Abstract

The radio frequency (RF) modulation is a powerful tool, which is used for generating sidebands in semiconductor lasers for active mode-locking. The two-section coupled-cavity laser geometry shows advantages over traditional Fabry-Pérot cavities in the RF modulation efficiency, because of its reduced device capacitance of short section cavity. Further, it has been widely used for active/passive mode-locking of semiconductor diode lasers. For semiconductor-based quantum cascade lasers (QCLs) emitting in the far-infrared or terahertz frequency bands, the two-section coupled-cavity configuration can strongly prevent the laser from multimode emissions. This is because of its strong mode selection (loss modulation), which the cavity geometry introduces. Here, we experimentally demonstrate that the coupled-cavity terahertz QCL can be actively modulated to generate sidebands. The RF modulation is efficient at the frequency that equals the difference frequency between the fundamental and higher order transverse modes of the laser, and its harmonics. We show for the first time that, when the laser is modulated at the second harmonic of the difference frequency, the sideband generation in coupled-cavity terahertz QCLs and the generated sidebands are equally spaced by the injected microwave frequency. Our results, which are presented here, provide a novel approach for modulating terahertz coupled-cavity lasers for active mode-locking. The coupled-cavity geometry shows advantages in generating dense modes with short cavities for potential high-resolution spectroscopy. Furthermore, the short coupled-cavity laser consumes less electrical power than Fabry-Pérot lasers that generate a similar mode spacing.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Injection-locking of terahertz quantum cascade lasers up to 35GHz using RF amplitude modulation

Pierre Gellie, Stefano Barbieri, Jean-François Lampin, Pascal Filloux, Christophe Manquest, Carlo Sirtori, Isabelle Sagnes, Suraj P. Khanna, Edmund H. Linfield, A. Giles Davies, Harvey Beere, and David Ritchie
Opt. Express 18(20) 20799-20816 (2010)

High frequency modulation and (quasi) single-sideband emission of mid-infrared ring and ridge quantum cascade lasers

Borislav Hinkov, Jakob Hayden, Rolf Szedlak, Pedro Martin-Mateos, Borja Jerez, Pablo Acedo, Gottfried Strasser, and Bernhard Lendl
Opt. Express 27(10) 14716-14724 (2019)

References

  • View by:
  • |
  • |
  • |

  1. L. A. Coldren, B. I. Miller, K. Iga, and J. A. Rentschler, “Monolithic 2-section GaInAsP-InP active-optical-resonator devices formed by reactive ion etching,” Appl. Phys. Lett. 38(5), 315–317 (1981).
    [Crossref]
  2. W. T. Tsang, N. A. Olsson, and R. A. Logan, “Stable single-longitudinal-mode operation under high-speed direct modulation in cleaved-coupled-cavity GaInAsP semiconductor-lasers,” Electron. Lett. 19(13), 488–490 (1983).
    [Crossref]
  3. L. A. Coldren and T. L. Koch, “Analysis and design of coupled-cavity lasers - Part I: Threshold gain analysis and design guidelines,” IEEE J. Quantum Electron. 20(6), 659–670 (1984).
    [Crossref]
  4. K. J. Ebeling, L. A. Coldren, B. I. Miller, and J. A. Rentschler, “Single-mode operation of coupled-cavity GaInAsP/InP semiconductor lasers,” Appl. Phys. Lett. 42(1), 6–8 (1983).
    [Crossref]
  5. E. Sooudi, G. Huyet, J. G. McInerney, F. Lelarge, K. Merghem, R. Rosales, A. Martinez, A. Ramdane, and S. P. Hegarty, “Injection-locking properties of InAs/InP-based mode-locked quantum-dash lasers at 21 GHz,” IEEE Photonics Technol. Lett. 23(20), 1544–1546 (2011).
    [Crossref]
  6. K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
    [Crossref] [PubMed]
  7. H. R. Mu, Z. T. Wang, J. Yuan, S. Xiao, C. Y. Chen, Y. Chen, Y. Chen, J. C. Song, Y. S. Wang, Y. Z. Xue, H. Zhang, and Q. L. Bao, “Graphene-Bi2Te3 heterostructure as saturable absorber for short pulse generation,” ACS Photonics 2(7), 832–841 (2015).
    [Crossref]
  8. X. D. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, “Passive mode-locking in 1.3 μm two-section InAs quantum dot lasers,” Appl. Phys. Lett. 78(19), 2825–2827 (2001).
    [Crossref]
  9. K. Merghem, A. Akrout, A. Martinez, G. Moreau, J. P. Tourrenc, F. Lelarge, F. Van Dijk, G. H. Duan, G. Aubin, and A. Ramdane, “Short pulse generation using a passively mode locked single InGaAsP/InP quantum well laser,” Opt. Express 16(14), 10675–10683 (2008).
    [Crossref] [PubMed]
  10. C. T. A. Brown, M. A. Cataluna, A. A. Lagatsky, E. U. Rafailov, M. B. Agate, C. G. Leburn, and W. Sibbett, “Compact laser-diode-based femtosecond sources,” New J. Phys. 6, 175 (2004).
    [Crossref]
  11. M. Yoshita, M. Kuramoto, M. Ikeda, and H. Yokoyama, “Mode locking of a GaInN semiconductor laser with an internal saturable absorber,” Appl. Phys. Lett. 94(6), 061104 (2009).
    [Crossref]
  12. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [Crossref]
  13. J. Chen, H. Horiguchi, H. B. Wang, K. Nakajima, T. Yamashita, and P. H. Wu, “Terahertz frequency metrology based on high-Tc Josephson junctions,” Supercond. Sci. Technol. 15(12), 1680–1684 (2002).
    [Crossref]
  14. T. Yasui, S. Yokoyama, H. Inaba, K. Minoshima, T. Nagatsuma, and T. Araki, “Terahertz frequency metrology based on frequency comb,” IEEE J. Sel. Top. Quantum Electron. 17(1), 191–201 (2011).
    [Crossref]
  15. W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).
    [Crossref]
  16. Z. Zhou, T. Zhou, S. Zhang, Z. Shi, Y. Chen, W. Wan, X. Li, X. Chen, S. N. Gilbert Corder, Z. Fu, L. Chen, Y. Mao, J. Cao, F. G. Omenetto, M. Liu, H. Li, and T. H. Tao, “Multicolor T‐ray imaging using multispectral metamaterials,” Adv. Sci. (Weinh.) 5(7), 1700982 (2018).
    [Crossref] [PubMed]
  17. S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
    [Crossref]
  18. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
    [Crossref] [PubMed]
  19. X. Wang, C. Shen, T. Jiang, Z. Zhan, Q. Deng, W. Li, W. Wu, N. Yang, W. Chu, and S. Duan, “High-power terahertz quantum cascade lasers with ∼0.23 W in continuous wave mode,” AIP Adv. 6(7), 075210 (2016).
    [Crossref]
  20. L. H. Li, J. X. Zhu, L. Chen, A. G. Davies, and E. H. Linfield, “The MBE growth and optimization of high performance terahertz frequency quantum cascade lasers,” Opt. Express 23(3), 2720–2729 (2015).
    [Crossref] [PubMed]
  21. L. Xu, D. Chen, T. Itoh, J. L. Reno, and B. S. Williams, “Focusing metasurface quantum-cascade laser with a near diffraction-limited beam,” Opt. Express 24(21), 24117–24128 (2016).
    [Crossref] [PubMed]
  22. W. J. Wan, H. Li, and J. C. Cao, “Homogeneous spectral broadening of pulsed terahertz quantum cascade lasers by radio frequency modulation,” Opt. Express 26(2), 980–989 (2018).
    [Crossref] [PubMed]
  23. M. Rösch, G. Scalari, M. Beck, and J. Faist, “Octave-spanning semiconductor laser,” Nat. Photonics 9(1), 42–47 (2015).
    [Crossref]
  24. P. Gellie, S. Barbieri, J. F. Lampin, P. Filloux, C. Manquest, C. Sirtori, I. Sagnes, S. P. Khanna, E. H. Linfield, A. G. Davies, H. Beere, and D. Ritchie, “Injection-locking of terahertz quantum cascade lasers up to 35GHz using RF amplitude modulation,” Opt. Express 18(20), 20799–20816 (2010).
    [Crossref] [PubMed]
  25. S. Barbieri, M. Ravaro, P. Gellie, G. Santarelli, C. Manquest, C. Sirtori, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Coherent sampling of active mode-locked terahertz quantum cascade lasers and frequency synthesis,” Nat. Photonics 5(5), 306–313 (2011).
    [Crossref]
  26. A. Mottaghizadeh, D. Gacemi, P. Laffaille, H. Li, M. Amanti, C. Sirtori, G. Santarelli, W. Hänsel, R. Holzwart, L. H. Li, E. H. Linfield, and S. Barbieri, “5-ps-long terahertz pulses from an active-mode-locked quantum cascade laser,” Optica 4(1), 168–171 (2017).
    [Crossref]
  27. F. H. Wang, H. Nong, T. Fobbe, V. Pistore, S. Houver, S. Markmann, N. Jukam, M. Amanti, C. Sirtori, S. Moumdji, R. Colombelli, L. H. Li, E. Linfield, G. Davies, J. Mangeney, J. Tignon, and S. Dhillon, “Short terahertz pulse generation from a dispersion compensated modelocked semiconductor laser,” Laser Photonics Rev. 11(4), 1700013 (2017).
    [Crossref]
  28. C. Y. Wang, L. Kuznetsova, V. M. Gkortsas, L. Diehl, F. X. Kärtner, M. A. Belkin, A. Belyanin, X. Li, D. Ham, H. Schneider, P. Grant, C. Y. Song, S. Haffouz, Z. R. Wasilewski, H. C. Liu, and F. Capasso, “Mode-locked pulses from mid-infrared quantum cascade lasers,” Opt. Express 17(15), 12929–12943 (2009).
    [Crossref] [PubMed]
  29. M. Giehler, H. Kostial, R. Hey, and H. T. Grahn, “Suppression of longitudinal modes in two-sectioned, coupled-cavity GaAs/(Al,Ga)As terahertz quantum-cascade lasers,” Appl. Phys. Lett. 91(16), 161102 (2007).
    [Crossref]
  30. H. Li, J. M. Manceau, A. Andronico, V. Jagtap, C. Sirtori, L. H. Li, E. H. Linfield, A. G. Davies, and S. Barbieri, “Coupled-cavity terahertz quantum cascade lasers for single mode operation,” Appl. Phys. Lett. 104(24), 241102 (2014).
    [Crossref]
  31. I. Kundu, P. Dean, A. Valavanis, L. Chen, L. Li, J. E. Cunningham, E. H. Linfield, and A. G. Davies, “Discrete Vernier tuning in terahertz quantum cascade lasers using coupled cavities,” Opt. Express 22(13), 16595–16605 (2014).
    [Crossref] [PubMed]
  32. W. J. Wan, H. Li, T. Zhou, and J. C. Cao, “Homogeneous spectral spanning of terahertz semiconductor lasers with radio frequency modulation,” Sci. Rep. 7(1), 44109 (2017).
    [Crossref] [PubMed]
  33. M. Wienold, L. Schrottke, M. Giehler, R. Hey, W. Anders, and H. T. Grahn, “Low-threshold terahertz quantum-cascade lasers based on GaAs/Al0.25Ga0.75As heterostructures,” Appl. Phys. Lett. 97(7), 071113 (2010).
    [Crossref]
  34. N. Takado, K. Asakawa, T. Yuasa, S. Sugata, E. Miyauchi, H. Hashimoto, and M. Ishii, “Chemically enhanced focused ion-beam etching of deep grooves and laser-mirror facets in GaAs under Cl2 gas irradiation using a fine nozzle,” Appl. Phys. Lett. 50(26), 1891–1893 (1987).
    [Crossref]
  35. M. Wienold, B. Röben, L. Schrottke, and H. T. Grahn, “Evidence for frequency comb emission from a Fabry-Pérot terahertz quantum-cascade laser,” Opt. Express 22(25), 30410–30424 (2014).
    [Crossref] [PubMed]
  36. S. Barbieri, W. Maineult, S. S. Dhillon, C. Sirtori, J. Alton, N. Breuil, H. E. Beere, and D. A. Ritchie, “13 GHz direct modulation of terahertz quantum cascade lasers,” Appl. Phys. Lett. 91(14), 143510 (2007).
    [Crossref]
  37. H. C. Liu, M. Jianmeng Li, Buchanan, and Z. R. Wasilewski, “High-frequency quantum-well infrared photodetectors measured by microwave-rectification technique,” IEEE J. Quantum Electron. 32(6), 1024–1028 (1996).
    [Crossref]
  38. J. Hillbrand, P. Jouy, M. Beck, and J. Faist, “Tunable dispersion compensation of quantum cascade laser frequency combs,” Opt. Lett. 43(8), 1746–1749 (2018).
    [Crossref] [PubMed]
  39. Q. Y. Lu, S. Manna, D. H. Wu, S. Slivken, and M. Razeghi, “Shortwave quantum cascade laser frequency comb for multi- heterodyne spectroscopy,” Appl. Phys. Lett. 112(14), 141104 (2018).
    [Crossref]
  40. I. Kundu, P. Dean, A. Valavanis, L. Chen, L. Li, J. E. Cunningham, E. H. Linfield, and A. G. Davies, “Quasi-continuous frequency tunable terahertz quantum cascade lasers with coupled cavity and integrated photonic lattice,” Opt. Express 25(1), 486–496 (2017).
    [Crossref] [PubMed]
  41. O. P. Marshall, S. Chakraborty, M. Khairuzzaman, H. E. Beere, and D. A. Ritchie, “Reversible mode switching in Y-coupled terahertz lasers,” Appl. Phys. Lett. 102(11), 111105 (2013).
    [Crossref]
  42. I. Kundu, P. Dean, A. Valavanis, J. R. Freeman, M. C. Rosamond, L. H. Li, Y. J. Han, E. H. Linfield, and A. G. Davies, “Continuous frequency tuning with near constant output power in coupled Y-branched terahertz quantum cascade lasers with photonic lattice,” ACS Photonics 5(7), 2912–2920 (2018).
    [Crossref]
  43. M. S. Vitiello, M. Nobile, A. Ronzani, A. Tredicucci, F. Castellano, V. Talora, L. Li, E. H. Linfield, and A. G. Davies, “Photonic quasi-crystal terahertz lasers,” Nat. Commun. 5(1), 5884 (2014).
    [Crossref] [PubMed]

2018 (5)

