Abstract

We present the application of a confocal fluorescence microscope to the analysis of Yb-doped solid-state laser materials, with examples of Yb-doped crystals, photonic crystal fibers and fiber preforms made with different manufacturing processes. Beside the fluorescence lifetime image itself, a microscopic spectral fluorescence emission analysis is presented and spatially resolved emission cross sections are obtained. Doping concentration and its distributions and other laser optical parameters are measured, which help to analyze manufacturing steps. Further properties like photodarkening and saturation are addressed.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ytterbium-doped fibers fabricated with atomic layer deposition method

Joan J. Montiel i Ponsoda, Lars Norin, Changgeng Ye, Markus Bosund, Mikko J. Söderlund, Ari Tervonen, and Seppo Honkanen
Opt. Express 20(22) 25085-25095 (2012)

Spectroscopic properties of lead fluoroborate glasses doped with ytterbium

Luciana R. P. Kassab, Sonia H. Tatumi, Alessandro S. Morais, Lilia C. Courrol, Niklaus U. Wetter, and V. L. R. Salvador
Opt. Express 8(10) 585-589 (2001)

Parallel excitation-emission multiplexed fluorescence lifetime confocal microscopy for live cell imaging

Ming Zhao, Yu Li, and Leilei Peng
Opt. Express 22(9) 10221-10232 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. N. Zervas and C. A. Codemard, “High Power Fiber Lasers. A Review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 219–241 (2014).
    [Crossref]
  2. K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peters, J. J. Romero, S. Kutovoi, J. Speiser, and A. Giesen, “Highly Yb-doped oxides for thin-disc lasers,” J. Cryst. Growth 275(1-2), 135–140 (2005).
    [Crossref]
  3. F. Beier, F. Möller, B. Sattler, J. Nold, A. Liem, C. Hupel, S. Kuhn, S. Hein, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Experimental investigations on the TMI thresholds of low-NA Yb-doped single-mode fibers,” Opt. Lett. 43(6), 1291–1294 (2018).
    [Crossref] [PubMed]
  4. H.-J. Otto, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “Impact of photodarkening on the mode instability threshold,” Opt. Express 23(12), 15265–15277 (2015).
    [Crossref] [PubMed]
  5. F. Sidiroglou, A. Roberts, and G. Baxter, “Contributed Review: A review of the investigation of rare-earth dopant profiles in optical fibers,” Rev. Sci. Instrum. 87(4), 041501 (2016).
    [Crossref] [PubMed]
  6. A. Schwuchow, S. Unger, S. Jetschke, and J. Kirchhof, “Advanced attenuation and fluorescence measurement methods in the investigation of photodarkening and related properties of ytterbium-doped fibers,” Appl. Opt. 53(7), 1466–1473 (2014).
    [Crossref] [PubMed]
  7. A. D. Yablon, “New transverse techniques for characterizing high-power optical fibers,” Opt. Eng. 50(11), 111603 (2011).
    [Crossref]
  8. S. Inoué, “Foundations of Confocal Scanned Imaging in Light Microscopy,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Springer US, 1995), pp. 1–14.
  9. K. Suhling, L. M. Hirvonen, J. A. Levitt, P.-H. Chung, C. Tregidgo, D. A. Rusakov, K. Zheng, S. Ameer-Beg, S. Poland, S. Coelho, R. Henderson, and N. Krstajic, “Fluorescence Lifetime Imaging,” in Handbook of Photonics for Biomedical Engineering, A. H.-P. Ho, D. Kim, and M. G. Somekh, eds. (Springer Netherlands, 2014), pp. 1–50.
  10. D. S. Sumida and T. Y. Fan, “Effect of radiation trapping on fluorescence lifetime and emission cross section measurements in solid-state laser media,” Opt. Lett. 19(17), 1343–1345 (1994).
    [Crossref] [PubMed]
  11. H. Kühn, S. T. Fredrich-Thornton, C. Kränkel, R. Peters, and K. Petermann, “Model for the calculation of radiation trapping and description of the pinhole method,” Opt. Lett. 32(13), 1908–1910 (2007).
    [Crossref] [PubMed]
  12. Y.-S. Yong, S. Aravazhi, S. A. Vázquez-Córdova, J. J. Carvajal, F. Díaz, J. L. Herek, S. M. García-Blanco, and M. Pollnau, “Direct confocal lifetime measurements on rare-earth-doped media exhibiting radiation trapping,” Opt. Mater. Express 7(2), 527 (2017).
    [Crossref]
  13. A. Langner, G. Schötz, M. Such, T. Kayser, V. Reichel, S. Grimm, J. Kirchhof, V. Krause, and G. Rehmann, “A new material for high-power laser fibers,” Proc. SPIE 6873, 687311 (2008).
    [Crossref]
  14. D. Etissa, M. Neff, S. Pilz, M. Ryser, and V. Romano, “Rare earth doped optical fiber fabrication by standard and sol-gel derived granulated oxides,” Proc. SPIE 8426, 84261I (2012).
    [Crossref]
  15. S. Unger, F. Lindner, C. Aichele, M. Leich, A. Schwuchow, J. Kobelke, J. Dellith, K. Schuster, and H. Bartelt, “A highly efficient Yb-doped silica laser fiber prepared by gas phase doping technology,” Laser Phys. 24(3), 035103 (2014).
    [Crossref]
  16. T. Eidam, S. Hädrich, F. Jansen, F. Stutzki, J. Rothhardt, H. Carstens, C. Jauregui, J. Limpert, and A. Tünnermann, “Preferential gain photonic-crystal fiber for mode stabilization at high average powers,” Opt. Express 19(9), 8656–8661 (2011).
    [Crossref] [PubMed]
  17. M. Weber, J. Lynch, D. Blackburn, and D. Cronin, “Dependence of the stimulated emission cross section of Yb3+ on host glass composition,” IEEE J. Quantum Electron. 19(10), 1600–1608 (1983).
    [Crossref]
  18. K. P. Ghiggino, M. R. Harris, and P. G. Spizzirri, “Fluorescence lifetime measurements using a novel fiber-optic laser scanning confocal microscope,” Rev. Sci. Instrum. 63(5), 2999–3002 (1992).
    [Crossref]
  19. C. Rothhardt, S. Risse, T. Schreiber, R. Eberhardt, J. Rothhardt, J. Limpert, and A. Tünnermann, “Direct Bonding of Crystalline Components for Application in High Power Laser Systems,” in Laser Ignition Conference. 20–23 June 2017, Bucharest, Romania, OSA technical digest (online) (OSA - The Optical Society, 2017), LWA3.4.
    [Crossref]
  20. K. C. Lee, J. Siegel, S. E. D. Webb, S. Lévêque-Fort, M. J. Cole, R. Jones, K. Dowling, M. J. Lever, and P. M. W. French, “Application of the stretched exponential function to fluorescence lifetime imaging,” Biophys. J. 81(3), 1265–1274 (2001).
    [Crossref] [PubMed]
  21. J. Koerner, C. Vorholt, H. Liebetrau, M. Kahle, D. Kloepfel, R. Seifert, J. Hein, and M. C. Kaluza, “Measurement of temperature-dependent absorption and emission spectra of Yb:YAG, Yb:LuAG, and Yb:CaF2 between 20 °C and 200 °C and predictions on their influence on laser performance,” J. Opt. Soc. Am. B 29(9), 2493–2502 (2012).
    [Crossref]
  22. K. E. Mattsson, “Low photo darkening single mode RMO fiber,” Opt. Express 17(20), 17855–17861 (2009).
    [Crossref] [PubMed]
  23. N. Haarlammert, B. Sattler, A. Liem, M. Strecker, J. Nold, T. Schreiber, R. Eberhardt, A. Tünnermann, K. Ludewigt, and M. Jung, “Optimizing mode instability in low-NA fibers by passive strategies,” Opt. Lett. 40(10), 2317–2320 (2015).
    [Crossref] [PubMed]
  24. K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3(4), 447–468 (2014).
  25. J. Kirchhof, S. Unger, A. Schwuchow, S. Grimm, and V. Reichel, “Materials for high-power fiber lasers,” J. Non-Cryst. Solids 352(23-25), 2399–2403 (2006).
    [Crossref]
  26. S. Kuhn, S. Hein, C. Hupel, J. Ihring, J. Nold, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tünnermann, “All-Solution Doping Technique for Tailoring Core Composition toward Yb:AlPO4:SiO2,” in Advanced Solid State Lasers, OSA Technical Digest (online) (Optical Society of America, 2015), paper AM4A.5.
  27. S. Kuhn, S. Hein, C. Hupel, J. Nold, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Modelling the refractive index behavior of Al,P-doped SiO2, fabricated by means of all-solution doping, in the vicinity of Al:P = 1:1,” Opt. Mater. Express 8(5), 1328–1340 (2018).
    [Crossref]
  28. A. K. Ghatak, I. C. Goyal, and R. Jindal, “Design of a waveguide refractive index profile to obtain a flat modal field,” Proc. SPIE 3666, 40–44 (1999).
    [Crossref]
  29. D. Jain, Y. Jung, M. Nunez-Velazquez, and J. K. Sahu, “Extending single mode performance of all-solid large-mode-area single trench fiber,” Opt. Express 22(25), 31078–31091 (2014).
    [Crossref] [PubMed]
  30. J. Nilsson, R. Paschotta, J. E. Caplen, and D. C. Hanna, “Yb∧3+)-ring-doped fiber for high-energy pulse amplification,” Opt. Lett. 22(14), 1092–1094 (1997).
    [Crossref] [PubMed]
  31. I. R. Perry, A. C. Tropper, and J. R. M. Barr, “Micro-fluorescence profiling of erbium-doped fibre preforms,” J. Lumin. 59(1–2), 39–49 (1994).
    [Crossref]
  32. R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “Lifetime quenching in Yb-doped fibres,” Opt. Commun. 136(5-6), 375–378 (1997).
    [Crossref]
  33. C. Jauregui, T. Eidam, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express 20(12), 12912–12925 (2012).
    [Crossref] [PubMed]
  34. E. Auksorius, B. R. Boruah, C. Dunsby, P. M. P. Lanigan, G. Kennedy, M. A. A. Neil, and P. M. W. French, “Stimulated emission depletion microscopy with a supercontinuum source and fluorescence lifetime imaging,” Opt. Lett. 33(2), 113–115 (2008).
    [Crossref] [PubMed]

