Abstract

High-throughput label-free measurements of the optical and mechanical properties of single microparticles play an important role in biological research, drug development, and related large population assays. However, mechanical detection techniques that rely on the density contrast of a particle with respect to its environment cannot sense neutrally bouyant particles. On the other hand, neutrally buoyant particles may still have a high compressibility contrast with respect to their environment, opening a new window to their detection and analysis. Here we present a label-free high-throughput approach for measuring the compressibility (bulk modulus) of freely flowing microparticles by means of resonant measurements in an opto-mechano-fluidic resonator.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-throughput sensing of freely flowing particles with optomechanofluidics

Kewen Han, JunHwan Kim, and Gaurav Bahl
Optica 3(6) 585-591 (2016)

Measurement of small light absorption in microparticles by means of optically induced rotation

O. V. Angelsky, A. Ya. Bekshaev, P. P. Maksimyak, A. P. Maksimyak, and S. G. Hanson
Opt. Express 23(6) 7152-7163 (2015)

Measurement of viscosity of lyotropic liquid crystals by means of rotating laser-trapped microparticles

Qingkun Liu, Theodor Asavei, Taewoo Lee, Halina Rubinsztein-Dunlop, Sailing He, and Ivan I. Smalyukh
Opt. Express 19(25) 25134-25143 (2011)

References

  • View by:
  • |
  • |
  • |

  1. N. Mohandas and E. Evans, “Mechanical properties of the red cell membrane in relation to molecular structure and genetic defects,” Annu. Rev. Biophys. Biomol. Struct. 23, 787–818 (1994).
    [Crossref] [PubMed]
  2. S. Suresh, J. Spatz, J. Mills, A. Micoulet, M. Dao, C. Lim, M. Beil, and T. Seufferlein, “Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria,” Acta Biomater. 1, 15–30 (2005).
    [Crossref]
  3. R. D. González-Cruz, V. C. Fonseca, and E. M. Darling, “Cellular mechanical properties reflect the differentiation potential of adipose-derived mesenchymal stem cells,” Proc. Natl. Acad. Sci. U.S.A. 109, E1523–9 (2012).
    [Crossref] [PubMed]
  4. D. W. Hedley, M. L. Friedlander, I. W. Taylor, C. A. Rugg, and E. A. Musgrove, “Method for analysis of cellular DNA content of paraffin-embedded pathological material using flow cytometry,” J. Histochem. Cytochem. 31, 1333–1335 (1983).
    [Crossref] [PubMed]
  5. S. H. Cho, J. M. Godin, C. Chen, W. Qiao, H. Lee, and Y. Lo, “Review article: recent advancements in optofluidic flow cytometer,” Biomicrofluidics 4, 043001 (2010).
    [Crossref]
  6. K. Han, J. Kim, and G. Bahl, “High-throughput sensing of freely flowing particles with optomechanofluidics,” Optica 3, 585–591 (2016).
    [Crossref]
  7. S. E. Cross, Y.-S. Jin, J. Rao, and J. K. Gimzewski, “Nanomechanical analysis of cells from cancer patients,” Nat. Nanotech. 2, 780–783 (2007).
    [Crossref]
  8. T. G. Kuznetsova, M. N. Starodubtseva, N. I. Yegorenkov, S. A. Chizhik, and R. I. Zhdanov, “Atomic force microscopy probing of cell elasticity,” Micron 38, 824–833 (2007).
    [Crossref] [PubMed]
  9. C. Lim, M. Dao, S. Suresh, C. Sow, and K. Chew, “Large deformation of living cells using laser traps,” Acta Mater. 52, 1837–1845 (2004).
    [Crossref]
  10. R. M. Hochmuth, “Micropipette aspiration of living cells,” J. Biomech. 33, 15–22 (2000).
    [Crossref]
  11. O. Malvar, J. J. Ruz, P. M. Kosaka, C. M. Domínguez, E. Gil-Santos, M. Calleja, and J. Tamayo, “Mass and stiffness spectrometry of nanoparticles and whole intact bacteria by multimode nanomechanical resonators,” Nat. Commun. 7, 13452 (2016).
    [Crossref] [PubMed]
  12. E. A. Corbin, O. O. Adeniba, R. H. Ewoldt, and R. Bashir, “Dynamic mechanical measurement of the viscoelasticity of single adherent cells,” Appl. Phys. Lett. 108(9), 093701 (2016).
    [Crossref]
  13. K. Park, A. Mehrnezhad, E. A. Corbin, and R. Bashir, “Optomechanical measurement of the stiffness of single adherent cells,” Lab Chip 15, 3460–3464 (2015).
    [Crossref] [PubMed]
  14. S. Olcum, N. Cermak, S. C. Wasserman, and S. R. Manalis, “High-speed multiple-mode mass-sensing resolves dynamic nanoscale mass distributions,” Nat. Commun. 6, 7070 (2015).
    [Crossref] [PubMed]
  15. D. Hartono, Y. Liu, P. L. Tan, X. Y. S. Then, L.-Y. L. Yung, and K.-M. Lim, “On-chip measurements of cell compressibility via acoustic radiation,” Lab Chip 11, 4072–4080 (2011).
    [Crossref] [PubMed]
  16. G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
    [Crossref] [PubMed]
  17. K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light. Sci. Appl. 2(11), e110 (2013).
    [Crossref]
  18. E. Gil-Santos, C. Baker, D. T. Nguyen, W. Hease, C. Gomez, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High-frequency nano-optomechanical disk resonators in liquids,” Nat. Nanotech. 10, 810–816 (2015).
    [Crossref]
  19. P. H. Kim, B. D. Hauer, T. J. Clark, F. Fani Sani, M. R. Freeman, and J. P. Davis, “Magnetic actuation and feedback cooling of a cavity optomechanical torque sensor,” Nat. Commun. 8, 1355 (2017).
    [Crossref] [PubMed]
  20. M. Wu, N. L.-Y. Wu, T. Firdous, F. F. Sani, J. E. Losby, M. R. Freeman, and P. E. Barclay, “Nanocavity optomechanical torque magnetometry and radiofrequency susceptometry,” Nat. Nanotech. 12, 127–131 (2016).
    [Crossref]
  21. W. Yu, W. C. Jiang, Q. Lin, and T. Lu, “Cavity optomechanical spring sensing of single molecules,” Nat. Commun. 7, 12311 (2016).
    [Crossref] [PubMed]
  22. S. Kaminski, L. L. Martin, S. Maayani, and T. Carmon, “Ripplon laser through stimulated emission mediated by water waves,” Nat. Photon. 10, 758–761 (2016).
    [Crossref]
  23. K. Han, K. Zhu, and G. Bahl, “Opto-mechano-fluidic viscometer,” Appl. Phys. Lett. 105(1), 014103 (2014).
    [Crossref]
  24. J. Suh, K. Han, C. W. Peterson, and G. Bahl, “Invited article: real-time sensing of flowing nanoparticles with electro-opto-mechanics,” APL Photonics 2(1), 010801 (2017).
    [Crossref]
  25. J. Suh, K. Han, and G. Bahl, “Imaging of acoustic pressure modes in opto-mechano-fluidic resonators with a single particle probe,” Appl. Phys. Lett. 112(7), 071106 (2018).
    [Crossref]
  26. D. R. Lide, CRC handbook of chemistry and physics (CRC Press, 1991).
  27. K. Zhu, K. Han, T. Carmon, X. Fan, and G. Bahl, “Opto-acoustic sensing of fluids and bioparticles with optomechanofluidic resonators,” Eur. Phys. J. Special Top. 223, 1937–1947 (2014).
    [Crossref]

