Abstract

We leverage the photo-conductance (PC) effect in doped phase-shifter heaters for both controlling and calibrating Mach-Zehnder interferometer (MZI) switch elements. Both the steady-state and the transient response are experimentally characterized, and compact models for the PC current are developed. Utilizing the PC effect, a topology-agnostic algorithm is then outlined. The calibration procedure is experimentally verified against calibration with external photo-detectors using a non-blocking 4×4 Benes switch consisting of six 2×2 MZIs. It is shown that our PC-based approach agrees with the PD-based procedure within less than 2.5% of difference between the obtained calibrated values. Based on the calibrated PC values, all possible routing configurations are measured for extinction ratio (9.92–21.51dB), insertion loss (0.88–4.59dB), and exhibiting performances far below the 7% FEC limit (bit error rate of 3.8 × 103) using 25 Gbps 4-level pulse-amplitude-modulation signals (PAM4).

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Compact InGaAsP/InP nonblocking 4 × 4 trench-coupler-based Mach–Zehnder photonic switch fabric

Ke Liu, Le Wang, Chenglong Zhang, Qingyu Ma, and Bing Qi
Appl. Opt. 57(14) 3838-3846 (2018)

16 × 16 silicon Mach–Zehnder interferometer switch actuated with waveguide microheaters

Shuoyi Zhao, Liangjun Lu, Linjie Zhou, Dong Li, Zhanzhi Guo, and Jianping Chen
Photon. Res. 4(5) 202-207 (2016)

16 × 16 non-blocking silicon optical switch based on electro-optic Mach-Zehnder interferometers

Liangjun Lu, Shuoyi Zhao, Linjie Zhou, Dong Li, Zuxiang Li, Minjuan Wang, Xinwan Li, and Jianping Chen
Opt. Express 24(9) 9295-9307 (2016)

References

  • View by:
  • |
  • |
  • |

  1. C. V. networking Index, “Forecast and methodology, 2016-2021, white paper,” San Jose, CA, USA1 (2016).
  2. Q. Cheng, S. Rumley, M. Bahadori, and K. Bergman, “Photonic switching in high performance datacenters,” Opt. Express 26, 16022–16043 (2018).
    [Crossref] [PubMed]
  3. Y. Shen, M. H. Hattink, P. Samadi, Q. Cheng, Z. Hu, A. Gazman, and K. Bergman, “Software-defined networking control plane for seamless integration of multiple silicon photonic switches in datacom networks,” Opt. Express 26, 10914–10929 (2018).
    [Crossref] [PubMed]
  4. K. Wen, P. Samadi, S. Rumley, C. P. Chen, Y. Shen, M. Bahadori, K. Bergman, and J. Wilke, “Flexfly: Enabling a reconfigurable dragonfly through silicon photonics,” in High Performance Computing, Networking, Storage and Analysis, SC16: International Conference for, (IEEE, 2016), pp. 166–177.
    [Crossref]
  5. K. Chen, A. Singla, A. Singh, K. Ramachandran, L. Xu, Y. Zhang, X. Wen, and Y. Chen, “Osa: An optical switching architecture for data center networks with unprecedented flexibility,” IEEE/ACM Transactions on Netw. 22, 498–511 (2014).
    [Crossref]
  6. J. Shalf, S. Kamil, L. Oliker, and D. Skinner, “Analyzing ultra-scale application communication requirements for a reconfigurable hybrid interconnect,” in SC ’05: Proceedings of the 2005 ACM/IEEE Conference on Supercomputing, (2005), p. 17.
  7. A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. R. Chen, P.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20, 405–416 (2014).
    [Crossref]
  8. L. Lu, S. Zhao, L. Zhou, D. Li, Z. Li, M. Wang, X. Li, and J. Chen, “16× 16 non-blocking silicon optical switch based on electro-optic mach-zehnder interferometers,” Opt. Express 24, 9295–9307 (2016).
    [Crossref] [PubMed]
  9. L. Qiao, W. Tang, and T. Chu, “32× 32 silicon electro-optic switch with built-in monitors and balanced-status units,” Sci. Reports 7, 42306 (2017).
    [Crossref]
  10. D. Celo, D. J. Goodwill, J. Jiang, P. Dumais, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “32×32 silicon photonic switch,” in 2016 21st OptoElectronics and Communications Conference (OECC) held jointly with 2016 International Conference on Photonics in Switching (PS), (2016), pp. 1–3.
  11. T. Chu, L. Qiao, W. Tang, D. Guo, and W. Wu, “Fast, high-radix silicon photonic switches,” in 2018 Optical Fiber Communications Conference and Exposition (OFC), (IEEE, 2018), pp. 1–3.
  12. N. Dupuis and B. G. Lee, “Impact of topology on the scalability of mach–zehnder-based multistage silicon photonic switch networks,” J. Light. Technol. 36, 763–772 (2018).
    [Crossref]
  13. Q. Cheng, M. Bahadori, and K. Bergman, “Advanced path mapping for silicon photonic switch fabrics,” in CLEO: Science and Innovations, (Optical Society of America, 2017), pp. SW1O–5.
  14. K. Tanizawa, K. Suzuki, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, T. Sugaya, S. Suda, G. Cong, T. Kimura, K. Ikeda, S. Namiki, and H. Kawashima, “Ultra-compact 32 × 32 strictly-non-blocking si-wire optical switch with fan-out lga interposer,” Opt. Express 23, 17599–17606 (2015).
    [Crossref] [PubMed]
  15. S. K. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using cmos fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16, 316–324 (2010).
    [Crossref]
  16. Q. Cheng, M. Bahadori, Y. Huang, S. Rumley, and K. Bergman, “Smart routing tables for integrated photonic switch fabrics,” in Optical Communication (ECOC), 2017 European Conference on, (IEEE, 2017), pp. 1–3.
  17. Y. Huang, Q. Cheng, and K. Bergman, “Crosstalk-aware calibration for fast and automated functionalization of photonic integrated switch fabrics,” in CLEO: Science and Innovations, (Optical Society of America, 2018), pp. STh3B–6.
  18. P. Dumais, D. J. Goodwill, D. Celo, J. Jiang, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “Silicon photonic switch subsystem with 900 monolithically integrated calibration photodiodes and 64-fiber package,” J. Light. Technol. 36, 233–238 (2018).
    [Crossref]
  19. Y. Huang, Q. Cheng, N. C. Abrams, J. Zhou, S. Rumley, and K. Bergman, “Automated calibration and characterization for scalable integrated optical switch fabrics without built-in power monitors,” in Proc. 43rd Eur. Conf. Exhib. Opt. Commun., (2017).
  20. F. Morichetti, S. Grillanda, M. Carminati, G. Ferrari, M. Sampietro, M. J. Strain, M. Sorel, and A. Melloni, “Non-invasive on-chip light observation by contactless waveguide conductivity monitoring,” IEEE J. Sel. Top. Quantum Electron. 20, 292–301 (2014).
    [Crossref]
  21. N. C. Harris, Y. Ma, J. Mower, T. Baehr-Jones, D. Englund, M. Hochberg, and C. Galland, “Efficient, compact and low loss thermo-optic phase shifter in silicon,” Opt. Express 22, 10487–10493 (2014).
    [Crossref] [PubMed]
  22. D. Li, L. Zhou, L. Lu, and J. Chen, “Optical power monitoring with ultrahigh sensitivity in silicon waveguides and ring resonators,” IEEE Photonics J. 9, 1–10 (2017).
    [Crossref]
  23. H. Jayatilleka, K. Murray, M. Á. Guillén-Torres, M. Caverley, R. Hu, N. A. Jaeger, L. Chrostowski, and S. Shekhar, “Wavelength tuning and stabilization of microring-based filters using silicon in-resonator photoconductive heaters,” Opt. Express 23, 25084–25097 (2015).
    [Crossref] [PubMed]
  24. A. Gazman, Z. Zhu, M. Bahadori, and K. Bergman, “Wavelength locking of multicast signals using photo-conductive effect in silicon photonic platform,” in 2018 IEEE Optical Interconnects Conference (OI), (IEEE, 2018), pp. 27–28.
    [Crossref]
  25. L. Zhou, H. Zhu, H. Zhang, and J. Chen, “Photoconductive effect on pip micro-heaters integrated in silicon microring resonators,” Opt. Express 22, 2141–2149 (2014).
    [Crossref] [PubMed]
  26. H. Guan, A. Gazman, Y. Ma, Y. Liu, Q. Li, R. Ding, Y. Li, X. Zhu, T. Baehr-Jones, M. Hochberg, and K. Bergman, “Polarization-insensitive 40gb/s 4-wdm channels receiver on soi platform,” in 2015 IEEE Optical Interconnects Conference (OI), (2015), pp. 54–55.
    [Crossref]
  27. F. Horst, W. M. Green, S. Assefa, S. M. Shank, Y. A. Vlasov, and B. J. Offrein, “Cascaded mach-zehnder wavelength filters in silicon photonics for low loss and flat pass-band wdm (de-) multiplexing,” Opt. Express 21, 11652–11658 (2013).
    [Crossref] [PubMed]
  28. M. Streshinsky, R. Ding, Y. Liu, A. Novack, Y. Yang, Y. Ma, X. Tu, E. K. S. A. Chee, E.-J. P. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Low power 50 gb/s silicon traveling wave mach-zehnder modulator near 1300 nm,” Opt. Express 21, 30350–30357 (2013).
    [Crossref]
  29. M. Bahadori, A. Gazman, N. Janosik, S. Rumley, Z. Zhu, R. Polster, Q. Cheng, and K. Bergman, “Thermal rectification of integrated microheaters for microring resonators in silicon photonics platform,” J. Light. Technol. 36, 773–788 (2018).
    [Crossref]
  30. Y. Huang, Q. Cheng, and K. Bergman, “Automated calibration of balanced control to optimize performance of silicon photonic switch fabrics,” in 2018 Optical Fiber Communications Conference and Exposition (OFC), (IEEE, 2018), pp. 1–3.
  31. R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
    [Crossref]

