Abstract

We propose and demonstrate a closed-loop chaos system composed of external-cavity semiconductor lasers subject to common chaotic phase-modulated optical feedback (CCPMOF). The efficient-bandwidth and time-delay signature (TDS) characteristics of the chaotic carrier, the properties of chaos synchronization, as well as the performance and security of chaos communication are systematically investigated. The numerical results demonstrate that wideband chaotic carrier with effective TDS suppression can be easily obtained, high-quality chaos synchronization with considerable mismatch robustness, frequency detuning tolerance, and phase fluctuation tolerance can be achieved in a wide operation range, and high-speed chaos communication is available. With respect to the conventional closed-loop systems, the bandwidth and complexity of chaotic carrier is greatly enhanced, and the performances of chaos synchronization and communication are obviously improved.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Security-enhanced chaos communication with time-delay signature suppression and phase encryption

Chenpeng Xue, Ning Jiang, Yunxin Lv, Chao wang, Guilan Li, Shuqing Lin, and Kun Qiu
Opt. Lett. 41(16) 3690-3693 (2016)

Influence of injection current on the synchronization and communication performance of closed-loop chaotic semiconductor lasers

Ning Jiang, Wei Pan, Bin Luo, Lianshan Yan, Shuiying Xiang, Lei Yang, Di Zheng, and Nianqiang Li
Opt. Lett. 36(16) 3197-3199 (2011)

Chaotic optical cryptographic communication using a three-semiconductor-laser scheme

Nianqiang Li, Wei Pan, Lianshan Yan, Bin Luo, Mingfeng Xu, Yilong Tang, Ning Jiang, Shuiying Xiang, and Qiao Zhang
J. Opt. Soc. Am. B 29(1) 101-108 (2012)