2018 (1)

J. Suh, K. Han, and G. Bahl, “Imaging of acoustic pressure modes in opto-mechano-fluidic resonators with a single particle probe,” Appl. Phys. Lett. 112(7), 071106 (2018).
[Crossref]

2017 (2)

P. H. Kim, B. D. Hauer, T. J. Clark, F. Fani Sani, M. R. Freeman, and J. P. Davis, “Magnetic actuation and feedback cooling of a cavity optomechanical torque sensor,” Nat. Commun. 8, 1355 (2017).
[Crossref] [PubMed]

J. Suh, K. Han, C. W. Peterson, and G. Bahl, “Invited article: real-time sensing of flowing nanoparticles with electro-opto-mechanics,” APL Photonics 2(1), 010801 (2017).
[Crossref]

2016 (6)

M. Wu, N. L.-Y. Wu, T. Firdous, F. F. Sani, J. E. Losby, M. R. Freeman, and P. E. Barclay, “Nanocavity optomechanical torque magnetometry and radiofrequency susceptometry,” Nat. Nanotech. 12, 127–131 (2016).
[Crossref]

W. Yu, W. C. Jiang, Q. Lin, and T. Lu, “Cavity optomechanical spring sensing of single molecules,” Nat. Commun. 7, 12311 (2016).
[Crossref] [PubMed]

S. Kaminski, L. L. Martin, S. Maayani, and T. Carmon, “Ripplon laser through stimulated emission mediated by water waves,” Nat. Photon. 10, 758–761 (2016).
[Crossref]

O. Malvar, J. J. Ruz, P. M. Kosaka, C. M. Domínguez, E. Gil-Santos, M. Calleja, and J. Tamayo, “Mass and stiffness spectrometry of nanoparticles and whole intact bacteria by multimode nanomechanical resonators,” Nat. Commun. 7, 13452 (2016).
[Crossref] [PubMed]

E. A. Corbin, O. O. Adeniba, R. H. Ewoldt, and R. Bashir, “Dynamic mechanical measurement of the viscoelasticity of single adherent cells,” Appl. Phys. Lett. 108(9), 093701 (2016).
[Crossref]

K. Han, J. Kim, and G. Bahl, “High-throughput sensing of freely flowing particles with optomechanofluidics,” Optica 3, 585–591 (2016).
[Crossref]

2015 (3)

K. Park, A. Mehrnezhad, E. A. Corbin, and R. Bashir, “Optomechanical measurement of the stiffness of single adherent cells,” Lab Chip 15, 3460–3464 (2015).
[Crossref] [PubMed]

S. Olcum, N. Cermak, S. C. Wasserman, and S. R. Manalis, “High-speed multiple-mode mass-sensing resolves dynamic nanoscale mass distributions,” Nat. Commun. 6, 7070 (2015).
[Crossref] [PubMed]

E. Gil-Santos, C. Baker, D. T. Nguyen, W. Hease, C. Gomez, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High-frequency nano-optomechanical disk resonators in liquids,” Nat. Nanotech. 10, 810–816 (2015).
[Crossref]

2014 (2)

K. Han, K. Zhu, and G. Bahl, “Opto-mechano-fluidic viscometer,” Appl. Phys. Lett. 105(1), 014103 (2014).
[Crossref]

K. Zhu, K. Han, T. Carmon, X. Fan, and G. Bahl, “Opto-acoustic sensing of fluids and bioparticles with optomechanofluidic resonators,” Eur. Phys. J. Special Top. 223, 1937–1947 (2014).
[Crossref]

