Abstract

An optical phase grating prototype based on the homeotropic aligned antiferroelectric liquid crystal (AFLC) is demonstrated. By applying an in-plane electric field using comb-like electrodes, the helical structure of AFLC is deformed with the molecules rotating parallel to the electric field because of dielectric anisotropy. This deformation is called the pre-transitional effect of AFLC and induces biaxiality. By using this effect, a switchable phase grating is constructed using a 40μm thick cell filled with (S)-MHPOBC at 85°C. For 532nm TM polarized incident light, the maximum diffraction efficiency of 37.0% is achieved at the electric field of 1.8V/μm for the ± 1st order diffraction. The rise and decay times for the 1st order diffraction pattern are 510μs and 210μs, respectively. The high diffraction efficiency achieved under low field makes it promising for future electro-optical applications.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Phase modulator mode based on the pre-transitional effect of antiferroelectric liquid crystals

Zhengyu Feng and Ken Ishikawa
Opt. Lett. 43(2) 251-254 (2018)

Large-angle and high-efficiency tunable phase grating using fringe field switching liquid crystal

Daming Xu, Guanjun Tan, and Shin-Tson Wu
Opt. Express 23(9) 12274-12285 (2015)

High-speed infrared phase modulators using short helical pitch ferroelectric liquid crystals

Ju-Hyun Lee, Dong-Woo Kim, Yung-Hsun Wu, Chang-Jae Yu, Sin-Doo Lee, and Shin-Tson Wu
Opt. Express 13(20) 7732-7740 (2005)

References

  • View by:
  • |
  • |
  • |

  1. K. Kondo, H. Takezoe, A. Fukuda, and E. Kuze, “Temperature sensitive helical pitches and wall anchoring effects in homogeneous monodomains of ferroelectric SmC* liquid crystals, nobambc (n= 6-10),” Jpn. J. Appl. Phys. 21(2), 224–229 (1982).
    [Crossref]
  2. C. Brown, E. E. Kriezis, and S. Elston, “Optical diffraction from a liquid crystal phase grating,” J. Appl. Phys. 91(6), 3495–3500 (2002).
    [Crossref]
  3. H. Xianyu, S. Gauza, and S.-T. Wu, “Sub-millisecond response phase modulator using a low crossover frequency dual-frequency liquid crystal,” Liq. Cryst. 35(12), 1409–1413 (2008).
    [Crossref]
  4. T. Matsushima, K. Seki, S. Kimura, Y. Iwakabe, T. Yata, Y. Watanabe, S. Komura, M. Uchida, and T. Nakamura, “51-1: Optimal fast-response lcd for high-definition virtual reality head mounted display,” in SID Symposium Digest of Technical Papers, 49, pp. 667–670 (2018).
    [Crossref]
  5. Y. Ma, X. Wang, A. K. Srivastava, V. G. Chigrinov, and H.-S. Kwok, “Fast switchable ferroelectric liquid crystal gratings with two electro-optical modes,” AIP Adv. 6(3), 035207 (2016).
    [Crossref]
  6. A. K. Srivastava, E. Pozhidaev, V. G. Chigrinov, and R. Manohar, “Single walled carbon nano-tube, ferroelectric liquid crystal composites: Excellent diffractive tool,” Appl. Phys. Lett. 99(20), 201106 (2011).
    [Crossref]
  7. T. Chandani, T. Hagiwara, Y. Suzuki, Y. Ouchi, H. Takezoe, and A. Fukuda, “Tristable switching in surface stabilized ferroelectric liquid crystals with a large spontaneous polarization,” Jpn. J. Appl. Phys. 27(5), L729–L732 (1988).
    [Crossref]
  8. A. Srivastava, W. Hu, V. Chigrinov, A. Kiselev, and Y.-Q. Lu, “Fast switchable grating based on orthogonal photo alignments of ferroelectric liquid crystals,” Appl. Phys. Lett. 101(3), 031112 (2012).
    [Crossref]
  9. S. Matsumoto, M. Goto, S.-W. Choi, Y. Takanishi, K. Ishikawa, H. Takezoe, G. Kawamura, I. Nishiyama, and H. Takada, “Phase grating using a ferroelectric liquid-crystal mixture with a photocurable liquid crystal,” J. Appl. Phys. 99(11), 113709 (2006).
    [Crossref]
  10. D.-W. Kim, E. Jang, Y.-W. Lim, and S.-D. Lee, “Defect-free deformed-helix ferroelectric liquid-crystal mode in a vertically aligned configuration,” J. Soc. Inf. Disp. 16(9), 947–952 (2008).
    [Crossref]
  11. E. P. Pozhidaev, A. D. Kiselev, A. K. Srivastava, V. G. Chigrinov, H.-S. Kwok, and M. V. Minchenko, “Orientational Kerr effect and phase modulation of light in deformed-helix ferroelectric liquid crystals with subwavelength pitch,” Phys. Rev. E. 87(5), 052502 (2013).
    [Crossref] [PubMed]
  12. J.-H. Lee, D.-W. Kim, Y.-H. Wu, C.-J. Yu, S.-D. Lee, and S.-T. Wu, “High-speed infrared phase modulators using short helical pitch ferroelectric liquid crystals,” Opt. Express 13(20), 7732–7740 (2005).
    [Crossref] [PubMed]
  13. L. A. Parry-Jones and S. J. Elston, “Field-driven helix unwinding in antiferroelectric liquid crystal cells,” Phys. Rev. E. 63(5), 050701 (2001).
    [Crossref] [PubMed]
  14. Y. Takanishi, S. Noma, and J. Yamamoto, “Novel display mode using dielectric response of antiferroelectric liquid crystals,” Appl. Phys. Express 6(8), 081701 (2013).
    [Crossref]
  15. Z. Feng and K. Ishikawa, “Phase modulator mode based on the pre-transitional effect of antiferroelectric liquid crystals,” Opt. Lett. 43(2), 251–254 (2018).
    [Crossref] [PubMed]
  16. H. Takezoe, E. Gorecka, and M. Cepic, “Antiferroelectric liquid crystals: interplay of simplicity and complexity,” Rev. Mod. Phys. 82(1), 897–937 (2010).
    [Crossref]
  17. A. Singh and S. Singh, “Thermodynamic model for the electro-optical and structural properties of sm c* a phase in antiferroelectric liquid crystal mhpobc,” J. Mater. Chem. 21(6), 1991–1996 (2011).
    [Crossref]
  18. E. Pozhidaev, V. Vashchenko, V. V. Mikhailenko, A. I. Krivoshey, V. Barbashov, L. Shi, A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Ultrashort helix pitch antiferroelectric liquid crystals based on chiral esters of terphenyldicarboxylic acid,” J. Mater. Chem. C 4(43), 10339–10346 (2016).
    [Crossref]
  19. J. Yamamoto and I. Nishiyama, “Slippery interfaces: control and evaluation of the anchoring effect for the reduction of driving voltage (conference presentation),” in Liquid Crystals XXII, vol. 10735 (International Society for Optics and Photonics, 2018), p. 107350V.
  20. A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Ferroelectric liquid crystals: Excellent tool for modern displays and photonics,” J. Soc. Inf. Disp. 23(6), 253–272 (2015).
    [Crossref]