References

  • View by:
  • |
  • |
  • |

  1. M. Sciamanna and K. A. Shore, “Physics and applications of laser diode chaos,” Nat. Photonics 9(3), 151–162 (2015).
    [Crossref]
  2. A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
    [Crossref] [PubMed]
  3. N. Li, H. Susanto, B. Cemlyn, I. D. Henning, and M. J. Adams, “Secure communication systems based on chaos in optically pumped spin-VCSELs,” Opt. Lett. 42(17), 3494–3497 (2017).
    [Crossref] [PubMed]
  4. J. Ke, L. Yi, G. Xia, and W. Hu, “Chaotic optical communications over 100-km fiber transmission at 30-Gb/s bit rate,” Opt. Lett. 43(6), 1323–1326 (2018).
    [Crossref] [PubMed]
  5. C. Xue, N. Jiang, Y. Lv, C. Wang, G. Li, S. Lin, and K. Qiu, “Security-enhanced chaos communication with time-delay signature suppression and phase encryption,” Opt. Lett. 41(16), 3690–3693 (2016).
    [Crossref] [PubMed]
  6. P. Li, J. G. Wu, Z. M. Wu, X. D. Lin, D. Deng, Y. R. Liu, and G. Q. Xia, “Bidirectional chaos communication between two outer semiconductor lasers coupled mutually with a central semiconductor laser,” Opt. Express 19(24), 23921–23931 (2011).
    [Crossref] [PubMed]
  7. X. F. Li, W. Pan, B. Luo, and D. Ma, “Mismatch robustness and security of chaotic optical communications based on injection-locking chaos synchronization,” IEEE J. Quantum Electron. 42(9), 953–960 (2006).
    [Crossref]
  8. J. Ohtsubo, “Chaos synchronization and chaotic signal masking in semiconductor lasers with optical feedback,” IEEE J. Quantum Electron. 38(9), 1141–1154 (2002).
    [Crossref]
  9. A. B. Wang, Y. C. Wang, Y. B. Yang, M. J. Zhang, H. Xu, and B. J. Wang, “Generation of flat-spectrum wideband chaos by fiber ring resonator,” Appl. Phys. Lett. 102(3), 031112 (2013).
    [Crossref]
  10. S. Y. Xiang, W. Pan, B. Luo, L. S. Yan, X. H. Zou, N. Li, and H. N. Zhu, “Wideband unpredictability-enhanced chaotic semiconductor lasers with dual-chaotic optical injections,” IEEE J. Quantum Electron. 48(8), 1069–1076 (2012).
    [Crossref]
  11. J. G. Wu, G. Q. Xia, and Z. M. Wu, “Suppression of time delay signatures of chaotic output in a semiconductor laser with double optical feedback,” Opt. Express 17(22), 20124–20133 (2009).
    [Crossref] [PubMed]
  12. Z. Q. Zhong, Z. M. Wu, and G. Q. Xia, “Experimental investigation on the time-delay signature of chaotic output from a 1550nm VCSEL subject to FBG feedback,” Photon. Res. 5(1), 6–10 (2017).
    [Crossref]
  13. S. S. Li, Q. Liu, and S. C. Chan, “Distributed feedbacks for time-delay signature suppression of chaos generated from a semiconductor laser,” IEEE Photonics J. 4(5), 1930–1935 (2012).
    [Crossref]
  14. S. L. Yan, “Enhancement of chaotic carrier bandwidth in a semiconductor laser transmitter using self-phase modulation in an optical fiber external round cavity,” Chin. Sci. Bull. 55(11), 1007–1012 (2010).
    [Crossref]
  15. A. Wang, Y. Yang, B. Wang, B. Zhang, L. Li, and Y. Wang, “Generation of wideband chaos with suppressed time-delay signature by delayed self-interference,” Opt. Express 21(7), 8701–8710 (2013).
    [Crossref] [PubMed]
  16. S. Y. Xiang, A. J. Wen, W. Pan, L. Lin, H. Zhang, H. Zhang, X. Guo, and J. Li, “Suppression of chaos time delay signature in a ring network consisting of three semiconductor lasers coupled with heterogeneous delays,” J. Lightwave Technol. 34(18), 4221–4227 (2016).
    [Crossref]
  17. C. H. Cheng, Y. C. Chen, and F. Y. Lin, “Chaos time delay signature suppression and bandwidth enhancement by electrical heterodyning,” Opt. Express 23(3), 2308–2319 (2015).
    [Crossref] [PubMed]
  18. Y. H. Hong, P. S. Spencer, and K. A. Shore, “Wideband chaos with time-delay concealment in vertical-cavity surface-emitting lasers with optical feedback and injection,” IEEE J. Quantum Electron. 50(4), 236–242 (2014).
    [Crossref]
  19. N. Jiang, C. Wang, C. Xue, G. Li, S. Lin, and K. Qiu, “Generation of flat wideband chaos with suppressed time delay signature by using optical time lens,” Opt. Express 25(13), 14359–14367 (2017).
    [Crossref] [PubMed]
  20. M. Cheng, L. Deng, H. Li, and D. Liu, “Enhanced secure strategy for electro-optic chaotic systems with delayed dynamics by using fractional Fourier transformation,” Opt. Express 22(5), 5241–5251 (2014).
    [Crossref] [PubMed]
  21. D. Kanakidis, A. Argyris, A. Bogris, and D. Syvridis, “Influence of the decoding process on the performance of chaos encrypted optical communication systems,” J. Lightwave Technol. 24(1), 335–341 (2006).
    [Crossref]
  22. R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
    [Crossref]
  23. N. Jiang, C. Zhang, and K. Qiu, “Secure passive optical network based on chaos synchronization,” Opt. Lett. 37(21), 4501–4503 (2012).
    [Crossref] [PubMed]
  24. F. Y. Lin and J. M. Liu, “Nonlinear dynamical characteristics of an optically-injected semiconductor laser subject to optoelectronic feedback,” Opt. Commun. 221(1–3), 173–180 (2003).
    [Crossref]
  25. N. Li, W. Pan, A. Locquet, and D. S. Citrin, “Time-delay concealment and complexity enhancement of an external-cavity laser through optical injection,” Opt. Lett. 40(19), 4416–4419 (2015).
    [Crossref] [PubMed]
  26. N. Jiang, C. P. Xue, Y. X. Lv, and K. Qiu, “Physical enhanced secure communication based on wavelength division multiplexing chaos synchronization of multimode semiconductor lasers,” Nonlinear Dyn. 86(3), 1937–1949 (2016).
    [Crossref]
  27. A. Bogris, P. Rizomiliotis, K. E. Chlouverakis, A. Argyris, and D. Syvridis, “Feedback phase in optically generated chaos: a secret key for cryptographic application,” IEEE J. Quantum Electron. 44(2), 119–124 (2008).
    [Crossref]
  28. A. Murakami, “Phase locking and chaos synchronization in injection-locked semiconductor lasers,” IEEE J. Quantum Electron. 39(3), 438–447 (2003).
    [Crossref]
  29. R. Vincente, T. Perez, and C. R. Mirasso, “Open-versus closed-loop performance of synchronized chaotic external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 38(9), 1197–1204 (2002).
    [Crossref]
  30. A. Bogris, D. Kanakidis, A. Argyris, and D. Syvridis, “Performance characterization of a closed-loop chaotic communication system including fiber transmission in dispersion shifted fibers,” IEEE J. Quantum Electron. 40(9), 1326–1336 (2004).
    [Crossref]
  31. A. Bogris, A. Argyris, and D. Syvridis, “Encryption efficiency analysis of chaotic communication systems based on photonic integrated chaotic circuits,” IEEE J. Quantum Electron. 46(10), 1421–1429 (2010).
    [Crossref]

2018 (1)

2017 (3)

2016 (3)

2015 (3)

2014 (2)

M. Cheng, L. Deng, H. Li, and D. Liu, “Enhanced secure strategy for electro-optic chaotic systems with delayed dynamics by using fractional Fourier transformation,” Opt. Express 22(5), 5241–5251 (2014).
[Crossref] [PubMed]

