Abstract

Hyperspectral imaging is an important tool having been applied in various fields, but still limited in observation of dynamic scenes. In this paper, we propose a snapshot hyperspectral imaging technique which exploits both spectral and spatial sparsity of natural scenes. Under the computational imaging scheme, we conduct spectral dimension reduction and spatial frequency truncation to the hyperspectral data cube and snapshot it in a low cost manner. Specifically, we modulate the spectral variations by several broadband spectral filters, and then map these modulated images into different regions in the Fourier domain. The encoded image compressed in both spectral and spatial are finally collected by a monochrome detector. Correspondingly, the reconstruction is essentially a Fourier domain extraction and spectral dimensional back projection with low computational load. This Fourier-spectral multiplexing in a 2D sensor simplifies both the encoding and decoding process, and makes hyperspectral data captured in a low cost manner. We demonstrate the high performance of our method by quantitative evaluation on simulation data and build a prototype system experimentally for further validation.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Spatial-spectral modulating snapshot hyperspectral imager

William R. Johnson, Daniel W. Wilson, and Greg Bearman
Appl. Opt. 45(9) 1898-1908 (2006)

Compressive hyperspectral imaging by random separable projections in both the spatial and the spectral domains

Yitzhak August, Chaim Vachman, Yair Rivenson, and Adrian Stern
Appl. Opt. 52(10) D46-D54 (2013)

High-quality panchromatic image acquisition method for snapshot hyperspectral imaging Fourier transform spectrometer

Yu Zhang, Shuaishuai Zhu, Jie Lin, and Peng Jin
Opt. Express 27(20) 28915-28928 (2019)

References

  • View by:
  • |
  • |
  • |

  1. M. T. Eismann, C. R. Schwartz, J. N. Cederquist, J. A. Hackwell, and R. J. Huppi, “Comparison of infrared imaging hyperspectral sensors for military target detection applications,” Proc. SPIE 2819, 91–102(1996).
    [Crossref]
  2. J. P. Ardouin, J. Lévesque, and T. A. Rea, “A demonstration of hyperspectral image exploitation for military applications,” in Proceedings of IEEE Conference on Information Fusion (IEEE, 2007), pp. 1–8.
  3. S. Delalieux, A. Auwerkerken, W. W. Verstraeten, B. Somers, R. Valcke, S. Lhermitte, J. Keulemans, and P. Coppin, “Hyperspectral reflectance and fluorescence imaging to detect scab induced stress in apple leaves,” Remote Sens. 1, 858–874 (2009).
    [Crossref]
  4. V. Backman, M. B. Wallace, L. Perelman, J. Arendt, R. Gurjar, M. Müller, Q. Zhang, G. Zonios, E. Kline, T. McGillican, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406, 35–36 (2000).
    [Crossref] [PubMed]
  5. G. Zavattini, S. Vecchi, G. Mitchell, U. Weisser, R. M. Leahy, B. J. Pichler, D. J. Smith, and S. R. Cherry, “A hyperspectral fluorescence system for 3D in vivo optical imaging,” Phys. Med. Biol. 51, 2029 (2006).
    [Crossref] [PubMed]
  6. R. T. Kester, N. Bedard, L. Gao, and T. S. Tkaczyk, “Real-time snapshot hyperspectral imaging endoscope,” J. Biomed. Opt. 16, 056005 (2011).
    [Crossref] [PubMed]
  7. T. Vo-Dinh, “A hyperspectral imaging system for in vivo optical diagnostics,” IEEE Eng. Med. Biol. Mag. 23, 40–49 (2004).
    [Crossref] [PubMed]
  8. M. J. Barnsley, J. J. Settle, M. A. Cutter, D. R. Lobb, and F. Teston, “The proba/chris mission: A low-cost smallsat for hyperspectral multiangle observations of the earth surface and atmosphere,” IEEE Trans. Geosci. Remote Sens. 42, 1512–1520 (2004).
    [Crossref]
  9. J. P. Bibring, Y. Langevin, A. Gendrin, B. Gondet, F. Poulet, M. Berthé, A. Soufflot, R. Arvidson, N. Mangold, J. Mustard, P. Drossart, and the OMEGA team, “Mars surface diversity as revealed by the omega/mars express observations,” Science 307, 1576–1581 (2005).
    [Crossref] [PubMed]
  10. Z. Pan, G. Healey, M. Prasad, and B. Tromberg, “Face recognition in hyperspectral images,” IEEE Trans. on Pattern Anal. Mach. Intell. 25, 1552–1560 (2003).
    [Crossref]
  11. D. J. Brady, Optical imaging and spectroscopy (John Wiley & Sons, 2009).
    [Crossref]
  12. G. R. Arce, D. J. Brady, L. Carin, H. Arguello, and D. S. Kittle, “Compressive coded aperture spectral imaging: An introduction,” IEEE Signal Process. Mag. 31, 105–115 (2014).
    [Crossref]
  13. A. F. Goetz, G. Vane, J. E. Solomon, and B. N. Rock, “Imaging spectrometry for earth remote sensing,” Science 228, 1147–1153 (1985).
    [Crossref] [PubMed]
  14. R. G. Sellar and G. D. Boreman, “Comparison of relative signal-to-noise ratios of different classes of imaging spectrometer,” Appl. Opt. 44, 1614–1624 (2005).
    [Crossref] [PubMed]
  15. A. J. Reiter and S. C. Kong, “Combustion and emissions characteristics of compression-ignition engine using dual ammonia-diesel fuel,” Fuel 90, 87–97 (2011).
    [Crossref]
  16. P. Kauranen, S. Andersson-Engels, and S. Svanberg, “Spatial mapping of flame radical emission using a spectroscopic multi-colour imaging system,” Appl. Phys. B 53, 260–264 (1991).
    [Crossref]
  17. C. E. Volin, B. K. Ford, M. R. Descour, J. P. Garcia, D. W. Wilson, P. D. Maker, and G. H. Bearman, “High-speed spectral imager for imaging transient fluorescence phenomena,” Appl. Opt. 37, 8112–8119 (1998).
    [Crossref]
  18. L. Weitzel, A. Krabbe, H. Kroker, N. Thatte, L. Tacconi-Garman, M. Cameron, and R. Genzel, “3d: The next generation near-infrared imaging spectrometer,” Astron. Astrophys. Suppl. Ser. 119, 531–546 (1996).
    [Crossref]
  19. N. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52, 090901 (2013).
    [Crossref]
  20. J. D. Matchett, R. I. Billmers, E. J. Billmers, and M. E. Ludwig, “Volume holographic beam splitter for hyperspectral imaging applications,” Proc. SPIE 6668, 66680K (2007).
    [Crossref]
  21. A. Gorman, D. W. Fletcher-Holmes, and A. R. Harvey, “Generalization of the lyot filter and its application to snapshot spectral imaging,” Opt. Express 18, 5602–5608 (2010).
    [Crossref] [PubMed]
  22. A. R. Harvey and D. W. Fletcher-Holmes, “High-throughput snapshot spectral imaging in two dimensions,” Proc. SPIE 4959, 4959136 (2003).
  23. M. W. Kudenov, M. E. Jungwirth, E. L. Dereniak, and G. R. Gerhart, “White-light Sagnac interferometer for snapshot multispectral imaging,” Appl. Opt. 49, 4067–4076 (2010).
    [Crossref] [PubMed]
  24. T. Okamoto and I. Yamaguchi, “Simultaneous acquisition of spectral image information,” Opt. Lett. 16, 1277–1279 (1991).
    [Crossref] [PubMed]
  25. A. Hirai, T. Inoue, K. Itoh, and Y. Ichioka, “Application of multiple-image Fourier transform spectral imaging to measurement of fast phenomena,” Opt. Rev. 1, 205–207 (1994).
    [Crossref]
  26. L. Gao, R. T. Kester, and T. S. Tkaczyk, “Compact image slicing spectrometer (iss) for hyperspectral fluorescence microscopy,” Opt. Express 17, 12293–12308 (2009).
    [Crossref] [PubMed]
  27. M. W. Kudenov and E. L. Dereniak, “Compact snapshot birefringent imaging Fourier transform spectrometer,” Proc. SPIE 7812, 6–12 (2010).
  28. M. Gehm, R. John, D. Brady, R. Willett, and T. Schulz, “Single-shot compressive spectral imaging with a dual-disperser architecture,” Opt. Express 15, 14013–14027 (2007).
    [Crossref] [PubMed]
  29. K. Dorozynska and E. Kristensson, “Implementation of a multiplexed structured illumination method to achieve snapshot multispectral imaging,” Opt. Express 25, 17211–17226 (2017).
    [Crossref] [PubMed]
  30. E. Kristensson, Z. Li, E. Berrocal, M. Richter, and M. Aldén, “Instantaneous 3D imaging of flame species using coded laser illumination,” Proc. Combust. Inst. 36, 4585–4591 (2017).
    [Crossref]
  31. A. Ehn, J. Bood, Z. Li, E. Berrocal, M. Aldén, and E. Kristensson, “FRAME: femtosecond videography for atomic and molecular dynamics,” Light. Sci. Appl. 6, 17045 (2017).
    [Crossref]
  32. A. Chakrabarti and T. Zickler, “Statistics of real-world hyperspectral images,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2011), pp. 193–200.
  33. L. Bian, J. Suo, X. Hu, F. Chen, and Q. Dai, “Efficient single pixel imaging in Fourier space,” J. Opt. 18, 085704 (2016).
    [Crossref]
  34. F. Yasuma, T. Mitsunaga, D. Iso, and S. K. Nayar, “Generalized assorted pixel camera: postcapture control of resolution, dynamic range, and spectrum,” IEEE Trans. Image Process. 19, 2241–2253 (2008).
    [Crossref]
  35. J. P. Parkkinen, J. Hallikainen, and T. Jaaskelainen, “Characteristic spectra of Munsell colors,” J. Opt. Soc. Am. A 6, 318–322 (1989).
    [Crossref]
  36. J. I. Park, M. H. Lee, M. D. Grossberg, and S. K. Nayar, “Multispectral imaging using multiplexed illumination,” in Proceedings of IEEE Conference on Computer Vision (IEEE, 2007), pp. 1–8.
  37. S. Han, I. Sato, T. Okabe, and Y. Sato, “Fast spectral reflectance recovery using dlp projector,” in Proceedings of Asian Conference on Computer Vision, (Springer, 2010), pp. 323–335.
  38. M. Rabbani, “JPEG2000: Image compression fundamentals, standards and practice,” J. Electron. Imaging 11, 286 (2002).
    [Crossref]
  39. X. Liao, H. Li, and L. Carin, “Generalized alternating projection for weighted-2,1 minimization with applications to model-based compressive sensing,” SIAM J. Imag. Sci. 7, 797–823 (2014).
    [Crossref]
  40. X. Yuan, “Generalized alternating projection based total variation minimization for compressive sensing,” in Proceedings of IEEE International Conference on Image Processing (IEEE, 2016), pp. 2539–2543.
  41. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600–612 (2004).
    [Crossref] [PubMed]
  42. R. Dosselmann and X. Yang, “A comprehensive assessment of the structural similarity index,” Signal, Image Video Process. 5, 81–91 (2009).
    [Crossref]
  43. Z. Wang and Q. Li, “Information Content Weighting for Perceptual Image Quality Assessment,” IEEE Trans. Image Process. 201185–1198 (2009)
    [Crossref]
  44. F. Yasuma, T. Mitsunaga, D. Iso, and S. K. Nayar, “Generalized assorted pixel camera: postcapture control of resolution, dynamic range, and spectrum,” IEEE Trans. Image Process. 19, 2241–2253 (2010).
    [Crossref] [PubMed]
  45. P. Wang and R. Menon, “Computational spectrometer based on a broadband diffractive optic,” Opt. Express 22, 14575–14587 (2014).
    [Crossref] [PubMed]
  46. Y. Zhang, J. Suo, Y. Wang, and Q. Dai, “Doubling the pixel count limitation of single-pixel imaging via sinusoidal amplitude modulation,” Opt. Express 26, 6929–6942 (2018).
    [Crossref] [PubMed]
  47. Z. Zhang, S. Liu, J. Peng, M. Yao, G. Zheng, and J. Zhong, “Simultaneous spatial, spectral, and 3d compressive imaging via efficient fourier single-pixel measurements,” Optica 5, 315–319 (2018).
    [Crossref]
  48. Y. Hitomi, J. Gu, M. Gupta, T. Mitsunaga, and S. K. Nayar, “Video from a single coded exposure photograph using a learned over-complete dictionary,” in Proceedings of IEEE International Conference on Computer Vision (IEEE, 2011), pp. 287–294.
  49. J. Holloway, A. C. Sankaranarayanan, A. Veeraraghavan, and S. Tambe, “Flutter shutter video camera for compressive sensing of videos,” in Proceedings of IEEE International Conference on Computational Photography, (IEEE, 2012), pp. 1–9.
  50. P. Llull, X. Liao, X. Yuan, J. Yang, D. Kittle, L. Carin, G. Sapiro, and D. J. Brady, “Coded aperture compressive temporal imaging,” Opt. Express 21, 10526–10545 (2013).
    [Crossref] [PubMed]
  51. D. Reddy, A. Veeraraghavan, and R. Chellappa, “P2c2: Programmable pixel compressive camera for high speed imaging,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2011), pp. 329–336.
  52. X. Yuan, P. Llull, X. Liao, J. Yang, D. J. Brady, G. Sapiro, and L. Carin, “Low-cost compressive sensing for color video and depth,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2014), pp. 3318–3325.