2013 (2)

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[Crossref] [PubMed]

K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light. Sci. Appl. 2(11), e110 (2013).
[Crossref]

2012 (1)

R. D. González-Cruz, V. C. Fonseca, and E. M. Darling, “Cellular mechanical properties reflect the differentiation potential of adipose-derived mesenchymal stem cells,” Proc. Natl. Acad. Sci. U.S.A. 109, E1523–9 (2012).
[Crossref] [PubMed]

2011 (1)

D. Hartono, Y. Liu, P. L. Tan, X. Y. S. Then, L.-Y. L. Yung, and K.-M. Lim, “On-chip measurements of cell compressibility via acoustic radiation,” Lab Chip 11, 4072–4080 (2011).
[Crossref] [PubMed]

2010 (1)

S. H. Cho, J. M. Godin, C. Chen, W. Qiao, H. Lee, and Y. Lo, “Review article: recent advancements in optofluidic flow cytometer,” Biomicrofluidics 4, 043001 (2010).
[Crossref]

2007 (2)

S. E. Cross, Y.-S. Jin, J. Rao, and J. K. Gimzewski, “Nanomechanical analysis of cells from cancer patients,” Nat. Nanotech. 2, 780–783 (2007).
[Crossref]

T. G. Kuznetsova, M. N. Starodubtseva, N. I. Yegorenkov, S. A. Chizhik, and R. I. Zhdanov, “Atomic force microscopy probing of cell elasticity,” Micron 38, 824–833 (2007).
[Crossref] [PubMed]

2005 (1)

S. Suresh, J. Spatz, J. Mills, A. Micoulet, M. Dao, C. Lim, M. Beil, and T. Seufferlein, “Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria,” Acta Biomater. 1, 15–30 (2005).
[Crossref]

2004 (1)

C. Lim, M. Dao, S. Suresh, C. Sow, and K. Chew, “Large deformation of living cells using laser traps,” Acta Mater. 52, 1837–1845 (2004).
[Crossref]

2000 (1)

R. M. Hochmuth, “Micropipette aspiration of living cells,” J. Biomech. 33, 15–22 (2000).
[Crossref]

1994 (1)

N. Mohandas and E. Evans, “Mechanical properties of the red cell membrane in relation to molecular structure and genetic defects,” Annu. Rev. Biophys. Biomol. Struct. 23, 787–818 (1994).
[Crossref] [PubMed]

1983 (1)

D. W. Hedley, M. L. Friedlander, I. W. Taylor, C. A. Rugg, and E. A. Musgrove, “Method for analysis of cellular DNA content of paraffin-embedded pathological material using flow cytometry,” J. Histochem. Cytochem. 31, 1333–1335 (1983).
[Crossref] [PubMed]

Adeniba, O. O.

E. A. Corbin, O. O. Adeniba, R. H. Ewoldt, and R. Bashir, “Dynamic mechanical measurement of the viscoelasticity of single adherent cells,” Appl. Phys. Lett. 108(9), 093701 (2016).
[Crossref]

Bahl, G.

J. Suh, K. Han, and G. Bahl, “Imaging of acoustic pressure modes in opto-mechano-fluidic resonators with a single particle probe,” Appl. Phys. Lett. 112(7), 071106 (2018).
[Crossref]

J. Suh, K. Han, C. W. Peterson, and G. Bahl, “Invited article: real-time sensing of flowing nanoparticles with electro-opto-mechanics,” APL Photonics 2(1), 010801 (2017).
[Crossref]

K. Han, J. Kim, and G. Bahl, “High-throughput sensing of freely flowing particles with optomechanofluidics,” Optica 3, 585–591 (2016).
[Crossref]

K. Han, K. Zhu, and G. Bahl, “Opto-mechano-fluidic viscometer,” Appl. Phys. Lett. 105(1), 014103 (2014).
[Crossref]

K. Zhu, K. Han, T. Carmon, X. Fan, and G. Bahl, “Opto-acoustic sensing of fluids and bioparticles with optomechanofluidic resonators,” Eur. Phys. J. Special Top. 223, 1937–1947 (2014).
[Crossref]

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[Crossref] [PubMed]

K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light. Sci. Appl. 2(11), e110 (2013).
[Crossref]

Baker, C.

E. Gil-Santos, C. Baker, D. T. Nguyen, W. Hease, C. Gomez, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High-frequency nano-optomechanical disk resonators in liquids,” Nat. Nanotech. 10, 810–816 (2015).
[Crossref]

Barclay, P. E.

M. Wu, N. L.-Y. Wu, T. Firdous, F. F. Sani, J. E. Losby, M. R. Freeman, and P. E. Barclay, “Nanocavity optomechanical torque magnetometry and radiofrequency susceptometry,” Nat. Nanotech. 12, 127–131 (2016).
[Crossref]

Bashir, R.

E. A. Corbin, O. O. Adeniba, R. H. Ewoldt, and R. Bashir, “Dynamic mechanical measurement of the viscoelasticity of single adherent cells,” Appl. Phys. Lett. 108(9), 093701 (2016).
[Crossref]

K. Park, A. Mehrnezhad, E. A. Corbin, and R. Bashir, “Optomechanical measurement of the stiffness of single adherent cells,” Lab Chip 15, 3460–3464 (2015).
[Crossref] [PubMed]

Beil, M.

S. Suresh, J. Spatz, J. Mills, A. Micoulet, M. Dao, C. Lim, M. Beil, and T. Seufferlein, “Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria,” Acta Biomater. 1, 15–30 (2005).
[Crossref]

Calleja, M.