Y. H. Hong, P. S. Spencer, and K. A. Shore, “Wideband chaos with time-delay concealment in vertical-cavity surface-emitting lasers with optical feedback and injection,” IEEE J. Quantum Electron. 50(4), 236–242 (2014).
[Crossref]

2013 (2)

A. Wang, Y. Yang, B. Wang, B. Zhang, L. Li, and Y. Wang, “Generation of wideband chaos with suppressed time-delay signature by delayed self-interference,” Opt. Express 21(7), 8701–8710 (2013).
[Crossref] [PubMed]

A. B. Wang, Y. C. Wang, Y. B. Yang, M. J. Zhang, H. Xu, and B. J. Wang, “Generation of flat-spectrum wideband chaos by fiber ring resonator,” Appl. Phys. Lett. 102(3), 031112 (2013).
[Crossref]

2012 (3)

S. Y. Xiang, W. Pan, B. Luo, L. S. Yan, X. H. Zou, N. Li, and H. N. Zhu, “Wideband unpredictability-enhanced chaotic semiconductor lasers with dual-chaotic optical injections,” IEEE J. Quantum Electron. 48(8), 1069–1076 (2012).
[Crossref]

S. S. Li, Q. Liu, and S. C. Chan, “Distributed feedbacks for time-delay signature suppression of chaos generated from a semiconductor laser,” IEEE Photonics J. 4(5), 1930–1935 (2012).
[Crossref]

N. Jiang, C. Zhang, and K. Qiu, “Secure passive optical network based on chaos synchronization,” Opt. Lett. 37(21), 4501–4503 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (2)

S. L. Yan, “Enhancement of chaotic carrier bandwidth in a semiconductor laser transmitter using self-phase modulation in an optical fiber external round cavity,” Chin. Sci. Bull. 55(11), 1007–1012 (2010).
[Crossref]

A. Bogris, A. Argyris, and D. Syvridis, “Encryption efficiency analysis of chaotic communication systems based on photonic integrated chaotic circuits,” IEEE J. Quantum Electron. 46(10), 1421–1429 (2010).
[Crossref]

2009 (1)

2008 (1)

A. Bogris, P. Rizomiliotis, K. E. Chlouverakis, A. Argyris, and D. Syvridis, “Feedback phase in optically generated chaos: a secret key for cryptographic application,” IEEE J. Quantum Electron. 44(2), 119–124 (2008).
[Crossref]

2006 (2)

X. F. Li, W. Pan, B. Luo, and D. Ma, “Mismatch robustness and security of chaotic optical communications based on injection-locking chaos synchronization,” IEEE J. Quantum Electron. 42(9), 953–960 (2006).
[Crossref]

D. Kanakidis, A. Argyris, A. Bogris, and D. Syvridis, “Influence of the decoding process on the performance of chaos encrypted optical communication systems,” J. Lightwave Technol. 24(1), 335–341 (2006).
[Crossref]

2005 (1)

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

2004 (1)

A. Bogris, D. Kanakidis, A. Argyris, and D. Syvridis, “Performance characterization of a closed-loop chaotic communication system including fiber transmission in dispersion shifted fibers,” IEEE J. Quantum Electron. 40(9), 1326–1336 (2004).
[Crossref]

2003 (2)

A. Murakami, “Phase locking and chaos synchronization in injection-locked semiconductor lasers,” IEEE J. Quantum Electron. 39(3), 438–447 (2003).
[Crossref]

F. Y. Lin and J. M. Liu, “Nonlinear dynamical characteristics of an optically-injected semiconductor laser subject to optoelectronic feedback,” Opt. Commun. 221(1–3), 173–180 (2003).
[Crossref]

2002 (2)

R. Vincente, T. Perez, and C. R. Mirasso, “Open-versus closed-loop performance of synchronized chaotic external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 38(9), 1197–1204 (2002).
[Crossref]

J. Ohtsubo, “Chaos synchronization and chaotic signal masking in semiconductor lasers with optical feedback,” IEEE J. Quantum Electron. 38(9), 1141–1154 (2002).
[Crossref]

1980 (1)

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
[Crossref]

Adams, M. J.

Annovazzi-Lodi, V.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Argyris, A.

A. Bogris, A. Argyris, and D. Syvridis, “Encryption efficiency analysis of chaotic communication systems based on photonic integrated chaotic circuits,” IEEE J. Quantum Electron. 46(10), 1421–1429 (2010).
[Crossref]

A. Bogris, P. Rizomiliotis, K. E. Chlouverakis, A. Argyris, and D. Syvridis, “Feedback phase in optically generated chaos: a secret key for cryptographic application,” IEEE J. Quantum Electron. 44(2), 119–124 (2008).
[Crossref]

D. Kanakidis, A. Argyris, A. Bogris, and D. Syvridis, “Influence of the decoding process on the performance of chaos encrypted optical communication systems,” J. Lightwave Technol. 24(1), 335–341 (2006).
[Crossref]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

A. Bogris, D. Kanakidis, A. Argyris, and D. Syvridis, “Performance characterization of a closed-loop chaotic communication system including fiber transmission in dispersion shifted fibers,” IEEE J. Quantum Electron. 40(9), 1326–1336 (2004).
[Crossref]

Bogris, A.