2018 (5)

Q. Cheng, S. Rumley, M. Bahadori, and K. Bergman, “Photonic switching in high performance datacenters,” Opt. Express 26, 16022–16043 (2018).
[Crossref] [PubMed]

Y. Shen, M. H. Hattink, P. Samadi, Q. Cheng, Z. Hu, A. Gazman, and K. Bergman, “Software-defined networking control plane for seamless integration of multiple silicon photonic switches in datacom networks,” Opt. Express 26, 10914–10929 (2018).
[Crossref] [PubMed]

N. Dupuis and B. G. Lee, “Impact of topology on the scalability of mach–zehnder-based multistage silicon photonic switch networks,” J. Light. Technol. 36, 763–772 (2018).
[Crossref]

P. Dumais, D. J. Goodwill, D. Celo, J. Jiang, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “Silicon photonic switch subsystem with 900 monolithically integrated calibration photodiodes and 64-fiber package,” J. Light. Technol. 36, 233–238 (2018).
[Crossref]

M. Bahadori, A. Gazman, N. Janosik, S. Rumley, Z. Zhu, R. Polster, Q. Cheng, and K. Bergman, “Thermal rectification of integrated microheaters for microring resonators in silicon photonics platform,” J. Light. Technol. 36, 773–788 (2018).
[Crossref]

2017 (2)

D. Li, L. Zhou, L. Lu, and J. Chen, “Optical power monitoring with ultrahigh sensitivity in silicon waveguides and ring resonators,” IEEE Photonics J. 9, 1–10 (2017).
[Crossref]

L. Qiao, W. Tang, and T. Chu, “32× 32 silicon electro-optic switch with built-in monitors and balanced-status units,” Sci. Reports 7, 42306 (2017).
[Crossref]

2016 (1)

2015 (2)

2014 (5)

L. Zhou, H. Zhu, H. Zhang, and J. Chen, “Photoconductive effect on pip micro-heaters integrated in silicon microring resonators,” Opt. Express 22, 2141–2149 (2014).
[Crossref] [PubMed]

F. Morichetti, S. Grillanda, M. Carminati, G. Ferrari, M. Sampietro, M. J. Strain, M. Sorel, and A. Melloni, “Non-invasive on-chip light observation by contactless waveguide conductivity monitoring,” IEEE J. Sel. Top. Quantum Electron. 20, 292–301 (2014).
[Crossref]

N. C. Harris, Y. Ma, J. Mower, T. Baehr-Jones, D. Englund, M. Hochberg, and C. Galland, “Efficient, compact and low loss thermo-optic phase shifter in silicon,” Opt. Express 22, 10487–10493 (2014).
[Crossref] [PubMed]

K. Chen, A. Singla, A. Singh, K. Ramachandran, L. Xu, Y. Zhang, X. Wen, and Y. Chen, “Osa: An optical switching architecture for data center networks with unprecedented flexibility,” IEEE/ACM Transactions on Netw. 22, 498–511 (2014).
[Crossref]

A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. R. Chen, P.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20, 405–416 (2014).
[Crossref]

2013 (2)

2010 (1)

S. K. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using cmos fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16, 316–324 (2010).
[Crossref]

1987 (1)

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[Crossref]

Abrams, N. C.

Y. Huang, Q. Cheng, N. C. Abrams, J. Zhou, S. Rumley, and K. Bergman, “Automated calibration and characterization for scalable integrated optical switch fabrics without built-in power monitors,” in Proc. 43rd Eur. Conf. Exhib. Opt. Commun., (2017).

Assefa, S.

Baehr-Jones, T.

Baets, R.

S. K. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using cmos fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16, 316–324 (2010).
[Crossref]

Bahadori, M.

M. Bahadori, A. Gazman, N. Janosik, S. Rumley, Z. Zhu, R. Polster, Q. Cheng, and K. Bergman, “Thermal rectification of integrated microheaters for microring resonators in silicon photonics platform,” J. Light. Technol. 36, 773–788 (2018).
[Crossref]

Q. Cheng, S. Rumley, M. Bahadori, and K. Bergman, “Photonic switching in high performance datacenters,” Opt. Express 26, 16022–16043 (2018).
[Crossref] [PubMed]

A. Gazman, Z. Zhu, M. Bahadori, and K. Bergman, “Wavelength locking of multicast signals using photo-conductive effect in silicon photonic platform,” in 2018 IEEE Optical Interconnects Conference (OI), (IEEE, 2018), pp. 27–28.
[Crossref]

Q. Cheng, M. Bahadori, Y. Huang, S. Rumley, and K. Bergman, “Smart routing tables for integrated photonic switch fabrics,” in Optical Communication (ECOC), 2017 European Conference on, (IEEE, 2017), pp. 1–3.

Q. Cheng, M. Bahadori, and K. Bergman, “Advanced path mapping for silicon photonic switch fabrics,” in CLEO: Science and Innovations, (Optical Society of America, 2017), pp. SW1O–5.

K. Wen, P. Samadi, S. Rumley, C. P. Chen, Y. Shen, M. Bahadori, K. Bergman, and J. Wilke, “Flexfly: Enabling a reconfigurable dragonfly through silicon photonics,” in High Performance Computing, Networking, Storage and Analysis, SC16: International Conference for, (IEEE, 2016), pp. 166–177.
[Crossref]

Bennett, B.

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[Crossref]

Bergman, K.

M. Bahadori, A. Gazman, N. Janosik, S. Rumley, Z. Zhu, R. Polster, Q. Cheng, and K. Bergman, “Thermal rectification of integrated microheaters for microring resonators in silicon photonics platform,” J. Light. Technol. 36, 773–788 (2018).
[Crossref]

Q. Cheng, S. Rumley, M. Bahadori, and K. Bergman, “Photonic switching in high performance datacenters,” Opt. Express 26, 16022–16043 (2018).
[Crossref] [PubMed]

Y. Shen, M. H. Hattink, P. Samadi, Q. Cheng, Z. Hu, A. Gazman, and K. Bergman, “Software-defined networking control plane for seamless integration of multiple silicon photonic switches in datacom networks,” Opt. Express 26, 10914–10929 (2018).
[Crossref] [PubMed]

Y. Huang, Q. Cheng, and K. Bergman, “Automated calibration of balanced control to optimize performance of silicon photonic switch fabrics,” in 2018 Optical Fiber Communications Conference and Exposition (OFC), (IEEE, 2018), pp. 1–3.