O. Malvar, J. J. Ruz, P. M. Kosaka, C. M. Domínguez, E. Gil-Santos, M. Calleja, and J. Tamayo, “Mass and stiffness spectrometry of nanoparticles and whole intact bacteria by multimode nanomechanical resonators,” Nat. Commun. 7, 13452 (2016).
[Crossref] [PubMed]

Carmon, T.

S. Kaminski, L. L. Martin, S. Maayani, and T. Carmon, “Ripplon laser through stimulated emission mediated by water waves,” Nat. Photon. 10, 758–761 (2016).
[Crossref]

K. Zhu, K. Han, T. Carmon, X. Fan, and G. Bahl, “Opto-acoustic sensing of fluids and bioparticles with optomechanofluidic resonators,” Eur. Phys. J. Special Top. 223, 1937–1947 (2014).
[Crossref]

K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light. Sci. Appl. 2(11), e110 (2013).
[Crossref]

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[Crossref] [PubMed]

Cermak, N.

S. Olcum, N. Cermak, S. C. Wasserman, and S. R. Manalis, “High-speed multiple-mode mass-sensing resolves dynamic nanoscale mass distributions,” Nat. Commun. 6, 7070 (2015).
[Crossref] [PubMed]

Chen, C.

S. H. Cho, J. M. Godin, C. Chen, W. Qiao, H. Lee, and Y. Lo, “Review article: recent advancements in optofluidic flow cytometer,” Biomicrofluidics 4, 043001 (2010).
[Crossref]

Chew, K.

C. Lim, M. Dao, S. Suresh, C. Sow, and K. Chew, “Large deformation of living cells using laser traps,” Acta Mater. 52, 1837–1845 (2004).
[Crossref]

Chizhik, S. A.

T. G. Kuznetsova, M. N. Starodubtseva, N. I. Yegorenkov, S. A. Chizhik, and R. I. Zhdanov, “Atomic force microscopy probing of cell elasticity,” Micron 38, 824–833 (2007).
[Crossref] [PubMed]

Cho, S. H.

S. H. Cho, J. M. Godin, C. Chen, W. Qiao, H. Lee, and Y. Lo, “Review article: recent advancements in optofluidic flow cytometer,” Biomicrofluidics 4, 043001 (2010).
[Crossref]

Clark, T. J.

P. H. Kim, B. D. Hauer, T. J. Clark, F. Fani Sani, M. R. Freeman, and J. P. Davis, “Magnetic actuation and feedback cooling of a cavity optomechanical torque sensor,” Nat. Commun. 8, 1355 (2017).
[Crossref] [PubMed]

Corbin, E. A.

E. A. Corbin, O. O. Adeniba, R. H. Ewoldt, and R. Bashir, “Dynamic mechanical measurement of the viscoelasticity of single adherent cells,” Appl. Phys. Lett. 108(9), 093701 (2016).
[Crossref]

K. Park, A. Mehrnezhad, E. A. Corbin, and R. Bashir, “Optomechanical measurement of the stiffness of single adherent cells,” Lab Chip 15, 3460–3464 (2015).
[Crossref] [PubMed]

Cross, S. E.

S. E. Cross, Y.-S. Jin, J. Rao, and J. K. Gimzewski, “Nanomechanical analysis of cells from cancer patients,” Nat. Nanotech. 2, 780–783 (2007).
[Crossref]

Dao, M.

S. Suresh, J. Spatz, J. Mills, A. Micoulet, M. Dao, C. Lim, M. Beil, and T. Seufferlein, “Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria,” Acta Biomater. 1, 15–30 (2005).
[Crossref]

C. Lim, M. Dao, S. Suresh, C. Sow, and K. Chew, “Large deformation of living cells using laser traps,” Acta Mater. 52, 1837–1845 (2004).
[Crossref]

Darling, E. M.

R. D. González-Cruz, V. C. Fonseca, and E. M. Darling, “Cellular mechanical properties reflect the differentiation potential of adipose-derived mesenchymal stem cells,” Proc. Natl. Acad. Sci. U.S.A. 109, E1523–9 (2012).
[Crossref] [PubMed]

Davis, J. P.

P. H. Kim, B. D. Hauer, T. J. Clark, F. Fani Sani, M. R. Freeman, and J. P. Davis, “Magnetic actuation and feedback cooling of a cavity optomechanical torque sensor,” Nat. Commun. 8, 1355 (2017).
[Crossref] [PubMed]

Domínguez, C. M.

O. Malvar, J. J. Ruz, P. M. Kosaka, C. M. Domínguez, E. Gil-Santos, M. Calleja, and J. Tamayo, “Mass and stiffness spectrometry of nanoparticles and whole intact bacteria by multimode nanomechanical resonators,” Nat. Commun. 7, 13452 (2016).
[Crossref] [PubMed]

Ducci, S.

E. Gil-Santos, C. Baker, D. T. Nguyen, W. Hease, C. Gomez, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High-frequency nano-optomechanical disk resonators in liquids,” Nat. Nanotech. 10, 810–816 (2015).
[Crossref]

Evans, E.

N. Mohandas and E. Evans, “Mechanical properties of the red cell membrane in relation to molecular structure and genetic defects,” Annu. Rev. Biophys. Biomol. Struct. 23, 787–818 (1994).
[Crossref] [PubMed]

Ewoldt, R. H.

E. A. Corbin, O. O. Adeniba, R. H. Ewoldt, and R. Bashir, “Dynamic mechanical measurement of the viscoelasticity of single adherent cells,” Appl. Phys. Lett. 108(9), 093701 (2016).
[Crossref]

Fan, X.