Z. Zhou, T. Zhou, S. Zhang, Z. Shi, Y. Chen, W. Wan, X. Li, X. Chen, S. N. Gilbert Corder, Z. Fu, L. Chen, Y. Mao, J. Cao, F. G. Omenetto, M. Liu, H. Li, and T. H. Tao, “Multicolor T‐ray imaging using multispectral metamaterials,” Adv. Sci. (Weinh.) 5(7), 1700982 (2018).
[Crossref] [PubMed]

Q. Y. Lu, S. Manna, D. H. Wu, S. Slivken, and M. Razeghi, “Shortwave quantum cascade laser frequency comb for multi- heterodyne spectroscopy,” Appl. Phys. Lett. 112(14), 141104 (2018).
[Crossref]

I. Kundu, P. Dean, A. Valavanis, J. R. Freeman, M. C. Rosamond, L. H. Li, Y. J. Han, E. H. Linfield, and A. G. Davies, “Continuous frequency tuning with near constant output power in coupled Y-branched terahertz quantum cascade lasers with photonic lattice,” ACS Photonics 5(7), 2912–2920 (2018).
[Crossref]

W. J. Wan, H. Li, and J. C. Cao, “Homogeneous spectral broadening of pulsed terahertz quantum cascade lasers by radio frequency modulation,” Opt. Express 26(2), 980–989 (2018).
[Crossref] [PubMed]

J. Hillbrand, P. Jouy, M. Beck, and J. Faist, “Tunable dispersion compensation of quantum cascade laser frequency combs,” Opt. Lett. 43(8), 1746–1749 (2018).
[Crossref] [PubMed]

2017 (4)

I. Kundu, P. Dean, A. Valavanis, L. Chen, L. Li, J. E. Cunningham, E. H. Linfield, and A. G. Davies, “Quasi-continuous frequency tunable terahertz quantum cascade lasers with coupled cavity and integrated photonic lattice,” Opt. Express 25(1), 486–496 (2017).
[Crossref] [PubMed]

A. Mottaghizadeh, D. Gacemi, P. Laffaille, H. Li, M. Amanti, C. Sirtori, G. Santarelli, W. Hänsel, R. Holzwart, L. H. Li, E. H. Linfield, and S. Barbieri, “5-ps-long terahertz pulses from an active-mode-locked quantum cascade laser,” Optica 4(1), 168–171 (2017).
[Crossref]

F. H. Wang, H. Nong, T. Fobbe, V. Pistore, S. Houver, S. Markmann, N. Jukam, M. Amanti, C. Sirtori, S. Moumdji, R. Colombelli, L. H. Li, E. Linfield, G. Davies, J. Mangeney, J. Tignon, and S. Dhillon, “Short terahertz pulse generation from a dispersion compensated modelocked semiconductor laser,” Laser Photonics Rev. 11(4), 1700013 (2017).
[Crossref]

W. J. Wan, H. Li, T. Zhou, and J. C. Cao, “Homogeneous spectral spanning of terahertz semiconductor lasers with radio frequency modulation,” Sci. Rep. 7(1), 44109 (2017).
[Crossref] [PubMed]

2016 (2)

X. Wang, C. Shen, T. Jiang, Z. Zhan, Q. Deng, W. Li, W. Wu, N. Yang, W. Chu, and S. Duan, “High-power terahertz quantum cascade lasers with ∼0.23 W in continuous wave mode,” AIP Adv. 6(7), 075210 (2016).
[Crossref]

L. Xu, D. Chen, T. Itoh, J. L. Reno, and B. S. Williams, “Focusing metasurface quantum-cascade laser with a near diffraction-limited beam,” Opt. Express 24(21), 24117–24128 (2016).
[Crossref] [PubMed]

2015 (3)

L. H. Li, J. X. Zhu, L. Chen, A. G. Davies, and E. H. Linfield, “The MBE growth and optimization of high performance terahertz frequency quantum cascade lasers,” Opt. Express 23(3), 2720–2729 (2015).
[Crossref] [PubMed]

M. Rösch, G. Scalari, M. Beck, and J. Faist, “Octave-spanning semiconductor laser,” Nat. Photonics 9(1), 42–47 (2015).
[Crossref]

H. R. Mu, Z. T. Wang, J. Yuan, S. Xiao, C. Y. Chen, Y. Chen, Y. Chen, J. C. Song, Y. S. Wang, Y. Z. Xue, H. Zhang, and Q. L. Bao, “Graphene-Bi2Te3 heterostructure as saturable absorber for short pulse generation,” ACS Photonics 2(7), 832–841 (2015).
[Crossref]

2014 (4)

H. Li, J. M. Manceau, A. Andronico, V. Jagtap, C. Sirtori, L. H. Li, E. H. Linfield, A. G. Davies, and S. Barbieri, “Coupled-cavity terahertz quantum cascade lasers for single mode operation,” Appl. Phys. Lett. 104(24), 241102 (2014).
[Crossref]

M. S. Vitiello, M. Nobile, A. Ronzani, A. Tredicucci, F. Castellano, V. Talora, L. Li, E. H. Linfield, and A. G. Davies, “Photonic quasi-crystal terahertz lasers,” Nat. Commun. 5(1), 5884 (2014).
[Crossref] [PubMed]

I. Kundu, P. Dean, A. Valavanis, L. Chen, L. Li, J. E. Cunningham, E. H. Linfield, and A. G. Davies, “Discrete Vernier tuning in terahertz quantum cascade lasers using coupled cavities,” Opt. Express 22(13), 16595–16605 (2014).
[Crossref] [PubMed]

M. Wienold, B. Röben, L. Schrottke, and H. T. Grahn, “Evidence for frequency comb emission from a Fabry-Pérot terahertz quantum-cascade laser,” Opt. Express 22(25), 30410–30424 (2014).
[Crossref] [PubMed]

2013 (3)

O. P. Marshall, S. Chakraborty, M. Khairuzzaman, H. E. Beere, and D. A. Ritchie, “Reversible mode switching in Y-coupled terahertz lasers,” Appl. Phys. Lett. 102(11), 111105 (2013).
[Crossref]

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

2011 (3)

S. Barbieri, M. Ravaro, P. Gellie, G. Santarelli, C. Manquest, C. Sirtori, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Coherent sampling of active mode-locked terahertz quantum cascade lasers and frequency synthesis,” Nat. Photonics 5(5), 306–313 (2011).
[Crossref]

T. Yasui, S. Yokoyama, H. Inaba, K. Minoshima, T. Nagatsuma, and T. Araki, “Terahertz frequency metrology based on frequency comb,” IEEE J. Sel. Top. Quantum Electron. 17(1), 191–201 (2011).
[Crossref]

E. Sooudi, G. Huyet, J. G. McInerney, F. Lelarge, K. Merghem, R. Rosales, A. Martinez, A. Ramdane, and S. P. Hegarty, “Injection-locking properties of InAs/InP-based mode-locked quantum-dash lasers at 21 GHz,” IEEE Photonics Technol. Lett. 23(20), 1544–1546 (2011).
[Crossref]

2010 (2)

2009 (2)

2008 (1)

2007 (4)

S. Barbieri, W. Maineult, S. S. Dhillon, C. Sirtori, J. Alton, N. Breuil, H. E. Beere, and D. A. Ritchie, “13 GHz direct modulation of terahertz quantum cascade lasers,” Appl. Phys. Lett. 91(14), 143510 (2007).
[Crossref]

M. Giehler, H. Kostial, R. Hey, and H. T. Grahn, “Suppression of longitudinal modes in two-sectioned, coupled-cavity GaAs/(Al,Ga)As terahertz quantum-cascade lasers,” Appl. Phys. Lett. 91(16), 161102 (2007).
[Crossref]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).
[Crossref]

2004 (1)

C. T. A. Brown, M. A. Cataluna, A. A. Lagatsky, E. U. Rafailov, M. B. Agate, C. G. Leburn, and W. Sibbett, “Compact laser-diode-based femtosecond sources,” New J. Phys. 6, 175 (2004).
[Crossref]

2002 (2)

J. Chen, H. Horiguchi, H. B. Wang, K. Nakajima, T. Yamashita, and P. H. Wu, “Terahertz frequency metrology based on high-Tc Josephson junctions,” Supercond. Sci. Technol. 15(12), 1680–1684 (2002).
[Crossref]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

2001 (1)

X. D. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, “Passive mode-locking in 1.3 μm two-section InAs quantum dot lasers,” Appl. Phys. Lett. 78(19), 2825–2827 (2001).
[Crossref]

1996 (1)

H. C. Liu, M. Jianmeng Li, Buchanan, and Z. R. Wasilewski, “High-frequency quantum-well infrared photodetectors measured by microwave-rectification technique,” IEEE J. Quantum Electron. 32(6), 1024–1028 (1996).
[Crossref]

1987 (1)

N. Takado, K. Asakawa, T. Yuasa, S. Sugata, E. Miyauchi, H. Hashimoto, and M. Ishii, “Chemically enhanced focused ion-beam etching of deep grooves and laser-mirror facets in GaAs under Cl2 gas irradiation using a fine nozzle,” Appl. Phys. Lett. 50(26), 1891–1893 (1987).
[Crossref]

1984 (1)

L. A. Coldren and T. L. Koch, “Analysis and design of coupled-cavity lasers - Part I: Threshold gain analysis and design guidelines,” IEEE J. Quantum Electron. 20(6), 659–670 (1984).
[Crossref]

1983 (2)

K. J. Ebeling, L. A. Coldren, B. I. Miller, and J. A. Rentschler, “Single-mode operation of coupled-cavity GaInAsP/InP semiconductor lasers,” Appl. Phys. Lett. 42(1), 6–8 (1983).
[Crossref]

W. T. Tsang, N. A. Olsson, and R. A. Logan, “Stable single-longitudinal-mode operation under high-speed direct modulation in cleaved-coupled-cavity GaInAsP semiconductor-lasers,” Electron. Lett. 19(13), 488–490 (1983).
[Crossref]

1981 (1)

L. A. Coldren, B. I. Miller, K. Iga, and J. A. Rentschler, “Monolithic 2-section GaInAsP-InP active-optical-resonator devices formed by reactive ion etching,” Appl. Phys. Lett. 38(5), 315–317 (1981).
[Crossref]

Agate, M. B.

C. T. A. Brown, M. A. Cataluna, A. A. Lagatsky, E. U. Rafailov, M. B. Agate, C. G. Leburn, and W. Sibbett, “Compact laser-diode-based femtosecond sources,” New J. Phys. 6, 175 (2004).
[Crossref]

Akrout, A.

Alton, J.

S. Barbieri, W. Maineult, S. S. Dhillon, C. Sirtori, J. Alton, N. Breuil, H. E. Beere, and D. A. Ritchie, “13 GHz direct modulation of terahertz quantum cascade lasers,” Appl. Phys. Lett. 91(14), 143510 (2007).
[Crossref]

Amanti, M.

A. Mottaghizadeh, D. Gacemi, P. Laffaille, H. Li, M. Amanti, C. Sirtori, G. Santarelli, W. Hänsel, R. Holzwart, L. H. Li, E. H. Linfield, and S. Barbieri, “5-ps-long terahertz pulses from an active-mode-locked quantum cascade laser,” Optica 4(1), 168–171 (2017).
[Crossref]

F. H. Wang, H. Nong, T. Fobbe, V. Pistore, S. Houver, S. Markmann, N. Jukam, M. Amanti, C. Sirtori, S. Moumdji, R. Colombelli, L. H. Li, E. Linfield, G. Davies, J. Mangeney, J. Tignon, and S. Dhillon, “Short terahertz pulse generation from a dispersion compensated modelocked semiconductor laser,” Laser Photonics Rev. 11(4), 1700013 (2017).
[Crossref]

Ambacher, O.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Anders, W.

M. Wienold, L. Schrottke, M. Giehler, R. Hey, W. Anders, and H. T. Grahn, “Low-threshold terahertz quantum-cascade lasers based on GaAs/Al0.25Ga0.75As heterostructures,” Appl. Phys. Lett. 97(7), 071113 (2010).
[Crossref]

Andronico, A.

H. Li, J. M. Manceau, A. Andronico, V. Jagtap, C. Sirtori, L. H. Li, E. H. Linfield, A. G. Davies, and S. Barbieri, “Coupled-cavity terahertz quantum cascade lasers for single mode operation,” Appl. Phys. Lett. 104(24), 241102 (2014).
[Crossref]

Antes, J.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Araki, T.

T. Yasui, S. Yokoyama, H. Inaba, K. Minoshima, T. Nagatsuma, and T. Araki, “Terahertz frequency metrology based on frequency comb,” IEEE J. Sel. Top. Quantum Electron. 17(1), 191–201 (2011).
[Crossref]

Asakawa, K.

N. Takado, K. Asakawa, T. Yuasa, S. Sugata, E. Miyauchi, H. Hashimoto, and M. Ishii, “Chemically enhanced focused ion-beam etching of deep grooves and laser-mirror facets in GaAs under Cl2 gas irradiation using a fine nozzle,” Appl. Phys. Lett. 50(26), 1891–1893 (1987).
[Crossref]

Aubin, G.

Bao, Q. L.

H. R. Mu, Z. T. Wang, J. Yuan, S. Xiao, C. Y. Chen, Y. Chen, Y. Chen, J. C. Song, Y. S. Wang, Y. Z. Xue, H. Zhang, and Q. L. Bao, “Graphene-Bi2Te3 heterostructure as saturable absorber for short pulse generation,” ACS Photonics 2(7), 832–841 (2015).
[Crossref]

Barbieri, S.

A. Mottaghizadeh, D. Gacemi, P. Laffaille, H. Li, M. Amanti, C. Sirtori, G. Santarelli, W. Hänsel, R. Holzwart, L. H. Li, E. H. Linfield, and S. Barbieri, “5-ps-long terahertz pulses from an active-mode-locked quantum cascade laser,” Optica 4(1), 168–171 (2017).
[Crossref]

H. Li, J. M. Manceau, A. Andronico, V. Jagtap, C. Sirtori, L. H. Li, E. H. Linfield, A. G. Davies, and S. Barbieri, “Coupled-cavity terahertz quantum cascade lasers for single mode operation,” Appl. Phys. Lett. 104(24), 241102 (2014).
[Crossref]

S. Barbieri, M. Ravaro, P. Gellie, G. Santarelli, C. Manquest, C. Sirtori, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Coherent sampling of active mode-locked terahertz quantum cascade lasers and frequency synthesis,” Nat. Photonics 5(5), 306–313 (2011).
[Crossref]

P. Gellie, S. Barbieri, J. F. Lampin, P. Filloux, C. Manquest, C. Sirtori, I. Sagnes, S. P. Khanna, E. H. Linfield, A. G. Davies, H. Beere, and D. Ritchie, “Injection-locking of terahertz quantum cascade lasers up to 35GHz using RF amplitude modulation,” Opt. Express 18(20), 20799–20816 (2010).
[Crossref] [PubMed]

S. Barbieri, W. Maineult, S. S. Dhillon, C. Sirtori, J. Alton, N. Breuil, H. E. Beere, and D. A. Ritchie, “13 GHz direct modulation of terahertz quantum cascade lasers,” Appl. Phys. Lett. 91(14), 143510 (2007).
[Crossref]

Beck, M.