A. Gazman, Z. Zhu, M. Bahadori, and K. Bergman, “Wavelength locking of multicast signals using photo-conductive effect in silicon photonic platform,” in 2018 IEEE Optical Interconnects Conference (OI), (IEEE, 2018), pp. 27–28.
[Crossref]

H. Guan, A. Gazman, Y. Ma, Y. Liu, Q. Li, R. Ding, Y. Li, X. Zhu, T. Baehr-Jones, M. Hochberg, and K. Bergman, “Polarization-insensitive 40gb/s 4-wdm channels receiver on soi platform,” in 2015 IEEE Optical Interconnects Conference (OI), (2015), pp. 54–55.
[Crossref]

Y. Huang, Q. Cheng, and K. Bergman, “Crosstalk-aware calibration for fast and automated functionalization of photonic integrated switch fabrics,” in CLEO: Science and Innovations, (Optical Society of America, 2018), pp. STh3B–6.

Y. Huang, Q. Cheng, N. C. Abrams, J. Zhou, S. Rumley, and K. Bergman, “Automated calibration and characterization for scalable integrated optical switch fabrics without built-in power monitors,” in Proc. 43rd Eur. Conf. Exhib. Opt. Commun., (2017).

K. Wen, P. Samadi, S. Rumley, C. P. Chen, Y. Shen, M. Bahadori, K. Bergman, and J. Wilke, “Flexfly: Enabling a reconfigurable dragonfly through silicon photonics,” in High Performance Computing, Networking, Storage and Analysis, SC16: International Conference for, (IEEE, 2016), pp. 166–177.
[Crossref]

Q. Cheng, M. Bahadori, and K. Bergman, “Advanced path mapping for silicon photonic switch fabrics,” in CLEO: Science and Innovations, (Optical Society of America, 2017), pp. SW1O–5.

Q. Cheng, M. Bahadori, Y. Huang, S. Rumley, and K. Bergman, “Smart routing tables for integrated photonic switch fabrics,” in Optical Communication (ECOC), 2017 European Conference on, (IEEE, 2017), pp. 1–3.

Bernier, E.

P. Dumais, D. J. Goodwill, D. Celo, J. Jiang, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “Silicon photonic switch subsystem with 900 monolithically integrated calibration photodiodes and 64-fiber package,” J. Light. Technol. 36, 233–238 (2018).
[Crossref]

D. Celo, D. J. Goodwill, J. Jiang, P. Dumais, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “32×32 silicon photonic switch,” in 2016 21st OptoElectronics and Communications Conference (OECC) held jointly with 2016 International Conference on Photonics in Switching (PS), (2016), pp. 1–3.

Bogaerts, W.

S. K. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using cmos fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16, 316–324 (2010).
[Crossref]

Carminati, M.

F. Morichetti, S. Grillanda, M. Carminati, G. Ferrari, M. Sampietro, M. J. Strain, M. Sorel, and A. Melloni, “Non-invasive on-chip light observation by contactless waveguide conductivity monitoring,” IEEE J. Sel. Top. Quantum Electron. 20, 292–301 (2014).
[Crossref]

Caverley, M.

Celo, D.

P. Dumais, D. J. Goodwill, D. Celo, J. Jiang, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “Silicon photonic switch subsystem with 900 monolithically integrated calibration photodiodes and 64-fiber package,” J. Light. Technol. 36, 233–238 (2018).
[Crossref]

D. Celo, D. J. Goodwill, J. Jiang, P. Dumais, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “32×32 silicon photonic switch,” in 2016 21st OptoElectronics and Communications Conference (OECC) held jointly with 2016 International Conference on Photonics in Switching (PS), (2016), pp. 1–3.

Chee, E. K. S. A.

Chen, C. P.

K. Wen, P. Samadi, S. Rumley, C. P. Chen, Y. Shen, M. Bahadori, K. Bergman, and J. Wilke, “Flexfly: Enabling a reconfigurable dragonfly through silicon photonics,” in High Performance Computing, Networking, Storage and Analysis, SC16: International Conference for, (IEEE, 2016), pp. 166–177.
[Crossref]

Chen, J.

Chen, K.

K. Chen, A. Singla, A. Singh, K. Ramachandran, L. Xu, Y. Zhang, X. Wen, and Y. Chen, “Osa: An optical switching architecture for data center networks with unprecedented flexibility,” IEEE/ACM Transactions on Netw. 22, 498–511 (2014).
[Crossref]

Chen, K. K. R.

A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. R. Chen, P.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20, 405–416 (2014).
[Crossref]

Chen, Y.

K. Chen, A. Singla, A. Singh, K. Ramachandran, L. Xu, Y. Zhang, X. Wen, and Y. Chen, “Osa: An optical switching architecture for data center networks with unprecedented flexibility,” IEEE/ACM Transactions on Netw. 22, 498–511 (2014).
[Crossref]

Cheng, Q.

M. Bahadori, A. Gazman, N. Janosik, S. Rumley, Z. Zhu, R. Polster, Q. Cheng, and K. Bergman, “Thermal rectification of integrated microheaters for microring resonators in silicon photonics platform,” J. Light. Technol. 36, 773–788 (2018).
[Crossref]

Q. Cheng, S. Rumley, M. Bahadori, and K. Bergman, “Photonic switching in high performance datacenters,” Opt. Express 26, 16022–16043 (2018).
[Crossref] [PubMed]

Y. Shen, M. H. Hattink, P. Samadi, Q. Cheng, Z. Hu, A. Gazman, and K. Bergman, “Software-defined networking control plane for seamless integration of multiple silicon photonic switches in datacom networks,” Opt. Express 26, 10914–10929 (2018).
[Crossref] [PubMed]

Y. Huang, Q. Cheng, and K. Bergman, “Automated calibration of balanced control to optimize performance of silicon photonic switch fabrics,” in 2018 Optical Fiber Communications Conference and Exposition (OFC), (IEEE, 2018), pp. 1–3.

Y. Huang, Q. Cheng, N. C. Abrams, J. Zhou, S. Rumley, and K. Bergman, “Automated calibration and characterization for scalable integrated optical switch fabrics without built-in power monitors,” in Proc. 43rd Eur. Conf. Exhib. Opt. Commun., (2017).

Q. Cheng, M. Bahadori, and K. Bergman, “Advanced path mapping for silicon photonic switch fabrics,” in CLEO: Science and Innovations, (Optical Society of America, 2017), pp. SW1O–5.

Y. Huang, Q. Cheng, and K. Bergman, “Crosstalk-aware calibration for fast and automated functionalization of photonic integrated switch fabrics,” in CLEO: Science and Innovations, (Optical Society of America, 2018), pp. STh3B–6.

Q. Cheng, M. Bahadori, Y. Huang, S. Rumley, and K. Bergman, “Smart routing tables for integrated photonic switch fabrics,” in Optical Communication (ECOC), 2017 European Conference on, (IEEE, 2017), pp. 1–3.

Chrostowski, L.

Chu, T.

L. Qiao, W. Tang, and T. Chu, “32× 32 silicon electro-optic switch with built-in monitors and balanced-status units,” Sci. Reports 7, 42306 (2017).
[Crossref]

T. Chu, L. Qiao, W. Tang, D. Guo, and W. Wu, “Fast, high-radix silicon photonic switches,” in 2018 Optical Fiber Communications Conference and Exposition (OFC), (IEEE, 2018), pp. 1–3.

Cong, G.

Ding, R.

M. Streshinsky, R. Ding, Y. Liu, A. Novack, Y. Yang, Y. Ma, X. Tu, E. K. S. A. Chee, E.-J. P. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Low power 50 gb/s silicon traveling wave mach-zehnder modulator near 1300 nm,” Opt. Express 21, 30350–30357 (2013).
[Crossref]

H. Guan, A. Gazman, Y. Ma, Y. Liu, Q. Li, R. Ding, Y. Li, X. Zhu, T. Baehr-Jones, M. Hochberg, and K. Bergman, “Polarization-insensitive 40gb/s 4-wdm channels receiver on soi platform,” in 2015 IEEE Optical Interconnects Conference (OI), (2015), pp. 54–55.
[Crossref]

Duan, N.