2018 (2)

2017 (1)

2016 (1)

F. Sidiroglou, A. Roberts, and G. Baxter, “Contributed Review: A review of the investigation of rare-earth dopant profiles in optical fibers,” Rev. Sci. Instrum. 87(4), 041501 (2016).
[Crossref] [PubMed]

2015 (2)

2014 (5)

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3(4), 447–468 (2014).

D. Jain, Y. Jung, M. Nunez-Velazquez, and J. K. Sahu, “Extending single mode performance of all-solid large-mode-area single trench fiber,” Opt. Express 22(25), 31078–31091 (2014).
[Crossref] [PubMed]

M. N. Zervas and C. A. Codemard, “High Power Fiber Lasers. A Review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 219–241 (2014).
[Crossref]

A. Schwuchow, S. Unger, S. Jetschke, and J. Kirchhof, “Advanced attenuation and fluorescence measurement methods in the investigation of photodarkening and related properties of ytterbium-doped fibers,” Appl. Opt. 53(7), 1466–1473 (2014).
[Crossref] [PubMed]

S. Unger, F. Lindner, C. Aichele, M. Leich, A. Schwuchow, J. Kobelke, J. Dellith, K. Schuster, and H. Bartelt, “A highly efficient Yb-doped silica laser fiber prepared by gas phase doping technology,” Laser Phys. 24(3), 035103 (2014).
[Crossref]

2012 (3)

2011 (2)

2009 (1)

2008 (2)

E. Auksorius, B. R. Boruah, C. Dunsby, P. M. P. Lanigan, G. Kennedy, M. A. A. Neil, and P. M. W. French, “Stimulated emission depletion microscopy with a supercontinuum source and fluorescence lifetime imaging,” Opt. Lett. 33(2), 113–115 (2008).
[Crossref] [PubMed]

