H. Kaushal and G. Kaddoum, “Optical Communication in Space: Challenges and Mitigation Techniques,” IEEE Commun. Surveys Tuts. 19(1), 57–96 (2017).

[Crossref]

H. T. Eyyuboğlu, “The performance bounds of an optical communication system using irradiance profile modulation,” J. Mod. Opt. 64(20), 2110–2116 (2017).

[Crossref]

M. Wang, X. Yuan, and D. Ma, “Potentials of radial partially coherent beams in free-space optical communication: a numerical investigation,” Appl. Opt. 56(10), 2851–2857 (2017).

[Crossref]
[PubMed]

I. E. Lee, Z. Ghassemlooy, W. P. Ng, M.-A. Khalighi, and S.-K. Liaw, “Effects of aperture averaging and beam width on a partially coherent Gaussian beam over free-space optical links with turbulence and pointing errors,” Appl. Opt. 55(1), 1–9 (2016).

[Crossref]
[PubMed]

Y. Zhang, D. Ma, X. Yuan, and Z. Zhou, “Numerical investigation of flat-topped vortex hollow beams and Bessel beams propagating in a turbulent atmosphere,” Appl. Opt. 55(32), 9211–9216 (2016).

[Crossref]
[PubMed]

M. Wang and X. Yuan, “Effects of finite inner and outer scales on the scintillation index of turbulent slant path,” J. Mod. Opt. 64, 1–7 (2016).

[Crossref]

M. W. Hyde, S. Basu, D. G. Voelz, and X. Xiao, “Experimentally generating any desired partially coherent Schell-model source using phase-only control,” J. Appl. Phys. 118(9), 093102 (2015).

[Crossref]

D. Voelz, X. Xiao, and O. Korotkova, “Numerical modeling of Schell-model beams with arbitrary far-field patterns,” Opt. Lett. 40(3), 352–355 (2015).

[Crossref]
[PubMed]

Y. Gu and G. Gbur, “Scintillation of nonuniformly correlated beams in atmospheric turbulence,” Opt. Lett. 38(9), 1395–1397 (2013).

[Crossref]
[PubMed]

F. Wang, X. Liu, Y. Yuan, and Y. Cai, “Experimental generation of partially coherent beams with different complex degrees of coherence,” Opt. Lett. 38(11), 1814–1816 (2013).

[Crossref]
[PubMed]

S. Cui, Z. Chen, L. Zhang, and J. Pu, “Experimental generation of nonuniformly correlated partially coherent light beams,” Opt. Lett. 38(22), 4821–4824 (2013).

[Crossref]
[PubMed]

R. Betancur, J. Restrepo, and R. Castaneda, “Beam shaping by spatial coherence modulation based on spatial coherence wavelets,” Opt. Lasers Eng. 47(12), 1340–1347 (2009).

[Crossref]

M. Toyoshima, “Trends in satellite communications and the role of optical free-spacecommunications [Invited],” Journal of Optical Networking 4(6), 300–311 (2005).

[Crossref]

P. B. Harboe and J. Souza, “Free space optical communication systems: a feasibility study for deployment in Brazil,” J. Microw. Optoelectron. Electromagn. Appl. 3, 58–66 (2004).

O. Korotkova, L. C. Andrews, and R. L. Phillips, “Model for a partially coherent Gaussian beam in atmospheric turbulence with application in Lasercom,” Opt. Eng. 43(2), 330–341 (2004).

[Crossref]

A. Parent, M. Morin, and P. Lavigne, “Propagation of super-Gaussian field distributions,” Opt. Quantum Electron. 24(9), S1071–S1079 (1992).

[Crossref]

R. L. Fante, “Intensity fluctuations of an optical wave in a turbulent medium effect of source coherence,” Opt. Acta (Lond.) 28(9), 1203–1207 (1981).

[Crossref]

O. Korotkova, L. C. Andrews, and R. L. Phillips, “Model for a partially coherent Gaussian beam in atmospheric turbulence with application in Lasercom,” Opt. Eng. 43(2), 330–341 (2004).

[Crossref]

M. W. Hyde, S. Basu, D. G. Voelz, and X. Xiao, “Experimentally generating any desired partially coherent Schell-model source using phase-only control,” J. Appl. Phys. 118(9), 093102 (2015).