Beere, H.

Beere, H. E.

O. P. Marshall, S. Chakraborty, M. Khairuzzaman, H. E. Beere, and D. A. Ritchie, “Reversible mode switching in Y-coupled terahertz lasers,” Appl. Phys. Lett. 102(11), 111105 (2013).
[Crossref]

S. Barbieri, W. Maineult, S. S. Dhillon, C. Sirtori, J. Alton, N. Breuil, H. E. Beere, and D. A. Ritchie, “13 GHz direct modulation of terahertz quantum cascade lasers,” Appl. Phys. Lett. 91(14), 143510 (2007).
[Crossref]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Belkin, M. A.

Beltram, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Belyanin, A.

Blau, W. J.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

Boes, F.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Breuil, N.

S. Barbieri, W. Maineult, S. S. Dhillon, C. Sirtori, J. Alton, N. Breuil, H. E. Beere, and D. A. Ritchie, “13 GHz direct modulation of terahertz quantum cascade lasers,” Appl. Phys. Lett. 91(14), 143510 (2007).
[Crossref]

Brown, C. T. A.

C. T. A. Brown, M. A. Cataluna, A. A. Lagatsky, E. U. Rafailov, M. B. Agate, C. G. Leburn, and W. Sibbett, “Compact laser-diode-based femtosecond sources,” New J. Phys. 6, 175 (2004).
[Crossref]

Buchanan,

H. C. Liu, M. Jianmeng Li, Buchanan, and Z. R. Wasilewski, “High-frequency quantum-well infrared photodetectors measured by microwave-rectification technique,” IEEE J. Quantum Electron. 32(6), 1024–1028 (1996).
[Crossref]

Cao, J.

Z. Zhou, T. Zhou, S. Zhang, Z. Shi, Y. Chen, W. Wan, X. Li, X. Chen, S. N. Gilbert Corder, Z. Fu, L. Chen, Y. Mao, J. Cao, F. G. Omenetto, M. Liu, H. Li, and T. H. Tao, “Multicolor T‐ray imaging using multispectral metamaterials,” Adv. Sci. (Weinh.) 5(7), 1700982 (2018).
[Crossref] [PubMed]

Cao, J. C.

W. J. Wan, H. Li, and J. C. Cao, “Homogeneous spectral broadening of pulsed terahertz quantum cascade lasers by radio frequency modulation,” Opt. Express 26(2), 980–989 (2018).
[Crossref] [PubMed]

W. J. Wan, H. Li, T. Zhou, and J. C. Cao, “Homogeneous spectral spanning of terahertz semiconductor lasers with radio frequency modulation,” Sci. Rep. 7(1), 44109 (2017).
[Crossref] [PubMed]

Capasso, F.

Castellano, F.

M. S. Vitiello, M. Nobile, A. Ronzani, A. Tredicucci, F. Castellano, V. Talora, L. Li, E. H. Linfield, and A. G. Davies, “Photonic quasi-crystal terahertz lasers,” Nat. Commun. 5(1), 5884 (2014).
[Crossref] [PubMed]

Cataluna, M. A.

C. T. A. Brown, M. A. Cataluna, A. A. Lagatsky, E. U. Rafailov, M. B. Agate, C. G. Leburn, and W. Sibbett, “Compact laser-diode-based femtosecond sources,” New J. Phys. 6, 175 (2004).
[Crossref]

Chakraborty, S.

O. P. Marshall, S. Chakraborty, M. Khairuzzaman, H. E. Beere, and D. A. Ritchie, “Reversible mode switching in Y-coupled terahertz lasers,” Appl. Phys. Lett. 102(11), 111105 (2013).
[Crossref]

Chan, W. L.

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).
[Crossref]

Chen, C. Y.

H. R. Mu, Z. T. Wang, J. Yuan, S. Xiao, C. Y. Chen, Y. Chen, Y. Chen, J. C. Song, Y. S. Wang, Y. Z. Xue, H. Zhang, and Q. L. Bao, “Graphene-Bi2Te3 heterostructure as saturable absorber for short pulse generation,” ACS Photonics 2(7), 832–841 (2015).
[Crossref]

Chen, D.

Chen, J.

J. Chen, H. Horiguchi, H. B. Wang, K. Nakajima, T. Yamashita, and P. H. Wu, “Terahertz frequency metrology based on high-Tc Josephson junctions,” Supercond. Sci. Technol. 15(12), 1680–1684 (2002).
[Crossref]

Chen, L.

Chen, X.

Z. Zhou, T. Zhou, S. Zhang, Z. Shi, Y. Chen, W. Wan, X. Li, X. Chen, S. N. Gilbert Corder, Z. Fu, L. Chen, Y. Mao, J. Cao, F. G. Omenetto, M. Liu, H. Li, and T. H. Tao, “Multicolor T‐ray imaging using multispectral metamaterials,” Adv. Sci. (Weinh.) 5(7), 1700982 (2018).
[Crossref] [PubMed]

Chen, Y.

Z. Zhou, T. Zhou, S. Zhang, Z. Shi, Y. Chen, W. Wan, X. Li, X. Chen, S. N. Gilbert Corder, Z. Fu, L. Chen, Y. Mao, J. Cao, F. G. Omenetto, M. Liu, H. Li, and T. H. Tao, “Multicolor T‐ray imaging using multispectral metamaterials,” Adv. Sci. (Weinh.) 5(7), 1700982 (2018).
[Crossref] [PubMed]

H. R. Mu, Z. T. Wang, J. Yuan, S. Xiao, C. Y. Chen, Y. Chen, Y. Chen, J. C. Song, Y. S. Wang, Y. Z. Xue, H. Zhang, and Q. L. Bao, “Graphene-Bi2Te3 heterostructure as saturable absorber for short pulse generation,” ACS Photonics 2(7), 832–841 (2015).
[Crossref]

H. R. Mu, Z. T. Wang, J. Yuan, S. Xiao, C. Y. Chen, Y. Chen, Y. Chen, J. C. Song, Y. S. Wang, Y. Z. Xue, H. Zhang, and Q. L. Bao, “Graphene-Bi2Te3 heterostructure as saturable absorber for short pulse generation,” ACS Photonics 2(7), 832–841 (2015).
[Crossref]

Cheng, J.

X. D. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, “Passive mode-locking in 1.3 μm two-section InAs quantum dot lasers,” Appl. Phys. Lett. 78(19), 2825–2827 (2001).
[Crossref]

Chu, W.

X. Wang, C. Shen, T. Jiang, Z. Zhan, Q. Deng, W. Li, W. Wu, N. Yang, W. Chu, and S. Duan, “High-power terahertz quantum cascade lasers with ∼0.23 W in continuous wave mode,” AIP Adv. 6(7), 075210 (2016).
[Crossref]

Coldren, L. A.

L. A. Coldren and T. L. Koch, “Analysis and design of coupled-cavity lasers - Part I: Threshold gain analysis and design guidelines,” IEEE J. Quantum Electron. 20(6), 659–670 (1984).
[Crossref]

K. J. Ebeling, L. A. Coldren, B. I. Miller, and J. A. Rentschler, “Single-mode operation of coupled-cavity GaInAsP/InP semiconductor lasers,” Appl. Phys. Lett. 42(1), 6–8 (1983).
[Crossref]

L. A. Coldren, B. I. Miller, K. Iga, and J. A. Rentschler, “Monolithic 2-section GaInAsP-InP active-optical-resonator devices formed by reactive ion etching,” Appl. Phys. Lett. 38(5), 315–317 (1981).
[Crossref]

Coleman, J. N.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

Colombelli, R.

F. H. Wang, H. Nong, T. Fobbe, V. Pistore, S. Houver, S. Markmann, N. Jukam, M. Amanti, C. Sirtori, S. Moumdji, R. Colombelli, L. H. Li, E. Linfield, G. Davies, J. Mangeney, J. Tignon, and S. Dhillon, “Short terahertz pulse generation from a dispersion compensated modelocked semiconductor laser,” Laser Photonics Rev. 11(4), 1700013 (2017).
[Crossref]

Cunningham, J. E.

Davies, A. G.

I. Kundu, P. Dean, A. Valavanis, J. R. Freeman, M. C. Rosamond, L. H. Li, Y. J. Han, E. H. Linfield, and A. G. Davies, “Continuous frequency tuning with near constant output power in coupled Y-branched terahertz quantum cascade lasers with photonic lattice,” ACS Photonics 5(7), 2912–2920 (2018).
[Crossref]

I. Kundu, P. Dean, A. Valavanis, L. Chen, L. Li, J. E. Cunningham, E. H. Linfield, and A. G. Davies, “Quasi-continuous frequency tunable terahertz quantum cascade lasers with coupled cavity and integrated photonic lattice,” Opt. Express 25(1), 486–496 (2017).
[Crossref] [PubMed]

L. H. Li, J. X. Zhu, L. Chen, A. G. Davies, and E. H. Linfield, “The MBE growth and optimization of high performance terahertz frequency quantum cascade lasers,” Opt. Express 23(3), 2720–2729 (2015).
[Crossref] [PubMed]

I. Kundu, P. Dean, A. Valavanis, L. Chen, L. Li, J. E. Cunningham, E. H. Linfield, and A. G. Davies, “Discrete Vernier tuning in terahertz quantum cascade lasers using coupled cavities,” Opt. Express 22(13), 16595–16605 (2014).
[Crossref] [PubMed]

H. Li, J. M. Manceau, A. Andronico, V. Jagtap, C. Sirtori, L. H. Li, E. H. Linfield, A. G. Davies, and S. Barbieri, “Coupled-cavity terahertz quantum cascade lasers for single mode operation,” Appl. Phys. Lett. 104(24), 241102 (2014).
[Crossref]

M. S. Vitiello, M. Nobile, A. Ronzani, A. Tredicucci, F. Castellano, V. Talora, L. Li, E. H. Linfield, and A. G. Davies, “Photonic quasi-crystal terahertz lasers,” Nat. Commun. 5(1), 5884 (2014).
[Crossref] [PubMed]

S. Barbieri, M. Ravaro, P. Gellie, G. Santarelli, C. Manquest, C. Sirtori, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Coherent sampling of active mode-locked terahertz quantum cascade lasers and frequency synthesis,” Nat. Photonics 5(5), 306–313 (2011).
[Crossref]

P. Gellie, S. Barbieri, J. F. Lampin, P. Filloux, C. Manquest, C. Sirtori, I. Sagnes, S. P. Khanna, E. H. Linfield, A. G. Davies, H. Beere, and D. Ritchie, “Injection-locking of terahertz quantum cascade lasers up to 35GHz using RF amplitude modulation,” Opt. Express 18(20), 20799–20816 (2010).
[Crossref] [PubMed]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Davies, G.

F. H. Wang, H. Nong, T. Fobbe, V. Pistore, S. Houver, S. Markmann, N. Jukam, M. Amanti, C. Sirtori, S. Moumdji, R. Colombelli, L. H. Li, E. Linfield, G. Davies, J. Mangeney, J. Tignon, and S. Dhillon, “Short terahertz pulse generation from a dispersion compensated modelocked semiconductor laser,” Laser Photonics Rev. 11(4), 1700013 (2017).
[Crossref]

Dean, P.

Deibel, J.

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).
[Crossref]

Deng, Q.

X. Wang, C. Shen, T. Jiang, Z. Zhan, Q. Deng, W. Li, W. Wu, N. Yang, W. Chu, and S. Duan, “High-power terahertz quantum cascade lasers with ∼0.23 W in continuous wave mode,” AIP Adv. 6(7), 075210 (2016).
[Crossref]

Dhillon, S.

F. H. Wang, H. Nong, T. Fobbe, V. Pistore, S. Houver, S. Markmann, N. Jukam, M. Amanti, C. Sirtori, S. Moumdji, R. Colombelli, L. H. Li, E. Linfield, G. Davies, J. Mangeney, J. Tignon, and S. Dhillon, “Short terahertz pulse generation from a dispersion compensated modelocked semiconductor laser,” Laser Photonics Rev. 11(4), 1700013 (2017).
[Crossref]

Dhillon, S. S.

S. Barbieri, W. Maineult, S. S. Dhillon, C. Sirtori, J. Alton, N. Breuil, H. E. Beere, and D. A. Ritchie, “13 GHz direct modulation of terahertz quantum cascade lasers,” Appl. Phys. Lett. 91(14), 143510 (2007).
[Crossref]

Diehl, L.

Duan, G. H.

Duan, S.

X. Wang, C. Shen, T. Jiang, Z. Zhan, Q. Deng, W. Li, W. Wu, N. Yang, W. Chu, and S. Duan, “High-power terahertz quantum cascade lasers with ∼0.23 W in continuous wave mode,” AIP Adv. 6(7), 075210 (2016).
[Crossref]

Ebeling, K. J.

K. J. Ebeling, L. A. Coldren, B. I. Miller, and J. A. Rentschler, “Single-mode operation of coupled-cavity GaInAsP/InP semiconductor lasers,” Appl. Phys. Lett. 42(1), 6–8 (1983).
[Crossref]

Faist, J.

Fan, J.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

Feng, Y.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

Filloux, P.

Fobbe, T.

F. H. Wang, H. Nong, T. Fobbe, V. Pistore, S. Houver, S. Markmann, N. Jukam, M. Amanti, C. Sirtori, S. Moumdji, R. Colombelli, L. H. Li, E. Linfield, G. Davies, J. Mangeney, J. Tignon, and S. Dhillon, “Short terahertz pulse generation from a dispersion compensated modelocked semiconductor laser,” Laser Photonics Rev. 11(4), 1700013 (2017).
[Crossref]

Fox, D.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

Freeman, J. R.

I. Kundu, P. Dean, A. Valavanis, J. R. Freeman, M. C. Rosamond, L. H. Li, Y. J. Han, E. H. Linfield, and A. G. Davies, “Continuous frequency tuning with near constant output power in coupled Y-branched terahertz quantum cascade lasers with photonic lattice,” ACS Photonics 5(7), 2912–2920 (2018).
[Crossref]

Freude, W.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Fu, Z.

Z. Zhou, T. Zhou, S. Zhang, Z. Shi, Y. Chen, W. Wan, X. Li, X. Chen, S. N. Gilbert Corder, Z. Fu, L. Chen, Y. Mao, J. Cao, F. G. Omenetto, M. Liu, H. Li, and T. H. Tao, “Multicolor T‐ray imaging using multispectral metamaterials,” Adv. Sci. (Weinh.) 5(7), 1700982 (2018).
[Crossref] [PubMed]

Gacemi, D.