A. Langner, G. Schötz, M. Such, T. Kayser, V. Reichel, S. Grimm, J. Kirchhof, V. Krause, and G. Rehmann, “A new material for high-power laser fibers,” Proc. SPIE 6873, 687311 (2008).
[Crossref]

2007 (1)

2006 (1)

J. Kirchhof, S. Unger, A. Schwuchow, S. Grimm, and V. Reichel, “Materials for high-power fiber lasers,” J. Non-Cryst. Solids 352(23-25), 2399–2403 (2006).
[Crossref]

2005 (1)

K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peters, J. J. Romero, S. Kutovoi, J. Speiser, and A. Giesen, “Highly Yb-doped oxides for thin-disc lasers,” J. Cryst. Growth 275(1-2), 135–140 (2005).
[Crossref]

2001 (1)

K. C. Lee, J. Siegel, S. E. D. Webb, S. Lévêque-Fort, M. J. Cole, R. Jones, K. Dowling, M. J. Lever, and P. M. W. French, “Application of the stretched exponential function to fluorescence lifetime imaging,” Biophys. J. 81(3), 1265–1274 (2001).
[Crossref] [PubMed]

1999 (1)

A. K. Ghatak, I. C. Goyal, and R. Jindal, “Design of a waveguide refractive index profile to obtain a flat modal field,” Proc. SPIE 3666, 40–44 (1999).
[Crossref]

1997 (2)

J. Nilsson, R. Paschotta, J. E. Caplen, and D. C. Hanna, “Yb∧3+)-ring-doped fiber for high-energy pulse amplification,” Opt. Lett. 22(14), 1092–1094 (1997).
[Crossref] [PubMed]

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “Lifetime quenching in Yb-doped fibres,” Opt. Commun. 136(5-6), 375–378 (1997).
[Crossref]

1994 (2)

I. R. Perry, A. C. Tropper, and J. R. M. Barr, “Micro-fluorescence profiling of erbium-doped fibre preforms,” J. Lumin. 59(1–2), 39–49 (1994).
[Crossref]

D. S. Sumida and T. Y. Fan, “Effect of radiation trapping on fluorescence lifetime and emission cross section measurements in solid-state laser media,” Opt. Lett. 19(17), 1343–1345 (1994).
[Crossref] [PubMed]

1992 (1)

K. P. Ghiggino, M. R. Harris, and P. G. Spizzirri, “Fluorescence lifetime measurements using a novel fiber-optic laser scanning confocal microscope,” Rev. Sci. Instrum. 63(5), 2999–3002 (1992).
[Crossref]

1983 (1)

M. Weber, J. Lynch, D. Blackburn, and D. Cronin, “Dependence of the stimulated emission cross section of Yb3+ on host glass composition,” IEEE J. Quantum Electron. 19(10), 1600–1608 (1983).
[Crossref]

Aichele, C.

S. Unger, F. Lindner, C. Aichele, M. Leich, A. Schwuchow, J. Kobelke, J. Dellith, K. Schuster, and H. Bartelt, “A highly efficient Yb-doped silica laser fiber prepared by gas phase doping technology,” Laser Phys. 24(3), 035103 (2014).
[Crossref]

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3(4), 447–468 (2014).

Aravazhi, S.

Auksorius, E.

Barber, P. R.

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “Lifetime quenching in Yb-doped fibres,” Opt. Commun. 136(5-6), 375–378 (1997).
[Crossref]

Barr, J. R. M.

I. R. Perry, A. C. Tropper, and J. R. M. Barr, “Micro-fluorescence profiling of erbium-doped fibre preforms,” J. Lumin. 59(1–2), 39–49 (1994).
[Crossref]

Bartelt, H.

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3(4), 447–468 (2014).

S. Unger, F. Lindner, C. Aichele, M. Leich, A. Schwuchow, J. Kobelke, J. Dellith, K. Schuster, and H. Bartelt, “A highly efficient Yb-doped silica laser fiber prepared by gas phase doping technology,” Laser Phys. 24(3), 035103 (2014).
[Crossref]

Baxter, G.

F. Sidiroglou, A. Roberts, and G. Baxter, “Contributed Review: A review of the investigation of rare-earth dopant profiles in optical fibers,” Rev. Sci. Instrum. 87(4), 041501 (2016).
[Crossref] [PubMed]

Beier, F.

Bierlich, J.

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3(4), 447–468 (2014).

Blackburn, D.

M. Weber, J. Lynch, D. Blackburn, and D. Cronin, “Dependence of the stimulated emission cross section of Yb3+ on host glass composition,” IEEE J. Quantum Electron. 19(10), 1600–1608 (1983).
[Crossref]

Boruah, B. R.

Caplen, J. E.

J. Nilsson, R. Paschotta, J. E. Caplen, and D. C. Hanna, “Yb∧3+)-ring-doped fiber for high-energy pulse amplification,” Opt. Lett. 22(14), 1092–1094 (1997).
[Crossref] [PubMed]

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “Lifetime quenching in Yb-doped fibres,” Opt. Commun. 136(5-6), 375–378 (1997).
[Crossref]

Carstens, H.

Carvajal, J. J.

Codemard, C. A.

M. N. Zervas and C. A. Codemard, “High Power Fiber Lasers. A Review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 219–241 (2014).
[Crossref]

Cole, M. J.

K. C. Lee, J. Siegel, S. E. D. Webb, S. Lévêque-Fort, M. J. Cole, R. Jones, K. Dowling, M. J. Lever, and P. M. W. French, “Application of the stretched exponential function to fluorescence lifetime imaging,” Biophys. J. 81(3), 1265–1274 (2001).
[Crossref] [PubMed]

Cronin, D.

M. Weber, J. Lynch, D. Blackburn, and D. Cronin, “Dependence of the stimulated emission cross section of Yb3+ on host glass composition,” IEEE J. Quantum Electron. 19(10), 1600–1608 (1983).
[Crossref]

Dellith, J.

