Abstract

Surface or edge states represent an important class of modes in various photonic crystal systems such as in dielectric topological insulators and in photonic crystal fibers. In the later, strong attenuation peaks in the transmission spectrum are attributed to coupling between surface and core-guided modes. Here, we explore a modified implementation of the spatial and spectral interference method to experimentally characterize surface modes in photonic crystal fibers. Using an external reference and a non-uniform Fourier transform windowing, the obtained spectrogram allows clear observation of anti-crossing behavior at wavelengths in which surface and core modes are strongly coupled. We also detect surface modes with different spatial symmetries, and give insight into mode families couple to the fundamental or high-order core modes, as well as the existence of uncoupled surface modes.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dynamic control of higher-order modes in hollow-core photonic crystal fibers

T. G. Euser, G. Whyte, M. Scharrer, J. S. Y. Chen, A. Abdolvand, J. Nold, C. F. Kaminski, and P. St.J. Russell
Opt. Express 16(22) 17972-17981 (2008)

Coupled core-surface solitons in photonic crystal fibers

Dmitry V. Skryabin
Opt. Express 12(20) 4841-4846 (2004)

Control of surface modes in low loss hollow-core photonic bandgap fibers

R. Amezcua-Correa, F. Gérôme, S. G. Leon-Saval, N. G. R. Broderick, T. A. Birks, and J. C. Knight
Opt. Express 16(2) 1142-1149 (2008)