A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. R. Chen, P.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20, 405–416 (2014).
[Crossref]

Dumais, P.

P. Dumais, D. J. Goodwill, D. Celo, J. Jiang, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “Silicon photonic switch subsystem with 900 monolithically integrated calibration photodiodes and 64-fiber package,” J. Light. Technol. 36, 233–238 (2018).
[Crossref]

D. Celo, D. J. Goodwill, J. Jiang, P. Dumais, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “32×32 silicon photonic switch,” in 2016 21st OptoElectronics and Communications Conference (OECC) held jointly with 2016 International Conference on Photonics in Switching (PS), (2016), pp. 1–3.

Dumon, P.

S. K. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using cmos fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16, 316–324 (2010).
[Crossref]

Dupuis, N.

N. Dupuis and B. G. Lee, “Impact of topology on the scalability of mach–zehnder-based multistage silicon photonic switch networks,” J. Light. Technol. 36, 763–772 (2018).
[Crossref]

Englund, D.

Fang, Q.

A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. R. Chen, P.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20, 405–416 (2014).
[Crossref]

Ferrari, G.

F. Morichetti, S. Grillanda, M. Carminati, G. Ferrari, M. Sampietro, M. J. Strain, M. Sorel, and A. Melloni, “Non-invasive on-chip light observation by contactless waveguide conductivity monitoring,” IEEE J. Sel. Top. Quantum Electron. 20, 292–301 (2014).
[Crossref]

Galland, C.

Gazman, A.

Y. Shen, M. H. Hattink, P. Samadi, Q. Cheng, Z. Hu, A. Gazman, and K. Bergman, “Software-defined networking control plane for seamless integration of multiple silicon photonic switches in datacom networks,” Opt. Express 26, 10914–10929 (2018).
[Crossref] [PubMed]

M. Bahadori, A. Gazman, N. Janosik, S. Rumley, Z. Zhu, R. Polster, Q. Cheng, and K. Bergman, “Thermal rectification of integrated microheaters for microring resonators in silicon photonics platform,” J. Light. Technol. 36, 773–788 (2018).
[Crossref]

A. Gazman, Z. Zhu, M. Bahadori, and K. Bergman, “Wavelength locking of multicast signals using photo-conductive effect in silicon photonic platform,” in 2018 IEEE Optical Interconnects Conference (OI), (IEEE, 2018), pp. 27–28.
[Crossref]

H. Guan, A. Gazman, Y. Ma, Y. Liu, Q. Li, R. Ding, Y. Li, X. Zhu, T. Baehr-Jones, M. Hochberg, and K. Bergman, “Polarization-insensitive 40gb/s 4-wdm channels receiver on soi platform,” in 2015 IEEE Optical Interconnects Conference (OI), (2015), pp. 54–55.
[Crossref]

Geng, D.

P. Dumais, D. J. Goodwill, D. Celo, J. Jiang, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “Silicon photonic switch subsystem with 900 monolithically integrated calibration photodiodes and 64-fiber package,” J. Light. Technol. 36, 233–238 (2018).
[Crossref]

D. Celo, D. J. Goodwill, J. Jiang, P. Dumais, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “32×32 silicon photonic switch,” in 2016 21st OptoElectronics and Communications Conference (OECC) held jointly with 2016 International Conference on Photonics in Switching (PS), (2016), pp. 1–3.

Goodwill, D. J.

P. Dumais, D. J. Goodwill, D. Celo, J. Jiang, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “Silicon photonic switch subsystem with 900 monolithically integrated calibration photodiodes and 64-fiber package,” J. Light. Technol. 36, 233–238 (2018).
[Crossref]

D. Celo, D. J. Goodwill, J. Jiang, P. Dumais, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “32×32 silicon photonic switch,” in 2016 21st OptoElectronics and Communications Conference (OECC) held jointly with 2016 International Conference on Photonics in Switching (PS), (2016), pp. 1–3.

Green, W. M.

Grillanda, S.

F. Morichetti, S. Grillanda, M. Carminati, G. Ferrari, M. Sampietro, M. J. Strain, M. Sorel, and A. Melloni, “Non-invasive on-chip light observation by contactless waveguide conductivity monitoring,” IEEE J. Sel. Top. Quantum Electron. 20, 292–301 (2014).
[Crossref]

Guan, H.

H. Guan, A. Gazman, Y. Ma, Y. Liu, Q. Li, R. Ding, Y. Li, X. Zhu, T. Baehr-Jones, M. Hochberg, and K. Bergman, “Polarization-insensitive 40gb/s 4-wdm channels receiver on soi platform,” in 2015 IEEE Optical Interconnects Conference (OI), (2015), pp. 54–55.
[Crossref]

Guillén-Torres, M. Á.

Guo, D.

T. Chu, L. Qiao, W. Tang, D. Guo, and W. Wu, “Fast, high-radix silicon photonic switches,” in 2018 Optical Fiber Communications Conference and Exposition (OFC), (IEEE, 2018), pp. 1–3.

Harris, N. C.

Hattink, M. H.

He, J.

P. Dumais, D. J. Goodwill, D. Celo, J. Jiang, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “Silicon photonic switch subsystem with 900 monolithically integrated calibration photodiodes and 64-fiber package,” J. Light. Technol. 36, 233–238 (2018).
[Crossref]

D. Celo, D. J. Goodwill, J. Jiang, P. Dumais, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “32×32 silicon photonic switch,” in 2016 21st OptoElectronics and Communications Conference (OECC) held jointly with 2016 International Conference on Photonics in Switching (PS), (2016), pp. 1–3.

Hochberg, M.

Horst, F.

Hu, R.

Hu, Z.

Huang, Y.

Y. Huang, Q. Cheng, and K. Bergman, “Automated calibration of balanced control to optimize performance of silicon photonic switch fabrics,” in 2018 Optical Fiber Communications Conference and Exposition (OFC), (IEEE, 2018), pp. 1–3.

Y. Huang, Q. Cheng, N. C. Abrams, J. Zhou, S. Rumley, and K. Bergman, “Automated calibration and characterization for scalable integrated optical switch fabrics without built-in power monitors,” in Proc. 43rd Eur. Conf. Exhib. Opt. Commun., (2017).

Q. Cheng, M. Bahadori, Y. Huang, S. Rumley, and K. Bergman, “Smart routing tables for integrated photonic switch fabrics,” in Optical Communication (ECOC), 2017 European Conference on, (IEEE, 2017), pp. 1–3.

Y. Huang, Q. Cheng, and K. Bergman, “Crosstalk-aware calibration for fast and automated functionalization of photonic integrated switch fabrics,” in CLEO: Science and Innovations, (Optical Society of America, 2018), pp. STh3B–6.

Ikeda, K.

Jaeger, N. A.

Janosik, N.

M. Bahadori, A. Gazman, N. Janosik, S. Rumley, Z. Zhu, R. Polster, Q. Cheng, and K. Bergman, “Thermal rectification of integrated microheaters for microring resonators in silicon photonics platform,” J. Light. Technol. 36, 773–788 (2018).
[Crossref]

Jayatilleka, H.

Jiang, J.

P. Dumais, D. J. Goodwill, D. Celo, J. Jiang, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “Silicon photonic switch subsystem with 900 monolithically integrated calibration photodiodes and 64-fiber package,” J. Light. Technol. 36, 233–238 (2018).
[Crossref]

D. Celo, D. J. Goodwill, J. Jiang, P. Dumais, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “32×32 silicon photonic switch,” in 2016 21st OptoElectronics and Communications Conference (OECC) held jointly with 2016 International Conference on Photonics in Switching (PS), (2016), pp. 1–3.

Kamil, S.

J. Shalf, S. Kamil, L. Oliker, and D. Skinner, “Analyzing ultra-scale application communication requirements for a reconfigurable hybrid interconnect,” in SC ’05: Proceedings of the 2005 ACM/IEEE Conference on Supercomputing, (2005), p. 17.