2018 (1)

2016 (2)

E. Pozhidaev, V. Vashchenko, V. V. Mikhailenko, A. I. Krivoshey, V. Barbashov, L. Shi, A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Ultrashort helix pitch antiferroelectric liquid crystals based on chiral esters of terphenyldicarboxylic acid,” J. Mater. Chem. C 4(43), 10339–10346 (2016).
[Crossref]

Y. Ma, X. Wang, A. K. Srivastava, V. G. Chigrinov, and H.-S. Kwok, “Fast switchable ferroelectric liquid crystal gratings with two electro-optical modes,” AIP Adv. 6(3), 035207 (2016).
[Crossref]

2015 (1)

A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Ferroelectric liquid crystals: Excellent tool for modern displays and photonics,” J. Soc. Inf. Disp. 23(6), 253–272 (2015).
[Crossref]

2013 (2)

E. P. Pozhidaev, A. D. Kiselev, A. K. Srivastava, V. G. Chigrinov, H.-S. Kwok, and M. V. Minchenko, “Orientational Kerr effect and phase modulation of light in deformed-helix ferroelectric liquid crystals with subwavelength pitch,” Phys. Rev. E. 87(5), 052502 (2013).
[Crossref] [PubMed]

Y. Takanishi, S. Noma, and J. Yamamoto, “Novel display mode using dielectric response of antiferroelectric liquid crystals,” Appl. Phys. Express 6(8), 081701 (2013).
[Crossref]

2012 (1)

A. Srivastava, W. Hu, V. Chigrinov, A. Kiselev, and Y.-Q. Lu, “Fast switchable grating based on orthogonal photo alignments of ferroelectric liquid crystals,” Appl. Phys. Lett. 101(3), 031112 (2012).
[Crossref]

2011 (2)

A. K. Srivastava, E. Pozhidaev, V. G. Chigrinov, and R. Manohar, “Single walled carbon nano-tube, ferroelectric liquid crystal composites: Excellent diffractive tool,” Appl. Phys. Lett. 99(20), 201106 (2011).
[Crossref]

A. Singh and S. Singh, “Thermodynamic model for the electro-optical and structural properties of sm c* a phase in antiferroelectric liquid crystal mhpobc,” J. Mater. Chem. 21(6), 1991–1996 (2011).
[Crossref]

2010 (1)

H. Takezoe, E. Gorecka, and M. Cepic, “Antiferroelectric liquid crystals: interplay of simplicity and complexity,” Rev. Mod. Phys. 82(1), 897–937 (2010).
[Crossref]

2008 (2)

H. Xianyu, S. Gauza, and S.-T. Wu, “Sub-millisecond response phase modulator using a low crossover frequency dual-frequency liquid crystal,” Liq. Cryst. 35(12), 1409–1413 (2008).
[Crossref]

D.-W. Kim, E. Jang, Y.-W. Lim, and S.-D. Lee, “Defect-free deformed-helix ferroelectric liquid-crystal mode in a vertically aligned configuration,” J. Soc. Inf. Disp. 16(9), 947–952 (2008).
[Crossref]

2006 (1)

S. Matsumoto, M. Goto, S.-W. Choi, Y. Takanishi, K. Ishikawa, H. Takezoe, G. Kawamura, I. Nishiyama, and H. Takada, “Phase grating using a ferroelectric liquid-crystal mixture with a photocurable liquid crystal,” J. Appl. Phys. 99(11), 113709 (2006).
[Crossref]

2005 (1)

2002 (1)

C. Brown, E. E. Kriezis, and S. Elston, “Optical diffraction from a liquid crystal phase grating,” J. Appl. Phys. 91(6), 3495–3500 (2002).
[Crossref]

2001 (1)

L. A. Parry-Jones and S. J. Elston, “Field-driven helix unwinding in antiferroelectric liquid crystal cells,” Phys. Rev. E. 63(5), 050701 (2001).
[Crossref] [PubMed]

1988 (1)

T. Chandani, T. Hagiwara, Y. Suzuki, Y. Ouchi, H. Takezoe, and A. Fukuda, “Tristable switching in surface stabilized ferroelectric liquid crystals with a large spontaneous polarization,” Jpn. J. Appl. Phys. 27(5), L729–L732 (1988).
[Crossref]

1982 (1)

K. Kondo, H. Takezoe, A. Fukuda, and E. Kuze, “Temperature sensitive helical pitches and wall anchoring effects in homogeneous monodomains of ferroelectric SmC* liquid crystals, nobambc (n= 6-10),” Jpn. J. Appl. Phys. 21(2), 224–229 (1982).
[Crossref]

Barbashov, V.