References

  • View by:
  • |
  • |
  • |

  1. P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl Phys Lett. 32, 104–105 (1978).
    [Crossref]
  2. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic crystals: molding the flow of light (Princeton university, 2011).
  3. S. A. Skirlo, L. Lu, Y. Igarashi, Q. Yan, J. Joannopoulos, and M. Soljačić, “Experimental observation of large Chern numbers in photonic crystals,” Phys. Rev. Lett. 115, 253901 (2015).
    [Crossref]
  4. C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
    [Crossref] [PubMed]
  5. S. Longhi, “Bloch dynamics of light waves in helical optical waveguide arrays,” Phys. Rev. B 76, 195119 (2007).
    [Crossref]
  6. R. Beravat, G. K. L. Wong, M. H. Frosz, X. M. Xi, and P. S. Russell, “Twist-induced guidance in coreless photonic crystal fiber: A helical channel for light,” Sci. Adv. 2, 1–5 (2016).
    [Crossref]
  7. T. Weiss, G. K. L. Wong, F. Biancalana, S. M. Barnett, X. M. Xi, and P. S. Russell, “Topological Zeeman effect and circular birefringence in twisted photonic crystal fibers,” J. Opt. Soc. Am. B 30, 2921–2927 (2013).
    [Crossref]
  8. X. M. Xi, G. K. L. Wong, M. H. Frosz, F. Babic, G. Ahmed, X. Jiang, T. G. Euser, and P. S. Russell, “Orbital-angular-momentum-preserving helical bloch modes in twisted photonic crystal fiber,” Optica 1, 165–169 (2014).
    [Crossref]
  9. K. Fang, Z. Yu, and S. Fan, “Realizing effective magnetic field for photons by controlling the phase of dynamic modulation,” Nat. Phot. 6, 782–787 (2012).
    [Crossref]
  10. M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496, 196–200 (2013).
    [Crossref] [PubMed]
  11. S. Mittal, S. Ganeshan, J. Fan, A. Vaezi, and M. Hafezi, “Measurement of topological invariants in a 2d photonic system,” Nat. Phot. 10, 180–183 (2016).
    [Crossref]
  12. E. Moreno, F. J. García-Vidal, and L. Martín-Moreno, “Enhanced transmission and beaming of light via photonic crystal surface modes,” Phys. Rev. B 69, 121402 (2004).
    [Crossref]
  13. S. Xiao and M. Qiu, “Optical microcavities based on surface modes in two-dimensional photonic crystals and silicon-on-insulator photonic crystals,” J. Opt. Soc. Am. B 24, 1225–1229 (2007).
    [Crossref]
  14. D. Zhao and X. Jiang, “Vertical surface emitting open coupled-cavities based on photonic crystal surface modes,” Appl. Opt. 47, 1729–1733 (2008).
    [Crossref] [PubMed]
  15. P. S. Russell, “Photonic-crystal fibers,” J. Light. Technol. 24, 4729–4749 (2006).
    [Crossref]
  16. A. A. Rifat, F. haider, R. Ahmed, G. A. Mahdiraji, F. R. M. Adikan, and A. E. Miroshnichenko, “Highly sensitive selectively coated photonic crystal fiber-based plasmonic sensor,” Opt. Lett. 43, 891–894 (2018).
    [Crossref] [PubMed]
  17. G. Epple, N. Y. Joly, T. G. Euser, P. S. Russell, and R. Löw, “Effect of stray fields on Rydberg states in hollow-core PCF probed by higher-order modes,” Opt. Lett. 42, 3271–3274 (2017).
    [Crossref] [PubMed]
  18. R. Amezcua-Correa, F. Gérôme, S. G. Leon-Saval, N. G. R. Broderick, T. A. Birks, and J. C. Knight, “Control of surface modes in low loss hollow-core photonic bandgap fibers,” Opt. Express 16, 1142–1149 (2008).
    [Crossref] [PubMed]
  19. R. Amezcua-Correa, N. G. R. Broderick, M. N. Petrovich, F. Poletti, and D. J. Richardson, “Optimizing the usable bandwidth and loss through core design in realistic hollow-core photonic bandgap fibers,” Opt. Express 14, 7974–7985 (2006).
    [Crossref] [PubMed]
  20. B. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and R. S. J. Philip, “Low loss (1.7 db/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference, (2004), p. PD24.
  21. J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Surface modes in air-core photonic band-gap fibers,” Opt. Express 12, 1485–1496 (2004).
    [Crossref] [PubMed]
  22. F. Couny, F. Benabid, P. J. Roberts, M. T. Burnett, and S. Maier, “Identification of Bloch-modes in hollow-core photonic crystal fiber cladding,” Opt. Express 15, 325–338 (2007).
    [Crossref] [PubMed]
  23. A. Hartung, J. Kobelke, A. Schwuchow, K. Wondraczek, J. Bierlich, J. Popp, T. Frosch, and M. A. Schmidt, “Origins of modal loss of antiresonant hollow-core optical fibers in the ultraviolet,” Opt. Express 23, 2557–2565 (2015).
    [Crossref] [PubMed]
  24. P. J. Roberts, D. P. Williams, B. J. Mangan, H. Sabert, F. Couny, W. J. Wadsworth, T. A. Birks, J. C. Knight, and P. S. Russell, “Realizing low loss air core photonic crystal fibers by exploiting an antiresonant core surround,” Opt. Express 13, 8277–8285 (2005).
    [Crossref] [PubMed]
  25. R. Amezcua-Correa, N. G. R. Broderick, M. N. Petrovich, F. Poletti, and D. J. Richardson, “Design of 7 and 19 cells core air-guiding photonic crystal fibers for low-loss, wide bandwidth and dispersion controlled operation,” Opt. Express 15, 17577–17586 (2007).
    [Crossref] [PubMed]
  26. H. K. Kim, J. Shin, S. Fan, M. J. F. Digonnet, and G. S. Kino, “Designing air-core photonic-bandgap fibers free of surface modes,” IEEE J Quantum Electron. 40, 551–556 (2004).
    [Crossref]
  27. R. Amezcua-Correa, M. N. Petrovich, N. G. Broderick, D. J. Richardson, T. Delmonte, M. A. Watson, and E. J. O’Driscoll, “Broadband infrared transmission in a hollow-core photonic bandgap fibre free of surface modes,” in 2006 European Conference on Optical Communications, (2006), pp. 1–2.
  28. J. W. Nicholson, A. D. Yablon, S. Ramachandran, and S. Ghalmi, “Spatially and spectrally resolved imaging of modal content in large-mode-area fibers,” Opt. Express 16, 7233–7243 (2008).
    [Crossref] [PubMed]
  29. D. M. Nguyen, S. Blin, T. N. Nguyen, S. D. Le, L. Provino, M. Thual, and T. Chartier, “Modal decomposition technique for multimode fibers,” Appl. Opt. 51, 450–456 (2012).
    [Crossref] [PubMed]
  30. J. Nicholson, L. Meng, J. Fini, R. Windeler, A. De Santolo, E. Monberg, F. DiMarcello, Y. Dulashko, M. Hassan, and R. Ortiz, “Measuring higher-order modes in a low-loss, hollow-core, photonic-bandgap fiber,” Opt. Express 20, 20494–20505 (2012).
    [Crossref] [PubMed]
  31. J. Jasapara and A. D. Yablon, “Spectrogram approach to s2 fiber mode analysis to distinguish between dispersion and distributed scattering,” Opt. Lett. 37, 3906–3908 (2012).
    [Crossref] [PubMed]
  32. A. V. Newkirk, J. E. Antonio-Lopez, J. Anderson, R. Alvarez-Aguirre, Z. S. Eznaveh, G. Lopez-Galmiche, R. Amezcua-Correa, and A. Schülzgen, “Modal analysis of antiresonant hollow core fibers using s2 imaging,” Opt. Lett. 41, 3277–3280 (2016).
    [Crossref] [PubMed]
  33. M. Lyu, Z. Lin, G. Li, and G. Situ, “Fast modal decomposition for optical fibers using digital holography,” Sci Rep. 7, 6556 (2017).
    [Crossref] [PubMed]
  34. J. Carpenter, B. J. Eggleton, and J. Schröder, “Polarization-resolved cross-correlated (c2) imaging of a photonic bandgap fiber,” Opt. Express 24, 27785–27790 (2016).
    [Crossref] [PubMed]
  35. J. Demas and S. Ramachandran, “Sub-second mode measurement of fibers using c2 imaging,” Opt. Express 22, 23043–23056 (2014).
    [Crossref] [PubMed]