2018 (2)

2017 (3)

K. Dorozynska and E. Kristensson, “Implementation of a multiplexed structured illumination method to achieve snapshot multispectral imaging,” Opt. Express 25, 17211–17226 (2017).
[Crossref] [PubMed]

E. Kristensson, Z. Li, E. Berrocal, M. Richter, and M. Aldén, “Instantaneous 3D imaging of flame species using coded laser illumination,” Proc. Combust. Inst. 36, 4585–4591 (2017).
[Crossref]

A. Ehn, J. Bood, Z. Li, E. Berrocal, M. Aldén, and E. Kristensson, “FRAME: femtosecond videography for atomic and molecular dynamics,” Light. Sci. Appl. 6, 17045 (2017).
[Crossref]

2016 (1)

L. Bian, J. Suo, X. Hu, F. Chen, and Q. Dai, “Efficient single pixel imaging in Fourier space,” J. Opt. 18, 085704 (2016).
[Crossref]

2014 (3)

X. Liao, H. Li, and L. Carin, “Generalized alternating projection for weighted-2,1 minimization with applications to model-based compressive sensing,” SIAM J. Imag. Sci. 7, 797–823 (2014).
[Crossref]

G. R. Arce, D. J. Brady, L. Carin, H. Arguello, and D. S. Kittle, “Compressive coded aperture spectral imaging: An introduction,” IEEE Signal Process. Mag. 31, 105–115 (2014).
[Crossref]

P. Wang and R. Menon, “Computational spectrometer based on a broadband diffractive optic,” Opt. Express 22, 14575–14587 (2014).
[Crossref] [PubMed]

2013 (2)

2011 (2)

A. J. Reiter and S. C. Kong, “Combustion and emissions characteristics of compression-ignition engine using dual ammonia-diesel fuel,” Fuel 90, 87–97 (2011).
[Crossref]

R. T. Kester, N. Bedard, L. Gao, and T. S. Tkaczyk, “Real-time snapshot hyperspectral imaging endoscope,” J. Biomed. Opt. 16, 056005 (2011).
[Crossref] [PubMed]

2010 (4)

A. Gorman, D. W. Fletcher-Holmes, and A. R. Harvey, “Generalization of the lyot filter and its application to snapshot spectral imaging,” Opt. Express 18, 5602–5608 (2010).
[Crossref] [PubMed]

M. W. Kudenov, M. E. Jungwirth, E. L. Dereniak, and G. R. Gerhart, “White-light Sagnac interferometer for snapshot multispectral imaging,” Appl. Opt. 49, 4067–4076 (2010).
[Crossref] [PubMed]

M. W. Kudenov and E. L. Dereniak, “Compact snapshot birefringent imaging Fourier transform spectrometer,” Proc. SPIE 7812, 6–12 (2010).

F. Yasuma, T. Mitsunaga, D. Iso, and S. K. Nayar, “Generalized assorted pixel camera: postcapture control of resolution, dynamic range, and spectrum,” IEEE Trans. Image Process. 19, 2241–2253 (2010).
[Crossref] [PubMed]

2009 (4)

R. Dosselmann and X. Yang, “A comprehensive assessment of the structural similarity index,” Signal, Image Video Process. 5, 81–91 (2009).
[Crossref]

Z. Wang and Q. Li, “Information Content Weighting for Perceptual Image Quality Assessment,” IEEE Trans. Image Process. 201185–1198 (2009)
[Crossref]

L. Gao, R. T. Kester, and T. S. Tkaczyk, “Compact image slicing spectrometer (iss) for hyperspectral fluorescence microscopy,” Opt. Express 17, 12293–12308 (2009).
[Crossref] [PubMed]

S. Delalieux, A. Auwerkerken, W. W. Verstraeten, B. Somers, R. Valcke, S. Lhermitte, J. Keulemans, and P. Coppin, “Hyperspectral reflectance and fluorescence imaging to detect scab induced stress in apple leaves,” Remote Sens. 1, 858–874 (2009).
[Crossref]

2008 (1)

F. Yasuma, T. Mitsunaga, D. Iso, and S. K. Nayar, “Generalized assorted pixel camera: postcapture control of resolution, dynamic range, and spectrum,” IEEE Trans. Image Process. 19, 2241–2253 (2008).
[Crossref]

2007 (2)

M. Gehm, R. John, D. Brady, R. Willett, and T. Schulz, “Single-shot compressive spectral imaging with a dual-disperser architecture,” Opt. Express 15, 14013–14027 (2007).
[Crossref] [PubMed]

J. D. Matchett, R. I. Billmers, E. J. Billmers, and M. E. Ludwig, “Volume holographic beam splitter for hyperspectral imaging applications,” Proc. SPIE 6668, 66680K (2007).
[Crossref]

2006 (1)

G. Zavattini, S. Vecchi, G. Mitchell, U. Weisser, R. M. Leahy, B. J. Pichler, D. J. Smith, and S. R. Cherry, “A hyperspectral fluorescence system for 3D in vivo optical imaging,” Phys. Med. Biol. 51, 2029 (2006).
[Crossref] [PubMed]

2005 (2)

J. P. Bibring, Y. Langevin, A. Gendrin, B. Gondet, F. Poulet, M. Berthé, A. Soufflot, R. Arvidson, N. Mangold, J. Mustard, P. Drossart, and the OMEGA team, “Mars surface diversity as revealed by the omega/mars express observations,” Science 307, 1576–1581 (2005).
[Crossref] [PubMed]

R. G. Sellar and G. D. Boreman, “Comparison of relative signal-to-noise ratios of different classes of imaging spectrometer,” Appl. Opt. 44, 1614–1624 (2005).
[Crossref] [PubMed]

2004 (3)

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600–612 (2004).
[Crossref] [PubMed]

T. Vo-Dinh, “A hyperspectral imaging system for in vivo optical diagnostics,” IEEE Eng. Med. Biol. Mag. 23, 40–49 (2004).
[Crossref] [PubMed]

M. J. Barnsley, J. J. Settle, M. A. Cutter, D. R. Lobb, and F. Teston, “The proba/chris mission: A low-cost smallsat for hyperspectral multiangle observations of the earth surface and atmosphere,” IEEE Trans. Geosci. Remote Sens. 42, 1512–1520 (2004).
[Crossref]

2003 (2)

Z. Pan, G. Healey, M. Prasad, and B. Tromberg, “Face recognition in hyperspectral images,” IEEE Trans. on Pattern Anal. Mach. Intell. 25, 1552–1560 (2003).
[Crossref]

A. R. Harvey and D. W. Fletcher-Holmes, “High-throughput snapshot spectral imaging in two dimensions,” Proc. SPIE 4959, 4959136 (2003).

2002 (1)

M. Rabbani, “JPEG2000: Image compression fundamentals, standards and practice,” J. Electron. Imaging 11, 286 (2002).
[Crossref]

2000 (1)

V. Backman, M. B. Wallace, L. Perelman, J. Arendt, R. Gurjar, M. Müller, Q. Zhang, G. Zonios, E. Kline, T. McGillican, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406, 35–36 (2000).
[Crossref] [PubMed]

1998 (1)

1996 (2)

L. Weitzel, A. Krabbe, H. Kroker, N. Thatte, L. Tacconi-Garman, M. Cameron, and R. Genzel, “3d: The next generation near-infrared imaging spectrometer,” Astron. Astrophys. Suppl. Ser. 119, 531–546 (1996).
[Crossref]

M. T. Eismann, C. R. Schwartz, J. N. Cederquist, J. A. Hackwell, and R. J. Huppi, “Comparison of infrared imaging hyperspectral sensors for military target detection applications,” Proc. SPIE 2819, 91–102(1996).
[Crossref]

1994 (1)

A. Hirai, T. Inoue, K. Itoh, and Y. Ichioka, “Application of multiple-image Fourier transform spectral imaging to measurement of fast phenomena,” Opt. Rev. 1, 205–207 (1994).
[Crossref]

1991 (2)

T. Okamoto and I. Yamaguchi, “Simultaneous acquisition of spectral image information,” Opt. Lett. 16, 1277–1279 (1991).
[Crossref] [PubMed]

P. Kauranen, S. Andersson-Engels, and S. Svanberg, “Spatial mapping of flame radical emission using a spectroscopic multi-colour imaging system,” Appl. Phys. B 53, 260–264 (1991).
[Crossref]

1989 (1)

1985 (1)

A. F. Goetz, G. Vane, J. E. Solomon, and B. N. Rock, “Imaging spectrometry for earth remote sensing,” Science 228, 1147–1153 (1985).
[Crossref] [PubMed]

Aldén, M.