Gellie, P.

S. Barbieri, M. Ravaro, P. Gellie, G. Santarelli, C. Manquest, C. Sirtori, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Coherent sampling of active mode-locked terahertz quantum cascade lasers and frequency synthesis,” Nat. Photonics 5(5), 306–313 (2011).
[Crossref]

P. Gellie, S. Barbieri, J. F. Lampin, P. Filloux, C. Manquest, C. Sirtori, I. Sagnes, S. P. Khanna, E. H. Linfield, A. G. Davies, H. Beere, and D. Ritchie, “Injection-locking of terahertz quantum cascade lasers up to 35GHz using RF amplitude modulation,” Opt. Express 18(20), 20799–20816 (2010).
[Crossref] [PubMed]

Giehler, M.

M. Wienold, L. Schrottke, M. Giehler, R. Hey, W. Anders, and H. T. Grahn, “Low-threshold terahertz quantum-cascade lasers based on GaAs/Al0.25Ga0.75As heterostructures,” Appl. Phys. Lett. 97(7), 071113 (2010).
[Crossref]

M. Giehler, H. Kostial, R. Hey, and H. T. Grahn, “Suppression of longitudinal modes in two-sectioned, coupled-cavity GaAs/(Al,Ga)As terahertz quantum-cascade lasers,” Appl. Phys. Lett. 91(16), 161102 (2007).
[Crossref]

Gilbert Corder, S. N.

Z. Zhou, T. Zhou, S. Zhang, Z. Shi, Y. Chen, W. Wan, X. Li, X. Chen, S. N. Gilbert Corder, Z. Fu, L. Chen, Y. Mao, J. Cao, F. G. Omenetto, M. Liu, H. Li, and T. H. Tao, “Multicolor T‐ray imaging using multispectral metamaterials,” Adv. Sci. (Weinh.) 5(7), 1700982 (2018).
[Crossref] [PubMed]

Gkortsas, V. M.

Grahn, H. T.

M. Wienold, B. Röben, L. Schrottke, and H. T. Grahn, “Evidence for frequency comb emission from a Fabry-Pérot terahertz quantum-cascade laser,” Opt. Express 22(25), 30410–30424 (2014).
[Crossref] [PubMed]

M. Wienold, L. Schrottke, M. Giehler, R. Hey, W. Anders, and H. T. Grahn, “Low-threshold terahertz quantum-cascade lasers based on GaAs/Al0.25Ga0.75As heterostructures,” Appl. Phys. Lett. 97(7), 071113 (2010).
[Crossref]

M. Giehler, H. Kostial, R. Hey, and H. T. Grahn, “Suppression of longitudinal modes in two-sectioned, coupled-cavity GaAs/(Al,Ga)As terahertz quantum-cascade lasers,” Appl. Phys. Lett. 91(16), 161102 (2007).
[Crossref]

Grant, P.

Haffouz, S.

Ham, D.

Han, Y. J.

I. Kundu, P. Dean, A. Valavanis, J. R. Freeman, M. C. Rosamond, L. H. Li, Y. J. Han, E. H. Linfield, and A. G. Davies, “Continuous frequency tuning with near constant output power in coupled Y-branched terahertz quantum cascade lasers with photonic lattice,” ACS Photonics 5(7), 2912–2920 (2018).
[Crossref]

Hänsel, W.

Hashimoto, H.

N. Takado, K. Asakawa, T. Yuasa, S. Sugata, E. Miyauchi, H. Hashimoto, and M. Ishii, “Chemically enhanced focused ion-beam etching of deep grooves and laser-mirror facets in GaAs under Cl2 gas irradiation using a fine nozzle,” Appl. Phys. Lett. 50(26), 1891–1893 (1987).
[Crossref]

Hegarty, S. P.

E. Sooudi, G. Huyet, J. G. McInerney, F. Lelarge, K. Merghem, R. Rosales, A. Martinez, A. Ramdane, and S. P. Hegarty, “Injection-locking properties of InAs/InP-based mode-locked quantum-dash lasers at 21 GHz,” IEEE Photonics Technol. Lett. 23(20), 1544–1546 (2011).
[Crossref]

Henneberger, R.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Hey, R.

M. Wienold, L. Schrottke, M. Giehler, R. Hey, W. Anders, and H. T. Grahn, “Low-threshold terahertz quantum-cascade lasers based on GaAs/Al0.25Ga0.75As heterostructures,” Appl. Phys. Lett. 97(7), 071113 (2010).
[Crossref]

M. Giehler, H. Kostial, R. Hey, and H. T. Grahn, “Suppression of longitudinal modes in two-sectioned, coupled-cavity GaAs/(Al,Ga)As terahertz quantum-cascade lasers,” Appl. Phys. Lett. 91(16), 161102 (2007).
[Crossref]

Hillbrand, J.

Hillerkuss, D.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Holzwart, R.

Horiguchi, H.

J. Chen, H. Horiguchi, H. B. Wang, K. Nakajima, T. Yamashita, and P. H. Wu, “Terahertz frequency metrology based on high-Tc Josephson junctions,” Supercond. Sci. Technol. 15(12), 1680–1684 (2002).
[Crossref]

Houver, S.

F. H. Wang, H. Nong, T. Fobbe, V. Pistore, S. Houver, S. Markmann, N. Jukam, M. Amanti, C. Sirtori, S. Moumdji, R. Colombelli, L. H. Li, E. Linfield, G. Davies, J. Mangeney, J. Tignon, and S. Dhillon, “Short terahertz pulse generation from a dispersion compensated modelocked semiconductor laser,” Laser Photonics Rev. 11(4), 1700013 (2017).
[Crossref]

Huang, X. D.

X. D. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, “Passive mode-locking in 1.3 μm two-section InAs quantum dot lasers,” Appl. Phys. Lett. 78(19), 2825–2827 (2001).
[Crossref]

Huyet, G.

E. Sooudi, G. Huyet, J. G. McInerney, F. Lelarge, K. Merghem, R. Rosales, A. Martinez, A. Ramdane, and S. P. Hegarty, “Injection-locking properties of InAs/InP-based mode-locked quantum-dash lasers at 21 GHz,” IEEE Photonics Technol. Lett. 23(20), 1544–1546 (2011).
[Crossref]

Iga, K.

L. A. Coldren, B. I. Miller, K. Iga, and J. A. Rentschler, “Monolithic 2-section GaInAsP-InP active-optical-resonator devices formed by reactive ion etching,” Appl. Phys. Lett. 38(5), 315–317 (1981).
[Crossref]

Ikeda, M.

M. Yoshita, M. Kuramoto, M. Ikeda, and H. Yokoyama, “Mode locking of a GaInN semiconductor laser with an internal saturable absorber,” Appl. Phys. Lett. 94(6), 061104 (2009).
[Crossref]

Inaba, H.

T. Yasui, S. Yokoyama, H. Inaba, K. Minoshima, T. Nagatsuma, and T. Araki, “Terahertz frequency metrology based on frequency comb,” IEEE J. Sel. Top. Quantum Electron. 17(1), 191–201 (2011).
[Crossref]

Iotti, R. C.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Ishii, M.

N. Takado, K. Asakawa, T. Yuasa, S. Sugata, E. Miyauchi, H. Hashimoto, and M. Ishii, “Chemically enhanced focused ion-beam etching of deep grooves and laser-mirror facets in GaAs under Cl2 gas irradiation using a fine nozzle,” Appl. Phys. Lett. 50(26), 1891–1893 (1987).
[Crossref]

Itoh, T.

Jagtap, V.

H. Li, J. M. Manceau, A. Andronico, V. Jagtap, C. Sirtori, L. H. Li, E. H. Linfield, A. G. Davies, and S. Barbieri, “Coupled-cavity terahertz quantum cascade lasers for single mode operation,” Appl. Phys. Lett. 104(24), 241102 (2014).
[Crossref]

Jiang, B.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

Jiang, T.

X. Wang, C. Shen, T. Jiang, Z. Zhan, Q. Deng, W. Li, W. Wu, N. Yang, W. Chu, and S. Duan, “High-power terahertz quantum cascade lasers with ∼0.23 W in continuous wave mode,” AIP Adv. 6(7), 075210 (2016).
[Crossref]

Jianmeng Li, M.

H. C. Liu, M. Jianmeng Li, Buchanan, and Z. R. Wasilewski, “High-frequency quantum-well infrared photodetectors measured by microwave-rectification technique,” IEEE J. Quantum Electron. 32(6), 1024–1028 (1996).
[Crossref]

Jouy, P.

Jukam, N.

F. H. Wang, H. Nong, T. Fobbe, V. Pistore, S. Houver, S. Markmann, N. Jukam, M. Amanti, C. Sirtori, S. Moumdji, R. Colombelli, L. H. Li, E. Linfield, G. Davies, J. Mangeney, J. Tignon, and S. Dhillon, “Short terahertz pulse generation from a dispersion compensated modelocked semiconductor laser,” Laser Photonics Rev. 11(4), 1700013 (2017).
[Crossref]

Kallfass, I.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Kärtner, F. X.

Khairuzzaman, M.

O. P. Marshall, S. Chakraborty, M. Khairuzzaman, H. E. Beere, and D. A. Ritchie, “Reversible mode switching in Y-coupled terahertz lasers,” Appl. Phys. Lett. 102(11), 111105 (2013).
[Crossref]

Khanna, S. P.

S. Barbieri, M. Ravaro, P. Gellie, G. Santarelli, C. Manquest, C. Sirtori, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Coherent sampling of active mode-locked terahertz quantum cascade lasers and frequency synthesis,” Nat. Photonics 5(5), 306–313 (2011).
[Crossref]

P. Gellie, S. Barbieri, J. F. Lampin, P. Filloux, C. Manquest, C. Sirtori, I. Sagnes, S. P. Khanna, E. H. Linfield, A. G. Davies, H. Beere, and D. Ritchie, “Injection-locking of terahertz quantum cascade lasers up to 35GHz using RF amplitude modulation,” Opt. Express 18(20), 20799–20816 (2010).
[Crossref] [PubMed]

Koch, T. L.

L. A. Coldren and T. L. Koch, “Analysis and design of coupled-cavity lasers - Part I: Threshold gain analysis and design guidelines,” IEEE J. Quantum Electron. 20(6), 659–670 (1984).
[Crossref]

Koenig, S.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Köhler, R.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Koos, C.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Kostial, H.

M. Giehler, H. Kostial, R. Hey, and H. T. Grahn, “Suppression of longitudinal modes in two-sectioned, coupled-cavity GaAs/(Al,Ga)As terahertz quantum-cascade lasers,” Appl. Phys. Lett. 91(16), 161102 (2007).
[Crossref]

Kundu, I.

Kuramoto, M.

M. Yoshita, M. Kuramoto, M. Ikeda, and H. Yokoyama, “Mode locking of a GaInN semiconductor laser with an internal saturable absorber,” Appl. Phys. Lett. 94(6), 061104 (2009).
[Crossref]

Kuznetsova, L.

Laffaille, P.

Lagatsky, A. A.

C. T. A. Brown, M. A. Cataluna, A. A. Lagatsky, E. U. Rafailov, M. B. Agate, C. G. Leburn, and W. Sibbett, “Compact laser-diode-based femtosecond sources,” New J. Phys. 6, 175 (2004).
[Crossref]

Lampin, J. F.

Leburn, C. G.

C. T. A. Brown, M. A. Cataluna, A. A. Lagatsky, E. U. Rafailov, M. B. Agate, C. G. Leburn, and W. Sibbett, “Compact laser-diode-based femtosecond sources,” New J. Phys. 6, 175 (2004).
[Crossref]

Lelarge, F.

E. Sooudi, G. Huyet, J. G. McInerney, F. Lelarge, K. Merghem, R. Rosales, A. Martinez, A. Ramdane, and S. P. Hegarty, “Injection-locking properties of InAs/InP-based mode-locked quantum-dash lasers at 21 GHz,” IEEE Photonics Technol. Lett. 23(20), 1544–1546 (2011).
[Crossref]

K. Merghem, A. Akrout, A. Martinez, G. Moreau, J. P. Tourrenc, F. Lelarge, F. Van Dijk, G. H. Duan, G. Aubin, and A. Ramdane, “Short pulse generation using a passively mode locked single InGaAsP/InP quantum well laser,” Opt. Express 16(14), 10675–10683 (2008).
[Crossref] [PubMed]

Lester, L. F.

X. D. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, “Passive mode-locking in 1.3 μm two-section InAs quantum dot lasers,” Appl. Phys. Lett. 78(19), 2825–2827 (2001).
[Crossref]

Leuther, A.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Leuthold, J.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Li, H.

Z. Zhou, T. Zhou, S. Zhang, Z. Shi, Y. Chen, W. Wan, X. Li, X. Chen, S. N. Gilbert Corder, Z. Fu, L. Chen, Y. Mao, J. Cao, F. G. Omenetto, M. Liu, H. Li, and T. H. Tao, “Multicolor T‐ray imaging using multispectral metamaterials,” Adv. Sci. (Weinh.) 5(7), 1700982 (2018).
[Crossref] [PubMed]

W. J. Wan, H. Li, and J. C. Cao, “Homogeneous spectral broadening of pulsed terahertz quantum cascade lasers by radio frequency modulation,” Opt. Express 26(2), 980–989 (2018).
[Crossref] [PubMed]

A. Mottaghizadeh, D. Gacemi, P. Laffaille, H. Li, M. Amanti, C. Sirtori, G. Santarelli, W. Hänsel, R. Holzwart, L. H. Li, E. H. Linfield, and S. Barbieri, “5-ps-long terahertz pulses from an active-mode-locked quantum cascade laser,” Optica 4(1), 168–171 (2017).
[Crossref]

W. J. Wan, H. Li, T. Zhou, and J. C. Cao, “Homogeneous spectral spanning of terahertz semiconductor lasers with radio frequency modulation,” Sci. Rep. 7(1), 44109 (2017).
[Crossref] [PubMed]

H. Li, J. M. Manceau, A. Andronico, V. Jagtap, C. Sirtori, L. H. Li, E. H. Linfield, A. G. Davies, and S. Barbieri, “Coupled-cavity terahertz quantum cascade lasers for single mode operation,” Appl. Phys. Lett. 104(24), 241102 (2014).
[Crossref]

X. D. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, “Passive mode-locking in 1.3 μm two-section InAs quantum dot lasers,” Appl. Phys. Lett. 78(19), 2825–2827 (2001).
[Crossref]

Li, L.

Li, L. H.