A. Bogris, A. Argyris, and D. Syvridis, “Encryption efficiency analysis of chaotic communication systems based on photonic integrated chaotic circuits,” IEEE J. Quantum Electron. 46(10), 1421–1429 (2010).
[Crossref]

A. Bogris, P. Rizomiliotis, K. E. Chlouverakis, A. Argyris, and D. Syvridis, “Feedback phase in optically generated chaos: a secret key for cryptographic application,” IEEE J. Quantum Electron. 44(2), 119–124 (2008).
[Crossref]

D. Kanakidis, A. Argyris, A. Bogris, and D. Syvridis, “Influence of the decoding process on the performance of chaos encrypted optical communication systems,” J. Lightwave Technol. 24(1), 335–341 (2006).
[Crossref]

A. Bogris, D. Kanakidis, A. Argyris, and D. Syvridis, “Performance characterization of a closed-loop chaotic communication system including fiber transmission in dispersion shifted fibers,” IEEE J. Quantum Electron. 40(9), 1326–1336 (2004).
[Crossref]

Cemlyn, B.

Chan, S. C.

S. S. Li, Q. Liu, and S. C. Chan, “Distributed feedbacks for time-delay signature suppression of chaos generated from a semiconductor laser,” IEEE Photonics J. 4(5), 1930–1935 (2012).
[Crossref]

Chen, Y. C.

Cheng, C. H.

Cheng, M.

Chlouverakis, K. E.

A. Bogris, P. Rizomiliotis, K. E. Chlouverakis, A. Argyris, and D. Syvridis, “Feedback phase in optically generated chaos: a secret key for cryptographic application,” IEEE J. Quantum Electron. 44(2), 119–124 (2008).
[Crossref]

Citrin, D. S.

Colet, P.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Deng, D.

Deng, L.

Fischer, I.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

García-Ojalvo, J.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Guo, X.

Henning, I. D.

Hong, Y. H.

Y. H. Hong, P. S. Spencer, and K. A. Shore, “Wideband chaos with time-delay concealment in vertical-cavity surface-emitting lasers with optical feedback and injection,” IEEE J. Quantum Electron. 50(4), 236–242 (2014).
[Crossref]

Hu, W.

Jiang, N.

Kanakidis, D.

D. Kanakidis, A. Argyris, A. Bogris, and D. Syvridis, “Influence of the decoding process on the performance of chaos encrypted optical communication systems,” J. Lightwave Technol. 24(1), 335–341 (2006).
[Crossref]

A. Bogris, D. Kanakidis, A. Argyris, and D. Syvridis, “Performance characterization of a closed-loop chaotic communication system including fiber transmission in dispersion shifted fibers,” IEEE J. Quantum Electron. 40(9), 1326–1336 (2004).
[Crossref]

Ke, J.

Kobayashi, K.

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
[Crossref]

Lang, R.

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
[Crossref]

Larger, L.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Li, G.

Li, H.

Li, J.

Li, L.

Li, N.

Li, P.

Li, S. S.

S. S. Li, Q. Liu, and S. C. Chan, “Distributed feedbacks for time-delay signature suppression of chaos generated from a semiconductor laser,” IEEE Photonics J. 4(5), 1930–1935 (2012).
[Crossref]

Li, X. F.

X. F. Li, W. Pan, B. Luo, and D. Ma, “Mismatch robustness and security of chaotic optical communications based on injection-locking chaos synchronization,” IEEE J. Quantum Electron. 42(9), 953–960 (2006).
[Crossref]

Lin, F. Y.

C. H. Cheng, Y. C. Chen, and F. Y. Lin, “Chaos time delay signature suppression and bandwidth enhancement by electrical heterodyning,” Opt. Express 23(3), 2308–2319 (2015).
[Crossref] [PubMed]

F. Y. Lin and J. M. Liu, “Nonlinear dynamical characteristics of an optically-injected semiconductor laser subject to optoelectronic feedback,” Opt. Commun. 221(1–3), 173–180 (2003).
[Crossref]

Lin, L.

Lin, S.

Lin, X. D.

Liu, D.

Liu, J. M.

F. Y. Lin and J. M. Liu, “Nonlinear dynamical characteristics of an optically-injected semiconductor laser subject to optoelectronic feedback,” Opt. Commun. 221(1–3), 173–180 (2003).
[Crossref]

Liu, Q.

S. S. Li, Q. Liu, and S. C. Chan, “Distributed feedbacks for time-delay signature suppression of chaos generated from a semiconductor laser,” IEEE Photonics J. 4(5), 1930–1935 (2012).
[Crossref]

Liu, Y. R.