S. Unger, F. Lindner, C. Aichele, M. Leich, A. Schwuchow, J. Kobelke, J. Dellith, K. Schuster, and H. Bartelt, “A highly efficient Yb-doped silica laser fiber prepared by gas phase doping technology,” Laser Phys. 24(3), 035103 (2014).
[Crossref]

Díaz, F.

Dowling, K.

K. C. Lee, J. Siegel, S. E. D. Webb, S. Lévêque-Fort, M. J. Cole, R. Jones, K. Dowling, M. J. Lever, and P. M. W. French, “Application of the stretched exponential function to fluorescence lifetime imaging,” Biophys. J. 81(3), 1265–1274 (2001).
[Crossref] [PubMed]

Dunsby, C.

Eberhardt, R.

Eidam, T.

Etissa, D.

D. Etissa, M. Neff, S. Pilz, M. Ryser, and V. Romano, “Rare earth doped optical fiber fabrication by standard and sol-gel derived granulated oxides,” Proc. SPIE 8426, 84261I (2012).
[Crossref]

Fagundes-Peters, D.

K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peters, J. J. Romero, S. Kutovoi, J. Speiser, and A. Giesen, “Highly Yb-doped oxides for thin-disc lasers,” J. Cryst. Growth 275(1-2), 135–140 (2005).
[Crossref]

Fan, T. Y.

Fredrich-Thornton, S. T.

French, P. M. W.

E. Auksorius, B. R. Boruah, C. Dunsby, P. M. P. Lanigan, G. Kennedy, M. A. A. Neil, and P. M. W. French, “Stimulated emission depletion microscopy with a supercontinuum source and fluorescence lifetime imaging,” Opt. Lett. 33(2), 113–115 (2008).
[Crossref] [PubMed]

K. C. Lee, J. Siegel, S. E. D. Webb, S. Lévêque-Fort, M. J. Cole, R. Jones, K. Dowling, M. J. Lever, and P. M. W. French, “Application of the stretched exponential function to fluorescence lifetime imaging,” Biophys. J. 81(3), 1265–1274 (2001).
[Crossref] [PubMed]

García-Blanco, S. M.

Ghatak, A. K.

A. K. Ghatak, I. C. Goyal, and R. Jindal, “Design of a waveguide refractive index profile to obtain a flat modal field,” Proc. SPIE 3666, 40–44 (1999).
[Crossref]

Ghiggino, K. P.

K. P. Ghiggino, M. R. Harris, and P. G. Spizzirri, “Fluorescence lifetime measurements using a novel fiber-optic laser scanning confocal microscope,” Rev. Sci. Instrum. 63(5), 2999–3002 (1992).
[Crossref]

Giesen, A.

K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peters, J. J. Romero, S. Kutovoi, J. Speiser, and A. Giesen, “Highly Yb-doped oxides for thin-disc lasers,” J. Cryst. Growth 275(1-2), 135–140 (2005).
[Crossref]

Goyal, I. C.

A. K. Ghatak, I. C. Goyal, and R. Jindal, “Design of a waveguide refractive index profile to obtain a flat modal field,” Proc. SPIE 3666, 40–44 (1999).
[Crossref]

Grimm, S.

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3(4), 447–468 (2014).

A. Langner, G. Schötz, M. Such, T. Kayser, V. Reichel, S. Grimm, J. Kirchhof, V. Krause, and G. Rehmann, “A new material for high-power laser fibers,” Proc. SPIE 6873, 687311 (2008).
[Crossref]

J. Kirchhof, S. Unger, A. Schwuchow, S. Grimm, and V. Reichel, “Materials for high-power fiber lasers,” J. Non-Cryst. Solids 352(23-25), 2399–2403 (2006).
[Crossref]

Haarlammert, N.

Hädrich, S.

Hanna, D. C.

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “Lifetime quenching in Yb-doped fibres,” Opt. Commun. 136(5-6), 375–378 (1997).
[Crossref]

J. Nilsson, R. Paschotta, J. E. Caplen, and D. C. Hanna, “Yb∧3+)-ring-doped fiber for high-energy pulse amplification,” Opt. Lett. 22(14), 1092–1094 (1997).
[Crossref] [PubMed]

Harris, M. R.

K. P. Ghiggino, M. R. Harris, and P. G. Spizzirri, “Fluorescence lifetime measurements using a novel fiber-optic laser scanning confocal microscope,” Rev. Sci. Instrum. 63(5), 2999–3002 (1992).
[Crossref]

Hein, J.

Hein, S.

Herek, J. L.

Hupel, C.

Jain, D.

Jansen, F.

Jauregui, C.

Jetschke, S.

Jindal, R.

A. K. Ghatak, I. C. Goyal, and R. Jindal, “Design of a waveguide refractive index profile to obtain a flat modal field,” Proc. SPIE 3666, 40–44 (1999).
[Crossref]

Johannsen, J.

K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peters, J. J. Romero, S. Kutovoi, J. Speiser, and A. Giesen, “Highly Yb-doped oxides for thin-disc lasers,” J. Cryst. Growth 275(1-2), 135–140 (2005).
[Crossref]

Jones, R.

K. C. Lee, J. Siegel, S. E. D. Webb, S. Lévêque-Fort, M. J. Cole, R. Jones, K. Dowling, M. J. Lever, and P. M. W. French, “Application of the stretched exponential function to fluorescence lifetime imaging,” Biophys. J. 81(3), 1265–1274 (2001).
[Crossref] [PubMed]

Jung, M.

Jung, Y.

Kahle, M.

Kaluza, M. C.

Kayser, T.

A. Langner, G. Schötz, M. Such, T. Kayser, V. Reichel, S. Grimm, J. Kirchhof, V. Krause, and G. Rehmann, “A new material for high-power laser fibers,” Proc. SPIE 6873, 687311 (2008).
[Crossref]

Kennedy, G.

Kirchhof, J.

