, J. Moody, D. Strozzi, P. Michel, L. Divol, O. Landen, B. MacGowan, B. Van Wonterghem, K. Fourinier, and B. Blue, “A plasma amplifier to combine multiple beams at NIF,” Phys. Plasmas 25(5), 056701 (2018).
[Crossref]

Van Wonterghem, B.

R. K. Kirkwood, D. P. Turnbull, T. Chapman, S. C. Wilks, M. D. Rosen, R. A. London, L. A. Pickworth, A. Colaitis, W. H. Dunlop, P. Poole, J. Moody, D. Strozzi, P. Michel, L. Divol, O. Landen, B. MacGowan, B. Van Wonterghem, K. Fourinier, and B. Blue, “A plasma amplifier to combine multiple beams at NIF,” Phys. Plasmas 25(5), 056701 (2018).
[Crossref]

Van Wonterghen, B.

R. Kirwood, D. Turnbull, T. Chapman, S. Wilks, M. Rosen, R. London, L. Pickworth, W. Dunlop, J. Moody, D. Strozzi, P. Michel, L. Divol, B. MacGowan, B. Van Wonterghen, K. Fourinier, and B. Blue, “A Plasma Based Beam Combiner for Very High Fluence and Energy,” Nat. Phys. 14(1), 80–84 (2017).
[Crossref]

Wang, C.

Wang, S. Y.

Y. L. Wang, Z. W. Lu, S. Y. Wang, Z. X. Zheng, and W. M. He, “Investigation on a four-beam serial laser combination for a non-collinear scheme based on Brillouin amplification,” Wuli Xuebao 58, 831–836 (2009).

Wang, Y.

Z. Bai, H. Yuan, Z. Liu, P. Xu, Q. Gao, R. J. Williams, O. Kitzler, R. P. Mildren, Y. Wang, and Z. Lu, “Stimulated Brillouin scattering materials, experimental design and applications: A review,” Opt. Mater. 75, 626–645 (2018).
[Crossref]

Y. Chen, Z. Lu, Y. Wang, and W. He, “Phase matching for noncollinear Brillouin amplification based on controlling of frequency shift of Stokes seed,” Opt. Lett. 39(10), 3047–3049 (2014).
[Crossref] [PubMed]

Wang, Y. L.

Y. L. Wang, Z. W. Lu, S. Y. Wang, Z. X. Zheng, and W. M. He, “Investigation on a four-beam serial laser combination for a non-collinear scheme based on Brillouin amplification,” Wuli Xuebao 58, 831–836 (2009).

Wilks, S.

R. Kirwood, D. Turnbull, T. Chapman, S. Wilks, M. Rosen, R. London, L. Pickworth, W. Dunlop, J. Moody, D. Strozzi, P. Michel, L. Divol, B. MacGowan, B. Van Wonterghen, K. Fourinier, and B. Blue, “A Plasma Based Beam Combiner for Very High Fluence and Energy,” Nat. Phys. 14(1), 80–84 (2017).
[Crossref]

Wilks, S. C.

R. K. Kirkwood, D. P. Turnbull, T. Chapman, S. C. Wilks, M. D. Rosen, R. A. London, L. A. Pickworth, A. Colaitis, W. H. Dunlop, P. Poole, J. Moody, D. Strozzi, P. Michel, L. Divol, O. Landen, B. MacGowan, B. Van Wonterghem, K. Fourinier, and B. Blue, “A plasma amplifier to combine multiple beams at NIF,” Phys. Plasmas 25(5), 056701 (2018).
[Crossref]

Williams, R. J.

Z. Bai, H. Yuan, Z. Liu, P. Xu, Q. Gao, R. J. Williams, O. Kitzler, R. P. Mildren, Y. Wang, and Z. Lu, “Stimulated Brillouin scattering materials, experimental design and applications: A review,” Opt. Mater. 75, 626–645 (2018).
[Crossref]

Xu, L.

Xu, P.