E. Kristensson, Z. Li, E. Berrocal, M. Richter, and M. Aldén, “Instantaneous 3D imaging of flame species using coded laser illumination,” Proc. Combust. Inst. 36, 4585–4591 (2017).
[Crossref]

A. Ehn, J. Bood, Z. Li, E. Berrocal, M. Aldén, and E. Kristensson, “FRAME: femtosecond videography for atomic and molecular dynamics,” Light. Sci. Appl. 6, 17045 (2017).
[Crossref]

Andersson-Engels, S.

P. Kauranen, S. Andersson-Engels, and S. Svanberg, “Spatial mapping of flame radical emission using a spectroscopic multi-colour imaging system,” Appl. Phys. B 53, 260–264 (1991).
[Crossref]

Arce, G. R.

G. R. Arce, D. J. Brady, L. Carin, H. Arguello, and D. S. Kittle, “Compressive coded aperture spectral imaging: An introduction,” IEEE Signal Process. Mag. 31, 105–115 (2014).
[Crossref]

Ardouin, J. P.

J. P. Ardouin, J. Lévesque, and T. A. Rea, “A demonstration of hyperspectral image exploitation for military applications,” in Proceedings of IEEE Conference on Information Fusion (IEEE, 2007), pp. 1–8.

Arendt, J.

V. Backman, M. B. Wallace, L. Perelman, J. Arendt, R. Gurjar, M. Müller, Q. Zhang, G. Zonios, E. Kline, T. McGillican, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406, 35–36 (2000).
[Crossref] [PubMed]

Arguello, H.

G. R. Arce, D. J. Brady, L. Carin, H. Arguello, and D. S. Kittle, “Compressive coded aperture spectral imaging: An introduction,” IEEE Signal Process. Mag. 31, 105–115 (2014).
[Crossref]

Arvidson, R.

J. P. Bibring, Y. Langevin, A. Gendrin, B. Gondet, F. Poulet, M. Berthé, A. Soufflot, R. Arvidson, N. Mangold, J. Mustard, P. Drossart, and the OMEGA team, “Mars surface diversity as revealed by the omega/mars express observations,” Science 307, 1576–1581 (2005).
[Crossref] [PubMed]

Auwerkerken, A.

S. Delalieux, A. Auwerkerken, W. W. Verstraeten, B. Somers, R. Valcke, S. Lhermitte, J. Keulemans, and P. Coppin, “Hyperspectral reflectance and fluorescence imaging to detect scab induced stress in apple leaves,” Remote Sens. 1, 858–874 (2009).
[Crossref]

Backman, V.

V. Backman, M. B. Wallace, L. Perelman, J. Arendt, R. Gurjar, M. Müller, Q. Zhang, G. Zonios, E. Kline, T. McGillican, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406, 35–36 (2000).
[Crossref] [PubMed]

Badizadegan, K.

V. Backman, M. B. Wallace, L. Perelman, J. Arendt, R. Gurjar, M. Müller, Q. Zhang, G. Zonios, E. Kline, T. McGillican, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406, 35–36 (2000).
[Crossref] [PubMed]

Barnsley, M. J.

M. J. Barnsley, J. J. Settle, M. A. Cutter, D. R. Lobb, and F. Teston, “The proba/chris mission: A low-cost smallsat for hyperspectral multiangle observations of the earth surface and atmosphere,” IEEE Trans. Geosci. Remote Sens. 42, 1512–1520 (2004).
[Crossref]

Bearman, G. H.

Bedard, N.

R. T. Kester, N. Bedard, L. Gao, and T. S. Tkaczyk, “Real-time snapshot hyperspectral imaging endoscope,” J. Biomed. Opt. 16, 056005 (2011).
[Crossref] [PubMed]

Berrocal, E.

E. Kristensson, Z. Li, E. Berrocal, M. Richter, and M. Aldén, “Instantaneous 3D imaging of flame species using coded laser illumination,” Proc. Combust. Inst. 36, 4585–4591 (2017).
[Crossref]

A. Ehn, J. Bood, Z. Li, E. Berrocal, M. Aldén, and E. Kristensson, “FRAME: femtosecond videography for atomic and molecular dynamics,” Light. Sci. Appl. 6, 17045 (2017).
[Crossref]

Berthé, M.

J. P. Bibring, Y. Langevin, A. Gendrin, B. Gondet, F. Poulet, M. Berthé, A. Soufflot, R. Arvidson, N. Mangold, J. Mustard, P. Drossart, and the OMEGA team, “Mars surface diversity as revealed by the omega/mars express observations,” Science 307, 1576–1581 (2005).
[Crossref] [PubMed]

Bian, L.

L. Bian, J. Suo, X. Hu, F. Chen, and Q. Dai, “Efficient single pixel imaging in Fourier space,” J. Opt. 18, 085704 (2016).
[Crossref]

Bibring, J. P.

J. P. Bibring, Y. Langevin, A. Gendrin, B. Gondet, F. Poulet, M. Berthé, A. Soufflot, R. Arvidson, N. Mangold, J. Mustard, P. Drossart, and the OMEGA team, “Mars surface diversity as revealed by the omega/mars express observations,” Science 307, 1576–1581 (2005).
[Crossref] [PubMed]

Billmers, E. J.

J. D. Matchett, R. I. Billmers, E. J. Billmers, and M. E. Ludwig, “Volume holographic beam splitter for hyperspectral imaging applications,” Proc. SPIE 6668, 66680K (2007).
[Crossref]

Billmers, R. I.

J. D. Matchett, R. I. Billmers, E. J. Billmers, and M. E. Ludwig, “Volume holographic beam splitter for hyperspectral imaging applications,” Proc. SPIE 6668, 66680K (2007).
[Crossref]

Bood, J.

A. Ehn, J. Bood, Z. Li, E. Berrocal, M. Aldén, and E. Kristensson, “FRAME: femtosecond videography for atomic and molecular dynamics,” Light. Sci. Appl. 6, 17045 (2017).
[Crossref]

Boreman, G. D.

Bovik, A. C.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600–612 (2004).
[Crossref] [PubMed]

Brady, D.

Brady, D. J.

G. R. Arce, D. J. Brady, L. Carin, H. Arguello, and D. S. Kittle, “Compressive coded aperture spectral imaging: An introduction,” IEEE Signal Process. Mag. 31, 105–115 (2014).
[Crossref]

P. Llull, X. Liao, X. Yuan, J. Yang, D. Kittle, L. Carin, G. Sapiro, and D. J. Brady, “Coded aperture compressive temporal imaging,” Opt. Express 21, 10526–10545 (2013).
[Crossref] [PubMed]

X. Yuan, P. Llull, X. Liao, J. Yang, D. J. Brady, G. Sapiro, and L. Carin, “Low-cost compressive sensing for color video and depth,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2014), pp. 3318–3325.

D. J. Brady, Optical imaging and spectroscopy (John Wiley & Sons, 2009).
[Crossref]

Cameron, M.

L. Weitzel, A. Krabbe, H. Kroker, N. Thatte, L. Tacconi-Garman, M. Cameron, and R. Genzel, “3d: The next generation near-infrared imaging spectrometer,” Astron. Astrophys. Suppl. Ser. 119, 531–546 (1996).
[Crossref]

Carin, L.

X. Liao, H. Li, and L. Carin, “Generalized alternating projection for weighted-2,1 minimization with applications to model-based compressive sensing,” SIAM J. Imag. Sci. 7, 797–823 (2014).
[Crossref]

G. R. Arce, D. J. Brady, L. Carin, H. Arguello, and D. S. Kittle, “Compressive coded aperture spectral imaging: An introduction,” IEEE Signal Process. Mag. 31, 105–115 (2014).
[Crossref]

P. Llull, X. Liao, X. Yuan, J. Yang, D. Kittle, L. Carin, G. Sapiro, and D. J. Brady, “Coded aperture compressive temporal imaging,” Opt. Express 21, 10526–10545 (2013).
[Crossref] [PubMed]

X. Yuan, P. Llull, X. Liao, J. Yang, D. J. Brady, G. Sapiro, and L. Carin, “Low-cost compressive sensing for color video and depth,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2014), pp. 3318–3325.

Cederquist, J. N.

M. T. Eismann, C. R. Schwartz, J. N. Cederquist, J. A. Hackwell, and R. J. Huppi, “Comparison of infrared imaging hyperspectral sensors for military target detection applications,” Proc. SPIE 2819, 91–102(1996).
[Crossref]

Chakrabarti, A.

A. Chakrabarti and T. Zickler, “Statistics of real-world hyperspectral images,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2011), pp. 193–200.

Chellappa, R.

D. Reddy, A. Veeraraghavan, and R. Chellappa, “P2c2: Programmable pixel compressive camera for high speed imaging,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2011), pp. 329–336.

Chen, F.

L. Bian, J. Suo, X. Hu, F. Chen, and Q. Dai, “Efficient single pixel imaging in Fourier space,” J. Opt. 18, 085704 (2016).
[Crossref]

Cherry, S. R.

G. Zavattini, S. Vecchi, G. Mitchell, U. Weisser, R. M. Leahy, B. J. Pichler, D. J. Smith, and S. R. Cherry, “A hyperspectral fluorescence system for 3D in vivo optical imaging,” Phys. Med. Biol. 51, 2029 (2006).
[Crossref] [PubMed]

Coppin, P.

S. Delalieux, A. Auwerkerken, W. W. Verstraeten, B. Somers, R. Valcke, S. Lhermitte, J. Keulemans, and P. Coppin, “Hyperspectral reflectance and fluorescence imaging to detect scab induced stress in apple leaves,” Remote Sens. 1, 858–874 (2009).
[Crossref]

Crawford, J. M.