K. Zhu, K. Han, T. Carmon, X. Fan, and G. Bahl, “Opto-acoustic sensing of fluids and bioparticles with optomechanofluidic resonators,” Eur. Phys. J. Special Top. 223, 1937–1947 (2014).
[Crossref]

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[Crossref] [PubMed]

K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light. Sci. Appl. 2(11), e110 (2013).
[Crossref]

Fani Sani, F.

P. H. Kim, B. D. Hauer, T. J. Clark, F. Fani Sani, M. R. Freeman, and J. P. Davis, “Magnetic actuation and feedback cooling of a cavity optomechanical torque sensor,” Nat. Commun. 8, 1355 (2017).
[Crossref] [PubMed]

Favero, I.

E. Gil-Santos, C. Baker, D. T. Nguyen, W. Hease, C. Gomez, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High-frequency nano-optomechanical disk resonators in liquids,” Nat. Nanotech. 10, 810–816 (2015).
[Crossref]

Firdous, T.

M. Wu, N. L.-Y. Wu, T. Firdous, F. F. Sani, J. E. Losby, M. R. Freeman, and P. E. Barclay, “Nanocavity optomechanical torque magnetometry and radiofrequency susceptometry,” Nat. Nanotech. 12, 127–131 (2016).
[Crossref]

Fonseca, V. C.

R. D. González-Cruz, V. C. Fonseca, and E. M. Darling, “Cellular mechanical properties reflect the differentiation potential of adipose-derived mesenchymal stem cells,” Proc. Natl. Acad. Sci. U.S.A. 109, E1523–9 (2012).
[Crossref] [PubMed]

Freeman, M. R.

P. H. Kim, B. D. Hauer, T. J. Clark, F. Fani Sani, M. R. Freeman, and J. P. Davis, “Magnetic actuation and feedback cooling of a cavity optomechanical torque sensor,” Nat. Commun. 8, 1355 (2017).
[Crossref] [PubMed]

M. Wu, N. L.-Y. Wu, T. Firdous, F. F. Sani, J. E. Losby, M. R. Freeman, and P. E. Barclay, “Nanocavity optomechanical torque magnetometry and radiofrequency susceptometry,” Nat. Nanotech. 12, 127–131 (2016).
[Crossref]

Friedlander, M. L.

D. W. Hedley, M. L. Friedlander, I. W. Taylor, C. A. Rugg, and E. A. Musgrove, “Method for analysis of cellular DNA content of paraffin-embedded pathological material using flow cytometry,” J. Histochem. Cytochem. 31, 1333–1335 (1983).
[Crossref] [PubMed]

Gil-Santos, E.

O. Malvar, J. J. Ruz, P. M. Kosaka, C. M. Domínguez, E. Gil-Santos, M. Calleja, and J. Tamayo, “Mass and stiffness spectrometry of nanoparticles and whole intact bacteria by multimode nanomechanical resonators,” Nat. Commun. 7, 13452 (2016).
[Crossref] [PubMed]

E. Gil-Santos, C. Baker, D. T. Nguyen, W. Hease, C. Gomez, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High-frequency nano-optomechanical disk resonators in liquids,” Nat. Nanotech. 10, 810–816 (2015).
[Crossref]

Gimzewski, J. K.

S. E. Cross, Y.-S. Jin, J. Rao, and J. K. Gimzewski, “Nanomechanical analysis of cells from cancer patients,” Nat. Nanotech. 2, 780–783 (2007).
[Crossref]

Godin, J. M.

S. H. Cho, J. M. Godin, C. Chen, W. Qiao, H. Lee, and Y. Lo, “Review article: recent advancements in optofluidic flow cytometer,” Biomicrofluidics 4, 043001 (2010).
[Crossref]

Gomez, C.

E. Gil-Santos, C. Baker, D. T. Nguyen, W. Hease, C. Gomez, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High-frequency nano-optomechanical disk resonators in liquids,” Nat. Nanotech. 10, 810–816 (2015).
[Crossref]

González-Cruz, R. D.

R. D. González-Cruz, V. C. Fonseca, and E. M. Darling, “Cellular mechanical properties reflect the differentiation potential of adipose-derived mesenchymal stem cells,” Proc. Natl. Acad. Sci. U.S.A. 109, E1523–9 (2012).
[Crossref] [PubMed]

Han, K.

J. Suh, K. Han, and G. Bahl, “Imaging of acoustic pressure modes in opto-mechano-fluidic resonators with a single particle probe,” Appl. Phys. Lett. 112(7), 071106 (2018).
[Crossref]

J. Suh, K. Han, C. W. Peterson, and G. Bahl, “Invited article: real-time sensing of flowing nanoparticles with electro-opto-mechanics,” APL Photonics 2(1), 010801 (2017).
[Crossref]

K. Han, J. Kim, and G. Bahl, “High-throughput sensing of freely flowing particles with optomechanofluidics,” Optica 3, 585–591 (2016).
[Crossref]

K. Han, K. Zhu, and G. Bahl, “Opto-mechano-fluidic viscometer,” Appl. Phys. Lett. 105(1), 014103 (2014).
[Crossref]

K. Zhu, K. Han, T. Carmon, X. Fan, and G. Bahl, “Opto-acoustic sensing of fluids and bioparticles with optomechanofluidic resonators,” Eur. Phys. J. Special Top. 223, 1937–1947 (2014).
[Crossref]

Hartono, D.

D. Hartono, Y. Liu, P. L. Tan, X. Y. S. Then, L.-Y. L. Yung, and K.-M. Lim, “On-chip measurements of cell compressibility via acoustic radiation,” Lab Chip 11, 4072–4080 (2011).
[Crossref] [PubMed]

Hauer, B. D.