2018 (1)

2017 (2)

2016 (4)

J. Carpenter, B. J. Eggleton, and J. Schröder, “Polarization-resolved cross-correlated (c2) imaging of a photonic bandgap fiber,” Opt. Express 24, 27785–27790 (2016).
[Crossref] [PubMed]

A. V. Newkirk, J. E. Antonio-Lopez, J. Anderson, R. Alvarez-Aguirre, Z. S. Eznaveh, G. Lopez-Galmiche, R. Amezcua-Correa, and A. Schülzgen, “Modal analysis of antiresonant hollow core fibers using s2 imaging,” Opt. Lett. 41, 3277–3280 (2016).
[Crossref] [PubMed]

S. Mittal, S. Ganeshan, J. Fan, A. Vaezi, and M. Hafezi, “Measurement of topological invariants in a 2d photonic system,” Nat. Phot. 10, 180–183 (2016).
[Crossref]

R. Beravat, G. K. L. Wong, M. H. Frosz, X. M. Xi, and P. S. Russell, “Twist-induced guidance in coreless photonic crystal fiber: A helical channel for light,” Sci. Adv. 2, 1–5 (2016).
[Crossref]

2015 (2)

S. A. Skirlo, L. Lu, Y. Igarashi, Q. Yan, J. Joannopoulos, and M. Soljačić, “Experimental observation of large Chern numbers in photonic crystals,” Phys. Rev. Lett. 115, 253901 (2015).
[Crossref]

A. Hartung, J. Kobelke, A. Schwuchow, K. Wondraczek, J. Bierlich, J. Popp, T. Frosch, and M. A. Schmidt, “Origins of modal loss of antiresonant hollow-core optical fibers in the ultraviolet,” Opt. Express 23, 2557–2565 (2015).
[Crossref] [PubMed]

2014 (2)

2013 (2)

T. Weiss, G. K. L. Wong, F. Biancalana, S. M. Barnett, X. M. Xi, and P. S. Russell, “Topological Zeeman effect and circular birefringence in twisted photonic crystal fibers,” J. Opt. Soc. Am. B 30, 2921–2927 (2013).
[Crossref]

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496, 196–200 (2013).
[Crossref] [PubMed]

2012 (4)

2008 (3)

2007 (4)

2006 (2)

2005 (1)

2004 (3)

H. K. Kim, J. Shin, S. Fan, M. J. F. Digonnet, and G. S. Kino, “Designing air-core photonic-bandgap fibers free of surface modes,” IEEE J Quantum Electron. 40, 551–556 (2004).
[Crossref]

J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Surface modes in air-core photonic band-gap fibers,” Opt. Express 12, 1485–1496 (2004).
[Crossref] [PubMed]

E. Moreno, F. J. García-Vidal, and L. Martín-Moreno, “Enhanced transmission and beaming of light via photonic crystal surface modes,” Phys. Rev. B 69, 121402 (2004).
[Crossref]

2003 (1)

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[Crossref] [PubMed]

1978 (1)

P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl Phys Lett. 32, 104–105 (1978).
[Crossref]

Adikan, F. R. M.

Ahmed, G.

Ahmed, R.

Allan, D. C.

J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Surface modes in air-core photonic band-gap fibers,” Opt. Express 12, 1485–1496 (2004).
[Crossref] [PubMed]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[Crossref] [PubMed]

Alvarez-Aguirre, R.

Amezcua-Correa, R.

Anderson, J.

Antonio-Lopez, J. E.

Babic, F.

Barnett, S. M.

Benabid, F.

Beravat, R.