Kawashima, H.

Kimura, T.

Koshino, K.

Lee, B. G.

N. Dupuis and B. G. Lee, “Impact of topology on the scalability of mach–zehnder-based multistage silicon photonic switch networks,” J. Light. Technol. 36, 763–772 (2018).
[Crossref]

Li, C.

A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. R. Chen, P.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20, 405–416 (2014).
[Crossref]

Li, D.

D. Li, L. Zhou, L. Lu, and J. Chen, “Optical power monitoring with ultrahigh sensitivity in silicon waveguides and ring resonators,” IEEE Photonics J. 9, 1–10 (2017).
[Crossref]

L. Lu, S. Zhao, L. Zhou, D. Li, Z. Li, M. Wang, X. Li, and J. Chen, “16× 16 non-blocking silicon optical switch based on electro-optic mach-zehnder interferometers,” Opt. Express 24, 9295–9307 (2016).
[Crossref] [PubMed]

Li, M.

P. Dumais, D. J. Goodwill, D. Celo, J. Jiang, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “Silicon photonic switch subsystem with 900 monolithically integrated calibration photodiodes and 64-fiber package,” J. Light. Technol. 36, 233–238 (2018).
[Crossref]

D. Celo, D. J. Goodwill, J. Jiang, P. Dumais, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “32×32 silicon photonic switch,” in 2016 21st OptoElectronics and Communications Conference (OECC) held jointly with 2016 International Conference on Photonics in Switching (PS), (2016), pp. 1–3.

Li, Q.

H. Guan, A. Gazman, Y. Ma, Y. Liu, Q. Li, R. Ding, Y. Li, X. Zhu, T. Baehr-Jones, M. Hochberg, and K. Bergman, “Polarization-insensitive 40gb/s 4-wdm channels receiver on soi platform,” in 2015 IEEE Optical Interconnects Conference (OI), (2015), pp. 54–55.
[Crossref]

Li, X.

Li, Y.

H. Guan, A. Gazman, Y. Ma, Y. Liu, Q. Li, R. Ding, Y. Li, X. Zhu, T. Baehr-Jones, M. Hochberg, and K. Bergman, “Polarization-insensitive 40gb/s 4-wdm channels receiver on soi platform,” in 2015 IEEE Optical Interconnects Conference (OI), (2015), pp. 54–55.
[Crossref]

Li, Z.

Lim, A. E.-J.

A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. R. Chen, P.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20, 405–416 (2014).
[Crossref]

Lim, E.-J. P.

Liow, T.-Y.

A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. R. Chen, P.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20, 405–416 (2014).
[Crossref]

Liu, W.

P. Dumais, D. J. Goodwill, D. Celo, J. Jiang, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “Silicon photonic switch subsystem with 900 monolithically integrated calibration photodiodes and 64-fiber package,” J. Light. Technol. 36, 233–238 (2018).
[Crossref]

D. Celo, D. J. Goodwill, J. Jiang, P. Dumais, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “32×32 silicon photonic switch,” in 2016 21st OptoElectronics and Communications Conference (OECC) held jointly with 2016 International Conference on Photonics in Switching (PS), (2016), pp. 1–3.

Liu, Y.

M. Streshinsky, R. Ding, Y. Liu, A. Novack, Y. Yang, Y. Ma, X. Tu, E. K. S. A. Chee, E.-J. P. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Low power 50 gb/s silicon traveling wave mach-zehnder modulator near 1300 nm,” Opt. Express 21, 30350–30357 (2013).
[Crossref]

H. Guan, A. Gazman, Y. Ma, Y. Liu, Q. Li, R. Ding, Y. Li, X. Zhu, T. Baehr-Jones, M. Hochberg, and K. Bergman, “Polarization-insensitive 40gb/s 4-wdm channels receiver on soi platform,” in 2015 IEEE Optical Interconnects Conference (OI), (2015), pp. 54–55.
[Crossref]

Lo, G.-Q.

Lu, L.

D. Li, L. Zhou, L. Lu, and J. Chen, “Optical power monitoring with ultrahigh sensitivity in silicon waveguides and ring resonators,” IEEE Photonics J. 9, 1–10 (2017).
[Crossref]

L. Lu, S. Zhao, L. Zhou, D. Li, Z. Li, M. Wang, X. Li, and J. Chen, “16× 16 non-blocking silicon optical switch based on electro-optic mach-zehnder interferometers,” Opt. Express 24, 9295–9307 (2016).
[Crossref] [PubMed]

Ma, Y.

Matsumaro, K.

Mehrvar, H.

P. Dumais, D. J. Goodwill, D. Celo, J. Jiang, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “Silicon photonic switch subsystem with 900 monolithically integrated calibration photodiodes and 64-fiber package,” J. Light. Technol. 36, 233–238 (2018).
[Crossref]

D. Celo, D. J. Goodwill, J. Jiang, P. Dumais, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “32×32 silicon photonic switch,” in 2016 21st OptoElectronics and Communications Conference (OECC) held jointly with 2016 International Conference on Photonics in Switching (PS), (2016), pp. 1–3.

Melloni, A.

F. Morichetti, S. Grillanda, M. Carminati, G. Ferrari, M. Sampietro, M. J. Strain, M. Sorel, and A. Melloni, “Non-invasive on-chip light observation by contactless waveguide conductivity monitoring,” IEEE J. Sel. Top. Quantum Electron. 20, 292–301 (2014).
[Crossref]

Morichetti, F.

F. Morichetti, S. Grillanda, M. Carminati, G. Ferrari, M. Sampietro, M. J. Strain, M. Sorel, and A. Melloni, “Non-invasive on-chip light observation by contactless waveguide conductivity monitoring,” IEEE J. Sel. Top. Quantum Electron. 20, 292–301 (2014).
[Crossref]

Mower, J.

Murray, K.

Namiki, S.

Novack, A.

Offrein, B. J.

Ohtsuka, M.

Oliker, L.

J. Shalf, S. Kamil, L. Oliker, and D. Skinner, “Analyzing ultra-scale application communication requirements for a reconfigurable hybrid interconnect,” in SC ’05: Proceedings of the 2005 ACM/IEEE Conference on Supercomputing, (2005), p. 17.

Polster, R.

M. Bahadori, A. Gazman, N. Janosik, S. Rumley, Z. Zhu, R. Polster, Q. Cheng, and K. Bergman, “Thermal rectification of integrated microheaters for microring resonators in silicon photonics platform,” J. Light. Technol. 36, 773–788 (2018).
[Crossref]

Qiao, L.

L. Qiao, W. Tang, and T. Chu, “32× 32 silicon electro-optic switch with built-in monitors and balanced-status units,” Sci. Reports 7, 42306 (2017).
[Crossref]

T. Chu, L. Qiao, W. Tang, D. Guo, and W. Wu, “Fast, high-radix silicon photonic switches,” in 2018 Optical Fiber Communications Conference and Exposition (OFC), (IEEE, 2018), pp. 1–3.

Ramachandran, K.

K. Chen, A. Singla, A. Singh, K. Ramachandran, L. Xu, Y. Zhang, X. Wen, and Y. Chen, “Osa: An optical switching architecture for data center networks with unprecedented flexibility,” IEEE/ACM Transactions on Netw. 22, 498–511 (2014).
[Crossref]

Rumley, S.

M. Bahadori, A. Gazman, N. Janosik, S. Rumley, Z. Zhu, R. Polster, Q. Cheng, and K. Bergman, “Thermal rectification of integrated microheaters for microring resonators in silicon photonics platform,” J. Light. Technol. 36, 773–788 (2018).
[Crossref]

Q. Cheng, S. Rumley, M. Bahadori, and K. Bergman, “Photonic switching in high performance datacenters,” Opt. Express 26, 16022–16043 (2018).
[Crossref] [PubMed]

Y. Huang, Q. Cheng, N. C. Abrams, J. Zhou, S. Rumley, and K. Bergman, “Automated calibration and characterization for scalable integrated optical switch fabrics without built-in power monitors,” in Proc. 43rd Eur. Conf. Exhib. Opt. Commun., (2017).