E. Pozhidaev, V. Vashchenko, V. V. Mikhailenko, A. I. Krivoshey, V. Barbashov, L. Shi, A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Ultrashort helix pitch antiferroelectric liquid crystals based on chiral esters of terphenyldicarboxylic acid,” J. Mater. Chem. C 4(43), 10339–10346 (2016).
[Crossref]

Brown, C.

C. Brown, E. E. Kriezis, and S. Elston, “Optical diffraction from a liquid crystal phase grating,” J. Appl. Phys. 91(6), 3495–3500 (2002).
[Crossref]

Cepic, M.

H. Takezoe, E. Gorecka, and M. Cepic, “Antiferroelectric liquid crystals: interplay of simplicity and complexity,” Rev. Mod. Phys. 82(1), 897–937 (2010).
[Crossref]

Chandani, T.

T. Chandani, T. Hagiwara, Y. Suzuki, Y. Ouchi, H. Takezoe, and A. Fukuda, “Tristable switching in surface stabilized ferroelectric liquid crystals with a large spontaneous polarization,” Jpn. J. Appl. Phys. 27(5), L729–L732 (1988).
[Crossref]

Chigrinov, V.

A. Srivastava, W. Hu, V. Chigrinov, A. Kiselev, and Y.-Q. Lu, “Fast switchable grating based on orthogonal photo alignments of ferroelectric liquid crystals,” Appl. Phys. Lett. 101(3), 031112 (2012).
[Crossref]

Chigrinov, V. G.

Y. Ma, X. Wang, A. K. Srivastava, V. G. Chigrinov, and H.-S. Kwok, “Fast switchable ferroelectric liquid crystal gratings with two electro-optical modes,” AIP Adv. 6(3), 035207 (2016).
[Crossref]

E. Pozhidaev, V. Vashchenko, V. V. Mikhailenko, A. I. Krivoshey, V. Barbashov, L. Shi, A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Ultrashort helix pitch antiferroelectric liquid crystals based on chiral esters of terphenyldicarboxylic acid,” J. Mater. Chem. C 4(43), 10339–10346 (2016).
[Crossref]

A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Ferroelectric liquid crystals: Excellent tool for modern displays and photonics,” J. Soc. Inf. Disp. 23(6), 253–272 (2015).
[Crossref]

E. P. Pozhidaev, A. D. Kiselev, A. K. Srivastava, V. G. Chigrinov, H.-S. Kwok, and M. V. Minchenko, “Orientational Kerr effect and phase modulation of light in deformed-helix ferroelectric liquid crystals with subwavelength pitch,” Phys. Rev. E. 87(5), 052502 (2013).
[Crossref] [PubMed]

A. K. Srivastava, E. Pozhidaev, V. G. Chigrinov, and R. Manohar, “Single walled carbon nano-tube, ferroelectric liquid crystal composites: Excellent diffractive tool,” Appl. Phys. Lett. 99(20), 201106 (2011).
[Crossref]

Choi, S.-W.

S. Matsumoto, M. Goto, S.-W. Choi, Y. Takanishi, K. Ishikawa, H. Takezoe, G. Kawamura, I. Nishiyama, and H. Takada, “Phase grating using a ferroelectric liquid-crystal mixture with a photocurable liquid crystal,” J. Appl. Phys. 99(11), 113709 (2006).
[Crossref]

Elston, S.

C. Brown, E. E. Kriezis, and S. Elston, “Optical diffraction from a liquid crystal phase grating,” J. Appl. Phys. 91(6), 3495–3500 (2002).
[Crossref]

Elston, S. J.

L. A. Parry-Jones and S. J. Elston, “Field-driven helix unwinding in antiferroelectric liquid crystal cells,” Phys. Rev. E. 63(5), 050701 (2001).
[Crossref] [PubMed]

Feng, Z.

Fukuda, A.

T. Chandani, T. Hagiwara, Y. Suzuki, Y. Ouchi, H. Takezoe, and A. Fukuda, “Tristable switching in surface stabilized ferroelectric liquid crystals with a large spontaneous polarization,” Jpn. J. Appl. Phys. 27(5), L729–L732 (1988).
[Crossref]

K. Kondo, H. Takezoe, A. Fukuda, and E. Kuze, “Temperature sensitive helical pitches and wall anchoring effects in homogeneous monodomains of ferroelectric SmC* liquid crystals, nobambc (n= 6-10),” Jpn. J. Appl. Phys. 21(2), 224–229 (1982).
[Crossref]

Gauza, S.

H. Xianyu, S. Gauza, and S.-T. Wu, “Sub-millisecond response phase modulator using a low crossover frequency dual-frequency liquid crystal,” Liq. Cryst. 35(12), 1409–1413 (2008).
[Crossref]

Gorecka, E.

H. Takezoe, E. Gorecka, and M. Cepic, “Antiferroelectric liquid crystals: interplay of simplicity and complexity,” Rev. Mod. Phys. 82(1), 897–937 (2010).
[Crossref]

Goto, M.

S. Matsumoto, M. Goto, S.-W. Choi, Y. Takanishi, K. Ishikawa, H. Takezoe, G. Kawamura, I. Nishiyama, and H. Takada, “Phase grating using a ferroelectric liquid-crystal mixture with a photocurable liquid crystal,” J. Appl. Phys. 99(11), 113709 (2006).
[Crossref]

Hagiwara, T.