R. Beravat, G. K. L. Wong, M. H. Frosz, X. M. Xi, and P. S. Russell, “Twist-induced guidance in coreless photonic crystal fiber: A helical channel for light,” Sci. Adv. 2, 1–5 (2016).
[Crossref]

Biancalana, F.

Bierlich, J.

Birks, T. A.

Blin, S.

Borrelli, N. F.

J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Surface modes in air-core photonic band-gap fibers,” Opt. Express 12, 1485–1496 (2004).
[Crossref] [PubMed]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[Crossref] [PubMed]

Broderick, N. G.

R. Amezcua-Correa, M. N. Petrovich, N. G. Broderick, D. J. Richardson, T. Delmonte, M. A. Watson, and E. J. O’Driscoll, “Broadband infrared transmission in a hollow-core photonic bandgap fibre free of surface modes,” in 2006 European Conference on Optical Communications, (2006), pp. 1–2.

Broderick, N. G. R.

Burnett, M. T.

Carpenter, J.

Chartier, T.

Cho, A. Y.

P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl Phys Lett. 32, 104–105 (1978).
[Crossref]

Couny, F.

Coupland, S.

B. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and R. S. J. Philip, “Low loss (1.7 db/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference, (2004), p. PD24.

De Santolo, A.

Delmonte, T.

R. Amezcua-Correa, M. N. Petrovich, N. G. Broderick, D. J. Richardson, T. Delmonte, M. A. Watson, and E. J. O’Driscoll, “Broadband infrared transmission in a hollow-core photonic bandgap fibre free of surface modes,” in 2006 European Conference on Optical Communications, (2006), pp. 1–2.

Demas, J.

Digonnet, M. J. F.

H. K. Kim, J. Shin, S. Fan, M. J. F. Digonnet, and G. S. Kino, “Designing air-core photonic-bandgap fibers free of surface modes,” IEEE J Quantum Electron. 40, 551–556 (2004).
[Crossref]

DiMarcello, F.

Dreisow, F.

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496, 196–200 (2013).
[Crossref] [PubMed]

Dulashko, Y.

Eggleton, B. J.

Epple, G.

Euser, T. G.

Eznaveh, Z. S.

Fan, J.

S. Mittal, S. Ganeshan, J. Fan, A. Vaezi, and M. Hafezi, “Measurement of topological invariants in a 2d photonic system,” Nat. Phot. 10, 180–183 (2016).
[Crossref]

Fan, S.

K. Fang, Z. Yu, and S. Fan, “Realizing effective magnetic field for photons by controlling the phase of dynamic modulation,” Nat. Phot. 6, 782–787 (2012).
[Crossref]

H. K. Kim, J. Shin, S. Fan, M. J. F. Digonnet, and G. S. Kino, “Designing air-core photonic-bandgap fibers free of surface modes,” IEEE J Quantum Electron. 40, 551–556 (2004).
[Crossref]

Fang, K.

K. Fang, Z. Yu, and S. Fan, “Realizing effective magnetic field for photons by controlling the phase of dynamic modulation,” Nat. Phot. 6, 782–787 (2012).
[Crossref]

Farr, L.

B. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and R. S. J. Philip, “Low loss (1.7 db/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference, (2004), p. PD24.

Fini, J.

Flea, R.

B. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and R. S. J. Philip, “Low loss (1.7 db/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference, (2004), p. PD24.

Frosch, T.

Frosz, M. H.

R. Beravat, G. K. L. Wong, M. H. Frosz, X. M. Xi, and P. S. Russell, “Twist-induced guidance in coreless photonic crystal fiber: A helical channel for light,” Sci. Adv. 2, 1–5 (2016).
[Crossref]

X. M. Xi, G. K. L. Wong, M. H. Frosz, F. Babic, G. Ahmed, X. Jiang, T. G. Euser, and P. S. Russell, “Orbital-angular-momentum-preserving helical bloch modes in twisted photonic crystal fiber,” Optica 1, 165–169 (2014).
[Crossref]

Gallagher, M. T.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[Crossref] [PubMed]

Ganeshan, S.

S. Mittal, S. Ganeshan, J. Fan, A. Vaezi, and M. Hafezi, “Measurement of topological invariants in a 2d photonic system,” Nat. Phot. 10, 180–183 (2016).
[Crossref]

García-Vidal, F. J.

E. Moreno, F. J. García-Vidal, and L. Martín-Moreno, “Enhanced transmission and beaming of light via photonic crystal surface modes,” Phys. Rev. B 69, 121402 (2004).
[Crossref]

Gérôme, F.

Ghalmi, S.

Hafezi, M.