A. Schwuchow, S. Unger, S. Jetschke, and J. Kirchhof, “Advanced attenuation and fluorescence measurement methods in the investigation of photodarkening and related properties of ytterbium-doped fibers,” Appl. Opt. 53(7), 1466–1473 (2014).
[Crossref] [PubMed]

A. Langner, G. Schötz, M. Such, T. Kayser, V. Reichel, S. Grimm, J. Kirchhof, V. Krause, and G. Rehmann, “A new material for high-power laser fibers,” Proc. SPIE 6873, 687311 (2008).
[Crossref]

J. Kirchhof, S. Unger, A. Schwuchow, S. Grimm, and V. Reichel, “Materials for high-power fiber lasers,” J. Non-Cryst. Solids 352(23-25), 2399–2403 (2006).
[Crossref]

Kloepfel, D.

Kobelke, J.

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3(4), 447–468 (2014).

S. Unger, F. Lindner, C. Aichele, M. Leich, A. Schwuchow, J. Kobelke, J. Dellith, K. Schuster, and H. Bartelt, “A highly efficient Yb-doped silica laser fiber prepared by gas phase doping technology,” Laser Phys. 24(3), 035103 (2014).
[Crossref]

Koerner, J.

Kränkel, C.

Krause, V.

A. Langner, G. Schötz, M. Such, T. Kayser, V. Reichel, S. Grimm, J. Kirchhof, V. Krause, and G. Rehmann, “A new material for high-power laser fibers,” Proc. SPIE 6873, 687311 (2008).
[Crossref]

Kuhn, S.

Kühn, H.

Kutovoi, S.

K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peters, J. J. Romero, S. Kutovoi, J. Speiser, and A. Giesen, “Highly Yb-doped oxides for thin-disc lasers,” J. Cryst. Growth 275(1-2), 135–140 (2005).
[Crossref]

Langner, A.

A. Langner, G. Schötz, M. Such, T. Kayser, V. Reichel, S. Grimm, J. Kirchhof, V. Krause, and G. Rehmann, “A new material for high-power laser fibers,” Proc. SPIE 6873, 687311 (2008).
[Crossref]

Lanigan, P. M. P.

Lee, K. C.

K. C. Lee, J. Siegel, S. E. D. Webb, S. Lévêque-Fort, M. J. Cole, R. Jones, K. Dowling, M. J. Lever, and P. M. W. French, “Application of the stretched exponential function to fluorescence lifetime imaging,” Biophys. J. 81(3), 1265–1274 (2001).
[Crossref] [PubMed]

Leich, M.

S. Unger, F. Lindner, C. Aichele, M. Leich, A. Schwuchow, J. Kobelke, J. Dellith, K. Schuster, and H. Bartelt, “A highly efficient Yb-doped silica laser fiber prepared by gas phase doping technology,” Laser Phys. 24(3), 035103 (2014).
[Crossref]

Lévêque-Fort, S.

K. C. Lee, J. Siegel, S. E. D. Webb, S. Lévêque-Fort, M. J. Cole, R. Jones, K. Dowling, M. J. Lever, and P. M. W. French, “Application of the stretched exponential function to fluorescence lifetime imaging,” Biophys. J. 81(3), 1265–1274 (2001).
[Crossref] [PubMed]

Lever, M. J.

K. C. Lee, J. Siegel, S. E. D. Webb, S. Lévêque-Fort, M. J. Cole, R. Jones, K. Dowling, M. J. Lever, and P. M. W. French, “Application of the stretched exponential function to fluorescence lifetime imaging,” Biophys. J. 81(3), 1265–1274 (2001).
[Crossref] [PubMed]

Liebetrau, H.

Liem, A.

Limpert, J.

Lindner, F.

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3(4), 447–468 (2014).

S. Unger, F. Lindner, C. Aichele, M. Leich, A. Schwuchow, J. Kobelke, J. Dellith, K. Schuster, and H. Bartelt, “A highly efficient Yb-doped silica laser fiber prepared by gas phase doping technology,” Laser Phys. 24(3), 035103 (2014).
[Crossref]

Litzkendorf, D.

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3(4), 447–468 (2014).

Ludewigt, K.

Lynch, J.

M. Weber, J. Lynch, D. Blackburn, and D. Cronin, “Dependence of the stimulated emission cross section of Yb3+ on host glass composition,” IEEE J. Quantum Electron. 19(10), 1600–1608 (1983).
[Crossref]

Mattsson, K. E.

Modsching, N.

Möller, F.

Mond, M.

K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peters, J. J. Romero, S. Kutovoi, J. Speiser, and A. Giesen, “Highly Yb-doped oxides for thin-disc lasers,” J. Cryst. Growth 275(1-2), 135–140 (2005).
[Crossref]

Neff, M.

D. Etissa, M. Neff, S. Pilz, M. Ryser, and V. Romano, “Rare earth doped optical fiber fabrication by standard and sol-gel derived granulated oxides,” Proc. SPIE 8426, 84261I (2012).
[Crossref]

Neil, M. A. A.

Nilsson, J.

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “Lifetime quenching in Yb-doped fibres,” Opt. Commun. 136(5-6), 375–378 (1997).
[Crossref]

J. Nilsson, R. Paschotta, J. E. Caplen, and D. C. Hanna, “Yb∧3+)-ring-doped fiber for high-energy pulse amplification,” Opt. Lett. 22(14), 1092–1094 (1997).
[Crossref] [PubMed]

Nold, J.

Nunez-Velazquez, M.

Otto, H.-J.

Paschotta, R.

J. Nilsson, R. Paschotta, J. E. Caplen, and D. C. Hanna, “Yb∧3+)-ring-doped fiber for high-energy pulse amplification,” Opt. Lett. 22(14), 1092–1094 (1997).
[Crossref] [PubMed]

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “Lifetime quenching in Yb-doped fibres,” Opt. Commun. 136(5-6), 375–378 (1997).
[Crossref]

Perry, I. R.

I. R. Perry, A. C. Tropper, and J. R. M. Barr, “Micro-fluorescence profiling of erbium-doped fibre preforms,” J. Lumin. 59(1–2), 39–49 (1994).
[Crossref]

Petermann, K.

H. Kühn, S. T. Fredrich-Thornton, C. Kränkel, R. Peters, and K. Petermann, “Model for the calculation of radiation trapping and description of the pinhole method,” Opt. Lett. 32(13), 1908–1910 (2007).
[Crossref] [PubMed]

K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peters, J. J. Romero, S. Kutovoi, J. Speiser, and A. Giesen, “Highly Yb-doped oxides for thin-disc lasers,” J. Cryst. Growth 275(1-2), 135–140 (2005).
[Crossref]

Peters, R.