[Crossref]

R. Betancur, J. Restrepo, and R. Castaneda, “Beam shaping by spatial coherence modulation based on spatial coherence wavelets,” Opt. Lasers Eng. 47(12), 1340–1347 (2009).

[Crossref]

Y. Cai, Y. Chen, and F. Wang, “Generation and propagation of partially coherent beams with nonconventional correlation functions: a review [invited],” J. Opt. Soc. Am. A 31(9), 2083–2096 (2014).

[Crossref]
[PubMed]

F. Wang, X. Liu, Y. Yuan, and Y. Cai, “Experimental generation of partially coherent beams with different complex degrees of coherence,” Opt. Lett. 38(11), 1814–1816 (2013).

[Crossref]
[PubMed]

R. Betancur, J. Restrepo, and R. Castaneda, “Beam shaping by spatial coherence modulation based on spatial coherence wavelets,” Opt. Lasers Eng. 47(12), 1340–1347 (2009).

[Crossref]

S. D. Milner, S. Trisno, C. C. Davis, B. Epple, and H. Henniger, “A cross-layer approach to mitigate fading on bidirectional free space optical communication links,” in Military Communications Conference (MILCOM), (IEEE, 2008), 1–6.

[Crossref]

S. D. Milner, S. Trisno, C. C. Davis, B. Epple, and H. Henniger, “A cross-layer approach to mitigate fading on bidirectional free space optical communication links,” in Military Communications Conference (MILCOM), (IEEE, 2008), 1–6.

[Crossref]

H. T. Eyyuboğlu, “The performance bounds of an optical communication system using irradiance profile modulation,” J. Mod. Opt. 64(20), 2110–2116 (2017).

[Crossref]

R. L. Fante, “Intensity fluctuations of an optical wave in a turbulent medium effect of source coherence,” Opt. Acta (Lond.) 28(9), 1203–1207 (1981).

[Crossref]

W. Hameed, S. S. Muhammad, and N. M. Sheikh, “Integration scenarios for free space optics in next generation (4G) wireless networks,” in 7th International Symposium on Communication Systems Networks and Digital Signal Processing (CSNDSP), (IEEE, 2010), 571–575.

P. B. Harboe and J. Souza, “Free space optical communication systems: a feasibility study for deployment in Brazil,” J. Microw. Optoelectron. Electromagn. Appl. 3, 58–66 (2004).

S. D. Milner, S. Trisno, C. C. Davis, B. Epple, and H. Henniger, “A cross-layer approach to mitigate fading on bidirectional free space optical communication links,” in Military Communications Conference (MILCOM), (IEEE, 2008), 1–6.

[Crossref]

M. W. Hyde, S. Basu, D. G. Voelz, and X. Xiao, “Experimentally generating any desired partially coherent Schell-model source using phase-only control,” J. Appl. Phys. 118(9), 093102 (2015).

[Crossref]

H. Kaushal and G. Kaddoum, “Optical Communication in Space: Challenges and Mitigation Techniques,” IEEE Commun. Surveys Tuts. 19(1), 57–96 (2017).

[Crossref]

H. Kaushal and G. Kaddoum, “Optical Communication in Space: Challenges and Mitigation Techniques,” IEEE Commun. Surveys Tuts. 19(1), 57–96 (2017).

[Crossref]

D. Voelz, X. Xiao, and O. Korotkova, “Numerical modeling of Schell-model beams with arbitrary far-field patterns,” Opt. Lett. 40(3), 352–355 (2015).

[Crossref]
[PubMed]

Z. Tong and O. Korotkova, “Nonuniformly correlated light beams in uniformly correlated media,” Opt. Lett. 37(15), 3240–3242 (2012).

[Crossref]
[PubMed]

O. Korotkova, L. C. Andrews, and R. L. Phillips, “Model for a partially coherent Gaussian beam in atmospheric turbulence with application in Lasercom,” Opt. Eng. 43(2), 330–341 (2004).

[Crossref]

A. Parent, M. Morin, and P. Lavigne, “Propagation of super-Gaussian field distributions,” Opt. Quantum Electron. 24(9), S1071–S1079 (1992).