S. Mittal, S. Ganeshan, J. Fan, A. Vaezi, and M. Hafezi, “Measurement of topological invariants in a 2d photonic system,” Nat. Phot. 10, 180–183 (2016).
[Crossref]

haider, F.

Hartung, A.

Hassan, M.

Igarashi, Y.

S. A. Skirlo, L. Lu, Y. Igarashi, Q. Yan, J. Joannopoulos, and M. Soljačić, “Experimental observation of large Chern numbers in photonic crystals,” Phys. Rev. Lett. 115, 253901 (2015).
[Crossref]

Jasapara, J.

Jiang, X.

Joannopoulos, J.

S. A. Skirlo, L. Lu, Y. Igarashi, Q. Yan, J. Joannopoulos, and M. Soljačić, “Experimental observation of large Chern numbers in photonic crystals,” Phys. Rev. Lett. 115, 253901 (2015).
[Crossref]

Joannopoulos, J. D.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic crystals: molding the flow of light (Princeton university, 2011).

Johnson, S. G.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic crystals: molding the flow of light (Princeton university, 2011).

Joly, N. Y.

Kim, H. K.

H. K. Kim, J. Shin, S. Fan, M. J. F. Digonnet, and G. S. Kino, “Designing air-core photonic-bandgap fibers free of surface modes,” IEEE J Quantum Electron. 40, 551–556 (2004).
[Crossref]

Kino, G. S.

H. K. Kim, J. Shin, S. Fan, M. J. F. Digonnet, and G. S. Kino, “Designing air-core photonic-bandgap fibers free of surface modes,” IEEE J Quantum Electron. 40, 551–556 (2004).
[Crossref]

Knight, J. C.

Kobelke, J.

Koch, K. W.

J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Surface modes in air-core photonic band-gap fibers,” Opt. Express 12, 1485–1496 (2004).
[Crossref] [PubMed]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[Crossref] [PubMed]

Langford, A.

B. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and R. S. J. Philip, “Low loss (1.7 db/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference, (2004), p. PD24.

Lawman, M.

B. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and R. S. J. Philip, “Low loss (1.7 db/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference, (2004), p. PD24.

Le, S. D.

Leon-Saval, S. G.

Li, G.

M. Lyu, Z. Lin, G. Li, and G. Situ, “Fast modal decomposition for optical fibers using digital holography,” Sci Rep. 7, 6556 (2017).
[Crossref] [PubMed]

Lin, Z.

M. Lyu, Z. Lin, G. Li, and G. Situ, “Fast modal decomposition for optical fibers using digital holography,” Sci Rep. 7, 6556 (2017).
[Crossref] [PubMed]

Longhi, S.

S. Longhi, “Bloch dynamics of light waves in helical optical waveguide arrays,” Phys. Rev. B 76, 195119 (2007).
[Crossref]

Lopez-Galmiche, G.

Löw, R.

Lu, L.

S. A. Skirlo, L. Lu, Y. Igarashi, Q. Yan, J. Joannopoulos, and M. Soljačić, “Experimental observation of large Chern numbers in photonic crystals,” Phys. Rev. Lett. 115, 253901 (2015).
[Crossref]

Lumer, Y.

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496, 196–200 (2013).
[Crossref] [PubMed]

Lyu, M.

M. Lyu, Z. Lin, G. Li, and G. Situ, “Fast modal decomposition for optical fibers using digital holography,” Sci Rep. 7, 6556 (2017).
[Crossref] [PubMed]

Mahdiraji, G. A.

Maier, S.

Mangan, B.

B. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and R. S. J. Philip, “Low loss (1.7 db/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference, (2004), p. PD24.

Mangan, B. J.

Martín-Moreno, L.

E. Moreno, F. J. García-Vidal, and L. Martín-Moreno, “Enhanced transmission and beaming of light via photonic crystal surface modes,” Phys. Rev. B 69, 121402 (2004).
[Crossref]

Mason, M.

B. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and R. S. J. Philip, “Low loss (1.7 db/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference, (2004), p. PD24.

Meade, R. D.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic crystals: molding the flow of light (Princeton university, 2011).

Meng, L.

Miroshnichenko, A. E.

Mittal, S.

S. Mittal, S. Ganeshan, J. Fan, A. Vaezi, and M. Hafezi, “Measurement of topological invariants in a 2d photonic system,” Nat. Phot. 10, 180–183 (2016).
[Crossref]

Monberg, E.

Moreno, E.

E. Moreno, F. J. García-Vidal, and L. Martín-Moreno, “Enhanced transmission and beaming of light via photonic crystal surface modes,” Phys. Rev. B 69, 121402 (2004).
[Crossref]

Müller, D.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[Crossref] [PubMed]

Newkirk, A. V.