P. H. Kim, B. D. Hauer, T. J. Clark, F. Fani Sani, M. R. Freeman, and J. P. Davis, “Magnetic actuation and feedback cooling of a cavity optomechanical torque sensor,” Nat. Commun. 8, 1355 (2017).
[Crossref] [PubMed]

Hease, W.

E. Gil-Santos, C. Baker, D. T. Nguyen, W. Hease, C. Gomez, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High-frequency nano-optomechanical disk resonators in liquids,” Nat. Nanotech. 10, 810–816 (2015).
[Crossref]

Hedley, D. W.

D. W. Hedley, M. L. Friedlander, I. W. Taylor, C. A. Rugg, and E. A. Musgrove, “Method for analysis of cellular DNA content of paraffin-embedded pathological material using flow cytometry,” J. Histochem. Cytochem. 31, 1333–1335 (1983).
[Crossref] [PubMed]

Hochmuth, R. M.

R. M. Hochmuth, “Micropipette aspiration of living cells,” J. Biomech. 33, 15–22 (2000).
[Crossref]

Jiang, W. C.

W. Yu, W. C. Jiang, Q. Lin, and T. Lu, “Cavity optomechanical spring sensing of single molecules,” Nat. Commun. 7, 12311 (2016).
[Crossref] [PubMed]

Jin, Y.-S.

S. E. Cross, Y.-S. Jin, J. Rao, and J. K. Gimzewski, “Nanomechanical analysis of cells from cancer patients,” Nat. Nanotech. 2, 780–783 (2007).
[Crossref]

Kaminski, S.

S. Kaminski, L. L. Martin, S. Maayani, and T. Carmon, “Ripplon laser through stimulated emission mediated by water waves,” Nat. Photon. 10, 758–761 (2016).
[Crossref]

Kim, J.

Kim, K. H.

K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light. Sci. Appl. 2(11), e110 (2013).
[Crossref]

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[Crossref] [PubMed]

Kim, P. H.

P. H. Kim, B. D. Hauer, T. J. Clark, F. Fani Sani, M. R. Freeman, and J. P. Davis, “Magnetic actuation and feedback cooling of a cavity optomechanical torque sensor,” Nat. Commun. 8, 1355 (2017).
[Crossref] [PubMed]

Kosaka, P. M.

O. Malvar, J. J. Ruz, P. M. Kosaka, C. M. Domínguez, E. Gil-Santos, M. Calleja, and J. Tamayo, “Mass and stiffness spectrometry of nanoparticles and whole intact bacteria by multimode nanomechanical resonators,” Nat. Commun. 7, 13452 (2016).
[Crossref] [PubMed]

Kuznetsova, T. G.

T. G. Kuznetsova, M. N. Starodubtseva, N. I. Yegorenkov, S. A. Chizhik, and R. I. Zhdanov, “Atomic force microscopy probing of cell elasticity,” Micron 38, 824–833 (2007).
[Crossref] [PubMed]

Lee, H.

S. H. Cho, J. M. Godin, C. Chen, W. Qiao, H. Lee, and Y. Lo, “Review article: recent advancements in optofluidic flow cytometer,” Biomicrofluidics 4, 043001 (2010).
[Crossref]

Lee, W.

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[Crossref] [PubMed]

K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light. Sci. Appl. 2(11), e110 (2013).
[Crossref]

Lemaître, A.

E. Gil-Santos, C. Baker, D. T. Nguyen, W. Hease, C. Gomez, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High-frequency nano-optomechanical disk resonators in liquids,” Nat. Nanotech. 10, 810–816 (2015).
[Crossref]

Leo, G.

E. Gil-Santos, C. Baker, D. T. Nguyen, W. Hease, C. Gomez, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High-frequency nano-optomechanical disk resonators in liquids,” Nat. Nanotech. 10, 810–816 (2015).
[Crossref]

Lide, D. R.

D. R. Lide, CRC handbook of chemistry and physics (CRC Press, 1991).

Lim, C.

S. Suresh, J. Spatz, J. Mills, A. Micoulet, M. Dao, C. Lim, M. Beil, and T. Seufferlein, “Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria,” Acta Biomater. 1, 15–30 (2005).
[Crossref]

C. Lim, M. Dao, S. Suresh, C. Sow, and K. Chew, “Large deformation of living cells using laser traps,” Acta Mater. 52, 1837–1845 (2004).
[Crossref]

Lim, K.-M.

D. Hartono, Y. Liu, P. L. Tan, X. Y. S. Then, L.-Y. L. Yung, and K.-M. Lim, “On-chip measurements of cell compressibility via acoustic radiation,” Lab Chip 11, 4072–4080 (2011).
[Crossref] [PubMed]

Lin, Q.

W. Yu, W. C. Jiang, Q. Lin, and T. Lu, “Cavity optomechanical spring sensing of single molecules,” Nat. Commun. 7, 12311 (2016).
[Crossref] [PubMed]

Liu, J.

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[Crossref] [PubMed]

K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light. Sci. Appl. 2(11), e110 (2013).
[Crossref]

Liu, Y.

D. Hartono, Y. Liu, P. L. Tan, X. Y. S. Then, L.-Y. L. Yung, and K.-M. Lim, “On-chip measurements of cell compressibility via acoustic radiation,” Lab Chip 11, 4072–4080 (2011).
[Crossref] [PubMed]

Lo, Y.

S. H. Cho, J. M. Godin, C. Chen, W. Qiao, H. Lee, and Y. Lo, “Review article: recent advancements in optofluidic flow cytometer,” Biomicrofluidics 4, 043001 (2010).
[Crossref]

Losby, J. E.