V. Backman, M. B. Wallace, L. Perelman, J. Arendt, R. Gurjar, M. Müller, Q. Zhang, G. Zonios, E. Kline, T. McGillican, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406, 35–36 (2000).
[Crossref] [PubMed]

Cutter, M. A.

M. J. Barnsley, J. J. Settle, M. A. Cutter, D. R. Lobb, and F. Teston, “The proba/chris mission: A low-cost smallsat for hyperspectral multiangle observations of the earth surface and atmosphere,” IEEE Trans. Geosci. Remote Sens. 42, 1512–1520 (2004).
[Crossref]

Dai, Q.

Dasari, R. R.

V. Backman, M. B. Wallace, L. Perelman, J. Arendt, R. Gurjar, M. Müller, Q. Zhang, G. Zonios, E. Kline, T. McGillican, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406, 35–36 (2000).
[Crossref] [PubMed]

Delalieux, S.

S. Delalieux, A. Auwerkerken, W. W. Verstraeten, B. Somers, R. Valcke, S. Lhermitte, J. Keulemans, and P. Coppin, “Hyperspectral reflectance and fluorescence imaging to detect scab induced stress in apple leaves,” Remote Sens. 1, 858–874 (2009).
[Crossref]

Dereniak, E. L.

M. W. Kudenov and E. L. Dereniak, “Compact snapshot birefringent imaging Fourier transform spectrometer,” Proc. SPIE 7812, 6–12 (2010).

M. W. Kudenov, M. E. Jungwirth, E. L. Dereniak, and G. R. Gerhart, “White-light Sagnac interferometer for snapshot multispectral imaging,” Appl. Opt. 49, 4067–4076 (2010).
[Crossref] [PubMed]

Descour, M. R.

Dorozynska, K.

Dosselmann, R.

R. Dosselmann and X. Yang, “A comprehensive assessment of the structural similarity index,” Signal, Image Video Process. 5, 81–91 (2009).
[Crossref]

Drossart, P.

J. P. Bibring, Y. Langevin, A. Gendrin, B. Gondet, F. Poulet, M. Berthé, A. Soufflot, R. Arvidson, N. Mangold, J. Mustard, P. Drossart, and the OMEGA team, “Mars surface diversity as revealed by the omega/mars express observations,” Science 307, 1576–1581 (2005).
[Crossref] [PubMed]

Ehn, A.

A. Ehn, J. Bood, Z. Li, E. Berrocal, M. Aldén, and E. Kristensson, “FRAME: femtosecond videography for atomic and molecular dynamics,” Light. Sci. Appl. 6, 17045 (2017).
[Crossref]

Eismann, M. T.

M. T. Eismann, C. R. Schwartz, J. N. Cederquist, J. A. Hackwell, and R. J. Huppi, “Comparison of infrared imaging hyperspectral sensors for military target detection applications,” Proc. SPIE 2819, 91–102(1996).
[Crossref]

Feld, M. S.

V. Backman, M. B. Wallace, L. Perelman, J. Arendt, R. Gurjar, M. Müller, Q. Zhang, G. Zonios, E. Kline, T. McGillican, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406, 35–36 (2000).
[Crossref] [PubMed]

Fitzmaurice, M.

V. Backman, M. B. Wallace, L. Perelman, J. Arendt, R. Gurjar, M. Müller, Q. Zhang, G. Zonios, E. Kline, T. McGillican, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406, 35–36 (2000).
[Crossref] [PubMed]

Fletcher-Holmes, D. W.

A. Gorman, D. W. Fletcher-Holmes, and A. R. Harvey, “Generalization of the lyot filter and its application to snapshot spectral imaging,” Opt. Express 18, 5602–5608 (2010).
[Crossref] [PubMed]

A. R. Harvey and D. W. Fletcher-Holmes, “High-throughput snapshot spectral imaging in two dimensions,” Proc. SPIE 4959, 4959136 (2003).

Ford, B. K.

Gao, L.

R. T. Kester, N. Bedard, L. Gao, and T. S. Tkaczyk, “Real-time snapshot hyperspectral imaging endoscope,” J. Biomed. Opt. 16, 056005 (2011).
[Crossref] [PubMed]

L. Gao, R. T. Kester, and T. S. Tkaczyk, “Compact image slicing spectrometer (iss) for hyperspectral fluorescence microscopy,” Opt. Express 17, 12293–12308 (2009).
[Crossref] [PubMed]

Garcia, J. P.

Gehm, M.

Gendrin, A.

J. P. Bibring, Y. Langevin, A. Gendrin, B. Gondet, F. Poulet, M. Berthé, A. Soufflot, R. Arvidson, N. Mangold, J. Mustard, P. Drossart, and the OMEGA team, “Mars surface diversity as revealed by the omega/mars express observations,” Science 307, 1576–1581 (2005).
[Crossref] [PubMed]

Genzel, R.

L. Weitzel, A. Krabbe, H. Kroker, N. Thatte, L. Tacconi-Garman, M. Cameron, and R. Genzel, “3d: The next generation near-infrared imaging spectrometer,” Astron. Astrophys. Suppl. Ser. 119, 531–546 (1996).
[Crossref]

Gerhart, G. R.

Goetz, A. F.

A. F. Goetz, G. Vane, J. E. Solomon, and B. N. Rock, “Imaging spectrometry for earth remote sensing,” Science 228, 1147–1153 (1985).
[Crossref] [PubMed]

Gondet, B.

J. P. Bibring, Y. Langevin, A. Gendrin, B. Gondet, F. Poulet, M. Berthé, A. Soufflot, R. Arvidson, N. Mangold, J. Mustard, P. Drossart, and the OMEGA team, “Mars surface diversity as revealed by the omega/mars express observations,” Science 307, 1576–1581 (2005).
[Crossref] [PubMed]

Gorman, A.

Grossberg, M. D.

J. I. Park, M. H. Lee, M. D. Grossberg, and S. K. Nayar, “Multispectral imaging using multiplexed illumination,” in Proceedings of IEEE Conference on Computer Vision (IEEE, 2007), pp. 1–8.

Gu, J.

Y. Hitomi, J. Gu, M. Gupta, T. Mitsunaga, and S. K. Nayar, “Video from a single coded exposure photograph using a learned over-complete dictionary,” in Proceedings of IEEE International Conference on Computer Vision (IEEE, 2011), pp. 287–294.

Gupta, M.

Y. Hitomi, J. Gu, M. Gupta, T. Mitsunaga, and S. K. Nayar, “Video from a single coded exposure photograph using a learned over-complete dictionary,” in Proceedings of IEEE International Conference on Computer Vision (IEEE, 2011), pp. 287–294.

Gurjar, R.

V. Backman, M. B. Wallace, L. Perelman, J. Arendt, R. Gurjar, M. Müller, Q. Zhang, G. Zonios, E. Kline, T. McGillican, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406, 35–36 (2000).
[Crossref] [PubMed]

Hackwell, J. A.

M. T. Eismann, C. R. Schwartz, J. N. Cederquist, J. A. Hackwell, and R. J. Huppi, “Comparison of infrared imaging hyperspectral sensors for military target detection applications,” Proc. SPIE 2819, 91–102(1996).
[Crossref]

Hagen, N.

N. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52, 090901 (2013).
[Crossref]

Hallikainen, J.

Han, S.

S. Han, I. Sato, T. Okabe, and Y. Sato, “Fast spectral reflectance recovery using dlp projector,” in Proceedings of Asian Conference on Computer Vision, (Springer, 2010), pp. 323–335.

Harvey, A. R.

A. Gorman, D. W. Fletcher-Holmes, and A. R. Harvey, “Generalization of the lyot filter and its application to snapshot spectral imaging,” Opt. Express 18, 5602–5608 (2010).
[Crossref] [PubMed]

A. R. Harvey and D. W. Fletcher-Holmes, “High-throughput snapshot spectral imaging in two dimensions,” Proc. SPIE 4959, 4959136 (2003).

Healey, G.

Z. Pan, G. Healey, M. Prasad, and B. Tromberg, “Face recognition in hyperspectral images,” IEEE Trans. on Pattern Anal. Mach. Intell. 25, 1552–1560 (2003).
[Crossref]

Hirai, A.

A. Hirai, T. Inoue, K. Itoh, and Y. Ichioka, “Application of multiple-image Fourier transform spectral imaging to measurement of fast phenomena,” Opt. Rev. 1, 205–207 (1994).
[Crossref]

Hitomi, Y.

Y. Hitomi, J. Gu, M. Gupta, T. Mitsunaga, and S. K. Nayar, “Video from a single coded exposure photograph using a learned over-complete dictionary,” in Proceedings of IEEE International Conference on Computer Vision (IEEE, 2011), pp. 287–294.

Holloway, J.

J. Holloway, A. C. Sankaranarayanan, A. Veeraraghavan, and S. Tambe, “Flutter shutter video camera for compressive sensing of videos,” in Proceedings of IEEE International Conference on Computational Photography, (IEEE, 2012), pp. 1–9.

Hu, X.

L. Bian, J. Suo, X. Hu, F. Chen, and Q. Dai, “Efficient single pixel imaging in Fourier space,” J. Opt. 18, 085704 (2016).
[Crossref]

Huppi, R. J.

M. T. Eismann, C. R. Schwartz, J. N. Cederquist, J. A. Hackwell, and R. J. Huppi, “Comparison of infrared imaging hyperspectral sensors for military target detection applications,” Proc. SPIE 2819, 91–102(1996).
[Crossref]

Ichioka, Y.

A. Hirai, T. Inoue, K. Itoh, and Y. Ichioka, “Application of multiple-image Fourier transform spectral imaging to measurement of fast phenomena,” Opt. Rev. 1, 205–207 (1994).
[Crossref]

Inoue, T.

A. Hirai, T. Inoue, K. Itoh, and Y. Ichioka, “Application of multiple-image Fourier transform spectral imaging to measurement of fast phenomena,” Opt. Rev. 1, 205–207 (1994).
[Crossref]

Iso, D.

F. Yasuma, T. Mitsunaga, D. Iso, and S. K. Nayar, “Generalized assorted pixel camera: postcapture control of resolution, dynamic range, and spectrum,” IEEE Trans. Image Process. 19, 2241–2253 (2010).
[Crossref] [PubMed]

F. Yasuma, T. Mitsunaga, D. Iso, and S. K. Nayar, “Generalized assorted pixel camera: postcapture control of resolution, dynamic range, and spectrum,” IEEE Trans. Image Process. 19, 2241–2253 (2008).
[Crossref]

Itoh, K.