Nguyen, D. M.

Nguyen, T. N.

Nicholson, J.

Nicholson, J. W.

Nolte, S.

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496, 196–200 (2013).
[Crossref] [PubMed]

O’Driscoll, E. J.

R. Amezcua-Correa, M. N. Petrovich, N. G. Broderick, D. J. Richardson, T. Delmonte, M. A. Watson, and E. J. O’Driscoll, “Broadband infrared transmission in a hollow-core photonic bandgap fibre free of surface modes,” in 2006 European Conference on Optical Communications, (2006), pp. 1–2.

Ortiz, R.

Petrovich, M. N.

Philip, R. S. J.

B. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and R. S. J. Philip, “Low loss (1.7 db/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference, (2004), p. PD24.

Plotnik, Y.

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496, 196–200 (2013).
[Crossref] [PubMed]

Podolsky, D.

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496, 196–200 (2013).
[Crossref] [PubMed]

Poletti, F.

Popp, J.

Provino, L.

Qiu, M.

Ramachandran, S.

Rechtsman, M. C.

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496, 196–200 (2013).
[Crossref] [PubMed]

Richardson, D. J.

Rifat, A. A.

Roberts, P. J.

Russell, P. S.

Sabert, H.

P. J. Roberts, D. P. Williams, B. J. Mangan, H. Sabert, F. Couny, W. J. Wadsworth, T. A. Birks, J. C. Knight, and P. S. Russell, “Realizing low loss air core photonic crystal fibers by exploiting an antiresonant core surround,” Opt. Express 13, 8277–8285 (2005).
[Crossref] [PubMed]

B. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and R. S. J. Philip, “Low loss (1.7 db/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference, (2004), p. PD24.

Schmidt, M. A.

Schröder, J.

Schülzgen, A.

Schwuchow, A.

Segev, M.

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496, 196–200 (2013).
[Crossref] [PubMed]

Shin, J.

H. K. Kim, J. Shin, S. Fan, M. J. F. Digonnet, and G. S. Kino, “Designing air-core photonic-bandgap fibers free of surface modes,” IEEE J Quantum Electron. 40, 551–556 (2004).
[Crossref]

Situ, G.

M. Lyu, Z. Lin, G. Li, and G. Situ, “Fast modal decomposition for optical fibers using digital holography,” Sci Rep. 7, 6556 (2017).
[Crossref] [PubMed]

Skirlo, S. A.

S. A. Skirlo, L. Lu, Y. Igarashi, Q. Yan, J. Joannopoulos, and M. Soljačić, “Experimental observation of large Chern numbers in photonic crystals,” Phys. Rev. Lett. 115, 253901 (2015).
[Crossref]

Smith, C. M.

J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Surface modes in air-core photonic band-gap fibers,” Opt. Express 12, 1485–1496 (2004).
[Crossref] [PubMed]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[Crossref] [PubMed]

Soljacic, M.

S. A. Skirlo, L. Lu, Y. Igarashi, Q. Yan, J. Joannopoulos, and M. Soljačić, “Experimental observation of large Chern numbers in photonic crystals,” Phys. Rev. Lett. 115, 253901 (2015).
[Crossref]

Szameit, A.

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496, 196–200 (2013).
[Crossref] [PubMed]

Thual, M.

Vaezi, A.

S. Mittal, S. Ganeshan, J. Fan, A. Vaezi, and M. Hafezi, “Measurement of topological invariants in a 2d photonic system,” Nat. Phot. 10, 180–183 (2016).
[Crossref]

Venkataraman, N.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[Crossref] [PubMed]

Wadsworth, W. J.

Watson, M. A.

R. Amezcua-Correa, M. N. Petrovich, N. G. Broderick, D. J. Richardson, T. Delmonte, M. A. Watson, and E. J. O’Driscoll, “Broadband infrared transmission in a hollow-core photonic bandgap fibre free of surface modes,” in 2006 European Conference on Optical Communications, (2006), pp. 1–2.

Weiss, T.

West, J. A.

J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Surface modes in air-core photonic band-gap fibers,” Opt. Express 12, 1485–1496 (2004).
[Crossref] [PubMed]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[Crossref] [PubMed]

Williams, D. P.

P. J. Roberts, D. P. Williams, B. J. Mangan, H. Sabert, F. Couny, W. J. Wadsworth, T. A. Birks, J. C. Knight, and P. S. Russell, “Realizing low loss air core photonic crystal fibers by exploiting an antiresonant core surround,” Opt. Express 13, 8277–8285 (2005).
[Crossref] [PubMed]

B. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and R. S. J. Philip, “Low loss (1.7 db/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference, (2004), p. PD24.