K. Wen, P. Samadi, S. Rumley, C. P. Chen, Y. Shen, M. Bahadori, K. Bergman, and J. Wilke, “Flexfly: Enabling a reconfigurable dragonfly through silicon photonics,” in High Performance Computing, Networking, Storage and Analysis, SC16: International Conference for, (IEEE, 2016), pp. 166–177.
[Crossref]

Q. Cheng, M. Bahadori, Y. Huang, S. Rumley, and K. Bergman, “Smart routing tables for integrated photonic switch fabrics,” in Optical Communication (ECOC), 2017 European Conference on, (IEEE, 2017), pp. 1–3.

Samadi, P.

Y. Shen, M. H. Hattink, P. Samadi, Q. Cheng, Z. Hu, A. Gazman, and K. Bergman, “Software-defined networking control plane for seamless integration of multiple silicon photonic switches in datacom networks,” Opt. Express 26, 10914–10929 (2018).
[Crossref] [PubMed]

K. Wen, P. Samadi, S. Rumley, C. P. Chen, Y. Shen, M. Bahadori, K. Bergman, and J. Wilke, “Flexfly: Enabling a reconfigurable dragonfly through silicon photonics,” in High Performance Computing, Networking, Storage and Analysis, SC16: International Conference for, (IEEE, 2016), pp. 166–177.
[Crossref]

Sampietro, M.

F. Morichetti, S. Grillanda, M. Carminati, G. Ferrari, M. Sampietro, M. J. Strain, M. Sorel, and A. Melloni, “Non-invasive on-chip light observation by contactless waveguide conductivity monitoring,” IEEE J. Sel. Top. Quantum Electron. 20, 292–301 (2014).
[Crossref]

Seki, M.

Selvaraja, S. K.

S. K. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using cmos fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16, 316–324 (2010).
[Crossref]

Shalf, J.

J. Shalf, S. Kamil, L. Oliker, and D. Skinner, “Analyzing ultra-scale application communication requirements for a reconfigurable hybrid interconnect,” in SC ’05: Proceedings of the 2005 ACM/IEEE Conference on Supercomputing, (2005), p. 17.

Shank, S. M.

Shekhar, S.

Shen, Y.

Y. Shen, M. H. Hattink, P. Samadi, Q. Cheng, Z. Hu, A. Gazman, and K. Bergman, “Software-defined networking control plane for seamless integration of multiple silicon photonic switches in datacom networks,” Opt. Express 26, 10914–10929 (2018).
[Crossref] [PubMed]

K. Wen, P. Samadi, S. Rumley, C. P. Chen, Y. Shen, M. Bahadori, K. Bergman, and J. Wilke, “Flexfly: Enabling a reconfigurable dragonfly through silicon photonics,” in High Performance Computing, Networking, Storage and Analysis, SC16: International Conference for, (IEEE, 2016), pp. 166–177.
[Crossref]

Singh, A.

K. Chen, A. Singla, A. Singh, K. Ramachandran, L. Xu, Y. Zhang, X. Wen, and Y. Chen, “Osa: An optical switching architecture for data center networks with unprecedented flexibility,” IEEE/ACM Transactions on Netw. 22, 498–511 (2014).
[Crossref]

Singla, A.

K. Chen, A. Singla, A. Singh, K. Ramachandran, L. Xu, Y. Zhang, X. Wen, and Y. Chen, “Osa: An optical switching architecture for data center networks with unprecedented flexibility,” IEEE/ACM Transactions on Netw. 22, 498–511 (2014).
[Crossref]

Skinner, D.

J. Shalf, S. Kamil, L. Oliker, and D. Skinner, “Analyzing ultra-scale application communication requirements for a reconfigurable hybrid interconnect,” in SC ’05: Proceedings of the 2005 ACM/IEEE Conference on Supercomputing, (2005), p. 17.

Song, J.

A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. R. Chen, P.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20, 405–416 (2014).
[Crossref]

Soref, R.

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[Crossref]

Sorel, M.

F. Morichetti, S. Grillanda, M. Carminati, G. Ferrari, M. Sampietro, M. J. Strain, M. Sorel, and A. Melloni, “Non-invasive on-chip light observation by contactless waveguide conductivity monitoring,” IEEE J. Sel. Top. Quantum Electron. 20, 292–301 (2014).
[Crossref]

Strain, M. J.

F. Morichetti, S. Grillanda, M. Carminati, G. Ferrari, M. Sampietro, M. J. Strain, M. Sorel, and A. Melloni, “Non-invasive on-chip light observation by contactless waveguide conductivity monitoring,” IEEE J. Sel. Top. Quantum Electron. 20, 292–301 (2014).
[Crossref]

Streshinsky, M.

Suda, S.

Sugaya, T.

Suzuki, K.

Tang, W.

L. Qiao, W. Tang, and T. Chu, “32× 32 silicon electro-optic switch with built-in monitors and balanced-status units,” Sci. Reports 7, 42306 (2017).
[Crossref]

T. Chu, L. Qiao, W. Tang, D. Guo, and W. Wu, “Fast, high-radix silicon photonic switches,” in 2018 Optical Fiber Communications Conference and Exposition (OFC), (IEEE, 2018), pp. 1–3.

Tanizawa, K.

Tern, P.-C.

A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. R. Chen, P.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20, 405–416 (2014).
[Crossref]

Toyama, M.

Tu, X.

P. Dumais, D. J. Goodwill, D. Celo, J. Jiang, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “Silicon photonic switch subsystem with 900 monolithically integrated calibration photodiodes and 64-fiber package,” J. Light. Technol. 36, 233–238 (2018).
[Crossref]

A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. R. Chen, P.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20, 405–416 (2014).
[Crossref]

M. Streshinsky, R. Ding, Y. Liu, A. Novack, Y. Yang, Y. Ma, X. Tu, E. K. S. A. Chee, E.-J. P. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Low power 50 gb/s silicon traveling wave mach-zehnder modulator near 1300 nm,” Opt. Express 21, 30350–30357 (2013).
[Crossref]

D. Celo, D. J. Goodwill, J. Jiang, P. Dumais, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “32×32 silicon photonic switch,” in 2016 21st OptoElectronics and Communications Conference (OECC) held jointly with 2016 International Conference on Photonics in Switching (PS), (2016), pp. 1–3.

Van Thourhout, D.

S. K. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using cmos fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16, 316–324 (2010).
[Crossref]

Vlasov, Y. A.

Wang, M.

Wei, Y.

P. Dumais, D. J. Goodwill, D. Celo, J. Jiang, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “Silicon photonic switch subsystem with 900 monolithically integrated calibration photodiodes and 64-fiber package,” J. Light. Technol. 36, 233–238 (2018).
[Crossref]

D. Celo, D. J. Goodwill, J. Jiang, P. Dumais, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “32×32 silicon photonic switch,” in 2016 21st OptoElectronics and Communications Conference (OECC) held jointly with 2016 International Conference on Photonics in Switching (PS), (2016), pp. 1–3.

Wen, K.

K. Wen, P. Samadi, S. Rumley, C. P. Chen, Y. Shen, M. Bahadori, K. Bergman, and J. Wilke, “Flexfly: Enabling a reconfigurable dragonfly through silicon photonics,” in High Performance Computing, Networking, Storage and Analysis, SC16: International Conference for, (IEEE, 2016), pp. 166–177.
[Crossref]

Wen, X.

K. Chen, A. Singla, A. Singh, K. Ramachandran, L. Xu, Y. Zhang, X. Wen, and Y. Chen, “Osa: An optical switching architecture for data center networks with unprecedented flexibility,” IEEE/ACM Transactions on Netw. 22, 498–511 (2014).
[Crossref]

Wilke, J.

K. Wen, P. Samadi, S. Rumley, C. P. Chen, Y. Shen, M. Bahadori, K. Bergman, and J. Wilke, “Flexfly: Enabling a reconfigurable dragonfly through silicon photonics,” in High Performance Computing, Networking, Storage and Analysis, SC16: International Conference for, (IEEE, 2016), pp. 166–177.
[Crossref]

Wu, W.