Locquet, A.

Luo, B.

S. Y. Xiang, W. Pan, B. Luo, L. S. Yan, X. H. Zou, N. Li, and H. N. Zhu, “Wideband unpredictability-enhanced chaotic semiconductor lasers with dual-chaotic optical injections,” IEEE J. Quantum Electron. 48(8), 1069–1076 (2012).
[Crossref]

X. F. Li, W. Pan, B. Luo, and D. Ma, “Mismatch robustness and security of chaotic optical communications based on injection-locking chaos synchronization,” IEEE J. Quantum Electron. 42(9), 953–960 (2006).
[Crossref]

Lv, Y.

Lv, Y. X.

N. Jiang, C. P. Xue, Y. X. Lv, and K. Qiu, “Physical enhanced secure communication based on wavelength division multiplexing chaos synchronization of multimode semiconductor lasers,” Nonlinear Dyn. 86(3), 1937–1949 (2016).
[Crossref]

Ma, D.

X. F. Li, W. Pan, B. Luo, and D. Ma, “Mismatch robustness and security of chaotic optical communications based on injection-locking chaos synchronization,” IEEE J. Quantum Electron. 42(9), 953–960 (2006).
[Crossref]

Mirasso, C. R.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

R. Vincente, T. Perez, and C. R. Mirasso, “Open-versus closed-loop performance of synchronized chaotic external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 38(9), 1197–1204 (2002).
[Crossref]

Murakami, A.

A. Murakami, “Phase locking and chaos synchronization in injection-locked semiconductor lasers,” IEEE J. Quantum Electron. 39(3), 438–447 (2003).
[Crossref]

Ohtsubo, J.

J. Ohtsubo, “Chaos synchronization and chaotic signal masking in semiconductor lasers with optical feedback,” IEEE J. Quantum Electron. 38(9), 1141–1154 (2002).
[Crossref]

Pan, W.

S. Y. Xiang, A. J. Wen, W. Pan, L. Lin, H. Zhang, H. Zhang, X. Guo, and J. Li, “Suppression of chaos time delay signature in a ring network consisting of three semiconductor lasers coupled with heterogeneous delays,” J. Lightwave Technol. 34(18), 4221–4227 (2016).
[Crossref]

N. Li, W. Pan, A. Locquet, and D. S. Citrin, “Time-delay concealment and complexity enhancement of an external-cavity laser through optical injection,” Opt. Lett. 40(19), 4416–4419 (2015).
[Crossref] [PubMed]

S. Y. Xiang, W. Pan, B. Luo, L. S. Yan, X. H. Zou, N. Li, and H. N. Zhu, “Wideband unpredictability-enhanced chaotic semiconductor lasers with dual-chaotic optical injections,” IEEE J. Quantum Electron. 48(8), 1069–1076 (2012).
[Crossref]

X. F. Li, W. Pan, B. Luo, and D. Ma, “Mismatch robustness and security of chaotic optical communications based on injection-locking chaos synchronization,” IEEE J. Quantum Electron. 42(9), 953–960 (2006).
[Crossref]

Perez, T.

R. Vincente, T. Perez, and C. R. Mirasso, “Open-versus closed-loop performance of synchronized chaotic external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 38(9), 1197–1204 (2002).
[Crossref]

Pesquera, L.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Qiu, K.

Rizomiliotis, P.

A. Bogris, P. Rizomiliotis, K. E. Chlouverakis, A. Argyris, and D. Syvridis, “Feedback phase in optically generated chaos: a secret key for cryptographic application,” IEEE J. Quantum Electron. 44(2), 119–124 (2008).
[Crossref]

Sciamanna, M.

M. Sciamanna and K. A. Shore, “Physics and applications of laser diode chaos,” Nat. Photonics 9(3), 151–162 (2015).
[Crossref]

Shore, K. A.

M. Sciamanna and K. A. Shore, “Physics and applications of laser diode chaos,” Nat. Photonics 9(3), 151–162 (2015).
[Crossref]

Y. H. Hong, P. S. Spencer, and K. A. Shore, “Wideband chaos with time-delay concealment in vertical-cavity surface-emitting lasers with optical feedback and injection,” IEEE J. Quantum Electron. 50(4), 236–242 (2014).
[Crossref]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Spencer, P. S.

Y. H. Hong, P. S. Spencer, and K. A. Shore, “Wideband chaos with time-delay concealment in vertical-cavity surface-emitting lasers with optical feedback and injection,” IEEE J. Quantum Electron. 50(4), 236–242 (2014).
[Crossref]

Susanto, H.

Syvridis, D.