[Crossref]

M. Wang, X. Yuan, and D. Ma, “Potentials of radial partially coherent beams in free-space optical communication: a numerical investigation,” Appl. Opt. 56(10), 2851–2857 (2017).

[Crossref]
[PubMed]

Y. Zhang, D. Ma, X. Yuan, and Z. Zhou, “Numerical investigation of flat-topped vortex hollow beams and Bessel beams propagating in a turbulent atmosphere,” Appl. Opt. 55(32), 9211–9216 (2016).

[Crossref]
[PubMed]

S. D. Milner, S. Trisno, C. C. Davis, B. Epple, and H. Henniger, “A cross-layer approach to mitigate fading on bidirectional free space optical communication links,” in Military Communications Conference (MILCOM), (IEEE, 2008), 1–6.

[Crossref]

A. Parent, M. Morin, and P. Lavigne, “Propagation of super-Gaussian field distributions,” Opt. Quantum Electron. 24(9), S1071–S1079 (1992).

[Crossref]

W. Hameed, S. S. Muhammad, and N. M. Sheikh, “Integration scenarios for free space optics in next generation (4G) wireless networks,” in 7th International Symposium on Communication Systems Networks and Digital Signal Processing (CSNDSP), (IEEE, 2010), 571–575.

A. Parent, M. Morin, and P. Lavigne, “Propagation of super-Gaussian field distributions,” Opt. Quantum Electron. 24(9), S1071–S1079 (1992).

[Crossref]

O. Korotkova, L. C. Andrews, and R. L. Phillips, “Model for a partially coherent Gaussian beam in atmospheric turbulence with application in Lasercom,” Opt. Eng. 43(2), 330–341 (2004).

[Crossref]

R. Betancur, J. Restrepo, and R. Castaneda, “Beam shaping by spatial coherence modulation based on spatial coherence wavelets,” Opt. Lasers Eng. 47(12), 1340–1347 (2009).

[Crossref]

W. Hameed, S. S. Muhammad, and N. M. Sheikh, “Integration scenarios for free space optics in next generation (4G) wireless networks,” in 7th International Symposium on Communication Systems Networks and Digital Signal Processing (CSNDSP), (IEEE, 2010), 571–575.

P. B. Harboe and J. Souza, “Free space optical communication systems: a feasibility study for deployment in Brazil,” J. Microw. Optoelectron. Electromagn. Appl. 3, 58–66 (2004).

M. Toyoshima, “Trends in satellite communications and the role of optical free-spacecommunications [Invited],” Journal of Optical Networking 4(6), 300–311 (2005).

[Crossref]

S. D. Milner, S. Trisno, C. C. Davis, B. Epple, and H. Henniger, “A cross-layer approach to mitigate fading on bidirectional free space optical communication links,” in Military Communications Conference (MILCOM), (IEEE, 2008), 1–6.

[Crossref]

Y. Cai, Y. Chen, and F. Wang, “Generation and propagation of partially coherent beams with nonconventional correlation functions: a review [invited],” J. Opt. Soc. Am. A 31(9), 2083–2096 (2014).

[Crossref]
[PubMed]

F. Wang, X. Liu, Y. Yuan, and Y. Cai, “Experimental generation of partially coherent beams with different complex degrees of coherence,” Opt. Lett. 38(11), 1814–1816 (2013).

[Crossref]
[PubMed]

M. W. Hyde, S. Basu, D. G. Voelz, and X. Xiao, “Experimentally generating any desired partially coherent Schell-model source using phase-only control,” J. Appl. Phys. 118(9), 093102 (2015).

[Crossref]

D. Voelz, X. Xiao, and O. Korotkova, “Numerical modeling of Schell-model beams with arbitrary far-field patterns,” Opt. Lett. 40(3), 352–355 (2015).

[Crossref]
[PubMed]

X. Xiao and D. Voelz, “Wave optics simulation approach for partial spatially coherent beams,” Opt. Express 14(16), 6986–6992 (2006).

[Crossref]
[PubMed]

M. Wang, X. Yuan, and D. Ma, “Potentials of radial partially coherent beams in free-space optical communication: a numerical investigation,” Appl. Opt. 56(10), 2851–2857 (2017).

[Crossref]
[PubMed]

Y. Zhang, D. Ma, X. Yuan, and Z. Zhou, “Numerical investigation of flat-topped vortex hollow beams and Bessel beams propagating in a turbulent atmosphere,” Appl. Opt. 55(32), 9211–9216 (2016).