Windeler, R.

Winn, J. N.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic crystals: molding the flow of light (Princeton university, 2011).

Wondraczek, K.

Wong, G. K. L.

Xi, X. M.

Xiao, S.

Yablon, A. D.

Yan, Q.

S. A. Skirlo, L. Lu, Y. Igarashi, Q. Yan, J. Joannopoulos, and M. Soljačić, “Experimental observation of large Chern numbers in photonic crystals,” Phys. Rev. Lett. 115, 253901 (2015).
[Crossref]

Yariv, A.

P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl Phys Lett. 32, 104–105 (1978).
[Crossref]

Yeh, P.

P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl Phys Lett. 32, 104–105 (1978).
[Crossref]

Yu, Z.

K. Fang, Z. Yu, and S. Fan, “Realizing effective magnetic field for photons by controlling the phase of dynamic modulation,” Nat. Phot. 6, 782–787 (2012).
[Crossref]

Zeuner, J. M.

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496, 196–200 (2013).
[Crossref] [PubMed]

Zhao, D.

Appl Phys Lett. (1)

P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl Phys Lett. 32, 104–105 (1978).
[Crossref]

Appl. Opt. (2)

IEEE J Quantum Electron. (1)

H. K. Kim, J. Shin, S. Fan, M. J. F. Digonnet, and G. S. Kino, “Designing air-core photonic-bandgap fibers free of surface modes,” IEEE J Quantum Electron. 40, 551–556 (2004).
[Crossref]

J. Light. Technol. (1)

P. S. Russell, “Photonic-crystal fibers,” J. Light. Technol. 24, 4729–4749 (2006).
[Crossref]

J. Opt. Soc. Am. B (2)

Nat. Phot. (2)

K. Fang, Z. Yu, and S. Fan, “Realizing effective magnetic field for photons by controlling the phase of dynamic modulation,” Nat. Phot. 6, 782–787 (2012).
[Crossref]

S. Mittal, S. Ganeshan, J. Fan, A. Vaezi, and M. Hafezi, “Measurement of topological invariants in a 2d photonic system,” Nat. Phot. 10, 180–183 (2016).
[Crossref]

Nature (2)

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496, 196–200 (2013).
[Crossref] [PubMed]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[Crossref] [PubMed]

Opt. Express (11)

R. Amezcua-Correa, F. Gérôme, S. G. Leon-Saval, N. G. R. Broderick, T. A. Birks, and J. C. Knight, “Control of surface modes in low loss hollow-core photonic bandgap fibers,” Opt. Express 16, 1142–1149 (2008).
[Crossref] [PubMed]

R. Amezcua-Correa, N. G. R. Broderick, M. N. Petrovich, F. Poletti, and D. J. Richardson, “Optimizing the usable bandwidth and loss through core design in realistic hollow-core photonic bandgap fibers,” Opt. Express 14, 7974–7985 (2006).
[Crossref] [PubMed]

J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Surface modes in air-core photonic band-gap fibers,” Opt. Express 12, 1485–1496 (2004).
[Crossref] [PubMed]

F. Couny, F. Benabid, P. J. Roberts, M. T. Burnett, and S. Maier, “Identification of Bloch-modes in hollow-core photonic crystal fiber cladding,” Opt. Express 15, 325–338 (2007).
[Crossref] [PubMed]

A. Hartung, J. Kobelke, A. Schwuchow, K. Wondraczek, J. Bierlich, J. Popp, T. Frosch, and M. A. Schmidt, “Origins of modal loss of antiresonant hollow-core optical fibers in the ultraviolet,” Opt. Express 23, 2557–2565 (2015).
[Crossref] [PubMed]

P. J. Roberts, D. P. Williams, B. J. Mangan, H. Sabert, F. Couny, W. J. Wadsworth, T. A. Birks, J. C. Knight, and P. S. Russell, “Realizing low loss air core photonic crystal fibers by exploiting an antiresonant core surround,” Opt. Express 13, 8277–8285 (2005).
[Crossref] [PubMed]

R. Amezcua-Correa, N. G. R. Broderick, M. N. Petrovich, F. Poletti, and D. J. Richardson, “Design of 7 and 19 cells core air-guiding photonic crystal fibers for low-loss, wide bandwidth and dispersion controlled operation,” Opt. Express 15, 17577–17586 (2007).
[Crossref] [PubMed]