I. Kundu, P. Dean, A. Valavanis, J. R. Freeman, M. C. Rosamond, L. H. Li, Y. J. Han, E. H. Linfield, and A. G. Davies, “Continuous frequency tuning with near constant output power in coupled Y-branched terahertz quantum cascade lasers with photonic lattice,” ACS Photonics 5(7), 2912–2920 (2018).
[Crossref]

A. Mottaghizadeh, D. Gacemi, P. Laffaille, H. Li, M. Amanti, C. Sirtori, G. Santarelli, W. Hänsel, R. Holzwart, L. H. Li, E. H. Linfield, and S. Barbieri, “5-ps-long terahertz pulses from an active-mode-locked quantum cascade laser,” Optica 4(1), 168–171 (2017).
[Crossref]

F. H. Wang, H. Nong, T. Fobbe, V. Pistore, S. Houver, S. Markmann, N. Jukam, M. Amanti, C. Sirtori, S. Moumdji, R. Colombelli, L. H. Li, E. Linfield, G. Davies, J. Mangeney, J. Tignon, and S. Dhillon, “Short terahertz pulse generation from a dispersion compensated modelocked semiconductor laser,” Laser Photonics Rev. 11(4), 1700013 (2017).
[Crossref]

L. H. Li, J. X. Zhu, L. Chen, A. G. Davies, and E. H. Linfield, “The MBE growth and optimization of high performance terahertz frequency quantum cascade lasers,” Opt. Express 23(3), 2720–2729 (2015).
[Crossref] [PubMed]

H. Li, J. M. Manceau, A. Andronico, V. Jagtap, C. Sirtori, L. H. Li, E. H. Linfield, A. G. Davies, and S. Barbieri, “Coupled-cavity terahertz quantum cascade lasers for single mode operation,” Appl. Phys. Lett. 104(24), 241102 (2014).
[Crossref]

Li, W.

X. Wang, C. Shen, T. Jiang, Z. Zhan, Q. Deng, W. Li, W. Wu, N. Yang, W. Chu, and S. Duan, “High-power terahertz quantum cascade lasers with ∼0.23 W in continuous wave mode,” AIP Adv. 6(7), 075210 (2016).
[Crossref]

Li, X.

Z. Zhou, T. Zhou, S. Zhang, Z. Shi, Y. Chen, W. Wan, X. Li, X. Chen, S. N. Gilbert Corder, Z. Fu, L. Chen, Y. Mao, J. Cao, F. G. Omenetto, M. Liu, H. Li, and T. H. Tao, “Multicolor T‐ray imaging using multispectral metamaterials,” Adv. Sci. (Weinh.) 5(7), 1700982 (2018).
[Crossref] [PubMed]

C. Y. Wang, L. Kuznetsova, V. M. Gkortsas, L. Diehl, F. X. Kärtner, M. A. Belkin, A. Belyanin, X. Li, D. Ham, H. Schneider, P. Grant, C. Y. Song, S. Haffouz, Z. R. Wasilewski, H. C. Liu, and F. Capasso, “Mode-locked pulses from mid-infrared quantum cascade lasers,” Opt. Express 17(15), 12929–12943 (2009).
[Crossref] [PubMed]

Linfield, E.

F. H. Wang, H. Nong, T. Fobbe, V. Pistore, S. Houver, S. Markmann, N. Jukam, M. Amanti, C. Sirtori, S. Moumdji, R. Colombelli, L. H. Li, E. Linfield, G. Davies, J. Mangeney, J. Tignon, and S. Dhillon, “Short terahertz pulse generation from a dispersion compensated modelocked semiconductor laser,” Laser Photonics Rev. 11(4), 1700013 (2017).
[Crossref]

Linfield, E. H.

I. Kundu, P. Dean, A. Valavanis, J. R. Freeman, M. C. Rosamond, L. H. Li, Y. J. Han, E. H. Linfield, and A. G. Davies, “Continuous frequency tuning with near constant output power in coupled Y-branched terahertz quantum cascade lasers with photonic lattice,” ACS Photonics 5(7), 2912–2920 (2018).
[Crossref]

I. Kundu, P. Dean, A. Valavanis, L. Chen, L. Li, J. E. Cunningham, E. H. Linfield, and A. G. Davies, “Quasi-continuous frequency tunable terahertz quantum cascade lasers with coupled cavity and integrated photonic lattice,” Opt. Express 25(1), 486–496 (2017).
[Crossref] [PubMed]

A. Mottaghizadeh, D. Gacemi, P. Laffaille, H. Li, M. Amanti, C. Sirtori, G. Santarelli, W. Hänsel, R. Holzwart, L. H. Li, E. H. Linfield, and S. Barbieri, “5-ps-long terahertz pulses from an active-mode-locked quantum cascade laser,” Optica 4(1), 168–171 (2017).
[Crossref]

L. H. Li, J. X. Zhu, L. Chen, A. G. Davies, and E. H. Linfield, “The MBE growth and optimization of high performance terahertz frequency quantum cascade lasers,” Opt. Express 23(3), 2720–2729 (2015).
[Crossref] [PubMed]

H. Li, J. M. Manceau, A. Andronico, V. Jagtap, C. Sirtori, L. H. Li, E. H. Linfield, A. G. Davies, and S. Barbieri, “Coupled-cavity terahertz quantum cascade lasers for single mode operation,” Appl. Phys. Lett. 104(24), 241102 (2014).
[Crossref]

I. Kundu, P. Dean, A. Valavanis, L. Chen, L. Li, J. E. Cunningham, E. H. Linfield, and A. G. Davies, “Discrete Vernier tuning in terahertz quantum cascade lasers using coupled cavities,” Opt. Express 22(13), 16595–16605 (2014).
[Crossref] [PubMed]

M. S. Vitiello, M. Nobile, A. Ronzani, A. Tredicucci, F. Castellano, V. Talora, L. Li, E. H. Linfield, and A. G. Davies, “Photonic quasi-crystal terahertz lasers,” Nat. Commun. 5(1), 5884 (2014).
[Crossref] [PubMed]

S. Barbieri, M. Ravaro, P. Gellie, G. Santarelli, C. Manquest, C. Sirtori, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Coherent sampling of active mode-locked terahertz quantum cascade lasers and frequency synthesis,” Nat. Photonics 5(5), 306–313 (2011).
[Crossref]

P. Gellie, S. Barbieri, J. F. Lampin, P. Filloux, C. Manquest, C. Sirtori, I. Sagnes, S. P. Khanna, E. H. Linfield, A. G. Davies, H. Beere, and D. Ritchie, “Injection-locking of terahertz quantum cascade lasers up to 35GHz using RF amplitude modulation,” Opt. Express 18(20), 20799–20816 (2010).
[Crossref] [PubMed]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Liu, H. C.

Liu, M.

Z. Zhou, T. Zhou, S. Zhang, Z. Shi, Y. Chen, W. Wan, X. Li, X. Chen, S. N. Gilbert Corder, Z. Fu, L. Chen, Y. Mao, J. Cao, F. G. Omenetto, M. Liu, H. Li, and T. H. Tao, “Multicolor T‐ray imaging using multispectral metamaterials,” Adv. Sci. (Weinh.) 5(7), 1700982 (2018).
[Crossref] [PubMed]

Logan, R. A.

W. T. Tsang, N. A. Olsson, and R. A. Logan, “Stable single-longitudinal-mode operation under high-speed direct modulation in cleaved-coupled-cavity GaInAsP semiconductor-lasers,” Electron. Lett. 19(13), 488–490 (1983).
[Crossref]

Lopez-Diaz, D.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Lotya, M.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

Lu, Q. Y.

Q. Y. Lu, S. Manna, D. H. Wu, S. Slivken, and M. Razeghi, “Shortwave quantum cascade laser frequency comb for multi- heterodyne spectroscopy,” Appl. Phys. Lett. 112(14), 141104 (2018).
[Crossref]

Maineult, W.

S. Barbieri, W. Maineult, S. S. Dhillon, C. Sirtori, J. Alton, N. Breuil, H. E. Beere, and D. A. Ritchie, “13 GHz direct modulation of terahertz quantum cascade lasers,” Appl. Phys. Lett. 91(14), 143510 (2007).
[Crossref]

Malloy, K. J.

X. D. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, “Passive mode-locking in 1.3 μm two-section InAs quantum dot lasers,” Appl. Phys. Lett. 78(19), 2825–2827 (2001).
[Crossref]

Manceau, J. M.

H. Li, J. M. Manceau, A. Andronico, V. Jagtap, C. Sirtori, L. H. Li, E. H. Linfield, A. G. Davies, and S. Barbieri, “Coupled-cavity terahertz quantum cascade lasers for single mode operation,” Appl. Phys. Lett. 104(24), 241102 (2014).
[Crossref]

Mangeney, J.

F. H. Wang, H. Nong, T. Fobbe, V. Pistore, S. Houver, S. Markmann, N. Jukam, M. Amanti, C. Sirtori, S. Moumdji, R. Colombelli, L. H. Li, E. Linfield, G. Davies, J. Mangeney, J. Tignon, and S. Dhillon, “Short terahertz pulse generation from a dispersion compensated modelocked semiconductor laser,” Laser Photonics Rev. 11(4), 1700013 (2017).
[Crossref]

Manna, S.

Q. Y. Lu, S. Manna, D. H. Wu, S. Slivken, and M. Razeghi, “Shortwave quantum cascade laser frequency comb for multi- heterodyne spectroscopy,” Appl. Phys. Lett. 112(14), 141104 (2018).
[Crossref]

Manquest, C.

S. Barbieri, M. Ravaro, P. Gellie, G. Santarelli, C. Manquest, C. Sirtori, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Coherent sampling of active mode-locked terahertz quantum cascade lasers and frequency synthesis,” Nat. Photonics 5(5), 306–313 (2011).
[Crossref]

P. Gellie, S. Barbieri, J. F. Lampin, P. Filloux, C. Manquest, C. Sirtori, I. Sagnes, S. P. Khanna, E. H. Linfield, A. G. Davies, H. Beere, and D. Ritchie, “Injection-locking of terahertz quantum cascade lasers up to 35GHz using RF amplitude modulation,” Opt. Express 18(20), 20799–20816 (2010).
[Crossref] [PubMed]

Mao, Y.

Z. Zhou, T. Zhou, S. Zhang, Z. Shi, Y. Chen, W. Wan, X. Li, X. Chen, S. N. Gilbert Corder, Z. Fu, L. Chen, Y. Mao, J. Cao, F. G. Omenetto, M. Liu, H. Li, and T. H. Tao, “Multicolor T‐ray imaging using multispectral metamaterials,” Adv. Sci. (Weinh.) 5(7), 1700982 (2018).
[Crossref] [PubMed]

Markmann, S.

F. H. Wang, H. Nong, T. Fobbe, V. Pistore, S. Houver, S. Markmann, N. Jukam, M. Amanti, C. Sirtori, S. Moumdji, R. Colombelli, L. H. Li, E. Linfield, G. Davies, J. Mangeney, J. Tignon, and S. Dhillon, “Short terahertz pulse generation from a dispersion compensated modelocked semiconductor laser,” Laser Photonics Rev. 11(4), 1700013 (2017).
[Crossref]

Marshall, O. P.

O. P. Marshall, S. Chakraborty, M. Khairuzzaman, H. E. Beere, and D. A. Ritchie, “Reversible mode switching in Y-coupled terahertz lasers,” Appl. Phys. Lett. 102(11), 111105 (2013).
[Crossref]

Martinez, A.

E. Sooudi, G. Huyet, J. G. McInerney, F. Lelarge, K. Merghem, R. Rosales, A. Martinez, A. Ramdane, and S. P. Hegarty, “Injection-locking properties of InAs/InP-based mode-locked quantum-dash lasers at 21 GHz,” IEEE Photonics Technol. Lett. 23(20), 1544–1546 (2011).
[Crossref]

K. Merghem, A. Akrout, A. Martinez, G. Moreau, J. P. Tourrenc, F. Lelarge, F. Van Dijk, G. H. Duan, G. Aubin, and A. Ramdane, “Short pulse generation using a passively mode locked single InGaAsP/InP quantum well laser,” Opt. Express 16(14), 10675–10683 (2008).
[Crossref] [PubMed]

McInerney, J. G.

E. Sooudi, G. Huyet, J. G. McInerney, F. Lelarge, K. Merghem, R. Rosales, A. Martinez, A. Ramdane, and S. P. Hegarty, “Injection-locking properties of InAs/InP-based mode-locked quantum-dash lasers at 21 GHz,” IEEE Photonics Technol. Lett. 23(20), 1544–1546 (2011).
[Crossref]

Merghem, K.

E. Sooudi, G. Huyet, J. G. McInerney, F. Lelarge, K. Merghem, R. Rosales, A. Martinez, A. Ramdane, and S. P. Hegarty, “Injection-locking properties of InAs/InP-based mode-locked quantum-dash lasers at 21 GHz,” IEEE Photonics Technol. Lett. 23(20), 1544–1546 (2011).
[Crossref]

K. Merghem, A. Akrout, A. Martinez, G. Moreau, J. P. Tourrenc, F. Lelarge, F. Van Dijk, G. H. Duan, G. Aubin, and A. Ramdane, “Short pulse generation using a passively mode locked single InGaAsP/InP quantum well laser,” Opt. Express 16(14), 10675–10683 (2008).
[Crossref] [PubMed]

Miller, B. I.

K. J. Ebeling, L. A. Coldren, B. I. Miller, and J. A. Rentschler, “Single-mode operation of coupled-cavity GaInAsP/InP semiconductor lasers,” Appl. Phys. Lett. 42(1), 6–8 (1983).
[Crossref]

L. A. Coldren, B. I. Miller, K. Iga, and J. A. Rentschler, “Monolithic 2-section GaInAsP-InP active-optical-resonator devices formed by reactive ion etching,” Appl. Phys. Lett. 38(5), 315–317 (1981).
[Crossref]

Minoshima, K.

T. Yasui, S. Yokoyama, H. Inaba, K. Minoshima, T. Nagatsuma, and T. Araki, “Terahertz frequency metrology based on frequency comb,” IEEE J. Sel. Top. Quantum Electron. 17(1), 191–201 (2011).
[Crossref]

Mittleman, D. M.

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).
[Crossref]

Miyauchi, E.

N. Takado, K. Asakawa, T. Yuasa, S. Sugata, E. Miyauchi, H. Hashimoto, and M. Ishii, “Chemically enhanced focused ion-beam etching of deep grooves and laser-mirror facets in GaAs under Cl2 gas irradiation using a fine nozzle,” Appl. Phys. Lett. 50(26), 1891–1893 (1987).
[Crossref]

Moreau, G.

Mottaghizadeh, A.

Moumdji, S.