[Crossref]
[PubMed]

M. Wang and X. Yuan, “Effects of finite inner and outer scales on the scintillation index of turbulent slant path,” J. Mod. Opt. 64, 1–7 (2016).

[Crossref]

G. C. Valley, “Long- and short-term Strehl ratios for turbulence with finite inner and outer scales,” Appl. Opt. 18(7), 984–987 (1979).

[Crossref]
[PubMed]

I. E. Lee, Z. Ghassemlooy, W. P. Ng, M.-A. Khalighi, and S.-K. Liaw, “Effects of aperture averaging and beam width on a partially coherent Gaussian beam over free-space optical links with turbulence and pointing errors,” Appl. Opt. 55(1), 1–9 (2016).

[Crossref]
[PubMed]

Y. Zhang, D. Ma, X. Yuan, and Z. Zhou, “Numerical investigation of flat-topped vortex hollow beams and Bessel beams propagating in a turbulent atmosphere,” Appl. Opt. 55(32), 9211–9216 (2016).

[Crossref]
[PubMed]

M. Wang, X. Yuan, and D. Ma, “Potentials of radial partially coherent beams in free-space optical communication: a numerical investigation,” Appl. Opt. 56(10), 2851–2857 (2017).

[Crossref]
[PubMed]

H. Kaushal and G. Kaddoum, “Optical Communication in Space: Challenges and Mitigation Techniques,” IEEE Commun. Surveys Tuts. 19(1), 57–96 (2017).

[Crossref]

M. W. Hyde, S. Basu, D. G. Voelz, and X. Xiao, “Experimentally generating any desired partially coherent Schell-model source using phase-only control,” J. Appl. Phys. 118(9), 093102 (2015).

[Crossref]

P. B. Harboe and J. Souza, “Free space optical communication systems: a feasibility study for deployment in Brazil,” J. Microw. Optoelectron. Electromagn. Appl. 3, 58–66 (2004).

H. T. Eyyuboğlu, “The performance bounds of an optical communication system using irradiance profile modulation,” J. Mod. Opt. 64(20), 2110–2116 (2017).

[Crossref]

M. Wang and X. Yuan, “Effects of finite inner and outer scales on the scintillation index of turbulent slant path,” J. Mod. Opt. 64, 1–7 (2016).

[Crossref]

T. Shirai, A. Dogariu, and E. Wolf, “Mode analysis of spreading of partially coherent beams propagating through atmospheric turbulence,” J. Opt. Soc. Am. A 20(6), 1094–1102 (2003).

[Crossref]
[PubMed]

H. Gerçekcioğlu, Y. Baykal, and C. Nakiboğlu, “Annular beam scintillations in strong turbulence,” J. Opt. Soc. Am. A 27(8), 1834–1839 (2010).

[Crossref]
[PubMed]

G. Gbur and E. Wolf, “Spreading of partially coherent beams in random media,” J. Opt. Soc. Am. A 19(8), 1592–1598 (2002).

[Crossref]
[PubMed]

J. C. Ricklin and F. M. Davidson, “Atmospheric turbulence effects on a partially coherent Gaussian beam: implications for free-space laser communication,” J. Opt. Soc. Am. A 19(9), 1794–1802 (2002).

[Crossref]
[PubMed]

Y. Cai, Y. Chen, and F. Wang, “Generation and propagation of partially coherent beams with nonconventional correlation functions: a review [invited],” J. Opt. Soc. Am. A 31(9), 2083–2096 (2014).

[Crossref]
[PubMed]

M. Toyoshima, “Trends in satellite communications and the role of optical free-spacecommunications [Invited],” Journal of Optical Networking 4(6), 300–311 (2005).

[Crossref]

R. L. Fante, “Intensity fluctuations of an optical wave in a turbulent medium effect of source coherence,” Opt. Acta (Lond.) 28(9), 1203–1207 (1981).

[Crossref]

O. Korotkova, L. C. Andrews, and R. L. Phillips, “Model for a partially coherent Gaussian beam in atmospheric turbulence with application in Lasercom,” Opt. Eng. 43(2), 330–341 (2004).