J. Nicholson, L. Meng, J. Fini, R. Windeler, A. De Santolo, E. Monberg, F. DiMarcello, Y. Dulashko, M. Hassan, and R. Ortiz, “Measuring higher-order modes in a low-loss, hollow-core, photonic-bandgap fiber,” Opt. Express 20, 20494–20505 (2012).
[Crossref] [PubMed]

J. Carpenter, B. J. Eggleton, and J. Schröder, “Polarization-resolved cross-correlated (c2) imaging of a photonic bandgap fiber,” Opt. Express 24, 27785–27790 (2016).
[Crossref] [PubMed]

J. Demas and S. Ramachandran, “Sub-second mode measurement of fibers using c2 imaging,” Opt. Express 22, 23043–23056 (2014).
[Crossref] [PubMed]

J. W. Nicholson, A. D. Yablon, S. Ramachandran, and S. Ghalmi, “Spatially and spectrally resolved imaging of modal content in large-mode-area fibers,” Opt. Express 16, 7233–7243 (2008).
[Crossref] [PubMed]

Opt. Lett. (4)

Optica (1)

Phys. Rev. B (2)

S. Longhi, “Bloch dynamics of light waves in helical optical waveguide arrays,” Phys. Rev. B 76, 195119 (2007).
[Crossref]

E. Moreno, F. J. García-Vidal, and L. Martín-Moreno, “Enhanced transmission and beaming of light via photonic crystal surface modes,” Phys. Rev. B 69, 121402 (2004).
[Crossref]

Phys. Rev. Lett. (1)

S. A. Skirlo, L. Lu, Y. Igarashi, Q. Yan, J. Joannopoulos, and M. Soljačić, “Experimental observation of large Chern numbers in photonic crystals,” Phys. Rev. Lett. 115, 253901 (2015).
[Crossref]

Sci Rep. (1)

M. Lyu, Z. Lin, G. Li, and G. Situ, “Fast modal decomposition for optical fibers using digital holography,” Sci Rep. 7, 6556 (2017).
[Crossref] [PubMed]

Sci. Adv. (1)

R. Beravat, G. K. L. Wong, M. H. Frosz, X. M. Xi, and P. S. Russell, “Twist-induced guidance in coreless photonic crystal fiber: A helical channel for light,” Sci. Adv. 2, 1–5 (2016).
[Crossref]

Other (3)

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic crystals: molding the flow of light (Princeton university, 2011).

B. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and R. S. J. Philip, “Low loss (1.7 db/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference, (2004), p. PD24.

R. Amezcua-Correa, M. N. Petrovich, N. G. Broderick, D. J. Richardson, T. Delmonte, M. A. Watson, and E. J. O’Driscoll, “Broadband infrared transmission in a hollow-core photonic bandgap fibre free of surface modes,” in 2006 European Conference on Optical Communications, (2006), pp. 1–2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Setup of the S2 method with external reference employed for mode coupling observation. TLS: tunable laser source; PC: polarization controller; L1,2: lens; PBS: polarization beam splitter, M1,2: mirror; HC-PCF: Hollow core photonic crystal fiber sample ; and BS: beam splitter. (b) SEM image of the fiber with superimposed principal axis e1 and e2. (c) Attenuation spectrum of the HC-PCF. Modified S2 method was performed in the highlighted region.
Fig. 2
Fig. 2 (a),(b) Calculated dispersion for (a) a surface mode non-coupled with the fundamental mode and (b) a surface mode coupled with the fundamental mode. (c),(d) Differential group delay according to Eq. 1 corresponding to non-coupled and coupled surface mode shown in (a) and (b) respectively. (e) Evolution of the normalized mode profiles calculated at wavelengths indicated in (d).
Fig. 3
Fig. 3 (a),(b),(c) S2 spectrograms for uniform wavelength window of (a) 5 nm and (b) 0.8 nm and for (c) variable wavelength window size. (d) Wavelength window size employed in (c) in terms of wavelength.
Fig. 4
Fig. 4 Surface modes coupled to core modes. (a) Spectrogram of Fig. 3(c) with superimposed traces. Normalized mode profiles at different points of the spectrogram corresponding to: (b) tracking of the coupling between surface mode and LP01-like mode; (c) LP01-like fundamental mode; (d) tracking of the coupling between surface mode and LP11-like mode; and (e) LP11-like higher order mode.
Fig. 5
Fig. 5 Surface modes not coupled to core modes. (a) Spectrogram of Fig. 3(c) with superimposed traces. (b), (c), and (d) represent normalized mode profiles of the three identified surface modes that are not coupled to the core modes.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

τ g , m ( λ ) = 1 c | n g , m ( λ ) L Δ L | ,

Metrics