Peters, V.

K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peters, J. J. Romero, S. Kutovoi, J. Speiser, and A. Giesen, “Highly Yb-doped oxides for thin-disc lasers,” J. Cryst. Growth 275(1-2), 135–140 (2005).
[Crossref]

Pilz, S.

D. Etissa, M. Neff, S. Pilz, M. Ryser, and V. Romano, “Rare earth doped optical fiber fabrication by standard and sol-gel derived granulated oxides,” Proc. SPIE 8426, 84261I (2012).
[Crossref]

Pollnau, M.

Rehmann, G.

A. Langner, G. Schötz, M. Such, T. Kayser, V. Reichel, S. Grimm, J. Kirchhof, V. Krause, and G. Rehmann, “A new material for high-power laser fibers,” Proc. SPIE 6873, 687311 (2008).
[Crossref]

Reichel, V.

A. Langner, G. Schötz, M. Such, T. Kayser, V. Reichel, S. Grimm, J. Kirchhof, V. Krause, and G. Rehmann, “A new material for high-power laser fibers,” Proc. SPIE 6873, 687311 (2008).
[Crossref]

J. Kirchhof, S. Unger, A. Schwuchow, S. Grimm, and V. Reichel, “Materials for high-power fiber lasers,” J. Non-Cryst. Solids 352(23-25), 2399–2403 (2006).
[Crossref]

Roberts, A.

F. Sidiroglou, A. Roberts, and G. Baxter, “Contributed Review: A review of the investigation of rare-earth dopant profiles in optical fibers,” Rev. Sci. Instrum. 87(4), 041501 (2016).
[Crossref] [PubMed]

Romano, V.

D. Etissa, M. Neff, S. Pilz, M. Ryser, and V. Romano, “Rare earth doped optical fiber fabrication by standard and sol-gel derived granulated oxides,” Proc. SPIE 8426, 84261I (2012).
[Crossref]

Romero, J. J.

K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peters, J. J. Romero, S. Kutovoi, J. Speiser, and A. Giesen, “Highly Yb-doped oxides for thin-disc lasers,” J. Cryst. Growth 275(1-2), 135–140 (2005).
[Crossref]

Rothhardt, J.

Ryser, M.

D. Etissa, M. Neff, S. Pilz, M. Ryser, and V. Romano, “Rare earth doped optical fiber fabrication by standard and sol-gel derived granulated oxides,” Proc. SPIE 8426, 84261I (2012).
[Crossref]

Sahu, J. K.

Sattler, B.

Schötz, G.

A. Langner, G. Schötz, M. Such, T. Kayser, V. Reichel, S. Grimm, J. Kirchhof, V. Krause, and G. Rehmann, “A new material for high-power laser fibers,” Proc. SPIE 6873, 687311 (2008).
[Crossref]

Schreiber, T.

Schuster, K.

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3(4), 447–468 (2014).

S. Unger, F. Lindner, C. Aichele, M. Leich, A. Schwuchow, J. Kobelke, J. Dellith, K. Schuster, and H. Bartelt, “A highly efficient Yb-doped silica laser fiber prepared by gas phase doping technology,” Laser Phys. 24(3), 035103 (2014).
[Crossref]

Schwuchow, A.

S. Unger, F. Lindner, C. Aichele, M. Leich, A. Schwuchow, J. Kobelke, J. Dellith, K. Schuster, and H. Bartelt, “A highly efficient Yb-doped silica laser fiber prepared by gas phase doping technology,” Laser Phys. 24(3), 035103 (2014).
[Crossref]

A. Schwuchow, S. Unger, S. Jetschke, and J. Kirchhof, “Advanced attenuation and fluorescence measurement methods in the investigation of photodarkening and related properties of ytterbium-doped fibers,” Appl. Opt. 53(7), 1466–1473 (2014).
[Crossref] [PubMed]

J. Kirchhof, S. Unger, A. Schwuchow, S. Grimm, and V. Reichel, “Materials for high-power fiber lasers,” J. Non-Cryst. Solids 352(23-25), 2399–2403 (2006).
[Crossref]

Seifert, R.

Sidiroglou, F.

F. Sidiroglou, A. Roberts, and G. Baxter, “Contributed Review: A review of the investigation of rare-earth dopant profiles in optical fibers,” Rev. Sci. Instrum. 87(4), 041501 (2016).
[Crossref] [PubMed]

Siegel, J.

K. C. Lee, J. Siegel, S. E. D. Webb, S. Lévêque-Fort, M. J. Cole, R. Jones, K. Dowling, M. J. Lever, and P. M. W. French, “Application of the stretched exponential function to fluorescence lifetime imaging,” Biophys. J. 81(3), 1265–1274 (2001).
[Crossref] [PubMed]

Speiser, J.

K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peters, J. J. Romero, S. Kutovoi, J. Speiser, and A. Giesen, “Highly Yb-doped oxides for thin-disc lasers,” J. Cryst. Growth 275(1-2), 135–140 (2005).
[Crossref]

Spizzirri, P. G.

K. P. Ghiggino, M. R. Harris, and P. G. Spizzirri, “Fluorescence lifetime measurements using a novel fiber-optic laser scanning confocal microscope,” Rev. Sci. Instrum. 63(5), 2999–3002 (1992).
[Crossref]

Strecker, M.

Stutzki, F.

Such, M.

A. Langner, G. Schötz, M. Such, T. Kayser, V. Reichel, S. Grimm, J. Kirchhof, V. Krause, and G. Rehmann, “A new material for high-power laser fibers,” Proc. SPIE 6873, 687311 (2008).
[Crossref]

Sumida, D. S.

Tropper, A. C.

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “Lifetime quenching in Yb-doped fibres,” Opt. Commun. 136(5-6), 375–378 (1997).
[Crossref]

I. R. Perry, A. C. Tropper, and J. R. M. Barr, “Micro-fluorescence profiling of erbium-doped fibre preforms,” J. Lumin. 59(1–2), 39–49 (1994).
[Crossref]

Tünnermann, A.