M. Wu, N. L.-Y. Wu, T. Firdous, F. F. Sani, J. E. Losby, M. R. Freeman, and P. E. Barclay, “Nanocavity optomechanical torque magnetometry and radiofrequency susceptometry,” Nat. Nanotech. 12, 127–131 (2016).
[Crossref]

Lu, T.

W. Yu, W. C. Jiang, Q. Lin, and T. Lu, “Cavity optomechanical spring sensing of single molecules,” Nat. Commun. 7, 12311 (2016).
[Crossref] [PubMed]

Maayani, S.

S. Kaminski, L. L. Martin, S. Maayani, and T. Carmon, “Ripplon laser through stimulated emission mediated by water waves,” Nat. Photon. 10, 758–761 (2016).
[Crossref]

Malvar, O.

O. Malvar, J. J. Ruz, P. M. Kosaka, C. M. Domínguez, E. Gil-Santos, M. Calleja, and J. Tamayo, “Mass and stiffness spectrometry of nanoparticles and whole intact bacteria by multimode nanomechanical resonators,” Nat. Commun. 7, 13452 (2016).
[Crossref] [PubMed]

Manalis, S. R.

S. Olcum, N. Cermak, S. C. Wasserman, and S. R. Manalis, “High-speed multiple-mode mass-sensing resolves dynamic nanoscale mass distributions,” Nat. Commun. 6, 7070 (2015).
[Crossref] [PubMed]

Martin, L. L.

S. Kaminski, L. L. Martin, S. Maayani, and T. Carmon, “Ripplon laser through stimulated emission mediated by water waves,” Nat. Photon. 10, 758–761 (2016).
[Crossref]

Mehrnezhad, A.

K. Park, A. Mehrnezhad, E. A. Corbin, and R. Bashir, “Optomechanical measurement of the stiffness of single adherent cells,” Lab Chip 15, 3460–3464 (2015).
[Crossref] [PubMed]

Micoulet, A.

S. Suresh, J. Spatz, J. Mills, A. Micoulet, M. Dao, C. Lim, M. Beil, and T. Seufferlein, “Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria,” Acta Biomater. 1, 15–30 (2005).
[Crossref]

Mills, J.

S. Suresh, J. Spatz, J. Mills, A. Micoulet, M. Dao, C. Lim, M. Beil, and T. Seufferlein, “Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria,” Acta Biomater. 1, 15–30 (2005).
[Crossref]

Mohandas, N.

N. Mohandas and E. Evans, “Mechanical properties of the red cell membrane in relation to molecular structure and genetic defects,” Annu. Rev. Biophys. Biomol. Struct. 23, 787–818 (1994).
[Crossref] [PubMed]

Musgrove, E. A.

D. W. Hedley, M. L. Friedlander, I. W. Taylor, C. A. Rugg, and E. A. Musgrove, “Method for analysis of cellular DNA content of paraffin-embedded pathological material using flow cytometry,” J. Histochem. Cytochem. 31, 1333–1335 (1983).
[Crossref] [PubMed]

Nguyen, D. T.

E. Gil-Santos, C. Baker, D. T. Nguyen, W. Hease, C. Gomez, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High-frequency nano-optomechanical disk resonators in liquids,” Nat. Nanotech. 10, 810–816 (2015).
[Crossref]

Olcum, S.

S. Olcum, N. Cermak, S. C. Wasserman, and S. R. Manalis, “High-speed multiple-mode mass-sensing resolves dynamic nanoscale mass distributions,” Nat. Commun. 6, 7070 (2015).
[Crossref] [PubMed]

Park, K.

K. Park, A. Mehrnezhad, E. A. Corbin, and R. Bashir, “Optomechanical measurement of the stiffness of single adherent cells,” Lab Chip 15, 3460–3464 (2015).
[Crossref] [PubMed]

Peterson, C. W.

J. Suh, K. Han, C. W. Peterson, and G. Bahl, “Invited article: real-time sensing of flowing nanoparticles with electro-opto-mechanics,” APL Photonics 2(1), 010801 (2017).
[Crossref]

Qiao, W.

S. H. Cho, J. M. Godin, C. Chen, W. Qiao, H. Lee, and Y. Lo, “Review article: recent advancements in optofluidic flow cytometer,” Biomicrofluidics 4, 043001 (2010).
[Crossref]

Rao, J.

S. E. Cross, Y.-S. Jin, J. Rao, and J. K. Gimzewski, “Nanomechanical analysis of cells from cancer patients,” Nat. Nanotech. 2, 780–783 (2007).
[Crossref]

Rugg, C. A.

D. W. Hedley, M. L. Friedlander, I. W. Taylor, C. A. Rugg, and E. A. Musgrove, “Method for analysis of cellular DNA content of paraffin-embedded pathological material using flow cytometry,” J. Histochem. Cytochem. 31, 1333–1335 (1983).
[Crossref] [PubMed]

Ruz, J. J.

O. Malvar, J. J. Ruz, P. M. Kosaka, C. M. Domínguez, E. Gil-Santos, M. Calleja, and J. Tamayo, “Mass and stiffness spectrometry of nanoparticles and whole intact bacteria by multimode nanomechanical resonators,” Nat. Commun. 7, 13452 (2016).
[Crossref] [PubMed]

Sani, F. F.

M. Wu, N. L.-Y. Wu, T. Firdous, F. F. Sani, J. E. Losby, M. R. Freeman, and P. E. Barclay, “Nanocavity optomechanical torque magnetometry and radiofrequency susceptometry,” Nat. Nanotech. 12, 127–131 (2016).
[Crossref]

Seufferlein, T.