A. Hirai, T. Inoue, K. Itoh, and Y. Ichioka, “Application of multiple-image Fourier transform spectral imaging to measurement of fast phenomena,” Opt. Rev. 1, 205–207 (1994).
[Crossref]

Itzkan, I.

V. Backman, M. B. Wallace, L. Perelman, J. Arendt, R. Gurjar, M. Müller, Q. Zhang, G. Zonios, E. Kline, T. McGillican, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406, 35–36 (2000).
[Crossref] [PubMed]

Jaaskelainen, T.

John, R.

Jungwirth, M. E.

Kabani, S.

V. Backman, M. B. Wallace, L. Perelman, J. Arendt, R. Gurjar, M. Müller, Q. Zhang, G. Zonios, E. Kline, T. McGillican, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406, 35–36 (2000).
[Crossref] [PubMed]

Kauranen, P.

P. Kauranen, S. Andersson-Engels, and S. Svanberg, “Spatial mapping of flame radical emission using a spectroscopic multi-colour imaging system,” Appl. Phys. B 53, 260–264 (1991).
[Crossref]

Kester, R. T.

R. T. Kester, N. Bedard, L. Gao, and T. S. Tkaczyk, “Real-time snapshot hyperspectral imaging endoscope,” J. Biomed. Opt. 16, 056005 (2011).
[Crossref] [PubMed]

L. Gao, R. T. Kester, and T. S. Tkaczyk, “Compact image slicing spectrometer (iss) for hyperspectral fluorescence microscopy,” Opt. Express 17, 12293–12308 (2009).
[Crossref] [PubMed]

Keulemans, J.

S. Delalieux, A. Auwerkerken, W. W. Verstraeten, B. Somers, R. Valcke, S. Lhermitte, J. Keulemans, and P. Coppin, “Hyperspectral reflectance and fluorescence imaging to detect scab induced stress in apple leaves,” Remote Sens. 1, 858–874 (2009).
[Crossref]

Kittle, D.

Kittle, D. S.

G. R. Arce, D. J. Brady, L. Carin, H. Arguello, and D. S. Kittle, “Compressive coded aperture spectral imaging: An introduction,” IEEE Signal Process. Mag. 31, 105–115 (2014).
[Crossref]

Kline, E.

V. Backman, M. B. Wallace, L. Perelman, J. Arendt, R. Gurjar, M. Müller, Q. Zhang, G. Zonios, E. Kline, T. McGillican, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406, 35–36 (2000).
[Crossref] [PubMed]

Kong, S. C.

A. J. Reiter and S. C. Kong, “Combustion and emissions characteristics of compression-ignition engine using dual ammonia-diesel fuel,” Fuel 90, 87–97 (2011).
[Crossref]

Krabbe, A.

L. Weitzel, A. Krabbe, H. Kroker, N. Thatte, L. Tacconi-Garman, M. Cameron, and R. Genzel, “3d: The next generation near-infrared imaging spectrometer,” Astron. Astrophys. Suppl. Ser. 119, 531–546 (1996).
[Crossref]

Kristensson, E.

E. Kristensson, Z. Li, E. Berrocal, M. Richter, and M. Aldén, “Instantaneous 3D imaging of flame species using coded laser illumination,” Proc. Combust. Inst. 36, 4585–4591 (2017).
[Crossref]

A. Ehn, J. Bood, Z. Li, E. Berrocal, M. Aldén, and E. Kristensson, “FRAME: femtosecond videography for atomic and molecular dynamics,” Light. Sci. Appl. 6, 17045 (2017).
[Crossref]

K. Dorozynska and E. Kristensson, “Implementation of a multiplexed structured illumination method to achieve snapshot multispectral imaging,” Opt. Express 25, 17211–17226 (2017).
[Crossref] [PubMed]

Kroker, H.

L. Weitzel, A. Krabbe, H. Kroker, N. Thatte, L. Tacconi-Garman, M. Cameron, and R. Genzel, “3d: The next generation near-infrared imaging spectrometer,” Astron. Astrophys. Suppl. Ser. 119, 531–546 (1996).
[Crossref]

Kudenov, M. W.

N. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52, 090901 (2013).
[Crossref]

M. W. Kudenov, M. E. Jungwirth, E. L. Dereniak, and G. R. Gerhart, “White-light Sagnac interferometer for snapshot multispectral imaging,” Appl. Opt. 49, 4067–4076 (2010).
[Crossref] [PubMed]

M. W. Kudenov and E. L. Dereniak, “Compact snapshot birefringent imaging Fourier transform spectrometer,” Proc. SPIE 7812, 6–12 (2010).

Langevin, Y.

J. P. Bibring, Y. Langevin, A. Gendrin, B. Gondet, F. Poulet, M. Berthé, A. Soufflot, R. Arvidson, N. Mangold, J. Mustard, P. Drossart, and the OMEGA team, “Mars surface diversity as revealed by the omega/mars express observations,” Science 307, 1576–1581 (2005).
[Crossref] [PubMed]

Leahy, R. M.

G. Zavattini, S. Vecchi, G. Mitchell, U. Weisser, R. M. Leahy, B. J. Pichler, D. J. Smith, and S. R. Cherry, “A hyperspectral fluorescence system for 3D in vivo optical imaging,” Phys. Med. Biol. 51, 2029 (2006).
[Crossref] [PubMed]

Lee, M. H.

J. I. Park, M. H. Lee, M. D. Grossberg, and S. K. Nayar, “Multispectral imaging using multiplexed illumination,” in Proceedings of IEEE Conference on Computer Vision (IEEE, 2007), pp. 1–8.

Lévesque, J.

J. P. Ardouin, J. Lévesque, and T. A. Rea, “A demonstration of hyperspectral image exploitation for military applications,” in Proceedings of IEEE Conference on Information Fusion (IEEE, 2007), pp. 1–8.

Levin, H. S.

V. Backman, M. B. Wallace, L. Perelman, J. Arendt, R. Gurjar, M. Müller, Q. Zhang, G. Zonios, E. Kline, T. McGillican, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406, 35–36 (2000).
[Crossref] [PubMed]

Lhermitte, S.

S. Delalieux, A. Auwerkerken, W. W. Verstraeten, B. Somers, R. Valcke, S. Lhermitte, J. Keulemans, and P. Coppin, “Hyperspectral reflectance and fluorescence imaging to detect scab induced stress in apple leaves,” Remote Sens. 1, 858–874 (2009).
[Crossref]

Li, H.

X. Liao, H. Li, and L. Carin, “Generalized alternating projection for weighted-2,1 minimization with applications to model-based compressive sensing,” SIAM J. Imag. Sci. 7, 797–823 (2014).
[Crossref]

Li, Q.

Z. Wang and Q. Li, “Information Content Weighting for Perceptual Image Quality Assessment,” IEEE Trans. Image Process. 201185–1198 (2009)
[Crossref]

Li, Z.

A. Ehn, J. Bood, Z. Li, E. Berrocal, M. Aldén, and E. Kristensson, “FRAME: femtosecond videography for atomic and molecular dynamics,” Light. Sci. Appl. 6, 17045 (2017).
[Crossref]

E. Kristensson, Z. Li, E. Berrocal, M. Richter, and M. Aldén, “Instantaneous 3D imaging of flame species using coded laser illumination,” Proc. Combust. Inst. 36, 4585–4591 (2017).
[Crossref]

Liao, X.

X. Liao, H. Li, and L. Carin, “Generalized alternating projection for weighted-2,1 minimization with applications to model-based compressive sensing,” SIAM J. Imag. Sci. 7, 797–823 (2014).
[Crossref]

P. Llull, X. Liao, X. Yuan, J. Yang, D. Kittle, L. Carin, G. Sapiro, and D. J. Brady, “Coded aperture compressive temporal imaging,” Opt. Express 21, 10526–10545 (2013).
[Crossref] [PubMed]

X. Yuan, P. Llull, X. Liao, J. Yang, D. J. Brady, G. Sapiro, and L. Carin, “Low-cost compressive sensing for color video and depth,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2014), pp. 3318–3325.

Liu, S.

Llull, P.

P. Llull, X. Liao, X. Yuan, J. Yang, D. Kittle, L. Carin, G. Sapiro, and D. J. Brady, “Coded aperture compressive temporal imaging,” Opt. Express 21, 10526–10545 (2013).
[Crossref] [PubMed]

X. Yuan, P. Llull, X. Liao, J. Yang, D. J. Brady, G. Sapiro, and L. Carin, “Low-cost compressive sensing for color video and depth,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2014), pp. 3318–3325.

Lobb, D. R.

M. J. Barnsley, J. J. Settle, M. A. Cutter, D. R. Lobb, and F. Teston, “The proba/chris mission: A low-cost smallsat for hyperspectral multiangle observations of the earth surface and atmosphere,” IEEE Trans. Geosci. Remote Sens. 42, 1512–1520 (2004).
[Crossref]

Ludwig, M. E.

J. D. Matchett, R. I. Billmers, E. J. Billmers, and M. E. Ludwig, “Volume holographic beam splitter for hyperspectral imaging applications,” Proc. SPIE 6668, 66680K (2007).
[Crossref]

Maker, P. D.

Mangold, N.

J. P. Bibring, Y. Langevin, A. Gendrin, B. Gondet, F. Poulet, M. Berthé, A. Soufflot, R. Arvidson, N. Mangold, J. Mustard, P. Drossart, and the OMEGA team, “Mars surface diversity as revealed by the omega/mars express observations,” Science 307, 1576–1581 (2005).
[Crossref] [PubMed]

Matchett, J. D.

J. D. Matchett, R. I. Billmers, E. J. Billmers, and M. E. Ludwig, “Volume holographic beam splitter for hyperspectral imaging applications,” Proc. SPIE 6668, 66680K (2007).
[Crossref]

McGillican, T.

V. Backman, M. B. Wallace, L. Perelman, J. Arendt, R. Gurjar, M. Müller, Q. Zhang, G. Zonios, E. Kline, T. McGillican, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406, 35–36 (2000).
[Crossref] [PubMed]

Menon, R.

Mitchell, G.

G. Zavattini, S. Vecchi, G. Mitchell, U. Weisser, R. M. Leahy, B. J. Pichler, D. J. Smith, and S. R. Cherry, “A hyperspectral fluorescence system for 3D in vivo optical imaging,” Phys. Med. Biol. 51, 2029 (2006).
[Crossref] [PubMed]

Mitsunaga, T.