[Crossref]

R. Betancur, J. Restrepo, and R. Castaneda, “Beam shaping by spatial coherence modulation based on spatial coherence wavelets,” Opt. Lasers Eng. 47(12), 1340–1347 (2009).

[Crossref]

H. Lajunen and T. Saastamoinen, “Propagation characteristics of partially coherent beams with spatially varying correlations,” Opt. Lett. 36(20), 4104–4106 (2011).

[Crossref]
[PubMed]

Z. Tong and O. Korotkova, “Nonuniformly correlated light beams in uniformly correlated media,” Opt. Lett. 37(15), 3240–3242 (2012).

[Crossref]
[PubMed]

Y. Gu and G. Gbur, “Scintillation of nonuniformly correlated beams in atmospheric turbulence,” Opt. Lett. 38(9), 1395–1397 (2013).

[Crossref]
[PubMed]

F. Wang, X. Liu, Y. Yuan, and Y. Cai, “Experimental generation of partially coherent beams with different complex degrees of coherence,” Opt. Lett. 38(11), 1814–1816 (2013).

[Crossref]
[PubMed]

S. Cui, Z. Chen, L. Zhang, and J. Pu, “Experimental generation of nonuniformly correlated partially coherent light beams,” Opt. Lett. 38(22), 4821–4824 (2013).

[Crossref]
[PubMed]

F. Gori and M. Santarsiero, “Devising genuine spatial correlation functions,” Opt. Lett. 32(24), 3531–3533 (2007).

[Crossref]
[PubMed]

A. Dogariu and S. Amarande, “Propagation of partially coherent beams: turbulence-induced degradation,” Opt. Lett. 28(1), 10–12 (2003).

[Crossref]
[PubMed]

D. Voelz, X. Xiao, and O. Korotkova, “Numerical modeling of Schell-model beams with arbitrary far-field patterns,” Opt. Lett. 40(3), 352–355 (2015).

[Crossref]
[PubMed]

A. Parent, M. Morin, and P. Lavigne, “Propagation of super-Gaussian field distributions,” Opt. Quantum Electron. 24(9), S1071–S1079 (1992).

[Crossref]

D. G. Voelz, Computational Fourier Optics: A MATLAB Tutorial (SPIE, Bellingham, WA, 2011).

J. D. Schmidt, Numerical simulation of optical wave propagation with examples in MATLAB (SPIE, Bellingham, WA, 2010).

R. R. Beland, “Propagation through atmospheric optical turbulence,” in The Infrared and ElectroOptical Systems Handbook, F. G. Smith, ed. (SPIE, Bellingham, WA, 1993).

M. Wang, X. Yuan, J. Li, and X. Zhou, “Radial partially coherent beams for free-space optical communications,” in Laser Communication and Propagation through the Atmosphere and Oceans VI, (SPIE, 2017), 1040813.

O. Korotkova, L. C. Andrews, and R. L. Phillips, “Phase diffuser at the transmitter for lasercom link: effect of partially coherent beam on the bit-error rate,” in High-Power Lasers and Applications (SPIE, 2003), 8.

L. C. Andrews and R. L. Philips, Laser beam propagation through random media, 2nd ed. (SPIE, Bellingham, WA, 2005).

S. D. Milner, S. Trisno, C. C. Davis, B. Epple, and H. Henniger, “A cross-layer approach to mitigate fading on bidirectional free space optical communication links,” in Military Communications Conference (MILCOM), (IEEE, 2008), 1–6.

[Crossref]

J. W. Goodman, Statistical Optics (Wiley, New York, 2000).

H. Willebrand and B. S. Ghuman, Free space optics: enabling optical connectivity in today's networks (SAMS, 2002).

Z. Ghassemlooy and W. O. Popoola, Terrestrial free-space optical communications (InTech, 2010).

C. C. M. Uysal, Z. Ghassemlooy, A. Boucouvalas, and E. Udvary, eds., Optical Wireless Communications - An Emerging Technology (Springer, Switzerland, 2016).

W. Hameed, S. S. Muhammad, and N. M. Sheikh, “Integration scenarios for free space optics in next generation (4G) wireless networks,” in 7th International Symposium on Communication Systems Networks and Digital Signal Processing (CSNDSP), (IEEE, 2010), 571–575.