F. H. Wang, H. Nong, T. Fobbe, V. Pistore, S. Houver, S. Markmann, N. Jukam, M. Amanti, C. Sirtori, S. Moumdji, R. Colombelli, L. H. Li, E. Linfield, G. Davies, J. Mangeney, J. Tignon, and S. Dhillon, “Short terahertz pulse generation from a dispersion compensated modelocked semiconductor laser,” Laser Photonics Rev. 11(4), 1700013 (2017).
[Crossref]

Mu, H. R.

H. R. Mu, Z. T. Wang, J. Yuan, S. Xiao, C. Y. Chen, Y. Chen, Y. Chen, J. C. Song, Y. S. Wang, Y. Z. Xue, H. Zhang, and Q. L. Bao, “Graphene-Bi2Te3 heterostructure as saturable absorber for short pulse generation,” ACS Photonics 2(7), 832–841 (2015).
[Crossref]

Nagatsuma, T.

T. Yasui, S. Yokoyama, H. Inaba, K. Minoshima, T. Nagatsuma, and T. Araki, “Terahertz frequency metrology based on frequency comb,” IEEE J. Sel. Top. Quantum Electron. 17(1), 191–201 (2011).
[Crossref]

Nakajima, K.

J. Chen, H. Horiguchi, H. B. Wang, K. Nakajima, T. Yamashita, and P. H. Wu, “Terahertz frequency metrology based on high-Tc Josephson junctions,” Supercond. Sci. Technol. 15(12), 1680–1684 (2002).
[Crossref]

Nobile, M.

M. S. Vitiello, M. Nobile, A. Ronzani, A. Tredicucci, F. Castellano, V. Talora, L. Li, E. H. Linfield, and A. G. Davies, “Photonic quasi-crystal terahertz lasers,” Nat. Commun. 5(1), 5884 (2014).
[Crossref] [PubMed]

Nong, H.

F. H. Wang, H. Nong, T. Fobbe, V. Pistore, S. Houver, S. Markmann, N. Jukam, M. Amanti, C. Sirtori, S. Moumdji, R. Colombelli, L. H. Li, E. Linfield, G. Davies, J. Mangeney, J. Tignon, and S. Dhillon, “Short terahertz pulse generation from a dispersion compensated modelocked semiconductor laser,” Laser Photonics Rev. 11(4), 1700013 (2017).
[Crossref]

O’Neill, A.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

Olsson, N. A.

W. T. Tsang, N. A. Olsson, and R. A. Logan, “Stable single-longitudinal-mode operation under high-speed direct modulation in cleaved-coupled-cavity GaInAsP semiconductor-lasers,” Electron. Lett. 19(13), 488–490 (1983).
[Crossref]

Omenetto, F. G.

Z. Zhou, T. Zhou, S. Zhang, Z. Shi, Y. Chen, W. Wan, X. Li, X. Chen, S. N. Gilbert Corder, Z. Fu, L. Chen, Y. Mao, J. Cao, F. G. Omenetto, M. Liu, H. Li, and T. H. Tao, “Multicolor T‐ray imaging using multispectral metamaterials,” Adv. Sci. (Weinh.) 5(7), 1700982 (2018).
[Crossref] [PubMed]

Palmer, R.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Pistore, V.

F. H. Wang, H. Nong, T. Fobbe, V. Pistore, S. Houver, S. Markmann, N. Jukam, M. Amanti, C. Sirtori, S. Moumdji, R. Colombelli, L. H. Li, E. Linfield, G. Davies, J. Mangeney, J. Tignon, and S. Dhillon, “Short terahertz pulse generation from a dispersion compensated modelocked semiconductor laser,” Laser Photonics Rev. 11(4), 1700013 (2017).
[Crossref]

Rafailov, E. U.

C. T. A. Brown, M. A. Cataluna, A. A. Lagatsky, E. U. Rafailov, M. B. Agate, C. G. Leburn, and W. Sibbett, “Compact laser-diode-based femtosecond sources,” New J. Phys. 6, 175 (2004).
[Crossref]

Ramdane, A.

E. Sooudi, G. Huyet, J. G. McInerney, F. Lelarge, K. Merghem, R. Rosales, A. Martinez, A. Ramdane, and S. P. Hegarty, “Injection-locking properties of InAs/InP-based mode-locked quantum-dash lasers at 21 GHz,” IEEE Photonics Technol. Lett. 23(20), 1544–1546 (2011).
[Crossref]

K. Merghem, A. Akrout, A. Martinez, G. Moreau, J. P. Tourrenc, F. Lelarge, F. Van Dijk, G. H. Duan, G. Aubin, and A. Ramdane, “Short pulse generation using a passively mode locked single InGaAsP/InP quantum well laser,” Opt. Express 16(14), 10675–10683 (2008).
[Crossref] [PubMed]

Ravaro, M.

S. Barbieri, M. Ravaro, P. Gellie, G. Santarelli, C. Manquest, C. Sirtori, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Coherent sampling of active mode-locked terahertz quantum cascade lasers and frequency synthesis,” Nat. Photonics 5(5), 306–313 (2011).
[Crossref]

Razeghi, M.

Q. Y. Lu, S. Manna, D. H. Wu, S. Slivken, and M. Razeghi, “Shortwave quantum cascade laser frequency comb for multi- heterodyne spectroscopy,” Appl. Phys. Lett. 112(14), 141104 (2018).
[Crossref]

Reno, J. L.

Rentschler, J. A.

K. J. Ebeling, L. A. Coldren, B. I. Miller, and J. A. Rentschler, “Single-mode operation of coupled-cavity GaInAsP/InP semiconductor lasers,” Appl. Phys. Lett. 42(1), 6–8 (1983).
[Crossref]

L. A. Coldren, B. I. Miller, K. Iga, and J. A. Rentschler, “Monolithic 2-section GaInAsP-InP active-optical-resonator devices formed by reactive ion etching,” Appl. Phys. Lett. 38(5), 315–317 (1981).
[Crossref]

Ritchie, D.

Ritchie, D. A.

O. P. Marshall, S. Chakraborty, M. Khairuzzaman, H. E. Beere, and D. A. Ritchie, “Reversible mode switching in Y-coupled terahertz lasers,” Appl. Phys. Lett. 102(11), 111105 (2013).
[Crossref]

S. Barbieri, W. Maineult, S. S. Dhillon, C. Sirtori, J. Alton, N. Breuil, H. E. Beere, and D. A. Ritchie, “13 GHz direct modulation of terahertz quantum cascade lasers,” Appl. Phys. Lett. 91(14), 143510 (2007).
[Crossref]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Röben, B.

Ronzani, A.

M. S. Vitiello, M. Nobile, A. Ronzani, A. Tredicucci, F. Castellano, V. Talora, L. Li, E. H. Linfield, and A. G. Davies, “Photonic quasi-crystal terahertz lasers,” Nat. Commun. 5(1), 5884 (2014).
[Crossref] [PubMed]

Rosales, R.

E. Sooudi, G. Huyet, J. G. McInerney, F. Lelarge, K. Merghem, R. Rosales, A. Martinez, A. Ramdane, and S. P. Hegarty, “Injection-locking properties of InAs/InP-based mode-locked quantum-dash lasers at 21 GHz,” IEEE Photonics Technol. Lett. 23(20), 1544–1546 (2011).
[Crossref]

Rosamond, M. C.

I. Kundu, P. Dean, A. Valavanis, J. R. Freeman, M. C. Rosamond, L. H. Li, Y. J. Han, E. H. Linfield, and A. G. Davies, “Continuous frequency tuning with near constant output power in coupled Y-branched terahertz quantum cascade lasers with photonic lattice,” ACS Photonics 5(7), 2912–2920 (2018).
[Crossref]

Rösch, M.

M. Rösch, G. Scalari, M. Beck, and J. Faist, “Octave-spanning semiconductor laser,” Nat. Photonics 9(1), 42–47 (2015).
[Crossref]

Rossi, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Sagnes, I.

Santarelli, G.

A. Mottaghizadeh, D. Gacemi, P. Laffaille, H. Li, M. Amanti, C. Sirtori, G. Santarelli, W. Hänsel, R. Holzwart, L. H. Li, E. H. Linfield, and S. Barbieri, “5-ps-long terahertz pulses from an active-mode-locked quantum cascade laser,” Optica 4(1), 168–171 (2017).
[Crossref]

S. Barbieri, M. Ravaro, P. Gellie, G. Santarelli, C. Manquest, C. Sirtori, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Coherent sampling of active mode-locked terahertz quantum cascade lasers and frequency synthesis,” Nat. Photonics 5(5), 306–313 (2011).
[Crossref]

Scalari, G.

M. Rösch, G. Scalari, M. Beck, and J. Faist, “Octave-spanning semiconductor laser,” Nat. Photonics 9(1), 42–47 (2015).
[Crossref]

Schmogrow, R.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Schneider, H.

Schrottke, L.

M. Wienold, B. Röben, L. Schrottke, and H. T. Grahn, “Evidence for frequency comb emission from a Fabry-Pérot terahertz quantum-cascade laser,” Opt. Express 22(25), 30410–30424 (2014).
[Crossref] [PubMed]

M. Wienold, L. Schrottke, M. Giehler, R. Hey, W. Anders, and H. T. Grahn, “Low-threshold terahertz quantum-cascade lasers based on GaAs/Al0.25Ga0.75As heterostructures,” Appl. Phys. Lett. 97(7), 071113 (2010).
[Crossref]

Shen, C.

X. Wang, C. Shen, T. Jiang, Z. Zhan, Q. Deng, W. Li, W. Wu, N. Yang, W. Chu, and S. Duan, “High-power terahertz quantum cascade lasers with ∼0.23 W in continuous wave mode,” AIP Adv. 6(7), 075210 (2016).
[Crossref]

Shi, Z.

Z. Zhou, T. Zhou, S. Zhang, Z. Shi, Y. Chen, W. Wan, X. Li, X. Chen, S. N. Gilbert Corder, Z. Fu, L. Chen, Y. Mao, J. Cao, F. G. Omenetto, M. Liu, H. Li, and T. H. Tao, “Multicolor T‐ray imaging using multispectral metamaterials,” Adv. Sci. (Weinh.) 5(7), 1700982 (2018).
[Crossref] [PubMed]

Sibbett, W.

C. T. A. Brown, M. A. Cataluna, A. A. Lagatsky, E. U. Rafailov, M. B. Agate, C. G. Leburn, and W. Sibbett, “Compact laser-diode-based femtosecond sources,” New J. Phys. 6, 175 (2004).
[Crossref]

Sirtori, C.

A. Mottaghizadeh, D. Gacemi, P. Laffaille, H. Li, M. Amanti, C. Sirtori, G. Santarelli, W. Hänsel, R. Holzwart, L. H. Li, E. H. Linfield, and S. Barbieri, “5-ps-long terahertz pulses from an active-mode-locked quantum cascade laser,” Optica 4(1), 168–171 (2017).
[Crossref]

F. H. Wang, H. Nong, T. Fobbe, V. Pistore, S. Houver, S. Markmann, N. Jukam, M. Amanti, C. Sirtori, S. Moumdji, R. Colombelli, L. H. Li, E. Linfield, G. Davies, J. Mangeney, J. Tignon, and S. Dhillon, “Short terahertz pulse generation from a dispersion compensated modelocked semiconductor laser,” Laser Photonics Rev. 11(4), 1700013 (2017).
[Crossref]

H. Li, J. M. Manceau, A. Andronico, V. Jagtap, C. Sirtori, L. H. Li, E. H. Linfield, A. G. Davies, and S. Barbieri, “Coupled-cavity terahertz quantum cascade lasers for single mode operation,” Appl. Phys. Lett. 104(24), 241102 (2014).
[Crossref]

S. Barbieri, M. Ravaro, P. Gellie, G. Santarelli, C. Manquest, C. Sirtori, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Coherent sampling of active mode-locked terahertz quantum cascade lasers and frequency synthesis,” Nat. Photonics 5(5), 306–313 (2011).
[Crossref]

P. Gellie, S. Barbieri, J. F. Lampin, P. Filloux, C. Manquest, C. Sirtori, I. Sagnes, S. P. Khanna, E. H. Linfield, A. G. Davies, H. Beere, and D. Ritchie, “Injection-locking of terahertz quantum cascade lasers up to 35GHz using RF amplitude modulation,” Opt. Express 18(20), 20799–20816 (2010).
[Crossref] [PubMed]

S. Barbieri, W. Maineult, S. S. Dhillon, C. Sirtori, J. Alton, N. Breuil, H. E. Beere, and D. A. Ritchie, “13 GHz direct modulation of terahertz quantum cascade lasers,” Appl. Phys. Lett. 91(14), 143510 (2007).
[Crossref]

Slivken, S.

Q. Y. Lu, S. Manna, D. H. Wu, S. Slivken, and M. Razeghi, “Shortwave quantum cascade laser frequency comb for multi- heterodyne spectroscopy,” Appl. Phys. Lett. 112(14), 141104 (2018).
[Crossref]

Song, C. Y.

Song, J. C.

H. R. Mu, Z. T. Wang, J. Yuan, S. Xiao, C. Y. Chen, Y. Chen, Y. Chen, J. C. Song, Y. S. Wang, Y. Z. Xue, H. Zhang, and Q. L. Bao, “Graphene-Bi2Te3 heterostructure as saturable absorber for short pulse generation,” ACS Photonics 2(7), 832–841 (2015).
[Crossref]

Sooudi, E.

E. Sooudi, G. Huyet, J. G. McInerney, F. Lelarge, K. Merghem, R. Rosales, A. Martinez, A. Ramdane, and S. P. Hegarty, “Injection-locking properties of InAs/InP-based mode-locked quantum-dash lasers at 21 GHz,” IEEE Photonics Technol. Lett. 23(20), 1544–1546 (2011).
[Crossref]

Stintz, A.

X. D. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, “Passive mode-locking in 1.3 μm two-section InAs quantum dot lasers,” Appl. Phys. Lett. 78(19), 2825–2827 (2001).
[Crossref]

Sugata, S.

N. Takado, K. Asakawa, T. Yuasa, S. Sugata, E. Miyauchi, H. Hashimoto, and M. Ishii, “Chemically enhanced focused ion-beam etching of deep grooves and laser-mirror facets in GaAs under Cl2 gas irradiation using a fine nozzle,” Appl. Phys. Lett. 50(26), 1891–1893 (1987).
[Crossref]

Takado, N.

N. Takado, K. Asakawa, T. Yuasa, S. Sugata, E. Miyauchi, H. Hashimoto, and M. Ishii, “Chemically enhanced focused ion-beam etching of deep grooves and laser-mirror facets in GaAs under Cl2 gas irradiation using a fine nozzle,” Appl. Phys. Lett. 50(26), 1891–1893 (1987).
[Crossref]

Talora, V.