A. Bogris, A. Argyris, and D. Syvridis, “Encryption efficiency analysis of chaotic communication systems based on photonic integrated chaotic circuits,” IEEE J. Quantum Electron. 46(10), 1421–1429 (2010).
[Crossref]

A. Bogris, P. Rizomiliotis, K. E. Chlouverakis, A. Argyris, and D. Syvridis, “Feedback phase in optically generated chaos: a secret key for cryptographic application,” IEEE J. Quantum Electron. 44(2), 119–124 (2008).
[Crossref]

D. Kanakidis, A. Argyris, A. Bogris, and D. Syvridis, “Influence of the decoding process on the performance of chaos encrypted optical communication systems,” J. Lightwave Technol. 24(1), 335–341 (2006).
[Crossref]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

A. Bogris, D. Kanakidis, A. Argyris, and D. Syvridis, “Performance characterization of a closed-loop chaotic communication system including fiber transmission in dispersion shifted fibers,” IEEE J. Quantum Electron. 40(9), 1326–1336 (2004).
[Crossref]

Vincente, R.

R. Vincente, T. Perez, and C. R. Mirasso, “Open-versus closed-loop performance of synchronized chaotic external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 38(9), 1197–1204 (2002).
[Crossref]

Wang, A.

Wang, A. B.

A. B. Wang, Y. C. Wang, Y. B. Yang, M. J. Zhang, H. Xu, and B. J. Wang, “Generation of flat-spectrum wideband chaos by fiber ring resonator,” Appl. Phys. Lett. 102(3), 031112 (2013).
[Crossref]

Wang, B.

Wang, B. J.

A. B. Wang, Y. C. Wang, Y. B. Yang, M. J. Zhang, H. Xu, and B. J. Wang, “Generation of flat-spectrum wideband chaos by fiber ring resonator,” Appl. Phys. Lett. 102(3), 031112 (2013).
[Crossref]

Wang, C.

Wang, Y.

Wang, Y. C.

A. B. Wang, Y. C. Wang, Y. B. Yang, M. J. Zhang, H. Xu, and B. J. Wang, “Generation of flat-spectrum wideband chaos by fiber ring resonator,” Appl. Phys. Lett. 102(3), 031112 (2013).
[Crossref]

Wen, A. J.

Wu, J. G.

Wu, Z. M.

Xia, G.

Xia, G. Q.

Xiang, S. Y.

S. Y. Xiang, A. J. Wen, W. Pan, L. Lin, H. Zhang, H. Zhang, X. Guo, and J. Li, “Suppression of chaos time delay signature in a ring network consisting of three semiconductor lasers coupled with heterogeneous delays,” J. Lightwave Technol. 34(18), 4221–4227 (2016).
[Crossref]

S. Y. Xiang, W. Pan, B. Luo, L. S. Yan, X. H. Zou, N. Li, and H. N. Zhu, “Wideband unpredictability-enhanced chaotic semiconductor lasers with dual-chaotic optical injections,” IEEE J. Quantum Electron. 48(8), 1069–1076 (2012).
[Crossref]

Xu, H.

A. B. Wang, Y. C. Wang, Y. B. Yang, M. J. Zhang, H. Xu, and B. J. Wang, “Generation of flat-spectrum wideband chaos by fiber ring resonator,” Appl. Phys. Lett. 102(3), 031112 (2013).
[Crossref]

Xue, C.

Xue, C. P.

N. Jiang, C. P. Xue, Y. X. Lv, and K. Qiu, “Physical enhanced secure communication based on wavelength division multiplexing chaos synchronization of multimode semiconductor lasers,” Nonlinear Dyn. 86(3), 1937–1949 (2016).
[Crossref]

Yan, L. S.

S. Y. Xiang, W. Pan, B. Luo, L. S. Yan, X. H. Zou, N. Li, and H. N. Zhu, “Wideband unpredictability-enhanced chaotic semiconductor lasers with dual-chaotic optical injections,” IEEE J. Quantum Electron. 48(8), 1069–1076 (2012).
[Crossref]

Yan, S. L.

S. L. Yan, “Enhancement of chaotic carrier bandwidth in a semiconductor laser transmitter using self-phase modulation in an optical fiber external round cavity,” Chin. Sci. Bull. 55(11), 1007–1012 (2010).
[Crossref]

Yang, Y.

Yang, Y. B.

A. B. Wang, Y. C. Wang, Y. B. Yang, M. J. Zhang, H. Xu, and B. J. Wang, “Generation of flat-spectrum wideband chaos by fiber ring resonator,” Appl. Phys. Lett. 102(3), 031112 (2013).
[Crossref]

Yi, L.

Zhang, B.

Zhang, C.

Zhang, H.

Zhang, M. J.

A. B. Wang, Y. C. Wang, Y. B. Yang, M. J. Zhang, H. Xu, and B. J. Wang, “Generation of flat-spectrum wideband chaos by fiber ring resonator,” Appl. Phys. Lett. 102(3), 031112 (2013).
[Crossref]

Zhong, Z. Q.

Zhu, H. N.

S. Y. Xiang, W. Pan, B. Luo, L. S. Yan, X. H. Zou, N. Li, and H. N. Zhu, “Wideband unpredictability-enhanced chaotic semiconductor lasers with dual-chaotic optical injections,” IEEE J. Quantum Electron. 48(8), 1069–1076 (2012).
[Crossref]

Zou, X. H.