T. Chandani, T. Hagiwara, Y. Suzuki, Y. Ouchi, H. Takezoe, and A. Fukuda, “Tristable switching in surface stabilized ferroelectric liquid crystals with a large spontaneous polarization,” Jpn. J. Appl. Phys. 27(5), L729–L732 (1988).
[Crossref]

Hu, W.

A. Srivastava, W. Hu, V. Chigrinov, A. Kiselev, and Y.-Q. Lu, “Fast switchable grating based on orthogonal photo alignments of ferroelectric liquid crystals,” Appl. Phys. Lett. 101(3), 031112 (2012).
[Crossref]

Ishikawa, K.

Z. Feng and K. Ishikawa, “Phase modulator mode based on the pre-transitional effect of antiferroelectric liquid crystals,” Opt. Lett. 43(2), 251–254 (2018).
[Crossref] [PubMed]

S. Matsumoto, M. Goto, S.-W. Choi, Y. Takanishi, K. Ishikawa, H. Takezoe, G. Kawamura, I. Nishiyama, and H. Takada, “Phase grating using a ferroelectric liquid-crystal mixture with a photocurable liquid crystal,” J. Appl. Phys. 99(11), 113709 (2006).
[Crossref]

Iwakabe, Y.

T. Matsushima, K. Seki, S. Kimura, Y. Iwakabe, T. Yata, Y. Watanabe, S. Komura, M. Uchida, and T. Nakamura, “51-1: Optimal fast-response lcd for high-definition virtual reality head mounted display,” in SID Symposium Digest of Technical Papers, 49, pp. 667–670 (2018).
[Crossref]

Jang, E.

D.-W. Kim, E. Jang, Y.-W. Lim, and S.-D. Lee, “Defect-free deformed-helix ferroelectric liquid-crystal mode in a vertically aligned configuration,” J. Soc. Inf. Disp. 16(9), 947–952 (2008).
[Crossref]

Kawamura, G.

S. Matsumoto, M. Goto, S.-W. Choi, Y. Takanishi, K. Ishikawa, H. Takezoe, G. Kawamura, I. Nishiyama, and H. Takada, “Phase grating using a ferroelectric liquid-crystal mixture with a photocurable liquid crystal,” J. Appl. Phys. 99(11), 113709 (2006).
[Crossref]

Kim, D.-W.

D.-W. Kim, E. Jang, Y.-W. Lim, and S.-D. Lee, “Defect-free deformed-helix ferroelectric liquid-crystal mode in a vertically aligned configuration,” J. Soc. Inf. Disp. 16(9), 947–952 (2008).
[Crossref]

J.-H. Lee, D.-W. Kim, Y.-H. Wu, C.-J. Yu, S.-D. Lee, and S.-T. Wu, “High-speed infrared phase modulators using short helical pitch ferroelectric liquid crystals,” Opt. Express 13(20), 7732–7740 (2005).
[Crossref] [PubMed]

Kimura, S.

T. Matsushima, K. Seki, S. Kimura, Y. Iwakabe, T. Yata, Y. Watanabe, S. Komura, M. Uchida, and T. Nakamura, “51-1: Optimal fast-response lcd for high-definition virtual reality head mounted display,” in SID Symposium Digest of Technical Papers, 49, pp. 667–670 (2018).
[Crossref]

Kiselev, A.

A. Srivastava, W. Hu, V. Chigrinov, A. Kiselev, and Y.-Q. Lu, “Fast switchable grating based on orthogonal photo alignments of ferroelectric liquid crystals,” Appl. Phys. Lett. 101(3), 031112 (2012).
[Crossref]

Kiselev, A. D.

E. P. Pozhidaev, A. D. Kiselev, A. K. Srivastava, V. G. Chigrinov, H.-S. Kwok, and M. V. Minchenko, “Orientational Kerr effect and phase modulation of light in deformed-helix ferroelectric liquid crystals with subwavelength pitch,” Phys. Rev. E. 87(5), 052502 (2013).
[Crossref] [PubMed]

Komura, S.

T. Matsushima, K. Seki, S. Kimura, Y. Iwakabe, T. Yata, Y. Watanabe, S. Komura, M. Uchida, and T. Nakamura, “51-1: Optimal fast-response lcd for high-definition virtual reality head mounted display,” in SID Symposium Digest of Technical Papers, 49, pp. 667–670 (2018).
[Crossref]

Kondo, K.

K. Kondo, H. Takezoe, A. Fukuda, and E. Kuze, “Temperature sensitive helical pitches and wall anchoring effects in homogeneous monodomains of ferroelectric SmC* liquid crystals, nobambc (n= 6-10),” Jpn. J. Appl. Phys. 21(2), 224–229 (1982).
[Crossref]

Kriezis, E. E.

C. Brown, E. E. Kriezis, and S. Elston, “Optical diffraction from a liquid crystal phase grating,” J. Appl. Phys. 91(6), 3495–3500 (2002).
[Crossref]

Krivoshey, A. I.

E. Pozhidaev, V. Vashchenko, V. V. Mikhailenko, A. I. Krivoshey, V. Barbashov, L. Shi, A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Ultrashort helix pitch antiferroelectric liquid crystals based on chiral esters of terphenyldicarboxylic acid,” J. Mater. Chem. C 4(43), 10339–10346 (2016).
[Crossref]

Kuze, E.

K. Kondo, H. Takezoe, A. Fukuda, and E. Kuze, “Temperature sensitive helical pitches and wall anchoring effects in homogeneous monodomains of ferroelectric SmC* liquid crystals, nobambc (n= 6-10),” Jpn. J. Appl. Phys. 21(2), 224–229 (1982).
[Crossref]

Kwok, H. S.