M. S. Vitiello, M. Nobile, A. Ronzani, A. Tredicucci, F. Castellano, V. Talora, L. Li, E. H. Linfield, and A. G. Davies, “Photonic quasi-crystal terahertz lasers,” Nat. Commun. 5(1), 5884 (2014).
[Crossref] [PubMed]

Tao, T. H.

Z. Zhou, T. Zhou, S. Zhang, Z. Shi, Y. Chen, W. Wan, X. Li, X. Chen, S. N. Gilbert Corder, Z. Fu, L. Chen, Y. Mao, J. Cao, F. G. Omenetto, M. Liu, H. Li, and T. H. Tao, “Multicolor T‐ray imaging using multispectral metamaterials,” Adv. Sci. (Weinh.) 5(7), 1700982 (2018).
[Crossref] [PubMed]

Tessmann, A.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Tignon, J.

F. H. Wang, H. Nong, T. Fobbe, V. Pistore, S. Houver, S. Markmann, N. Jukam, M. Amanti, C. Sirtori, S. Moumdji, R. Colombelli, L. H. Li, E. Linfield, G. Davies, J. Mangeney, J. Tignon, and S. Dhillon, “Short terahertz pulse generation from a dispersion compensated modelocked semiconductor laser,” Laser Photonics Rev. 11(4), 1700013 (2017).
[Crossref]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Tourrenc, J. P.

Tredicucci, A.

M. S. Vitiello, M. Nobile, A. Ronzani, A. Tredicucci, F. Castellano, V. Talora, L. Li, E. H. Linfield, and A. G. Davies, “Photonic quasi-crystal terahertz lasers,” Nat. Commun. 5(1), 5884 (2014).
[Crossref] [PubMed]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Tsang, W. T.

W. T. Tsang, N. A. Olsson, and R. A. Logan, “Stable single-longitudinal-mode operation under high-speed direct modulation in cleaved-coupled-cavity GaInAsP semiconductor-lasers,” Electron. Lett. 19(13), 488–490 (1983).
[Crossref]

Valavanis, A.

Van Dijk, F.

Vitiello, M. S.

M. S. Vitiello, M. Nobile, A. Ronzani, A. Tredicucci, F. Castellano, V. Talora, L. Li, E. H. Linfield, and A. G. Davies, “Photonic quasi-crystal terahertz lasers,” Nat. Commun. 5(1), 5884 (2014).
[Crossref] [PubMed]

Wan, W.

Z. Zhou, T. Zhou, S. Zhang, Z. Shi, Y. Chen, W. Wan, X. Li, X. Chen, S. N. Gilbert Corder, Z. Fu, L. Chen, Y. Mao, J. Cao, F. G. Omenetto, M. Liu, H. Li, and T. H. Tao, “Multicolor T‐ray imaging using multispectral metamaterials,” Adv. Sci. (Weinh.) 5(7), 1700982 (2018).
[Crossref] [PubMed]

Wan, W. J.

W. J. Wan, H. Li, and J. C. Cao, “Homogeneous spectral broadening of pulsed terahertz quantum cascade lasers by radio frequency modulation,” Opt. Express 26(2), 980–989 (2018).
[Crossref] [PubMed]

W. J. Wan, H. Li, T. Zhou, and J. C. Cao, “Homogeneous spectral spanning of terahertz semiconductor lasers with radio frequency modulation,” Sci. Rep. 7(1), 44109 (2017).
[Crossref] [PubMed]

Wang, C. Y.

Wang, F. H.

F. H. Wang, H. Nong, T. Fobbe, V. Pistore, S. Houver, S. Markmann, N. Jukam, M. Amanti, C. Sirtori, S. Moumdji, R. Colombelli, L. H. Li, E. Linfield, G. Davies, J. Mangeney, J. Tignon, and S. Dhillon, “Short terahertz pulse generation from a dispersion compensated modelocked semiconductor laser,” Laser Photonics Rev. 11(4), 1700013 (2017).
[Crossref]

Wang, H. B.

J. Chen, H. Horiguchi, H. B. Wang, K. Nakajima, T. Yamashita, and P. H. Wu, “Terahertz frequency metrology based on high-Tc Josephson junctions,” Supercond. Sci. Technol. 15(12), 1680–1684 (2002).
[Crossref]

Wang, J.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

Wang, K.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

Wang, X.

X. Wang, C. Shen, T. Jiang, Z. Zhan, Q. Deng, W. Li, W. Wu, N. Yang, W. Chu, and S. Duan, “High-power terahertz quantum cascade lasers with ∼0.23 W in continuous wave mode,” AIP Adv. 6(7), 075210 (2016).
[Crossref]

Wang, Y. S.

H. R. Mu, Z. T. Wang, J. Yuan, S. Xiao, C. Y. Chen, Y. Chen, Y. Chen, J. C. Song, Y. S. Wang, Y. Z. Xue, H. Zhang, and Q. L. Bao, “Graphene-Bi2Te3 heterostructure as saturable absorber for short pulse generation,” ACS Photonics 2(7), 832–841 (2015).
[Crossref]

Wang, Z. T.

H. R. Mu, Z. T. Wang, J. Yuan, S. Xiao, C. Y. Chen, Y. Chen, Y. Chen, J. C. Song, Y. S. Wang, Y. Z. Xue, H. Zhang, and Q. L. Bao, “Graphene-Bi2Te3 heterostructure as saturable absorber for short pulse generation,” ACS Photonics 2(7), 832–841 (2015).
[Crossref]

Wasilewski, Z. R.

Wienold, M.

M. Wienold, B. Röben, L. Schrottke, and H. T. Grahn, “Evidence for frequency comb emission from a Fabry-Pérot terahertz quantum-cascade laser,” Opt. Express 22(25), 30410–30424 (2014).
[Crossref] [PubMed]

M. Wienold, L. Schrottke, M. Giehler, R. Hey, W. Anders, and H. T. Grahn, “Low-threshold terahertz quantum-cascade lasers based on GaAs/Al0.25Ga0.75As heterostructures,” Appl. Phys. Lett. 97(7), 071113 (2010).
[Crossref]

Williams, B. S.

Wu, D. H.

Q. Y. Lu, S. Manna, D. H. Wu, S. Slivken, and M. Razeghi, “Shortwave quantum cascade laser frequency comb for multi- heterodyne spectroscopy,” Appl. Phys. Lett. 112(14), 141104 (2018).
[Crossref]

Wu, P. H.

J. Chen, H. Horiguchi, H. B. Wang, K. Nakajima, T. Yamashita, and P. H. Wu, “Terahertz frequency metrology based on high-Tc Josephson junctions,” Supercond. Sci. Technol. 15(12), 1680–1684 (2002).
[Crossref]

Wu, W.

X. Wang, C. Shen, T. Jiang, Z. Zhan, Q. Deng, W. Li, W. Wu, N. Yang, W. Chu, and S. Duan, “High-power terahertz quantum cascade lasers with ∼0.23 W in continuous wave mode,” AIP Adv. 6(7), 075210 (2016).
[Crossref]

Xiao, S.

H. R. Mu, Z. T. Wang, J. Yuan, S. Xiao, C. Y. Chen, Y. Chen, Y. Chen, J. C. Song, Y. S. Wang, Y. Z. Xue, H. Zhang, and Q. L. Bao, “Graphene-Bi2Te3 heterostructure as saturable absorber for short pulse generation,” ACS Photonics 2(7), 832–841 (2015).
[Crossref]

Xu, L.

Xue, Y. Z.

H. R. Mu, Z. T. Wang, J. Yuan, S. Xiao, C. Y. Chen, Y. Chen, Y. Chen, J. C. Song, Y. S. Wang, Y. Z. Xue, H. Zhang, and Q. L. Bao, “Graphene-Bi2Te3 heterostructure as saturable absorber for short pulse generation,” ACS Photonics 2(7), 832–841 (2015).
[Crossref]

Yamashita, T.

J. Chen, H. Horiguchi, H. B. Wang, K. Nakajima, T. Yamashita, and P. H. Wu, “Terahertz frequency metrology based on high-Tc Josephson junctions,” Supercond. Sci. Technol. 15(12), 1680–1684 (2002).
[Crossref]

Yang, N.

X. Wang, C. Shen, T. Jiang, Z. Zhan, Q. Deng, W. Li, W. Wu, N. Yang, W. Chu, and S. Duan, “High-power terahertz quantum cascade lasers with ∼0.23 W in continuous wave mode,” AIP Adv. 6(7), 075210 (2016).
[Crossref]

Yasui, T.

T. Yasui, S. Yokoyama, H. Inaba, K. Minoshima, T. Nagatsuma, and T. Araki, “Terahertz frequency metrology based on frequency comb,” IEEE J. Sel. Top. Quantum Electron. 17(1), 191–201 (2011).
[Crossref]

Yokoyama, H.

M. Yoshita, M. Kuramoto, M. Ikeda, and H. Yokoyama, “Mode locking of a GaInN semiconductor laser with an internal saturable absorber,” Appl. Phys. Lett. 94(6), 061104 (2009).
[Crossref]

Yokoyama, S.

T. Yasui, S. Yokoyama, H. Inaba, K. Minoshima, T. Nagatsuma, and T. Araki, “Terahertz frequency metrology based on frequency comb,” IEEE J. Sel. Top. Quantum Electron. 17(1), 191–201 (2011).
[Crossref]

Yoshita, M.

M. Yoshita, M. Kuramoto, M. Ikeda, and H. Yokoyama, “Mode locking of a GaInN semiconductor laser with an internal saturable absorber,” Appl. Phys. Lett. 94(6), 061104 (2009).
[Crossref]

Yuan, J.

H. R. Mu, Z. T. Wang, J. Yuan, S. Xiao, C. Y. Chen, Y. Chen, Y. Chen, J. C. Song, Y. S. Wang, Y. Z. Xue, H. Zhang, and Q. L. Bao, “Graphene-Bi2Te3 heterostructure as saturable absorber for short pulse generation,” ACS Photonics 2(7), 832–841 (2015).
[Crossref]

Yuasa, T.

N. Takado, K. Asakawa, T. Yuasa, S. Sugata, E. Miyauchi, H. Hashimoto, and M. Ishii, “Chemically enhanced focused ion-beam etching of deep grooves and laser-mirror facets in GaAs under Cl2 gas irradiation using a fine nozzle,” Appl. Phys. Lett. 50(26), 1891–1893 (1987).
[Crossref]

Zhan, Z.

X. Wang, C. Shen, T. Jiang, Z. Zhan, Q. Deng, W. Li, W. Wu, N. Yang, W. Chu, and S. Duan, “High-power terahertz quantum cascade lasers with ∼0.23 W in continuous wave mode,” AIP Adv. 6(7), 075210 (2016).
[Crossref]

Zhang, H.

H. R. Mu, Z. T. Wang, J. Yuan, S. Xiao, C. Y. Chen, Y. Chen, Y. Chen, J. C. Song, Y. S. Wang, Y. Z. Xue, H. Zhang, and Q. L. Bao, “Graphene-Bi2Te3 heterostructure as saturable absorber for short pulse generation,” ACS Photonics 2(7), 832–841 (2015).
[Crossref]

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

Zhang, L.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

Zhang, S.

Z. Zhou, T. Zhou, S. Zhang, Z. Shi, Y. Chen, W. Wan, X. Li, X. Chen, S. N. Gilbert Corder, Z. Fu, L. Chen, Y. Mao, J. Cao, F. G. Omenetto, M. Liu, H. Li, and T. H. Tao, “Multicolor T‐ray imaging using multispectral metamaterials,” Adv. Sci. (Weinh.) 5(7), 1700982 (2018).
[Crossref] [PubMed]

Zhang, X.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

Zhao, Q.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

Zhou, T.

Z. Zhou, T. Zhou, S. Zhang, Z. Shi, Y. Chen, W. Wan, X. Li, X. Chen, S. N. Gilbert Corder, Z. Fu, L. Chen, Y. Mao, J. Cao, F. G. Omenetto, M. Liu, H. Li, and T. H. Tao, “Multicolor T‐ray imaging using multispectral metamaterials,” Adv. Sci. (Weinh.) 5(7), 1700982 (2018).
[Crossref] [PubMed]

W. J. Wan, H. Li, T. Zhou, and J. C. Cao, “Homogeneous spectral spanning of terahertz semiconductor lasers with radio frequency modulation,” Sci. Rep. 7(1), 44109 (2017).
[Crossref] [PubMed]

Zhou, Z.

Z. Zhou, T. Zhou, S. Zhang, Z. Shi, Y. Chen, W. Wan, X. Li, X. Chen, S. N. Gilbert Corder, Z. Fu, L. Chen, Y. Mao, J. Cao, F. G. Omenetto, M. Liu, H. Li, and T. H. Tao, “Multicolor T‐ray imaging using multispectral metamaterials,” Adv. Sci. (Weinh.) 5(7), 1700982 (2018).
[Crossref] [PubMed]

Zhu, J. X.