F. Yasuma, T. Mitsunaga, D. Iso, and S. K. Nayar, “Generalized assorted pixel camera: postcapture control of resolution, dynamic range, and spectrum,” IEEE Trans. Image Process. 19, 2241–2253 (2010).
[Crossref] [PubMed]

F. Yasuma, T. Mitsunaga, D. Iso, and S. K. Nayar, “Generalized assorted pixel camera: postcapture control of resolution, dynamic range, and spectrum,” IEEE Trans. Image Process. 19, 2241–2253 (2008).
[Crossref]

Y. Hitomi, J. Gu, M. Gupta, T. Mitsunaga, and S. K. Nayar, “Video from a single coded exposure photograph using a learned over-complete dictionary,” in Proceedings of IEEE International Conference on Computer Vision (IEEE, 2011), pp. 287–294.

Müller, M.

V. Backman, M. B. Wallace, L. Perelman, J. Arendt, R. Gurjar, M. Müller, Q. Zhang, G. Zonios, E. Kline, T. McGillican, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406, 35–36 (2000).
[Crossref] [PubMed]

Mustard, J.

J. P. Bibring, Y. Langevin, A. Gendrin, B. Gondet, F. Poulet, M. Berthé, A. Soufflot, R. Arvidson, N. Mangold, J. Mustard, P. Drossart, and the OMEGA team, “Mars surface diversity as revealed by the omega/mars express observations,” Science 307, 1576–1581 (2005).
[Crossref] [PubMed]

Nayar, S. K.

F. Yasuma, T. Mitsunaga, D. Iso, and S. K. Nayar, “Generalized assorted pixel camera: postcapture control of resolution, dynamic range, and spectrum,” IEEE Trans. Image Process. 19, 2241–2253 (2010).
[Crossref] [PubMed]

F. Yasuma, T. Mitsunaga, D. Iso, and S. K. Nayar, “Generalized assorted pixel camera: postcapture control of resolution, dynamic range, and spectrum,” IEEE Trans. Image Process. 19, 2241–2253 (2008).
[Crossref]

Y. Hitomi, J. Gu, M. Gupta, T. Mitsunaga, and S. K. Nayar, “Video from a single coded exposure photograph using a learned over-complete dictionary,” in Proceedings of IEEE International Conference on Computer Vision (IEEE, 2011), pp. 287–294.

J. I. Park, M. H. Lee, M. D. Grossberg, and S. K. Nayar, “Multispectral imaging using multiplexed illumination,” in Proceedings of IEEE Conference on Computer Vision (IEEE, 2007), pp. 1–8.

Okabe, T.

S. Han, I. Sato, T. Okabe, and Y. Sato, “Fast spectral reflectance recovery using dlp projector,” in Proceedings of Asian Conference on Computer Vision, (Springer, 2010), pp. 323–335.

Okamoto, T.

Pan, Z.

Z. Pan, G. Healey, M. Prasad, and B. Tromberg, “Face recognition in hyperspectral images,” IEEE Trans. on Pattern Anal. Mach. Intell. 25, 1552–1560 (2003).
[Crossref]

Park, J. I.

J. I. Park, M. H. Lee, M. D. Grossberg, and S. K. Nayar, “Multispectral imaging using multiplexed illumination,” in Proceedings of IEEE Conference on Computer Vision (IEEE, 2007), pp. 1–8.

Parkkinen, J. P.

Peng, J.

Perelman, L.

V. Backman, M. B. Wallace, L. Perelman, J. Arendt, R. Gurjar, M. Müller, Q. Zhang, G. Zonios, E. Kline, T. McGillican, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406, 35–36 (2000).
[Crossref] [PubMed]

Pichler, B. J.

G. Zavattini, S. Vecchi, G. Mitchell, U. Weisser, R. M. Leahy, B. J. Pichler, D. J. Smith, and S. R. Cherry, “A hyperspectral fluorescence system for 3D in vivo optical imaging,” Phys. Med. Biol. 51, 2029 (2006).
[Crossref] [PubMed]

Poulet, F.

J. P. Bibring, Y. Langevin, A. Gendrin, B. Gondet, F. Poulet, M. Berthé, A. Soufflot, R. Arvidson, N. Mangold, J. Mustard, P. Drossart, and the OMEGA team, “Mars surface diversity as revealed by the omega/mars express observations,” Science 307, 1576–1581 (2005).
[Crossref] [PubMed]

Prasad, M.

Z. Pan, G. Healey, M. Prasad, and B. Tromberg, “Face recognition in hyperspectral images,” IEEE Trans. on Pattern Anal. Mach. Intell. 25, 1552–1560 (2003).
[Crossref]

Rabbani, M.

M. Rabbani, “JPEG2000: Image compression fundamentals, standards and practice,” J. Electron. Imaging 11, 286 (2002).
[Crossref]

Rea, T. A.

J. P. Ardouin, J. Lévesque, and T. A. Rea, “A demonstration of hyperspectral image exploitation for military applications,” in Proceedings of IEEE Conference on Information Fusion (IEEE, 2007), pp. 1–8.

Reddy, D.

D. Reddy, A. Veeraraghavan, and R. Chellappa, “P2c2: Programmable pixel compressive camera for high speed imaging,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2011), pp. 329–336.

Reiter, A. J.

A. J. Reiter and S. C. Kong, “Combustion and emissions characteristics of compression-ignition engine using dual ammonia-diesel fuel,” Fuel 90, 87–97 (2011).
[Crossref]

Richter, M.

E. Kristensson, Z. Li, E. Berrocal, M. Richter, and M. Aldén, “Instantaneous 3D imaging of flame species using coded laser illumination,” Proc. Combust. Inst. 36, 4585–4591 (2017).
[Crossref]

Rock, B. N.

A. F. Goetz, G. Vane, J. E. Solomon, and B. N. Rock, “Imaging spectrometry for earth remote sensing,” Science 228, 1147–1153 (1985).
[Crossref] [PubMed]

Sankaranarayanan, A. C.

J. Holloway, A. C. Sankaranarayanan, A. Veeraraghavan, and S. Tambe, “Flutter shutter video camera for compressive sensing of videos,” in Proceedings of IEEE International Conference on Computational Photography, (IEEE, 2012), pp. 1–9.

Sapiro, G.

P. Llull, X. Liao, X. Yuan, J. Yang, D. Kittle, L. Carin, G. Sapiro, and D. J. Brady, “Coded aperture compressive temporal imaging,” Opt. Express 21, 10526–10545 (2013).
[Crossref] [PubMed]

X. Yuan, P. Llull, X. Liao, J. Yang, D. J. Brady, G. Sapiro, and L. Carin, “Low-cost compressive sensing for color video and depth,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2014), pp. 3318–3325.

Sato, I.

S. Han, I. Sato, T. Okabe, and Y. Sato, “Fast spectral reflectance recovery using dlp projector,” in Proceedings of Asian Conference on Computer Vision, (Springer, 2010), pp. 323–335.

Sato, Y.

S. Han, I. Sato, T. Okabe, and Y. Sato, “Fast spectral reflectance recovery using dlp projector,” in Proceedings of Asian Conference on Computer Vision, (Springer, 2010), pp. 323–335.

Schulz, T.

Schwartz, C. R.

M. T. Eismann, C. R. Schwartz, J. N. Cederquist, J. A. Hackwell, and R. J. Huppi, “Comparison of infrared imaging hyperspectral sensors for military target detection applications,” Proc. SPIE 2819, 91–102(1996).
[Crossref]

Seiler, M.

V. Backman, M. B. Wallace, L. Perelman, J. Arendt, R. Gurjar, M. Müller, Q. Zhang, G. Zonios, E. Kline, T. McGillican, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406, 35–36 (2000).
[Crossref] [PubMed]

Sellar, R. G.

Settle, J. J.

M. J. Barnsley, J. J. Settle, M. A. Cutter, D. R. Lobb, and F. Teston, “The proba/chris mission: A low-cost smallsat for hyperspectral multiangle observations of the earth surface and atmosphere,” IEEE Trans. Geosci. Remote Sens. 42, 1512–1520 (2004).
[Crossref]

Shapshay, S.

V. Backman, M. B. Wallace, L. Perelman, J. Arendt, R. Gurjar, M. Müller, Q. Zhang, G. Zonios, E. Kline, T. McGillican, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406, 35–36 (2000).
[Crossref] [PubMed]

Sheikh, H. R.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600–612 (2004).
[Crossref] [PubMed]

Simoncelli, E. P.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600–612 (2004).
[Crossref] [PubMed]

Smith, D. J.

G. Zavattini, S. Vecchi, G. Mitchell, U. Weisser, R. M. Leahy, B. J. Pichler, D. J. Smith, and S. R. Cherry, “A hyperspectral fluorescence system for 3D in vivo optical imaging,” Phys. Med. Biol. 51, 2029 (2006).
[Crossref] [PubMed]

Solomon, J. E.

A. F. Goetz, G. Vane, J. E. Solomon, and B. N. Rock, “Imaging spectrometry for earth remote sensing,” Science 228, 1147–1153 (1985).
[Crossref] [PubMed]

Somers, B.

S. Delalieux, A. Auwerkerken, W. W. Verstraeten, B. Somers, R. Valcke, S. Lhermitte, J. Keulemans, and P. Coppin, “Hyperspectral reflectance and fluorescence imaging to detect scab induced stress in apple leaves,” Remote Sens. 1, 858–874 (2009).
[Crossref]

Soufflot, A.

J. P. Bibring, Y. Langevin, A. Gendrin, B. Gondet, F. Poulet, M. Berthé, A. Soufflot, R. Arvidson, N. Mangold, J. Mustard, P. Drossart, and the OMEGA team, “Mars surface diversity as revealed by the omega/mars express observations,” Science 307, 1576–1581 (2005).
[Crossref] [PubMed]

Suo, J.

Svanberg, S.

P. Kauranen, S. Andersson-Engels, and S. Svanberg, “Spatial mapping of flame radical emission using a spectroscopic multi-colour imaging system,” Appl. Phys. B 53, 260–264 (1991).
[Crossref]

Tacconi-Garman, L.

L. Weitzel, A. Krabbe, H. Kroker, N. Thatte, L. Tacconi-Garman, M. Cameron, and R. Genzel, “3d: The next generation near-infrared imaging spectrometer,” Astron. Astrophys. Suppl. Ser. 119, 531–546 (1996).
[Crossref]

Tambe, S.

J. Holloway, A. C. Sankaranarayanan, A. Veeraraghavan, and S. Tambe, “Flutter shutter video camera for compressive sensing of videos,” in Proceedings of IEEE International Conference on Computational Photography, (IEEE, 2012), pp. 1–9.

Teston, F.

M. J. Barnsley, J. J. Settle, M. A. Cutter, D. R. Lobb, and F. Teston, “The proba/chris mission: A low-cost smallsat for hyperspectral multiangle observations of the earth surface and atmosphere,” IEEE Trans. Geosci. Remote Sens. 42, 1512–1520 (2004).
[Crossref]

Thatte, N.