E. Pozhidaev, V. Vashchenko, V. V. Mikhailenko, A. I. Krivoshey, V. Barbashov, L. Shi, A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Ultrashort helix pitch antiferroelectric liquid crystals based on chiral esters of terphenyldicarboxylic acid,” J. Mater. Chem. C 4(43), 10339–10346 (2016).
[Crossref]

A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Ferroelectric liquid crystals: Excellent tool for modern displays and photonics,” J. Soc. Inf. Disp. 23(6), 253–272 (2015).
[Crossref]

Kwok, H.-S.

Y. Ma, X. Wang, A. K. Srivastava, V. G. Chigrinov, and H.-S. Kwok, “Fast switchable ferroelectric liquid crystal gratings with two electro-optical modes,” AIP Adv. 6(3), 035207 (2016).
[Crossref]

E. P. Pozhidaev, A. D. Kiselev, A. K. Srivastava, V. G. Chigrinov, H.-S. Kwok, and M. V. Minchenko, “Orientational Kerr effect and phase modulation of light in deformed-helix ferroelectric liquid crystals with subwavelength pitch,” Phys. Rev. E. 87(5), 052502 (2013).
[Crossref] [PubMed]

Lee, J.-H.

Lee, S.-D.

D.-W. Kim, E. Jang, Y.-W. Lim, and S.-D. Lee, “Defect-free deformed-helix ferroelectric liquid-crystal mode in a vertically aligned configuration,” J. Soc. Inf. Disp. 16(9), 947–952 (2008).
[Crossref]

J.-H. Lee, D.-W. Kim, Y.-H. Wu, C.-J. Yu, S.-D. Lee, and S.-T. Wu, “High-speed infrared phase modulators using short helical pitch ferroelectric liquid crystals,” Opt. Express 13(20), 7732–7740 (2005).
[Crossref] [PubMed]

Lim, Y.-W.

D.-W. Kim, E. Jang, Y.-W. Lim, and S.-D. Lee, “Defect-free deformed-helix ferroelectric liquid-crystal mode in a vertically aligned configuration,” J. Soc. Inf. Disp. 16(9), 947–952 (2008).
[Crossref]

Lu, Y.-Q.

A. Srivastava, W. Hu, V. Chigrinov, A. Kiselev, and Y.-Q. Lu, “Fast switchable grating based on orthogonal photo alignments of ferroelectric liquid crystals,” Appl. Phys. Lett. 101(3), 031112 (2012).
[Crossref]

Ma, Y.

Y. Ma, X. Wang, A. K. Srivastava, V. G. Chigrinov, and H.-S. Kwok, “Fast switchable ferroelectric liquid crystal gratings with two electro-optical modes,” AIP Adv. 6(3), 035207 (2016).
[Crossref]

Manohar, R.

A. K. Srivastava, E. Pozhidaev, V. G. Chigrinov, and R. Manohar, “Single walled carbon nano-tube, ferroelectric liquid crystal composites: Excellent diffractive tool,” Appl. Phys. Lett. 99(20), 201106 (2011).
[Crossref]

Matsumoto, S.

S. Matsumoto, M. Goto, S.-W. Choi, Y. Takanishi, K. Ishikawa, H. Takezoe, G. Kawamura, I. Nishiyama, and H. Takada, “Phase grating using a ferroelectric liquid-crystal mixture with a photocurable liquid crystal,” J. Appl. Phys. 99(11), 113709 (2006).
[Crossref]

Matsushima, T.

T. Matsushima, K. Seki, S. Kimura, Y. Iwakabe, T. Yata, Y. Watanabe, S. Komura, M. Uchida, and T. Nakamura, “51-1: Optimal fast-response lcd for high-definition virtual reality head mounted display,” in SID Symposium Digest of Technical Papers, 49, pp. 667–670 (2018).
[Crossref]

Mikhailenko, V. V.

E. Pozhidaev, V. Vashchenko, V. V. Mikhailenko, A. I. Krivoshey, V. Barbashov, L. Shi, A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Ultrashort helix pitch antiferroelectric liquid crystals based on chiral esters of terphenyldicarboxylic acid,” J. Mater. Chem. C 4(43), 10339–10346 (2016).
[Crossref]

Minchenko, M. V.

E. P. Pozhidaev, A. D. Kiselev, A. K. Srivastava, V. G. Chigrinov, H.-S. Kwok, and M. V. Minchenko, “Orientational Kerr effect and phase modulation of light in deformed-helix ferroelectric liquid crystals with subwavelength pitch,” Phys. Rev. E. 87(5), 052502 (2013).
[Crossref] [PubMed]

Nakamura, T.

T. Matsushima, K. Seki, S. Kimura, Y. Iwakabe, T. Yata, Y. Watanabe, S. Komura, M. Uchida, and T. Nakamura, “51-1: Optimal fast-response lcd for high-definition virtual reality head mounted display,” in SID Symposium Digest of Technical Papers, 49, pp. 667–670 (2018).
[Crossref]

Nishiyama, I.

S. Matsumoto, M. Goto, S.-W. Choi, Y. Takanishi, K. Ishikawa, H. Takezoe, G. Kawamura, I. Nishiyama, and H. Takada, “Phase grating using a ferroelectric liquid-crystal mixture with a photocurable liquid crystal,” J. Appl. Phys. 99(11), 113709 (2006).
[Crossref]

Noma, S.

Y. Takanishi, S. Noma, and J. Yamamoto, “Novel display mode using dielectric response of antiferroelectric liquid crystals,” Appl. Phys. Express 6(8), 081701 (2013).
[Crossref]

Ouchi, Y.