Zwick, T.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

ACS Nano (1)

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

ACS Photonics (2)

H. R. Mu, Z. T. Wang, J. Yuan, S. Xiao, C. Y. Chen, Y. Chen, Y. Chen, J. C. Song, Y. S. Wang, Y. Z. Xue, H. Zhang, and Q. L. Bao, “Graphene-Bi2Te3 heterostructure as saturable absorber for short pulse generation,” ACS Photonics 2(7), 832–841 (2015).
[Crossref]

I. Kundu, P. Dean, A. Valavanis, J. R. Freeman, M. C. Rosamond, L. H. Li, Y. J. Han, E. H. Linfield, and A. G. Davies, “Continuous frequency tuning with near constant output power in coupled Y-branched terahertz quantum cascade lasers with photonic lattice,” ACS Photonics 5(7), 2912–2920 (2018).
[Crossref]

Adv. Sci. (Weinh.) (1)

Z. Zhou, T. Zhou, S. Zhang, Z. Shi, Y. Chen, W. Wan, X. Li, X. Chen, S. N. Gilbert Corder, Z. Fu, L. Chen, Y. Mao, J. Cao, F. G. Omenetto, M. Liu, H. Li, and T. H. Tao, “Multicolor T‐ray imaging using multispectral metamaterials,” Adv. Sci. (Weinh.) 5(7), 1700982 (2018).
[Crossref] [PubMed]

AIP Adv. (1)

X. Wang, C. Shen, T. Jiang, Z. Zhan, Q. Deng, W. Li, W. Wu, N. Yang, W. Chu, and S. Duan, “High-power terahertz quantum cascade lasers with ∼0.23 W in continuous wave mode,” AIP Adv. 6(7), 075210 (2016).
[Crossref]

Appl. Phys. Lett. (11)

M. Yoshita, M. Kuramoto, M. Ikeda, and H. Yokoyama, “Mode locking of a GaInN semiconductor laser with an internal saturable absorber,” Appl. Phys. Lett. 94(6), 061104 (2009).
[Crossref]

X. D. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, “Passive mode-locking in 1.3 μm two-section InAs quantum dot lasers,” Appl. Phys. Lett. 78(19), 2825–2827 (2001).
[Crossref]

L. A. Coldren, B. I. Miller, K. Iga, and J. A. Rentschler, “Monolithic 2-section GaInAsP-InP active-optical-resonator devices formed by reactive ion etching,” Appl. Phys. Lett. 38(5), 315–317 (1981).
[Crossref]

K. J. Ebeling, L. A. Coldren, B. I. Miller, and J. A. Rentschler, “Single-mode operation of coupled-cavity GaInAsP/InP semiconductor lasers,” Appl. Phys. Lett. 42(1), 6–8 (1983).
[Crossref]

M. Giehler, H. Kostial, R. Hey, and H. T. Grahn, “Suppression of longitudinal modes in two-sectioned, coupled-cavity GaAs/(Al,Ga)As terahertz quantum-cascade lasers,” Appl. Phys. Lett. 91(16), 161102 (2007).
[Crossref]

H. Li, J. M. Manceau, A. Andronico, V. Jagtap, C. Sirtori, L. H. Li, E. H. Linfield, A. G. Davies, and S. Barbieri, “Coupled-cavity terahertz quantum cascade lasers for single mode operation,” Appl. Phys. Lett. 104(24), 241102 (2014).
[Crossref]

M. Wienold, L. Schrottke, M. Giehler, R. Hey, W. Anders, and H. T. Grahn, “Low-threshold terahertz quantum-cascade lasers based on GaAs/Al0.25Ga0.75As heterostructures,” Appl. Phys. Lett. 97(7), 071113 (2010).
[Crossref]

N. Takado, K. Asakawa, T. Yuasa, S. Sugata, E. Miyauchi, H. Hashimoto, and M. Ishii, “Chemically enhanced focused ion-beam etching of deep grooves and laser-mirror facets in GaAs under Cl2 gas irradiation using a fine nozzle,” Appl. Phys. Lett. 50(26), 1891–1893 (1987).
[Crossref]

S. Barbieri, W. Maineult, S. S. Dhillon, C. Sirtori, J. Alton, N. Breuil, H. E. Beere, and D. A. Ritchie, “13 GHz direct modulation of terahertz quantum cascade lasers,” Appl. Phys. Lett. 91(14), 143510 (2007).
[Crossref]

Q. Y. Lu, S. Manna, D. H. Wu, S. Slivken, and M. Razeghi, “Shortwave quantum cascade laser frequency comb for multi- heterodyne spectroscopy,” Appl. Phys. Lett. 112(14), 141104 (2018).
[Crossref]

O. P. Marshall, S. Chakraborty, M. Khairuzzaman, H. E. Beere, and D. A. Ritchie, “Reversible mode switching in Y-coupled terahertz lasers,” Appl. Phys. Lett. 102(11), 111105 (2013).
[Crossref]

Electron. Lett. (1)

W. T. Tsang, N. A. Olsson, and R. A. Logan, “Stable single-longitudinal-mode operation under high-speed direct modulation in cleaved-coupled-cavity GaInAsP semiconductor-lasers,” Electron. Lett. 19(13), 488–490 (1983).
[Crossref]

IEEE J. Quantum Electron. (2)

L. A. Coldren and T. L. Koch, “Analysis and design of coupled-cavity lasers - Part I: Threshold gain analysis and design guidelines,” IEEE J. Quantum Electron. 20(6), 659–670 (1984).
[Crossref]

H. C. Liu, M. Jianmeng Li, Buchanan, and Z. R. Wasilewski, “High-frequency quantum-well infrared photodetectors measured by microwave-rectification technique,” IEEE J. Quantum Electron. 32(6), 1024–1028 (1996).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Yasui, S. Yokoyama, H. Inaba, K. Minoshima, T. Nagatsuma, and T. Araki, “Terahertz frequency metrology based on frequency comb,” IEEE J. Sel. Top. Quantum Electron. 17(1), 191–201 (2011).
[Crossref]

IEEE Photonics Technol. Lett. (1)

E. Sooudi, G. Huyet, J. G. McInerney, F. Lelarge, K. Merghem, R. Rosales, A. Martinez, A. Ramdane, and S. P. Hegarty, “Injection-locking properties of InAs/InP-based mode-locked quantum-dash lasers at 21 GHz,” IEEE Photonics Technol. Lett. 23(20), 1544–1546 (2011).
[Crossref]

Laser Photonics Rev. (1)

F. H. Wang, H. Nong, T. Fobbe, V. Pistore, S. Houver, S. Markmann, N. Jukam, M. Amanti, C. Sirtori, S. Moumdji, R. Colombelli, L. H. Li, E. Linfield, G. Davies, J. Mangeney, J. Tignon, and S. Dhillon, “Short terahertz pulse generation from a dispersion compensated modelocked semiconductor laser,” Laser Photonics Rev. 11(4), 1700013 (2017).
[Crossref]

Nat. Commun. (1)

M. S. Vitiello, M. Nobile, A. Ronzani, A. Tredicucci, F. Castellano, V. Talora, L. Li, E. H. Linfield, and A. G. Davies, “Photonic quasi-crystal terahertz lasers,” Nat. Commun. 5(1), 5884 (2014).
[Crossref] [PubMed]

Nat. Photonics (4)

S. Barbieri, M. Ravaro, P. Gellie, G. Santarelli, C. Manquest, C. Sirtori, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Coherent sampling of active mode-locked terahertz quantum cascade lasers and frequency synthesis,” Nat. Photonics 5(5), 306–313 (2011).
[Crossref]

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

M. Rösch, G. Scalari, M. Beck, and J. Faist, “Octave-spanning semiconductor laser,” Nat. Photonics 9(1), 42–47 (2015).
[Crossref]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Nature (1)

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

New J. Phys. (1)

C. T. A. Brown, M. A. Cataluna, A. A. Lagatsky, E. U. Rafailov, M. B. Agate, C. G. Leburn, and W. Sibbett, “Compact laser-diode-based femtosecond sources,” New J. Phys. 6, 175 (2004).
[Crossref]

Opt. Express (9)

I. Kundu, P. Dean, A. Valavanis, L. Chen, L. Li, J. E. Cunningham, E. H. Linfield, and A. G. Davies, “Quasi-continuous frequency tunable terahertz quantum cascade lasers with coupled cavity and integrated photonic lattice,” Opt. Express 25(1), 486–496 (2017).
[Crossref] [PubMed]

P. Gellie, S. Barbieri, J. F. Lampin, P. Filloux, C. Manquest, C. Sirtori, I. Sagnes, S. P. Khanna, E. H. Linfield, A. G. Davies, H. Beere, and D. Ritchie, “Injection-locking of terahertz quantum cascade lasers up to 35GHz using RF amplitude modulation,” Opt. Express 18(20), 20799–20816 (2010).
[Crossref] [PubMed]

C. Y. Wang, L. Kuznetsova, V. M. Gkortsas, L. Diehl, F. X. Kärtner, M. A. Belkin, A. Belyanin, X. Li, D. Ham, H. Schneider, P. Grant, C. Y. Song, S. Haffouz, Z. R. Wasilewski, H. C. Liu, and F. Capasso, “Mode-locked pulses from mid-infrared quantum cascade lasers,” Opt. Express 17(15), 12929–12943 (2009).
[Crossref] [PubMed]

M. Wienold, B. Röben, L. Schrottke, and H. T. Grahn, “Evidence for frequency comb emission from a Fabry-Pérot terahertz quantum-cascade laser,” Opt. Express 22(25), 30410–30424 (2014).
[Crossref] [PubMed]

I. Kundu, P. Dean, A. Valavanis, L. Chen, L. Li, J. E. Cunningham, E. H. Linfield, and A. G. Davies, “Discrete Vernier tuning in terahertz quantum cascade lasers using coupled cavities,” Opt. Express 22(13), 16595–16605 (2014).
[Crossref] [PubMed]

L. H. Li, J. X. Zhu, L. Chen, A. G. Davies, and E. H. Linfield, “The MBE growth and optimization of high performance terahertz frequency quantum cascade lasers,” Opt. Express 23(3), 2720–2729 (2015).
[Crossref] [PubMed]

L. Xu, D. Chen, T. Itoh, J. L. Reno, and B. S. Williams, “Focusing metasurface quantum-cascade laser with a near diffraction-limited beam,” Opt. Express 24(21), 24117–24128 (2016).
[Crossref] [PubMed]

W. J. Wan, H. Li, and J. C. Cao, “Homogeneous spectral broadening of pulsed terahertz quantum cascade lasers by radio frequency modulation,” Opt. Express 26(2), 980–989 (2018).
[Crossref] [PubMed]

K. Merghem, A. Akrout, A. Martinez, G. Moreau, J. P. Tourrenc, F. Lelarge, F. Van Dijk, G. H. Duan, G. Aubin, and A. Ramdane, “Short pulse generation using a passively mode locked single InGaAsP/InP quantum well laser,” Opt. Express 16(14), 10675–10683 (2008).
[Crossref] [PubMed]

Opt. Lett. (1)

Optica (1)

Rep. Prog. Phys. (1)

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).
[Crossref]

Sci. Rep. (1)

W. J. Wan, H. Li, T. Zhou, and J. C. Cao, “Homogeneous spectral spanning of terahertz semiconductor lasers with radio frequency modulation,” Sci. Rep. 7(1), 44109 (2017).
[Crossref] [PubMed]

Supercond. Sci. Technol. (1)

J. Chen, H. Horiguchi, H. B. Wang, K. Nakajima, T. Yamashita, and P. H. Wu, “Terahertz frequency metrology based on high-Tc Josephson junctions,” Supercond. Sci. Technol. 15(12), 1680–1684 (2002).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 (a) Schematic of the coupled-cavity terahertz QCL. The inset is a scanning electron microscope image of the fabricated short cavity and air gap of the laser. (b) Calculated total propagation losses as a function of eigen mode frequency of the coupled-cavity with material loss (green) and without material loss (black). The scatters are the calculated results and the solid lines are for the guide of eyes. The red stars are the measured lasing frequencies obtained from (d). (c) Measured light-current-voltage (L-I-V) characteristic of the coupled-cavity laser in continuous wave (cw) mode at 20 K. (d) Normalized terahertz emission spectra as a function of drive current without RF modulation at 20 K. Each spectrum is shifted vertically for clarity. The insets of (d) are magnified spectra to clear show the spectral degeneracy.
Fig. 2
Fig. 2 (a) Electrical inter-mode beat note mapping of the couple-cavity laser in free running mode at 20 K. (b) Magnified inter-mode beat note evolutions around 4 GHz and 8 GHz. The resolution bandwidth used in this measurement is 100 kHz and each trace is averaged for 20 times.
Fig. 3
Fig. 3 (a) Laser geometry and definitions of α and β directions for the far-field measurements of the coupled-cavity terahertz laser. (b), (c) and (d) are the measured far-field beam profiles at 500, 600, and 700 mA, respectively.
Fig. 4
Fig. 4 Near- and far-field simulations for the fundamental and higher order modes. (a) and (b) are the calculated electric field (real part) distributions of the fundamental and higher order modes on the laser facet, respectively. (c) and (d) are the simulated normalized far-field intensity patterns of the fundamental and higher order modes, respectively. (e), (f), and (g) are the composed far-field patterns by superimposing the fundamental and higher order mode patterns with different values of R that is defined as the power ratio of the higher order mode to the fundamental mode.
Fig. 5
Fig. 5 Schematic of the generation of the two-beat note frequencies observed in Fig. 2. The first beating labeled 1 generates the beat note frequency △, the second beating labeled 2 produces additional sideband at frequency ν0-△, and the third beating labeled 3 and the SHG process labeled 4 produce the beat note frequency 2△. SHG: second harmonic generation.
Fig. 6
Fig. 6 Terahertz emission spectra (a,c) and RF spectra (b,d) of the coupled-cavity terahertz laser under RF modulation on the short section with various RF power measured at a drive current of 500 mA. In (a) and (b), the modulation frequency is set as △ = 4.274 GHz; and in (c) and (d), the modulation frequency is 2△. In each subfigure, the bottom panel shows the results without RF modulation (RF off). The dashed lines in (a) and (c) are used to locate the mode positions.
Fig. 7
Fig. 7 Microwave rectifications measured at QCL drive currents of 500 mA (a), 600 mA (b) and 700 mA (c). The RF power is fixed at 10 dBm and the frequency is swept from 1 to 15 GHz. The dashed and solid vertical lines show the inter-mode beat note frequencies around △ and 2△, respectively.
Fig. 8
Fig. 8 Terahertz emission spectra (a,c) and RF spectra (b,d) of the coupled-cavity terahertz laser under RF modulation on the short section with various RF power measured at a drive current of 600 mA. In (a) and (b), the modulation frequency is set as △ = 4.172 GHz; and in (c) and (d), the modulation frequency is 2△. In each subfigure, the bottom panel shows the results without RF modulation (RF off).
Fig. 9
Fig. 9 Terahertz emission spectra (a,c) and RF spectra (b,d) of the coupled-cavity terahertz laser under RF modulation on the short section with various RF power measured at a drive current of 750 mA. In (a) and (b), the modulation frequency is set as △ = 4.325 GHz; and in (c) and (d), the modulation frequency is 2△. In each subfigure, the bottom panel shows the results without RF modulation (RF off).
Fig. 10
Fig. 10 Effects of microwave modulation on the long cavity of the coupled-cavity laser. (a) Schematic demonstration of the measurement setup. The microwave modulation is applied onto the long cavity (2.2 mm) section and the both cavities are pumped with DC. (b) Inter-mode beat note signal of the laser. (c) Emission spectrum of the coupled-cavity laser without RF modulation. (d) and (e) are the emission spectra of the coupled-cavity laser measured with RF modulations at 4 GHz and 8 GHz, respectively, with a RF power of 25 dBm. For the inter-mode beat note and emission spectra measurements, the coupled-cavity laser is driven at a current of 500 mA and the heat sink temperature is set as 20 K.
Fig. 11
Fig. 11 Microwave rectifications measured at QCL drive currents of 500 mA (a), 600 mA (b) and 700 mA (c). The RF power is fixed at 25 dBm and the frequency is swept from 1 to 15 GHz. The dashed and solid vertical lines show the inter-mode beat note frequencies around △ and 2△, respectively.

Metrics