S. Y. Xiang, W. Pan, B. Luo, L. S. Yan, X. H. Zou, N. Li, and H. N. Zhu, “Wideband unpredictability-enhanced chaotic semiconductor lasers with dual-chaotic optical injections,” IEEE J. Quantum Electron. 48(8), 1069–1076 (2012).
[Crossref]

Appl. Phys. Lett. (1)

A. B. Wang, Y. C. Wang, Y. B. Yang, M. J. Zhang, H. Xu, and B. J. Wang, “Generation of flat-spectrum wideband chaos by fiber ring resonator,” Appl. Phys. Lett. 102(3), 031112 (2013).
[Crossref]

Chin. Sci. Bull. (1)

S. L. Yan, “Enhancement of chaotic carrier bandwidth in a semiconductor laser transmitter using self-phase modulation in an optical fiber external round cavity,” Chin. Sci. Bull. 55(11), 1007–1012 (2010).
[Crossref]

IEEE J. Quantum Electron. (10)

X. F. Li, W. Pan, B. Luo, and D. Ma, “Mismatch robustness and security of chaotic optical communications based on injection-locking chaos synchronization,” IEEE J. Quantum Electron. 42(9), 953–960 (2006).
[Crossref]

J. Ohtsubo, “Chaos synchronization and chaotic signal masking in semiconductor lasers with optical feedback,” IEEE J. Quantum Electron. 38(9), 1141–1154 (2002).
[Crossref]

S. Y. Xiang, W. Pan, B. Luo, L. S. Yan, X. H. Zou, N. Li, and H. N. Zhu, “Wideband unpredictability-enhanced chaotic semiconductor lasers with dual-chaotic optical injections,” IEEE J. Quantum Electron. 48(8), 1069–1076 (2012).
[Crossref]

Y. H. Hong, P. S. Spencer, and K. A. Shore, “Wideband chaos with time-delay concealment in vertical-cavity surface-emitting lasers with optical feedback and injection,” IEEE J. Quantum Electron. 50(4), 236–242 (2014).
[Crossref]

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
[Crossref]

A. Bogris, P. Rizomiliotis, K. E. Chlouverakis, A. Argyris, and D. Syvridis, “Feedback phase in optically generated chaos: a secret key for cryptographic application,” IEEE J. Quantum Electron. 44(2), 119–124 (2008).
[Crossref]

A. Murakami, “Phase locking and chaos synchronization in injection-locked semiconductor lasers,” IEEE J. Quantum Electron. 39(3), 438–447 (2003).
[Crossref]

R. Vincente, T. Perez, and C. R. Mirasso, “Open-versus closed-loop performance of synchronized chaotic external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 38(9), 1197–1204 (2002).
[Crossref]

A. Bogris, D. Kanakidis, A. Argyris, and D. Syvridis, “Performance characterization of a closed-loop chaotic communication system including fiber transmission in dispersion shifted fibers,” IEEE J. Quantum Electron. 40(9), 1326–1336 (2004).
[Crossref]

A. Bogris, A. Argyris, and D. Syvridis, “Encryption efficiency analysis of chaotic communication systems based on photonic integrated chaotic circuits,” IEEE J. Quantum Electron. 46(10), 1421–1429 (2010).
[Crossref]

IEEE Photonics J. (1)

S. S. Li, Q. Liu, and S. C. Chan, “Distributed feedbacks for time-delay signature suppression of chaos generated from a semiconductor laser,” IEEE Photonics J. 4(5), 1930–1935 (2012).
[Crossref]

J. Lightwave Technol. (2)

Nat. Photonics (1)

M. Sciamanna and K. A. Shore, “Physics and applications of laser diode chaos,” Nat. Photonics 9(3), 151–162 (2015).
[Crossref]

Nature (1)

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Nonlinear Dyn. (1)

N. Jiang, C. P. Xue, Y. X. Lv, and K. Qiu, “Physical enhanced secure communication based on wavelength division multiplexing chaos synchronization of multimode semiconductor lasers,” Nonlinear Dyn. 86(3), 1937–1949 (2016).
[Crossref]

Opt. Commun. (1)

F. Y. Lin and J. M. Liu, “Nonlinear dynamical characteristics of an optically-injected semiconductor laser subject to optoelectronic feedback,” Opt. Commun. 221(1–3), 173–180 (2003).
[Crossref]

Opt. Express (6)

Opt. Lett. (5)