T. Chandani, T. Hagiwara, Y. Suzuki, Y. Ouchi, H. Takezoe, and A. Fukuda, “Tristable switching in surface stabilized ferroelectric liquid crystals with a large spontaneous polarization,” Jpn. J. Appl. Phys. 27(5), L729–L732 (1988).
[Crossref]

Parry-Jones, L. A.

L. A. Parry-Jones and S. J. Elston, “Field-driven helix unwinding in antiferroelectric liquid crystal cells,” Phys. Rev. E. 63(5), 050701 (2001).
[Crossref] [PubMed]

Pozhidaev, E.

E. Pozhidaev, V. Vashchenko, V. V. Mikhailenko, A. I. Krivoshey, V. Barbashov, L. Shi, A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Ultrashort helix pitch antiferroelectric liquid crystals based on chiral esters of terphenyldicarboxylic acid,” J. Mater. Chem. C 4(43), 10339–10346 (2016).
[Crossref]

A. K. Srivastava, E. Pozhidaev, V. G. Chigrinov, and R. Manohar, “Single walled carbon nano-tube, ferroelectric liquid crystal composites: Excellent diffractive tool,” Appl. Phys. Lett. 99(20), 201106 (2011).
[Crossref]

Pozhidaev, E. P.

E. P. Pozhidaev, A. D. Kiselev, A. K. Srivastava, V. G. Chigrinov, H.-S. Kwok, and M. V. Minchenko, “Orientational Kerr effect and phase modulation of light in deformed-helix ferroelectric liquid crystals with subwavelength pitch,” Phys. Rev. E. 87(5), 052502 (2013).
[Crossref] [PubMed]

Seki, K.

T. Matsushima, K. Seki, S. Kimura, Y. Iwakabe, T. Yata, Y. Watanabe, S. Komura, M. Uchida, and T. Nakamura, “51-1: Optimal fast-response lcd for high-definition virtual reality head mounted display,” in SID Symposium Digest of Technical Papers, 49, pp. 667–670 (2018).
[Crossref]

Shi, L.

E. Pozhidaev, V. Vashchenko, V. V. Mikhailenko, A. I. Krivoshey, V. Barbashov, L. Shi, A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Ultrashort helix pitch antiferroelectric liquid crystals based on chiral esters of terphenyldicarboxylic acid,” J. Mater. Chem. C 4(43), 10339–10346 (2016).
[Crossref]

Singh, A.

A. Singh and S. Singh, “Thermodynamic model for the electro-optical and structural properties of sm c* a phase in antiferroelectric liquid crystal mhpobc,” J. Mater. Chem. 21(6), 1991–1996 (2011).
[Crossref]

Singh, S.

A. Singh and S. Singh, “Thermodynamic model for the electro-optical and structural properties of sm c* a phase in antiferroelectric liquid crystal mhpobc,” J. Mater. Chem. 21(6), 1991–1996 (2011).
[Crossref]

Srivastava, A.

A. Srivastava, W. Hu, V. Chigrinov, A. Kiselev, and Y.-Q. Lu, “Fast switchable grating based on orthogonal photo alignments of ferroelectric liquid crystals,” Appl. Phys. Lett. 101(3), 031112 (2012).
[Crossref]

Srivastava, A. K.

Y. Ma, X. Wang, A. K. Srivastava, V. G. Chigrinov, and H.-S. Kwok, “Fast switchable ferroelectric liquid crystal gratings with two electro-optical modes,” AIP Adv. 6(3), 035207 (2016).
[Crossref]

E. Pozhidaev, V. Vashchenko, V. V. Mikhailenko, A. I. Krivoshey, V. Barbashov, L. Shi, A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Ultrashort helix pitch antiferroelectric liquid crystals based on chiral esters of terphenyldicarboxylic acid,” J. Mater. Chem. C 4(43), 10339–10346 (2016).
[Crossref]

A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Ferroelectric liquid crystals: Excellent tool for modern displays and photonics,” J. Soc. Inf. Disp. 23(6), 253–272 (2015).
[Crossref]

E. P. Pozhidaev, A. D. Kiselev, A. K. Srivastava, V. G. Chigrinov, H.-S. Kwok, and M. V. Minchenko, “Orientational Kerr effect and phase modulation of light in deformed-helix ferroelectric liquid crystals with subwavelength pitch,” Phys. Rev. E. 87(5), 052502 (2013).
[Crossref] [PubMed]

A. K. Srivastava, E. Pozhidaev, V. G. Chigrinov, and R. Manohar, “Single walled carbon nano-tube, ferroelectric liquid crystal composites: Excellent diffractive tool,” Appl. Phys. Lett. 99(20), 201106 (2011).
[Crossref]

Suzuki, Y.

T. Chandani, T. Hagiwara, Y. Suzuki, Y. Ouchi, H. Takezoe, and A. Fukuda, “Tristable switching in surface stabilized ferroelectric liquid crystals with a large spontaneous polarization,” Jpn. J. Appl. Phys. 27(5), L729–L732 (1988).
[Crossref]

Takada, H.

S. Matsumoto, M. Goto, S.-W. Choi, Y. Takanishi, K. Ishikawa, H. Takezoe, G. Kawamura, I. Nishiyama, and H. Takada, “Phase grating using a ferroelectric liquid-crystal mixture with a photocurable liquid crystal,” J. Appl. Phys. 99(11), 113709 (2006).
[Crossref]

Takanishi, Y.

Y. Takanishi, S. Noma, and J. Yamamoto, “Novel display mode using dielectric response of antiferroelectric liquid crystals,” Appl. Phys. Express 6(8), 081701 (2013).
[Crossref]

S. Matsumoto, M. Goto, S.-W. Choi, Y. Takanishi, K. Ishikawa, H. Takezoe, G. Kawamura, I. Nishiyama, and H. Takada, “Phase grating using a ferroelectric liquid-crystal mixture with a photocurable liquid crystal,” J. Appl. Phys. 99(11), 113709 (2006).
[Crossref]

Takezoe, H.