Z. Bai, H. Yuan, Z. Liu, P. Xu, Q. Gao, R. J. Williams, O. Kitzler, R. P. Mildren, Y. Wang, and Z. Lu, “Stimulated Brillouin scattering materials, experimental design and applications: A review,” Opt. Mater. 75, 626–645 (2018).
[Crossref]

Xu, Y.

Xu, Z.

Yin, D.

Yu, L.

Yuan, H.

Z. Bai, H. Yuan, Z. Liu, P. Xu, Q. Gao, R. J. Williams, O. Kitzler, R. P. Mildren, Y. Wang, and Z. Lu, “Stimulated Brillouin scattering materials, experimental design and applications: A review,” Opt. Mater. 75, 626–645 (2018).
[Crossref]

Yuan, X.

Zheng, Z. X.

Y. L. Wang, Z. W. Lu, S. Y. Wang, Z. X. Zheng, and W. M. He, “Investigation on a four-beam serial laser combination for a non-collinear scheme based on Brillouin amplification,” Wuli Xuebao 58, 831–836 (2009).

Appl. Phys. B (1)

U. Masood, M. Bussmann, T. E. Cowan, W. Enghardt, L. Karsch, F. Kroll, U. Schramm, and J. Pawelke, “A compact solution for ion beam therapy with laser accelerated protons,” Appl. Phys. B 117(1), 41–52 (2014).
[Crossref]

Appl. Phys. Express (1)

X. Fu, Q. Liu, P. Li, Z. Sui, T. Liu, and M. Gong, “High-efficiency 2 J, 20 Hz diode-pumped Nd:YAG active-mirror master oscillator power amplifier system,” Appl. Phys. Express 8(9), 092702 (2015).
[Crossref]

Conf. on Lasers Electro-Optics Optical Soc. Am. (1)

L. Hackel, “Reliable laser technology for laser peening applications,” Conf. on Lasers Electro-Optics Optical Soc. Am. 3, CTu1D (2012).

Contrib. Plasma Phys. (1)

M. Olumi and B. Maraghechi, “Spatiotemporal evolution of intense short Gaussian laser pulses in weakly relativistic magnetized plasma,” Contrib. Plasma Phys. 56(2), 104–112 (2016).
[Crossref]

High Power Laser Part. Beams (1)

Y. Ding, Z. Lu, and W. He, “Study of beam combination by stimulated Brillouin scattering,” High Power Laser Part. Beams 14, 351 (2002).

IOP Conf. Series Mater. Sci. Eng. (1)

A. Azhari, S. Sulaiman, and A. K. P. Rao, “A review on the application of peening processes for surface treatment,” IOP Conf. Series Mater. Sci. Eng. 114, 012002 (2016).
[Crossref]

J. Opt. Soc. Am. B (2)

Laser Photonics Rev. (1)

A. McKay, D. J. Spence, D. W. Coutts, and R. P. Mildren, “Diamond-based concept for combining beams at very high average powers: Diamond-based concept for high power beam combining,” Laser Photonics Rev. 11(3), 1600130 (2017).
[Crossref]

Nat. Phys. (1)

R. Kirwood, D. Turnbull, T. Chapman, S. Wilks, M. Rosen, R. London, L. Pickworth, W. Dunlop, J. Moody, D. Strozzi, P. Michel, L. Divol, B. MacGowan, B. Van Wonterghen, K. Fourinier, and B. Blue, “A Plasma Based Beam Combiner for Very High Fluence and Energy,” Nat. Phys. 14(1), 80–84 (2017).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Opt. Mater. (1)

Z. Bai, H. Yuan, Z. Liu, P. Xu, Q. Gao, R. J. Williams, O. Kitzler, R. P. Mildren, Y. Wang, and Z. Lu, “Stimulated Brillouin scattering materials, experimental design and applications: A review,” Opt. Mater. 75, 626–645 (2018).
[Crossref]

Phys. Plasmas (1)