Photon. Res. (1)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Schematic of closed-loop ECSL system subject to common chaotic phase modulated feedback. DSL: driving semiconductor laser, MSL: master semiconductor laser, SSL: slave semiconductor laser, PM: phase modulator, OI: optical isolator, FC: fiber coupler, OC: optical circulator, PD: photodetector, R: reflector, Amp: electronic amplifier.
Fig. 2
Fig. 2 Bifurcation maps of MSL with peak-to-peak intensity versus feedback strength, under the scenarios of (a) COF and CCPMOF with PM indexes of (b) 0.5, (c) 1, and (d) 2. The insets in (b)-(d) show the detail of bifurcation during the feedback strength range from 0 to 2ns−1.
Fig. 3
Fig. 3 PDF of chaos under the scenarios of COF (first row) and CCPMOF (second row) with βPM = 1, for the cases with different feedback strengths of 10ns−1, 20ns−1, 30ns−1 and 40ns−1.
Fig. 4
Fig. 4 Time series, RF spectra and ACF curves of chaos generated by COF and CCPMOF with identical feedback strength and delay. Here the feedback strength and feedback time delay for both of COF and CCPMOF are set as 20ns−1 and 5ns, respectively; the PM index is fixed as βPM = 1.
Fig. 5
Fig. 5 Efficient bandwidth (in GHz) and TDS value in ACF curve versus PM index βPM and feedback strength kf.
Fig. 6
Fig. 6 Cross correlations (CCs) for (a) MSL-SSL, (b) DSL-MSL, and (c) DSL-SSL versus the PM index βPM and the injection strength σ.
Fig. 7
Fig. 7 Influences of intrinsic parameter mismatches of MSL and SSL on the quality of chaos synchronization in the COF configuration (first column) and the proposed CCPMOF-based system with βPM = 1 (second column), βPM = 2 (third column) and βPM = 3 (fourth column). The injection strengths in the first, second and third rows are set as 20 ns−1, 40 ns−1 and 60 ns−1, respectively.
Fig. 8
Fig. 8 Influences of frequency detuning of MSL and SSL on the quality of chaos synchronization in the COF configuration (first column) and the proposed CCPMOF-based system with βPM = 1 (second column), 2 (third column), and 3 (fourth column). The injection strengths in first row, second row, and third row are set as 20 ns−1, 40 ns−1 and 60 ns−1, respectively.
Fig. 9
Fig. 9 Influences of phase fluctuation between the injection and feedback of SSL on the cross correlation between MSL and SSL in the COF configuration and the proposed CCPMOF system with different PM indexes, for the injection cases of (a) σ = 20 ns−1, (b) σ = 40 ns−1, and (c) σ = 60 ns−1.
Fig. 10
Fig. 10 (a) Q-factor of recovery message versus PM index βPM and message bit rate R. (b1)-(b3) show the eye diagrams of recovery message in the conventional closed-loop system, while (c1)-(c3) present those in the proposed scheme with βPM = 1. TB = 1/R is the bit period of message. The injection strength is σ = 40ns−1.
Fig. 11
Fig. 11 (a) Variation of Q-factor versus the mismatch of feedback delay of SSL for the case of R = 4 Gbit/s and σ = 80ns−1. (b) Q-factors of legal recovery message and illegal intercepted messages under the typical attacks of DDLF and US, as a function of the message rate R. The third column shows the eye diagrams of (c1) the legal recovery messages, (d1) the DDLF attack-intercepted massages and (e1) the US attack-intercepted massages for the case of R = 2 Gbit/s, respectively; while the fourth column shows those for the case of R = 4 Git/s. The PM index is set as βPM = 1, and the injection strength for legal recovery is σ = 40ns−1, while that for the US attack is set as 100ns−1 to achieve chaos synchronization.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

d E d (t) dt = 1 2 (1+iα)( G d (t) 1 τ p ) E d (t)+ k d E d (t τ d )exp(i ω d τ d )+ 2β N d (t) χ d (t),
d N d (t) dt = I d e N d (t) τ e G d (t) | E d (t) | 2 .
d E m,s (t) dt = 1 2 (1+iα)( G m,s (t) 1 τ p ) E m,s (t)+ k f E m,s (t τ f )exp(i ω m,s τ f )exp(i ϕ PM (t)) +σ E m (t τ i )exp(i ω m τ i )exp(iΔωt)+ 2β N m,s (t) χ m,s (t),
d N m,s (t) dt = I m,s e N m,s (t) τ e G m,s (t) | E m,s (t) | 2 .
G d,m,s (t)= g( N d,m,s (t) N 0 ) 1+ε | E d,m,s (t) | 2
ϕ PM (t)= AΝ[ | E d (t-Δ t d ) | 2 ] V π π
Ν(x)= x x min x max x min
A(Δt)= (I(t+Δt)) I(t+Δt) )(I(t) I(t) ) ( (I(t+Δt) I(t+Δt) ) 2 (I(t) I(t) ) 2 ) 1/2 ,
C(Δt)= ( I m (t+Δt)) I m (t+Δt) )( I s (t) I s (t) ) ( ( I m (t+Δt) I m (t+Δt) ) 2 ( I s (t) I s (t) ) 2 ) 1/2
Q= < I 1 >< I 0 > ε 1 + ε 0

Metrics