H. Takezoe, E. Gorecka, and M. Cepic, “Antiferroelectric liquid crystals: interplay of simplicity and complexity,” Rev. Mod. Phys. 82(1), 897–937 (2010).
[Crossref]

S. Matsumoto, M. Goto, S.-W. Choi, Y. Takanishi, K. Ishikawa, H. Takezoe, G. Kawamura, I. Nishiyama, and H. Takada, “Phase grating using a ferroelectric liquid-crystal mixture with a photocurable liquid crystal,” J. Appl. Phys. 99(11), 113709 (2006).
[Crossref]

T. Chandani, T. Hagiwara, Y. Suzuki, Y. Ouchi, H. Takezoe, and A. Fukuda, “Tristable switching in surface stabilized ferroelectric liquid crystals with a large spontaneous polarization,” Jpn. J. Appl. Phys. 27(5), L729–L732 (1988).
[Crossref]

K. Kondo, H. Takezoe, A. Fukuda, and E. Kuze, “Temperature sensitive helical pitches and wall anchoring effects in homogeneous monodomains of ferroelectric SmC* liquid crystals, nobambc (n= 6-10),” Jpn. J. Appl. Phys. 21(2), 224–229 (1982).
[Crossref]

Uchida, M.

T. Matsushima, K. Seki, S. Kimura, Y. Iwakabe, T. Yata, Y. Watanabe, S. Komura, M. Uchida, and T. Nakamura, “51-1: Optimal fast-response lcd for high-definition virtual reality head mounted display,” in SID Symposium Digest of Technical Papers, 49, pp. 667–670 (2018).
[Crossref]

Vashchenko, V.

E. Pozhidaev, V. Vashchenko, V. V. Mikhailenko, A. I. Krivoshey, V. Barbashov, L. Shi, A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Ultrashort helix pitch antiferroelectric liquid crystals based on chiral esters of terphenyldicarboxylic acid,” J. Mater. Chem. C 4(43), 10339–10346 (2016).
[Crossref]

Wang, X.

Y. Ma, X. Wang, A. K. Srivastava, V. G. Chigrinov, and H.-S. Kwok, “Fast switchable ferroelectric liquid crystal gratings with two electro-optical modes,” AIP Adv. 6(3), 035207 (2016).
[Crossref]

Watanabe, Y.

T. Matsushima, K. Seki, S. Kimura, Y. Iwakabe, T. Yata, Y. Watanabe, S. Komura, M. Uchida, and T. Nakamura, “51-1: Optimal fast-response lcd for high-definition virtual reality head mounted display,” in SID Symposium Digest of Technical Papers, 49, pp. 667–670 (2018).
[Crossref]

Wu, S.-T.

H. Xianyu, S. Gauza, and S.-T. Wu, “Sub-millisecond response phase modulator using a low crossover frequency dual-frequency liquid crystal,” Liq. Cryst. 35(12), 1409–1413 (2008).
[Crossref]

J.-H. Lee, D.-W. Kim, Y.-H. Wu, C.-J. Yu, S.-D. Lee, and S.-T. Wu, “High-speed infrared phase modulators using short helical pitch ferroelectric liquid crystals,” Opt. Express 13(20), 7732–7740 (2005).
[Crossref] [PubMed]

Wu, Y.-H.

Xianyu, H.

H. Xianyu, S. Gauza, and S.-T. Wu, “Sub-millisecond response phase modulator using a low crossover frequency dual-frequency liquid crystal,” Liq. Cryst. 35(12), 1409–1413 (2008).
[Crossref]

Yamamoto, J.

Y. Takanishi, S. Noma, and J. Yamamoto, “Novel display mode using dielectric response of antiferroelectric liquid crystals,” Appl. Phys. Express 6(8), 081701 (2013).
[Crossref]

Yata, T.

T. Matsushima, K. Seki, S. Kimura, Y. Iwakabe, T. Yata, Y. Watanabe, S. Komura, M. Uchida, and T. Nakamura, “51-1: Optimal fast-response lcd for high-definition virtual reality head mounted display,” in SID Symposium Digest of Technical Papers, 49, pp. 667–670 (2018).
[Crossref]

Yu, C.-J.

AIP Adv. (1)

Y. Ma, X. Wang, A. K. Srivastava, V. G. Chigrinov, and H.-S. Kwok, “Fast switchable ferroelectric liquid crystal gratings with two electro-optical modes,” AIP Adv. 6(3), 035207 (2016).
[Crossref]

Appl. Phys. Express (1)

Y. Takanishi, S. Noma, and J. Yamamoto, “Novel display mode using dielectric response of antiferroelectric liquid crystals,” Appl. Phys. Express 6(8), 081701 (2013).
[Crossref]

Appl. Phys. Lett. (2)

A. K. Srivastava, E. Pozhidaev, V. G. Chigrinov, and R. Manohar, “Single walled carbon nano-tube, ferroelectric liquid crystal composites: Excellent diffractive tool,” Appl. Phys. Lett. 99(20), 201106 (2011).
[Crossref]

A. Srivastava, W. Hu, V. Chigrinov, A. Kiselev, and Y.-Q. Lu, “Fast switchable grating based on orthogonal photo alignments of ferroelectric liquid crystals,” Appl. Phys. Lett. 101(3), 031112 (2012).
[Crossref]

J. Appl. Phys. (2)

S. Matsumoto, M. Goto, S.-W. Choi, Y. Takanishi, K. Ishikawa, H. Takezoe, G. Kawamura, I. Nishiyama, and H. Takada, “Phase grating using a ferroelectric liquid-crystal mixture with a photocurable liquid crystal,” J. Appl. Phys. 99(11), 113709 (2006).
[Crossref]