T. Chu, L. Qiao, W. Tang, D. Guo, and W. Wu, “Fast, high-radix silicon photonic switches,” in 2018 Optical Fiber Communications Conference and Exposition (OFC), (IEEE, 2018), pp. 1–3.

Xu, L.

K. Chen, A. Singla, A. Singh, K. Ramachandran, L. Xu, Y. Zhang, X. Wen, and Y. Chen, “Osa: An optical switching architecture for data center networks with unprecedented flexibility,” IEEE/ACM Transactions on Netw. 22, 498–511 (2014).
[Crossref]

Yan, S.

P. Dumais, D. J. Goodwill, D. Celo, J. Jiang, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “Silicon photonic switch subsystem with 900 monolithically integrated calibration photodiodes and 64-fiber package,” J. Light. Technol. 36, 233–238 (2018).
[Crossref]

D. Celo, D. J. Goodwill, J. Jiang, P. Dumais, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “32×32 silicon photonic switch,” in 2016 21st OptoElectronics and Communications Conference (OECC) held jointly with 2016 International Conference on Photonics in Switching (PS), (2016), pp. 1–3.

Yang, Y.

Yokoyama, N.

Zhang, C.

P. Dumais, D. J. Goodwill, D. Celo, J. Jiang, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “Silicon photonic switch subsystem with 900 monolithically integrated calibration photodiodes and 64-fiber package,” J. Light. Technol. 36, 233–238 (2018).
[Crossref]

P. Dumais, D. J. Goodwill, D. Celo, J. Jiang, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “Silicon photonic switch subsystem with 900 monolithically integrated calibration photodiodes and 64-fiber package,” J. Light. Technol. 36, 233–238 (2018).
[Crossref]

D. Celo, D. J. Goodwill, J. Jiang, P. Dumais, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “32×32 silicon photonic switch,” in 2016 21st OptoElectronics and Communications Conference (OECC) held jointly with 2016 International Conference on Photonics in Switching (PS), (2016), pp. 1–3.

D. Celo, D. J. Goodwill, J. Jiang, P. Dumais, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “32×32 silicon photonic switch,” in 2016 21st OptoElectronics and Communications Conference (OECC) held jointly with 2016 International Conference on Photonics in Switching (PS), (2016), pp. 1–3.

Zhang, H.

Zhang, Y.

K. Chen, A. Singla, A. Singh, K. Ramachandran, L. Xu, Y. Zhang, X. Wen, and Y. Chen, “Osa: An optical switching architecture for data center networks with unprecedented flexibility,” IEEE/ACM Transactions on Netw. 22, 498–511 (2014).
[Crossref]

Zhao, F.

P. Dumais, D. J. Goodwill, D. Celo, J. Jiang, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “Silicon photonic switch subsystem with 900 monolithically integrated calibration photodiodes and 64-fiber package,” J. Light. Technol. 36, 233–238 (2018).
[Crossref]

D. Celo, D. J. Goodwill, J. Jiang, P. Dumais, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “32×32 silicon photonic switch,” in 2016 21st OptoElectronics and Communications Conference (OECC) held jointly with 2016 International Conference on Photonics in Switching (PS), (2016), pp. 1–3.

Zhao, S.

Zhou, J.

Y. Huang, Q. Cheng, N. C. Abrams, J. Zhou, S. Rumley, and K. Bergman, “Automated calibration and characterization for scalable integrated optical switch fabrics without built-in power monitors,” in Proc. 43rd Eur. Conf. Exhib. Opt. Commun., (2017).

Zhou, L.

Zhu, H.

Zhu, X.

H. Guan, A. Gazman, Y. Ma, Y. Liu, Q. Li, R. Ding, Y. Li, X. Zhu, T. Baehr-Jones, M. Hochberg, and K. Bergman, “Polarization-insensitive 40gb/s 4-wdm channels receiver on soi platform,” in 2015 IEEE Optical Interconnects Conference (OI), (2015), pp. 54–55.
[Crossref]

Zhu, Z.

M. Bahadori, A. Gazman, N. Janosik, S. Rumley, Z. Zhu, R. Polster, Q. Cheng, and K. Bergman, “Thermal rectification of integrated microheaters for microring resonators in silicon photonics platform,” J. Light. Technol. 36, 773–788 (2018).
[Crossref]

A. Gazman, Z. Zhu, M. Bahadori, and K. Bergman, “Wavelength locking of multicast signals using photo-conductive effect in silicon photonic platform,” in 2018 IEEE Optical Interconnects Conference (OI), (IEEE, 2018), pp. 27–28.
[Crossref]

IEEE J. Quantum Electron. (1)

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. R. Chen, P.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20, 405–416 (2014).
[Crossref]

S. K. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using cmos fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16, 316–324 (2010).
[Crossref]

F. Morichetti, S. Grillanda, M. Carminati, G. Ferrari, M. Sampietro, M. J. Strain, M. Sorel, and A. Melloni, “Non-invasive on-chip light observation by contactless waveguide conductivity monitoring,” IEEE J. Sel. Top. Quantum Electron. 20, 292–301 (2014).
[Crossref]

IEEE Photonics J. (1)

D. Li, L. Zhou, L. Lu, and J. Chen, “Optical power monitoring with ultrahigh sensitivity in silicon waveguides and ring resonators,” IEEE Photonics J. 9, 1–10 (2017).
[Crossref]

IEEE/ACM Transactions on Netw. (1)

K. Chen, A. Singla, A. Singh, K. Ramachandran, L. Xu, Y. Zhang, X. Wen, and Y. Chen, “Osa: An optical switching architecture for data center networks with unprecedented flexibility,” IEEE/ACM Transactions on Netw. 22, 498–511 (2014).
[Crossref]

J. Light. Technol. (3)

N. Dupuis and B. G. Lee, “Impact of topology on the scalability of mach–zehnder-based multistage silicon photonic switch networks,” J. Light. Technol. 36, 763–772 (2018).
[Crossref]

P. Dumais, D. J. Goodwill, D. Celo, J. Jiang, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “Silicon photonic switch subsystem with 900 monolithically integrated calibration photodiodes and 64-fiber package,” J. Light. Technol. 36, 233–238 (2018).
[Crossref]

M. Bahadori, A. Gazman, N. Janosik, S. Rumley, Z. Zhu, R. Polster, Q. Cheng, and K. Bergman, “Thermal rectification of integrated microheaters for microring resonators in silicon photonics platform,” J. Light. Technol. 36, 773–788 (2018).
[Crossref]

Opt. Express (9)

F. Horst, W. M. Green, S. Assefa, S. M. Shank, Y. A. Vlasov, and B. J. Offrein, “Cascaded mach-zehnder wavelength filters in silicon photonics for low loss and flat pass-band wdm (de-) multiplexing,” Opt. Express 21, 11652–11658 (2013).
[Crossref] [PubMed]

M. Streshinsky, R. Ding, Y. Liu, A. Novack, Y. Yang, Y. Ma, X. Tu, E. K. S. A. Chee, E.-J. P. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Low power 50 gb/s silicon traveling wave mach-zehnder modulator near 1300 nm,” Opt. Express 21, 30350–30357 (2013).
[Crossref]

L. Zhou, H. Zhu, H. Zhang, and J. Chen, “Photoconductive effect on pip micro-heaters integrated in silicon microring resonators,” Opt. Express 22, 2141–2149 (2014).
[Crossref] [PubMed]

N. C. Harris, Y. Ma, J. Mower, T. Baehr-Jones, D. Englund, M. Hochberg, and C. Galland, “Efficient, compact and low loss thermo-optic phase shifter in silicon,” Opt. Express 22, 10487–10493 (2014).
[Crossref] [PubMed]

K. Tanizawa, K. Suzuki, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, T. Sugaya, S. Suda, G. Cong, T. Kimura, K. Ikeda, S. Namiki, and H. Kawashima, “Ultra-compact 32 × 32 strictly-non-blocking si-wire optical switch with fan-out lga interposer,” Opt. Express 23, 17599–17606 (2015).
[Crossref] [PubMed]