L. Weitzel, A. Krabbe, H. Kroker, N. Thatte, L. Tacconi-Garman, M. Cameron, and R. Genzel, “3d: The next generation near-infrared imaging spectrometer,” Astron. Astrophys. Suppl. Ser. 119, 531–546 (1996).
[Crossref]

Tkaczyk, T. S.

R. T. Kester, N. Bedard, L. Gao, and T. S. Tkaczyk, “Real-time snapshot hyperspectral imaging endoscope,” J. Biomed. Opt. 16, 056005 (2011).
[Crossref] [PubMed]

L. Gao, R. T. Kester, and T. S. Tkaczyk, “Compact image slicing spectrometer (iss) for hyperspectral fluorescence microscopy,” Opt. Express 17, 12293–12308 (2009).
[Crossref] [PubMed]

Tromberg, B.

Z. Pan, G. Healey, M. Prasad, and B. Tromberg, “Face recognition in hyperspectral images,” IEEE Trans. on Pattern Anal. Mach. Intell. 25, 1552–1560 (2003).
[Crossref]

Valcke, R.

S. Delalieux, A. Auwerkerken, W. W. Verstraeten, B. Somers, R. Valcke, S. Lhermitte, J. Keulemans, and P. Coppin, “Hyperspectral reflectance and fluorescence imaging to detect scab induced stress in apple leaves,” Remote Sens. 1, 858–874 (2009).
[Crossref]

Valdez, T.

V. Backman, M. B. Wallace, L. Perelman, J. Arendt, R. Gurjar, M. Müller, Q. Zhang, G. Zonios, E. Kline, T. McGillican, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406, 35–36 (2000).
[Crossref] [PubMed]

Van Dam, J.

V. Backman, M. B. Wallace, L. Perelman, J. Arendt, R. Gurjar, M. Müller, Q. Zhang, G. Zonios, E. Kline, T. McGillican, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406, 35–36 (2000).
[Crossref] [PubMed]

Vane, G.

A. F. Goetz, G. Vane, J. E. Solomon, and B. N. Rock, “Imaging spectrometry for earth remote sensing,” Science 228, 1147–1153 (1985).
[Crossref] [PubMed]

Vecchi, S.

G. Zavattini, S. Vecchi, G. Mitchell, U. Weisser, R. M. Leahy, B. J. Pichler, D. J. Smith, and S. R. Cherry, “A hyperspectral fluorescence system for 3D in vivo optical imaging,” Phys. Med. Biol. 51, 2029 (2006).
[Crossref] [PubMed]

Veeraraghavan, A.

J. Holloway, A. C. Sankaranarayanan, A. Veeraraghavan, and S. Tambe, “Flutter shutter video camera for compressive sensing of videos,” in Proceedings of IEEE International Conference on Computational Photography, (IEEE, 2012), pp. 1–9.

D. Reddy, A. Veeraraghavan, and R. Chellappa, “P2c2: Programmable pixel compressive camera for high speed imaging,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2011), pp. 329–336.

Verstraeten, W. W.

S. Delalieux, A. Auwerkerken, W. W. Verstraeten, B. Somers, R. Valcke, S. Lhermitte, J. Keulemans, and P. Coppin, “Hyperspectral reflectance and fluorescence imaging to detect scab induced stress in apple leaves,” Remote Sens. 1, 858–874 (2009).
[Crossref]

Vo-Dinh, T.

T. Vo-Dinh, “A hyperspectral imaging system for in vivo optical diagnostics,” IEEE Eng. Med. Biol. Mag. 23, 40–49 (2004).
[Crossref] [PubMed]

Volin, C. E.

Wallace, M. B.

V. Backman, M. B. Wallace, L. Perelman, J. Arendt, R. Gurjar, M. Müller, Q. Zhang, G. Zonios, E. Kline, T. McGillican, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406, 35–36 (2000).
[Crossref] [PubMed]

Wang, P.

Wang, Y.

Wang, Z.

Z. Wang and Q. Li, “Information Content Weighting for Perceptual Image Quality Assessment,” IEEE Trans. Image Process. 201185–1198 (2009)
[Crossref]

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600–612 (2004).
[Crossref] [PubMed]

Weisser, U.

G. Zavattini, S. Vecchi, G. Mitchell, U. Weisser, R. M. Leahy, B. J. Pichler, D. J. Smith, and S. R. Cherry, “A hyperspectral fluorescence system for 3D in vivo optical imaging,” Phys. Med. Biol. 51, 2029 (2006).
[Crossref] [PubMed]

Weitzel, L.

L. Weitzel, A. Krabbe, H. Kroker, N. Thatte, L. Tacconi-Garman, M. Cameron, and R. Genzel, “3d: The next generation near-infrared imaging spectrometer,” Astron. Astrophys. Suppl. Ser. 119, 531–546 (1996).
[Crossref]

Willett, R.

Wilson, D. W.

Yamaguchi, I.

Yang, J.

P. Llull, X. Liao, X. Yuan, J. Yang, D. Kittle, L. Carin, G. Sapiro, and D. J. Brady, “Coded aperture compressive temporal imaging,” Opt. Express 21, 10526–10545 (2013).
[Crossref] [PubMed]

X. Yuan, P. Llull, X. Liao, J. Yang, D. J. Brady, G. Sapiro, and L. Carin, “Low-cost compressive sensing for color video and depth,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2014), pp. 3318–3325.

Yang, X.

R. Dosselmann and X. Yang, “A comprehensive assessment of the structural similarity index,” Signal, Image Video Process. 5, 81–91 (2009).
[Crossref]

Yao, M.

Yasuma, F.

F. Yasuma, T. Mitsunaga, D. Iso, and S. K. Nayar, “Generalized assorted pixel camera: postcapture control of resolution, dynamic range, and spectrum,” IEEE Trans. Image Process. 19, 2241–2253 (2010).
[Crossref] [PubMed]

F. Yasuma, T. Mitsunaga, D. Iso, and S. K. Nayar, “Generalized assorted pixel camera: postcapture control of resolution, dynamic range, and spectrum,” IEEE Trans. Image Process. 19, 2241–2253 (2008).
[Crossref]

Yuan, X.

P. Llull, X. Liao, X. Yuan, J. Yang, D. Kittle, L. Carin, G. Sapiro, and D. J. Brady, “Coded aperture compressive temporal imaging,” Opt. Express 21, 10526–10545 (2013).
[Crossref] [PubMed]

X. Yuan, P. Llull, X. Liao, J. Yang, D. J. Brady, G. Sapiro, and L. Carin, “Low-cost compressive sensing for color video and depth,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2014), pp. 3318–3325.

X. Yuan, “Generalized alternating projection based total variation minimization for compressive sensing,” in Proceedings of IEEE International Conference on Image Processing (IEEE, 2016), pp. 2539–2543.

Zavattini, G.

G. Zavattini, S. Vecchi, G. Mitchell, U. Weisser, R. M. Leahy, B. J. Pichler, D. J. Smith, and S. R. Cherry, “A hyperspectral fluorescence system for 3D in vivo optical imaging,” Phys. Med. Biol. 51, 2029 (2006).
[Crossref] [PubMed]

Zhang, Q.

V. Backman, M. B. Wallace, L. Perelman, J. Arendt, R. Gurjar, M. Müller, Q. Zhang, G. Zonios, E. Kline, T. McGillican, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406, 35–36 (2000).
[Crossref] [PubMed]

Zhang, Y.

Zhang, Z.

Zheng, G.

Zhong, J.

Zickler, T.

A. Chakrabarti and T. Zickler, “Statistics of real-world hyperspectral images,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2011), pp. 193–200.

Zonios, G.

V. Backman, M. B. Wallace, L. Perelman, J. Arendt, R. Gurjar, M. Müller, Q. Zhang, G. Zonios, E. Kline, T. McGillican, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406, 35–36 (2000).
[Crossref] [PubMed]

Appl. Opt. (3)

Appl. Phys. B (1)

P. Kauranen, S. Andersson-Engels, and S. Svanberg, “Spatial mapping of flame radical emission using a spectroscopic multi-colour imaging system,” Appl. Phys. B 53, 260–264 (1991).
[Crossref]

Astron. Astrophys. Suppl. Ser. (1)

L. Weitzel, A. Krabbe, H. Kroker, N. Thatte, L. Tacconi-Garman, M. Cameron, and R. Genzel, “3d: The next generation near-infrared imaging spectrometer,” Astron. Astrophys. Suppl. Ser. 119, 531–546 (1996).
[Crossref]

Fuel (1)

A. J. Reiter and S. C. Kong, “Combustion and emissions characteristics of compression-ignition engine using dual ammonia-diesel fuel,” Fuel 90, 87–97 (2011).
[Crossref]

IEEE Eng. Med. Biol. Mag. (1)

T. Vo-Dinh, “A hyperspectral imaging system for in vivo optical diagnostics,” IEEE Eng. Med. Biol. Mag. 23, 40–49 (2004).
[Crossref] [PubMed]

IEEE Signal Process. Mag. (1)

G. R. Arce, D. J. Brady, L. Carin, H. Arguello, and D. S. Kittle, “Compressive coded aperture spectral imaging: An introduction,” IEEE Signal Process. Mag. 31, 105–115 (2014).
[Crossref]

IEEE Trans. Geosci. Remote Sens. (1)

M. J. Barnsley, J. J. Settle, M. A. Cutter, D. R. Lobb, and F. Teston, “The proba/chris mission: A low-cost smallsat for hyperspectral multiangle observations of the earth surface and atmosphere,” IEEE Trans. Geosci. Remote Sens. 42, 1512–1520 (2004).
[Crossref]

IEEE Trans. Image Process. (4)

F. Yasuma, T. Mitsunaga, D. Iso, and S. K. Nayar, “Generalized assorted pixel camera: postcapture control of resolution, dynamic range, and spectrum,” IEEE Trans. Image Process. 19, 2241–2253 (2008).
[Crossref]

Z. Wang and Q. Li, “Information Content Weighting for Perceptual Image Quality Assessment,” IEEE Trans. Image Process. 201185–1198 (2009)
[Crossref]

F. Yasuma, T. Mitsunaga, D. Iso, and S. K. Nayar, “Generalized assorted pixel camera: postcapture control of resolution, dynamic range, and spectrum,” IEEE Trans. Image Process. 19, 2241–2253 (2010).
[Crossref] [PubMed]

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600–612 (2004).
[Crossref] [PubMed]

IEEE Trans. on Pattern Anal. Mach. Intell. (1)