C. Brown, E. E. Kriezis, and S. Elston, “Optical diffraction from a liquid crystal phase grating,” J. Appl. Phys. 91(6), 3495–3500 (2002).
[Crossref]

J. Mater. Chem. (1)

A. Singh and S. Singh, “Thermodynamic model for the electro-optical and structural properties of sm c* a phase in antiferroelectric liquid crystal mhpobc,” J. Mater. Chem. 21(6), 1991–1996 (2011).
[Crossref]

J. Mater. Chem. C (1)

E. Pozhidaev, V. Vashchenko, V. V. Mikhailenko, A. I. Krivoshey, V. Barbashov, L. Shi, A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Ultrashort helix pitch antiferroelectric liquid crystals based on chiral esters of terphenyldicarboxylic acid,” J. Mater. Chem. C 4(43), 10339–10346 (2016).
[Crossref]

J. Soc. Inf. Disp. (2)

A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Ferroelectric liquid crystals: Excellent tool for modern displays and photonics,” J. Soc. Inf. Disp. 23(6), 253–272 (2015).
[Crossref]

D.-W. Kim, E. Jang, Y.-W. Lim, and S.-D. Lee, “Defect-free deformed-helix ferroelectric liquid-crystal mode in a vertically aligned configuration,” J. Soc. Inf. Disp. 16(9), 947–952 (2008).
[Crossref]

Jpn. J. Appl. Phys. (2)

T. Chandani, T. Hagiwara, Y. Suzuki, Y. Ouchi, H. Takezoe, and A. Fukuda, “Tristable switching in surface stabilized ferroelectric liquid crystals with a large spontaneous polarization,” Jpn. J. Appl. Phys. 27(5), L729–L732 (1988).
[Crossref]

K. Kondo, H. Takezoe, A. Fukuda, and E. Kuze, “Temperature sensitive helical pitches and wall anchoring effects in homogeneous monodomains of ferroelectric SmC* liquid crystals, nobambc (n= 6-10),” Jpn. J. Appl. Phys. 21(2), 224–229 (1982).
[Crossref]

Liq. Cryst. (1)

H. Xianyu, S. Gauza, and S.-T. Wu, “Sub-millisecond response phase modulator using a low crossover frequency dual-frequency liquid crystal,” Liq. Cryst. 35(12), 1409–1413 (2008).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. E. (2)

L. A. Parry-Jones and S. J. Elston, “Field-driven helix unwinding in antiferroelectric liquid crystal cells,” Phys. Rev. E. 63(5), 050701 (2001).
[Crossref] [PubMed]

E. P. Pozhidaev, A. D. Kiselev, A. K. Srivastava, V. G. Chigrinov, H.-S. Kwok, and M. V. Minchenko, “Orientational Kerr effect and phase modulation of light in deformed-helix ferroelectric liquid crystals with subwavelength pitch,” Phys. Rev. E. 87(5), 052502 (2013).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

H. Takezoe, E. Gorecka, and M. Cepic, “Antiferroelectric liquid crystals: interplay of simplicity and complexity,” Rev. Mod. Phys. 82(1), 897–937 (2010).
[Crossref]

Other (2)

J. Yamamoto and I. Nishiyama, “Slippery interfaces: control and evaluation of the anchoring effect for the reduction of driving voltage (conference presentation),” in Liquid Crystals XXII, vol. 10735 (International Society for Optics and Photonics, 2018), p. 107350V.

T. Matsushima, K. Seki, S. Kimura, Y. Iwakabe, T. Yata, Y. Watanabe, S. Komura, M. Uchida, and T. Nakamura, “51-1: Optimal fast-response lcd for high-definition virtual reality head mounted display,” in SID Symposium Digest of Technical Papers, 49, pp. 667–670 (2018).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic cross-section diagrams of the in-plane switching of the AFLC based on the pre-transitional effect. The gray rods and the red arrows stand for the LC molecules and spontaneous polarization, respectively. The upper and lower substrates are common glass and ITO glass with patterned comb-like electrodes, respectively. (a) The helical structure of the homeotropic aligned AFLC when there is no electric field. The molecules in adjacent layers are oriented in almost opposite directions. (b) The molecules will rotate parallel to the electric field when a weak in-plane electric field (dashed line) is applied.
Fig. 2
Fig. 2 Textures of the LC cell using a full wave retardation plate under the polarized-light microscope. A 100Hz square wave was applied to the sample and the LC cell was kept at 85 °C in a hot stage.
Fig. 3
Fig. 3 (a) Diffraction patterns at 0V/μm, 1V/μm, 2V/μm and 2.5V/μm captured by the digital camera. (b) Diffraction intensity ratio of the 1st and 3rd order pattern at different electric fields. (c) The assumed phase distribution profile of the AFLC grating at low and high fields, respectively. (d) The zoomed-in texture using a full wave retardation plate under the polarized-light microscope and the schematic illustration of w1, w2, and w3 at 2.5V/μm.
Fig. 4
Fig. 4 (a) Diffraction efficiency of the 0th, ± 1st and ± 2nd orders(simulation results are plotted in dashed lines). (b) Electro-optical response of the 0th and 1st order diffraction pattern intensity in the rise and decay processes upon application field of 2.0V/μm at 85°C. The response time is defined as the time between 10% and 90% of the final value. The measured diffraction order was selected by the iris and detected by the photo diode.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ϕ= 2π λ { 0 z n x ( x,z )dz, 0<x<w 0 z n x ' ( x,z )dz, w<x<d+w
η m ={ 4 ( d w+d ) 2 cos 2 ( ϕ 2 ), m=0 4 sin( d w+d mπ) (mπ) 2 sin 2 ( ϕ 2 ), m0

Metrics