H. Jayatilleka, K. Murray, M. Á. Guillén-Torres, M. Caverley, R. Hu, N. A. Jaeger, L. Chrostowski, and S. Shekhar, “Wavelength tuning and stabilization of microring-based filters using silicon in-resonator photoconductive heaters,” Opt. Express 23, 25084–25097 (2015).
[Crossref] [PubMed]

L. Lu, S. Zhao, L. Zhou, D. Li, Z. Li, M. Wang, X. Li, and J. Chen, “16× 16 non-blocking silicon optical switch based on electro-optic mach-zehnder interferometers,” Opt. Express 24, 9295–9307 (2016).
[Crossref] [PubMed]

Y. Shen, M. H. Hattink, P. Samadi, Q. Cheng, Z. Hu, A. Gazman, and K. Bergman, “Software-defined networking control plane for seamless integration of multiple silicon photonic switches in datacom networks,” Opt. Express 26, 10914–10929 (2018).
[Crossref] [PubMed]

Q. Cheng, S. Rumley, M. Bahadori, and K. Bergman, “Photonic switching in high performance datacenters,” Opt. Express 26, 16022–16043 (2018).
[Crossref] [PubMed]

Sci. Reports (1)

L. Qiao, W. Tang, and T. Chu, “32× 32 silicon electro-optic switch with built-in monitors and balanced-status units,” Sci. Reports 7, 42306 (2017).
[Crossref]

Other (12)

D. Celo, D. J. Goodwill, J. Jiang, P. Dumais, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “32×32 silicon photonic switch,” in 2016 21st OptoElectronics and Communications Conference (OECC) held jointly with 2016 International Conference on Photonics in Switching (PS), (2016), pp. 1–3.

T. Chu, L. Qiao, W. Tang, D. Guo, and W. Wu, “Fast, high-radix silicon photonic switches,” in 2018 Optical Fiber Communications Conference and Exposition (OFC), (IEEE, 2018), pp. 1–3.

Q. Cheng, M. Bahadori, and K. Bergman, “Advanced path mapping for silicon photonic switch fabrics,” in CLEO: Science and Innovations, (Optical Society of America, 2017), pp. SW1O–5.

J. Shalf, S. Kamil, L. Oliker, and D. Skinner, “Analyzing ultra-scale application communication requirements for a reconfigurable hybrid interconnect,” in SC ’05: Proceedings of the 2005 ACM/IEEE Conference on Supercomputing, (2005), p. 17.

Y. Huang, Q. Cheng, N. C. Abrams, J. Zhou, S. Rumley, and K. Bergman, “Automated calibration and characterization for scalable integrated optical switch fabrics without built-in power monitors,” in Proc. 43rd Eur. Conf. Exhib. Opt. Commun., (2017).

Q. Cheng, M. Bahadori, Y. Huang, S. Rumley, and K. Bergman, “Smart routing tables for integrated photonic switch fabrics,” in Optical Communication (ECOC), 2017 European Conference on, (IEEE, 2017), pp. 1–3.

Y. Huang, Q. Cheng, and K. Bergman, “Crosstalk-aware calibration for fast and automated functionalization of photonic integrated switch fabrics,” in CLEO: Science and Innovations, (Optical Society of America, 2018), pp. STh3B–6.

A. Gazman, Z. Zhu, M. Bahadori, and K. Bergman, “Wavelength locking of multicast signals using photo-conductive effect in silicon photonic platform,” in 2018 IEEE Optical Interconnects Conference (OI), (IEEE, 2018), pp. 27–28.
[Crossref]

H. Guan, A. Gazman, Y. Ma, Y. Liu, Q. Li, R. Ding, Y. Li, X. Zhu, T. Baehr-Jones, M. Hochberg, and K. Bergman, “Polarization-insensitive 40gb/s 4-wdm channels receiver on soi platform,” in 2015 IEEE Optical Interconnects Conference (OI), (2015), pp. 54–55.
[Crossref]

C. V. networking Index, “Forecast and methodology, 2016-2021, white paper,” San Jose, CA, USA1 (2016).

Y. Huang, Q. Cheng, and K. Bergman, “Automated calibration of balanced control to optimize performance of silicon photonic switch fabrics,” in 2018 Optical Fiber Communications Conference and Exposition (OFC), (IEEE, 2018), pp. 1–3.

K. Wen, P. Samadi, S. Rumley, C. P. Chen, Y. Shen, M. Bahadori, K. Bergman, and J. Wilke, “Flexfly: Enabling a reconfigurable dragonfly through silicon photonics,” in High Performance Computing, Networking, Storage and Analysis, SC16: International Conference for, (IEEE, 2016), pp. 166–177.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Schematic of a 2×2 MZI element with doped-waveguide heater (inset shows the cross-section of the waveguide). An external optical source along with voltage and current meters are used to measure the PC effect. (b) Measured I-V curves of the heater at different input optical power. (c) Calculated (solid) and measured (markers) photo-conductance current , ΔI, at different optical powers and bias voltages.
Fig. 2
Fig. 2 (a) Schematic of the photo-conductance transient measurement. (b) Transient response of an optical step function signal. The blue curve corresponds to the rising edge of optical power and the red corresponds to the falling edge of optical power.
Fig. 3
Fig. 3 (a) Psuedo-code of the calibration algorithm. (b) A generic switch section topology of cascaded MZIs.
Fig. 4
Fig. 4 (a) Schematic of a the 4×4 switch consisting of six MZI elements. (b) Measured PC calibration results of six MZI elements in 4 × 4 non-blocking topology. Each plot corresponds to a single MZI element and the curves are measured currents of the proceeding MZI elements with optical path. The insets show the switch topology with the green circles corresponding to the calibrated element and the two blue pentagon shapes corresponds to the monitored elements.
Fig. 5
Fig. 5 Schematic of the experimental setup. The setup consists of a packaged SiP switch, central control computer and the following equipment: control Arbitrary Waveform Generator (AWG), Tunable Laser (TL), Polarization Controller (PC), Mach-Zehnder Modulator (MZM), Precise Power Supply (PPS), Photo-detector (PD), Analog-to-Digital Converter (ADC), Erbium Doped Fiber Amplifier (EDFA), Optical Bandpass Filter (OBPF), Variable Optical Attenuator (VOA), Avalanche Photo-diode (APD) and Real-Time Scope (RTS).
Fig. 6
Fig. 6 Calibration of the six elements in the 4 × 4 switch using external PDs. The insets show the MZI under calibration (marked with a green circle) and the states of supporting elements as well as the input and output optical ports.
Fig. 7
Fig. 7 (a) Received optical power measured at all output ports for a single configuration of the switch: input optical data from port 1 to output port 4 (1 → 4). The red horizontal line represents the input optical power. The difference to the dashed green line is the loss due to optical fiber coupling. The differences between the green and top dashed black is the insertion loss of switch the and the differences between the top two received optical power represent the cross talk of the configuration. (b) Measured cross talk and insertion loss of all routing configurations of the switch. The x-axis represent the “input port”→“output port”.
Fig. 8
Fig. 8 Eye diagram results collected at the output ports for a single configuration of the switch: input optical data from port 1 to output port 4 (1→4). (b) BER results of PAM 25Gbps for all possible routing configurations of the switch. The x-axis represent the “input port"→ “output port".

Tables (3)

Tables Icon

Table 1 Extracted heater parameters in the absence and presence of optical power inside the waveguide.

Tables Icon

Table 2 Extracted calibrated bias values of each MZI element using the PC calibration algorithm and external PDs.

Tables Icon

Table 3 Six MZI states for all possible routing configuration "input port"→"output port". States notations: "B"-BAR, "C"-CROSS and "-"-no bias.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I ( t ) = V ( t ) R 0 2 1 + 1 + K v V ( t ) 2
σ = σ 0 + Δ σ = σ 0 ( 1 + K p 1 P wg + K p 2 P wg 2 )
R 0 R 0 1 + δ , K v K v ( 1 + δ ) 2 K v ( 1 + 2 δ ) .
δ 1 2 [ K v K v + R 0 R 0 ] 1
Δ I = 2 V [ 1 R 0 1 1 + 1 + K v V 2 1 R 0 1 1 + 1 + K v V 2 ] .

Metrics