F. Beier, F. Möller, B. Sattler, J. Nold, A. Liem, C. Hupel, S. Kuhn, S. Hein, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Experimental investigations on the TMI thresholds of low-NA Yb-doped single-mode fibers,” Opt. Lett. 43(6), 1291–1294 (2018).
[Crossref] [PubMed]

S. Kuhn, S. Hein, C. Hupel, J. Nold, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Modelling the refractive index behavior of Al,P-doped SiO2, fabricated by means of all-solution doping, in the vicinity of Al:P = 1:1,” Opt. Mater. Express 8(5), 1328–1340 (2018).
[Crossref]

N. Haarlammert, B. Sattler, A. Liem, M. Strecker, J. Nold, T. Schreiber, R. Eberhardt, A. Tünnermann, K. Ludewigt, and M. Jung, “Optimizing mode instability in low-NA fibers by passive strategies,” Opt. Lett. 40(10), 2317–2320 (2015).
[Crossref] [PubMed]

H.-J. Otto, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “Impact of photodarkening on the mode instability threshold,” Opt. Express 23(12), 15265–15277 (2015).
[Crossref] [PubMed]

C. Jauregui, T. Eidam, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express 20(12), 12912–12925 (2012).
[Crossref] [PubMed]

T. Eidam, S. Hädrich, F. Jansen, F. Stutzki, J. Rothhardt, H. Carstens, C. Jauregui, J. Limpert, and A. Tünnermann, “Preferential gain photonic-crystal fiber for mode stabilization at high average powers,” Opt. Express 19(9), 8656–8661 (2011).
[Crossref] [PubMed]

Unger, S.

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3(4), 447–468 (2014).

A. Schwuchow, S. Unger, S. Jetschke, and J. Kirchhof, “Advanced attenuation and fluorescence measurement methods in the investigation of photodarkening and related properties of ytterbium-doped fibers,” Appl. Opt. 53(7), 1466–1473 (2014).
[Crossref] [PubMed]

S. Unger, F. Lindner, C. Aichele, M. Leich, A. Schwuchow, J. Kobelke, J. Dellith, K. Schuster, and H. Bartelt, “A highly efficient Yb-doped silica laser fiber prepared by gas phase doping technology,” Laser Phys. 24(3), 035103 (2014).
[Crossref]

J. Kirchhof, S. Unger, A. Schwuchow, S. Grimm, and V. Reichel, “Materials for high-power fiber lasers,” J. Non-Cryst. Solids 352(23-25), 2399–2403 (2006).
[Crossref]

Vázquez-Córdova, S. A.

Vorholt, C.

Webb, S. E. D.

K. C. Lee, J. Siegel, S. E. D. Webb, S. Lévêque-Fort, M. J. Cole, R. Jones, K. Dowling, M. J. Lever, and P. M. W. French, “Application of the stretched exponential function to fluorescence lifetime imaging,” Biophys. J. 81(3), 1265–1274 (2001).
[Crossref] [PubMed]

Weber, M.

M. Weber, J. Lynch, D. Blackburn, and D. Cronin, “Dependence of the stimulated emission cross section of Yb3+ on host glass composition,” IEEE J. Quantum Electron. 19(10), 1600–1608 (1983).
[Crossref]

Wondraczek, K.

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3(4), 447–468 (2014).

Yablon, A. D.

A. D. Yablon, “New transverse techniques for characterizing high-power optical fibers,” Opt. Eng. 50(11), 111603 (2011).
[Crossref]

Yong, Y.-S.

Zervas, M. N.

M. N. Zervas and C. A. Codemard, “High Power Fiber Lasers. A Review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 219–241 (2014).
[Crossref]

Adv. Opt. Technol. (1)

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3(4), 447–468 (2014).

Appl. Opt. (1)

Biophys. J. (1)

K. C. Lee, J. Siegel, S. E. D. Webb, S. Lévêque-Fort, M. J. Cole, R. Jones, K. Dowling, M. J. Lever, and P. M. W. French, “Application of the stretched exponential function to fluorescence lifetime imaging,” Biophys. J. 81(3), 1265–1274 (2001).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (1)

M. Weber, J. Lynch, D. Blackburn, and D. Cronin, “Dependence of the stimulated emission cross section of Yb3+ on host glass composition,” IEEE J. Quantum Electron. 19(10), 1600–1608 (1983).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. N. Zervas and C. A. Codemard, “High Power Fiber Lasers. A Review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 219–241 (2014).
[Crossref]

J. Cryst. Growth (1)

K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peters, J. J. Romero, S. Kutovoi, J. Speiser, and A. Giesen, “Highly Yb-doped oxides for thin-disc lasers,” J. Cryst. Growth 275(1-2), 135–140 (2005).
[Crossref]

J. Lumin. (1)

I. R. Perry, A. C. Tropper, and J. R. M. Barr, “Micro-fluorescence profiling of erbium-doped fibre preforms,” J. Lumin. 59(1–2), 39–49 (1994).
[Crossref]

J. Non-Cryst. Solids (1)

J. Kirchhof, S. Unger, A. Schwuchow, S. Grimm, and V. Reichel, “Materials for high-power fiber lasers,” J. Non-Cryst. Solids 352(23-25), 2399–2403 (2006).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Phys. (1)

S. Unger, F. Lindner, C. Aichele, M. Leich, A. Schwuchow, J. Kobelke, J. Dellith, K. Schuster, and H. Bartelt, “A highly efficient Yb-doped silica laser fiber prepared by gas phase doping technology,” Laser Phys. 24(3), 035103 (2014).
[Crossref]

Opt. Commun. (1)

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “Lifetime quenching in Yb-doped fibres,” Opt. Commun. 136(5-6), 375–378 (1997).
[Crossref]

Opt. Eng. (1)

A. D. Yablon, “New transverse techniques for characterizing high-power optical fibers,” Opt. Eng. 50(11), 111603 (2011).
[Crossref]

Opt. Express (5)

Opt. Lett. (6)

Opt. Mater. Express (2)

Proc. SPIE (3)