Z. Pan, G. Healey, M. Prasad, and B. Tromberg, “Face recognition in hyperspectral images,” IEEE Trans. on Pattern Anal. Mach. Intell. 25, 1552–1560 (2003).
[Crossref]

J. Biomed. Opt. (1)

R. T. Kester, N. Bedard, L. Gao, and T. S. Tkaczyk, “Real-time snapshot hyperspectral imaging endoscope,” J. Biomed. Opt. 16, 056005 (2011).
[Crossref] [PubMed]

J. Electron. Imaging (1)

M. Rabbani, “JPEG2000: Image compression fundamentals, standards and practice,” J. Electron. Imaging 11, 286 (2002).
[Crossref]

J. Opt. (1)

L. Bian, J. Suo, X. Hu, F. Chen, and Q. Dai, “Efficient single pixel imaging in Fourier space,” J. Opt. 18, 085704 (2016).
[Crossref]

J. Opt. Soc. Am. A (1)

Light. Sci. Appl. (1)

A. Ehn, J. Bood, Z. Li, E. Berrocal, M. Aldén, and E. Kristensson, “FRAME: femtosecond videography for atomic and molecular dynamics,” Light. Sci. Appl. 6, 17045 (2017).
[Crossref]

Nature (1)

V. Backman, M. B. Wallace, L. Perelman, J. Arendt, R. Gurjar, M. Müller, Q. Zhang, G. Zonios, E. Kline, T. McGillican, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406, 35–36 (2000).
[Crossref] [PubMed]

Opt. Eng. (1)

N. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52, 090901 (2013).
[Crossref]

Opt. Express (7)

Opt. Lett. (1)

Opt. Rev. (1)

A. Hirai, T. Inoue, K. Itoh, and Y. Ichioka, “Application of multiple-image Fourier transform spectral imaging to measurement of fast phenomena,” Opt. Rev. 1, 205–207 (1994).
[Crossref]

Optica (1)

Phys. Med. Biol. (1)

G. Zavattini, S. Vecchi, G. Mitchell, U. Weisser, R. M. Leahy, B. J. Pichler, D. J. Smith, and S. R. Cherry, “A hyperspectral fluorescence system for 3D in vivo optical imaging,” Phys. Med. Biol. 51, 2029 (2006).
[Crossref] [PubMed]

Proc. Combust. Inst. (1)

E. Kristensson, Z. Li, E. Berrocal, M. Richter, and M. Aldén, “Instantaneous 3D imaging of flame species using coded laser illumination,” Proc. Combust. Inst. 36, 4585–4591 (2017).
[Crossref]

Proc. SPIE (4)

M. W. Kudenov and E. L. Dereniak, “Compact snapshot birefringent imaging Fourier transform spectrometer,” Proc. SPIE 7812, 6–12 (2010).

A. R. Harvey and D. W. Fletcher-Holmes, “High-throughput snapshot spectral imaging in two dimensions,” Proc. SPIE 4959, 4959136 (2003).

M. T. Eismann, C. R. Schwartz, J. N. Cederquist, J. A. Hackwell, and R. J. Huppi, “Comparison of infrared imaging hyperspectral sensors for military target detection applications,” Proc. SPIE 2819, 91–102(1996).
[Crossref]

J. D. Matchett, R. I. Billmers, E. J. Billmers, and M. E. Ludwig, “Volume holographic beam splitter for hyperspectral imaging applications,” Proc. SPIE 6668, 66680K (2007).
[Crossref]

Remote Sens. (1)

S. Delalieux, A. Auwerkerken, W. W. Verstraeten, B. Somers, R. Valcke, S. Lhermitte, J. Keulemans, and P. Coppin, “Hyperspectral reflectance and fluorescence imaging to detect scab induced stress in apple leaves,” Remote Sens. 1, 858–874 (2009).
[Crossref]

Science (2)

J. P. Bibring, Y. Langevin, A. Gendrin, B. Gondet, F. Poulet, M. Berthé, A. Soufflot, R. Arvidson, N. Mangold, J. Mustard, P. Drossart, and the OMEGA team, “Mars surface diversity as revealed by the omega/mars express observations,” Science 307, 1576–1581 (2005).
[Crossref] [PubMed]

A. F. Goetz, G. Vane, J. E. Solomon, and B. N. Rock, “Imaging spectrometry for earth remote sensing,” Science 228, 1147–1153 (1985).
[Crossref] [PubMed]

SIAM J. Imag. Sci. (1)

X. Liao, H. Li, and L. Carin, “Generalized alternating projection for weighted-2,1 minimization with applications to model-based compressive sensing,” SIAM J. Imag. Sci. 7, 797–823 (2014).
[Crossref]

Signal, Image Video Process. (1)

R. Dosselmann and X. Yang, “A comprehensive assessment of the structural similarity index,” Signal, Image Video Process. 5, 81–91 (2009).
[Crossref]

Other (10)

D. Reddy, A. Veeraraghavan, and R. Chellappa, “P2c2: Programmable pixel compressive camera for high speed imaging,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2011), pp. 329–336.

X. Yuan, P. Llull, X. Liao, J. Yang, D. J. Brady, G. Sapiro, and L. Carin, “Low-cost compressive sensing for color video and depth,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2014), pp. 3318–3325.

X. Yuan, “Generalized alternating projection based total variation minimization for compressive sensing,” in Proceedings of IEEE International Conference on Image Processing (IEEE, 2016), pp. 2539–2543.

Y. Hitomi, J. Gu, M. Gupta, T. Mitsunaga, and S. K. Nayar, “Video from a single coded exposure photograph using a learned over-complete dictionary,” in Proceedings of IEEE International Conference on Computer Vision (IEEE, 2011), pp. 287–294.

J. Holloway, A. C. Sankaranarayanan, A. Veeraraghavan, and S. Tambe, “Flutter shutter video camera for compressive sensing of videos,” in Proceedings of IEEE International Conference on Computational Photography, (IEEE, 2012), pp. 1–9.

D. J. Brady, Optical imaging and spectroscopy (John Wiley & Sons, 2009).
[Crossref]

J. P. Ardouin, J. Lévesque, and T. A. Rea, “A demonstration of hyperspectral image exploitation for military applications,” in Proceedings of IEEE Conference on Information Fusion (IEEE, 2007), pp. 1–8.

A. Chakrabarti and T. Zickler, “Statistics of real-world hyperspectral images,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2011), pp. 193–200.

J. I. Park, M. H. Lee, M. D. Grossberg, and S. K. Nayar, “Multispectral imaging using multiplexed illumination,” in Proceedings of IEEE Conference on Computer Vision (IEEE, 2007), pp. 1–8.

S. Han, I. Sato, T. Okabe, and Y. Sato, “Fast spectral reflectance recovery using dlp projector,” in Proceedings of Asian Conference on Computer Vision, (Springer, 2010), pp. 323–335.

Supplementary Material (3)

NameDescription
» Visualization 1       Santorini_Island
» Visualization 2       Rotating
» Visualization 3       diffusion

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) The scheme of the proposed hyperspectral imaging system. The hyperspectral data is spectrally filtered and projected into six images: x1, x2, · · · , x6, and then codified by six sinusoidal patterns s1, s2, · · · , s6, respectively. The six sinusoidal patterns shift the Fourier distribution of six projected images away from the origin into six different regions, and the gray scale camera captures the modulated images in an add-up way. The hyperspectral images are reconstructed through a two-stage method, including: Fourier spectrum demultiplexing and linear system reconstruction. (b) The centralized spreads of the nature images’ Fourier coefficients. The reconstruction (bottom image) from 6.25% (0.252) Fourier coefficients locating at the centroid region (upper image) is quite clear.
Fig. 2
Fig. 2 The PSNR, RMSE and SSIM scores of different cropping sizes, ranging from 0.05 to 0.4 of image width.
Fig. 3
Fig. 3 Performance promotion by GAP. Upper part: six channels reconstructed after GAP optimization. Ch.1 ∼Ch.6 represent the six projections, and the close-ups compare the de-aliasing before and after using GAP. w/o: without GAP optimization; w: with GAP optimization. Bottom part: PSNR, SSIM and RMSE promotion through GAP optimization.
Fig. 4
Fig. 4 The PSNR of the reconstruction and two examples from the CAVE multi-spectral database. In each example, the upper row is the ground truth in 500 nm, 600 nm, and 700 nm, respectively and the lower row is the corresponding reconstruction.
Fig. 5
Fig. 5 The imaging scheme of proposed method. (a) The optical diagram including transmissive and reflective mode (the beam splitter is omitted in reflective mode). L1 and L2: converging lens composing a 4f system. CW: color wheel. GSM: gray scale sinusoidal modulation. L3 and L4: Converging lens. (b) The imaging setup including both transmissive and reflective mode. DMD: digital micromirror device; FL: Fourier lens. (c) The transmissive response of CW. (d) The GSM module implementing fast gray scale sinusoidal modulation.
Fig. 6
Fig. 6 The experimental reconstruction of a flower film with five strips of different transparent color paper. The RGB image of the object, the measurement together with its Fourier space and the reconstructed five spectrum of transparent color paper are displayed in the left part. The solid red, dashed black and dotted blue curve are the true spectrum, reconstruction with (w) GAP and without (w/o) GAP, respectively. The reconstructed hyperspectral images are displayed in the middle. The spectral range is 400 nm ∼ 700 nm. We highlight the distinction of reconstruction without and with GAP optimization in the right part.
Fig. 7
Fig. 7 Hyperspectral reconstruction of regular motion: (a): a color film of Santorini Island mounted on a translation stage moving at a constant speed of 3.7 mm/s; (b): a color film of a landscape fixed on a rotary translation stage with angular speed of 0.023 rad/s.
Fig. 8
Fig. 8 Hyperspectral reconstruction of the diffusion process of color pigments poured into clean water. Three out of 77 frames are displayed.

Tables (1)

Tables Icon

Table 1 The performance comparison of different hyperspectral imaging methods

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

x i = λ I i ( λ ) r ( λ ) d λ ,
r ( λ ) = j = 1 J α j b j ( λ ) ,
x i = j = 1 J α j λ I i ( λ ) b j ( λ ) d λ .
s i = 1 + cos ( p ω i ) ,
y = i = 1 J x i s i .
min W W 2 , 1 𝒢 β , subject to Y = SX and X = TW ,
W 2 , 1 𝒢 β = k = 1 m β k W 𝒢 k 2 ,
arg min α x ^ F α 2 2 + η 2 r ( λ ) λ 2 2 2 s . t . r ( λ ) 0 .
min max 1 i , j 6 , i j corr ( I i , I j ) ,

Metrics