R. K. Kirkwood, D. P. Turnbull, T. Chapman, S. C. Wilks, M. D. Rosen, R. A. London, L. A. Pickworth, A. Colaitis, W. H. Dunlop, P. Poole, J. Moody, D. Strozzi, P. Michel, L. Divol, O. Landen, B. MacGowan, B. Van Wonterghem, K. Fourinier, and B. Blue, “A plasma amplifier to combine multiple beams at NIF,” Phys. Plasmas 25(5), 056701 (2018).
[Crossref]

Phys. Rev. A (1)

R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
[Crossref] [PubMed]

Phys. Status Solidi (1)

H. J. Kong, S. Park, S. Cha, and J. S. Kim, “0.4 J/10 ns/10 kHz-4 kW coherent beam combined laser using stimulated Brillouin scattering phase conjugation mirrors for industrial applications,” Phys. Status Solidi 10(6), 962–966 (2013).
[Crossref]

Wuli Xuebao (1)

Y. L. Wang, Z. W. Lu, S. Y. Wang, Z. X. Zheng, and W. M. He, “Investigation on a four-beam serial laser combination for a non-collinear scheme based on Brillouin amplification,” Wuli Xuebao 58, 831–836 (2009).

Other (2)

S. Y. Wang, “Investigation of some key problems in serial laser beam combination based on Brillouin amplification,” Ph.D. thesis, Harbin Institute of Technology (2008).

R. W. Boyd, Nonlinear Optics (Elsevier, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Geometry of the Stokes non-collinear Brillouin amplification process with several pump beams with a cross angle of θ.
Fig. 2
Fig. 2 The relationship of the SBS gain coefficient g (θ, ΩB = ΩB) on the non-collinear offset angle θ, the dashed line refers to the cross angle at which the gain coefficient decreases to the 90% of the maximum value.
Fig. 3
Fig. 3 (a) L e changes with the cross angle at different beam diameter with the cell length fixed, (b) the relationship between L e and θ at different cell length with fixed beam diameter, where d is the diameter of laser beam and L is the length of the Brillouin amplification cell
Fig. 4
Fig. 4 The energy extraction efficiency changes with cross angle under different optic field intensity is illustrated, (a) lower intensity, Stokes: 25 MW·cm−2, pump: 75 MW·cm−2 (b) higher intensity, Stokes: 175 MW·cm−2, pump: 225 MW·cm−2
Fig. 5
Fig. 5 Experimental layout of SBS four beam combinations. FI, Faraday isolator; P, Brewster polarization beam splitter; Q, quarter-wave plate; M, high-reflection mirror; H, half-wave plate; f, focal lens; Booster AMP & AMP I-III: rod Nd:YAG amplifiers, Φ8 mm × 145 mm, 1.0 at. % doped; FC-72, SBS generator cell and SBS combiner cell.
Fig. 6
Fig. 6 The distribution of the output pulse energy of the laser combination system. The yellow dashed line is the position of the average value, the blue dashed line is the symmetry axis of the fitting Gaussian curve.
Fig. 7
Fig. 7 Output waveform of the combined laser pulse.
Fig. 8
Fig. 8 The spatial profile of the (a) Stokes (before beam combination), and (b) combined output beam.
Fig. 9
Fig. 9 Dependency of energy extraction efficiency on the number of pump beams and Stokes intensity.

Tables (2)

Tables Icon

Table 1 SBS media parameters used in the simulation

Tables Icon

Table 2 Statistical results of the output energy and pulse duration of Stokes and pumps

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

g=g(0) ( Γ B /2) 2 ( Ω B Ω) 2 + ( Γ B /2) 2 ,
g(0)= ω 2 γ e 2 c 3 nυ ρ 0 Γ B .
g(θ, Ω B ' )=g(0) Ω B ' 2 Γ B 2 cos 4 (θ/2) Ω B ' 2 Γ B 2 cos 4 (θ/2)+ [ Ω B ' + Ω B cos(θ/2)] 2 [ Ω B ' Ω B cos(θ/2)] 2
η E =( E sout E sin )/ E pin .

Metrics