A. K. Ghatak, I. C. Goyal, and R. Jindal, “Design of a waveguide refractive index profile to obtain a flat modal field,” Proc. SPIE 3666, 40–44 (1999).
[Crossref]

A. Langner, G. Schötz, M. Such, T. Kayser, V. Reichel, S. Grimm, J. Kirchhof, V. Krause, and G. Rehmann, “A new material for high-power laser fibers,” Proc. SPIE 6873, 687311 (2008).
[Crossref]

D. Etissa, M. Neff, S. Pilz, M. Ryser, and V. Romano, “Rare earth doped optical fiber fabrication by standard and sol-gel derived granulated oxides,” Proc. SPIE 8426, 84261I (2012).
[Crossref]

Rev. Sci. Instrum. (2)

K. P. Ghiggino, M. R. Harris, and P. G. Spizzirri, “Fluorescence lifetime measurements using a novel fiber-optic laser scanning confocal microscope,” Rev. Sci. Instrum. 63(5), 2999–3002 (1992).
[Crossref]

F. Sidiroglou, A. Roberts, and G. Baxter, “Contributed Review: A review of the investigation of rare-earth dopant profiles in optical fibers,” Rev. Sci. Instrum. 87(4), 041501 (2016).
[Crossref] [PubMed]

Other (4)

S. Inoué, “Foundations of Confocal Scanned Imaging in Light Microscopy,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Springer US, 1995), pp. 1–14.

K. Suhling, L. M. Hirvonen, J. A. Levitt, P.-H. Chung, C. Tregidgo, D. A. Rusakov, K. Zheng, S. Ameer-Beg, S. Poland, S. Coelho, R. Henderson, and N. Krstajic, “Fluorescence Lifetime Imaging,” in Handbook of Photonics for Biomedical Engineering, A. H.-P. Ho, D. Kim, and M. G. Somekh, eds. (Springer Netherlands, 2014), pp. 1–50.

C. Rothhardt, S. Risse, T. Schreiber, R. Eberhardt, J. Rothhardt, J. Limpert, and A. Tünnermann, “Direct Bonding of Crystalline Components for Application in High Power Laser Systems,” in Laser Ignition Conference. 20–23 June 2017, Bucharest, Romania, OSA technical digest (online) (OSA - The Optical Society, 2017), LWA3.4.
[Crossref]

S. Kuhn, S. Hein, C. Hupel, J. Ihring, J. Nold, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tünnermann, “All-Solution Doping Technique for Tailoring Core Composition toward Yb:AlPO4:SiO2,” in Advanced Solid State Lasers, OSA Technical Digest (online) (Optical Society of America, 2015), paper AM4A.5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1 Schematic representation of the setup: LD-laser diode, DM – dichroic mirror, BS – beam splitter, M – Mirror, MO – microscopic objective, OSA – optical spectrum analyzer, APD – avalanche photodiode. Green arrow: excitation direction, red arrow: Fluorescence signal direction.
Fig. 2
Fig. 2 (a) Schematic cross section and top view of the bonded Yb:YAG sample to a non-doped YAG and the measured region represented by the red rectangle, (b) section of the measured region representing the fluorescence intensity measurement on the edge of doped to undoped material (rotated 90° compared to (a)).
Fig. 3
Fig. 3 (a) Oscilloscope trace of decaying ytterbium fluorescence and the fitted exponential decay (red) and intensity (orange), (b) Normalized spectrum of an Yb-doped fused silica sample with two Gaussian fits.
Fig. 4
Fig. 4 Lifetime histogram of 1at% Yb:YAG (left) and 3at% Yb:CaF2 (right).
Fig. 5
Fig. 5 SEM images of (a) RMO fiber and (b) LPF fiber with preferential gain region, which appears as a triangular brighter region (white box is the region of interest for Fig. 7).
Fig. 6
Fig. 6 Fluorescence intensity of the RMO fiber for (a) orthogonal excitation (light sheet) and (b) confocal measurement.
Fig. 7
Fig. 7 (a) Zoom and rotated region of Fig. 5(b) and 5(b) the corresponding FLIM image of the LPF fiber with an average lifetime of 862 +/− 26 µs.
Fig. 8
Fig. 8 (a) FLIM and (b) µSpec images with position (top) and width (bottom) of the emission peak around 1030 nm of a REPUSIL sample. (c) Corresponding absorption measurement at the inner and outer area.
Fig. 9
Fig. 9 Example for contrast and information enhancement: (a) Stitched microscopic image in comparison to (b) fluorescence intensity image and (c) FLIM image of the second REPUSIL sample.
Fig. 10
Fig. 10 EPMA measurement of the three-layered MCVD preform.
Fig. 11
Fig. 11 µSpec image with (a) 976 nm central peak position, (b) 976 nm peaks FWHM, (a) 1030 nm central peak position, (b) 1030 nm peak FWHM as contrast and (e) FLIM with lifetime 857 +/− 30 µs (heterogeneity 1.03+/−0.03) and (f) emission cross section from center of preform (position 1) to outer region (position 3).
Fig. 12
Fig. 12 (a) EPMA profile in comparison to (b, top) the shape of the radial averaged intensity as calculated from the FLIM intensity (blue and dots) and µSpec intensity data (green) and the radial lifetime distribution (b, bottom).
Fig. 13
Fig. 13 (a) Decay of the measured lifetime with 20 mW pump power, (b) decay of lifetime with increased pump power of 75 mW for a measurement time of 60 seconds.
Fig. 14
Fig. 14 Fluorescence analysis of a preform, which had been measured by EPMA before: (a) µSpec image for the 976 nm and (b) for the 1030 nm emission peak, (c) FLIM image.
Fig. 15
Fig. 15 Measured saturation of the fluorescence intensity level with respect to pump power and its fit to the excitation level.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I( t )= I 0 e ( t/τ ) 1/h
σ em ( λ,x,y )= 1 8π n 2 c τ rad ( λ,x,y ) λ 5 I em ( λ,x,y ) λ I em ( λ,x,y ) dλ
c em ~ I em τ
I em =μ 1 1+ σ em σ abs + 1 β P pump

Metrics