S. Suresh, J. Spatz, J. Mills, A. Micoulet, M. Dao, C. Lim, M. Beil, and T. Seufferlein, “Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria,” Acta Biomater. 1, 15–30 (2005).
[Crossref]

Sow, C.

C. Lim, M. Dao, S. Suresh, C. Sow, and K. Chew, “Large deformation of living cells using laser traps,” Acta Mater. 52, 1837–1845 (2004).
[Crossref]

Spatz, J.

S. Suresh, J. Spatz, J. Mills, A. Micoulet, M. Dao, C. Lim, M. Beil, and T. Seufferlein, “Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria,” Acta Biomater. 1, 15–30 (2005).
[Crossref]

Starodubtseva, M. N.

T. G. Kuznetsova, M. N. Starodubtseva, N. I. Yegorenkov, S. A. Chizhik, and R. I. Zhdanov, “Atomic force microscopy probing of cell elasticity,” Micron 38, 824–833 (2007).
[Crossref] [PubMed]

Suh, J.

J. Suh, K. Han, and G. Bahl, “Imaging of acoustic pressure modes in opto-mechano-fluidic resonators with a single particle probe,” Appl. Phys. Lett. 112(7), 071106 (2018).
[Crossref]

J. Suh, K. Han, C. W. Peterson, and G. Bahl, “Invited article: real-time sensing of flowing nanoparticles with electro-opto-mechanics,” APL Photonics 2(1), 010801 (2017).
[Crossref]

Suresh, S.

S. Suresh, J. Spatz, J. Mills, A. Micoulet, M. Dao, C. Lim, M. Beil, and T. Seufferlein, “Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria,” Acta Biomater. 1, 15–30 (2005).
[Crossref]

C. Lim, M. Dao, S. Suresh, C. Sow, and K. Chew, “Large deformation of living cells using laser traps,” Acta Mater. 52, 1837–1845 (2004).
[Crossref]

Tamayo, J.

O. Malvar, J. J. Ruz, P. M. Kosaka, C. M. Domínguez, E. Gil-Santos, M. Calleja, and J. Tamayo, “Mass and stiffness spectrometry of nanoparticles and whole intact bacteria by multimode nanomechanical resonators,” Nat. Commun. 7, 13452 (2016).
[Crossref] [PubMed]

Tan, P. L.

D. Hartono, Y. Liu, P. L. Tan, X. Y. S. Then, L.-Y. L. Yung, and K.-M. Lim, “On-chip measurements of cell compressibility via acoustic radiation,” Lab Chip 11, 4072–4080 (2011).
[Crossref] [PubMed]

Taylor, I. W.

D. W. Hedley, M. L. Friedlander, I. W. Taylor, C. A. Rugg, and E. A. Musgrove, “Method for analysis of cellular DNA content of paraffin-embedded pathological material using flow cytometry,” J. Histochem. Cytochem. 31, 1333–1335 (1983).
[Crossref] [PubMed]

Then, X. Y. S.

D. Hartono, Y. Liu, P. L. Tan, X. Y. S. Then, L.-Y. L. Yung, and K.-M. Lim, “On-chip measurements of cell compressibility via acoustic radiation,” Lab Chip 11, 4072–4080 (2011).
[Crossref] [PubMed]

Tomes, M.

K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light. Sci. Appl. 2(11), e110 (2013).
[Crossref]

Wasserman, S. C.

S. Olcum, N. Cermak, S. C. Wasserman, and S. R. Manalis, “High-speed multiple-mode mass-sensing resolves dynamic nanoscale mass distributions,” Nat. Commun. 6, 7070 (2015).
[Crossref] [PubMed]

Wu, M.

M. Wu, N. L.-Y. Wu, T. Firdous, F. F. Sani, J. E. Losby, M. R. Freeman, and P. E. Barclay, “Nanocavity optomechanical torque magnetometry and radiofrequency susceptometry,” Nat. Nanotech. 12, 127–131 (2016).
[Crossref]

Wu, N. L.-Y.

M. Wu, N. L.-Y. Wu, T. Firdous, F. F. Sani, J. E. Losby, M. R. Freeman, and P. E. Barclay, “Nanocavity optomechanical torque magnetometry and radiofrequency susceptometry,” Nat. Nanotech. 12, 127–131 (2016).
[Crossref]

Yegorenkov, N. I.

T. G. Kuznetsova, M. N. Starodubtseva, N. I. Yegorenkov, S. A. Chizhik, and R. I. Zhdanov, “Atomic force microscopy probing of cell elasticity,” Micron 38, 824–833 (2007).
[Crossref] [PubMed]

Yu, W.

W. Yu, W. C. Jiang, Q. Lin, and T. Lu, “Cavity optomechanical spring sensing of single molecules,” Nat. Commun. 7, 12311 (2016).
[Crossref] [PubMed]

Yung, L.-Y. L.

D. Hartono, Y. Liu, P. L. Tan, X. Y. S. Then, L.-Y. L. Yung, and K.-M. Lim, “On-chip measurements of cell compressibility via acoustic radiation,” Lab Chip 11, 4072–4080 (2011).
[Crossref] [PubMed]

Zhdanov, R. I.

T. G. Kuznetsova, M. N. Starodubtseva, N. I. Yegorenkov, S. A. Chizhik, and R. I. Zhdanov, “Atomic force microscopy probing of cell elasticity,” Micron 38, 824–833 (2007).
[Crossref] [PubMed]

Zhu, K.

K. Han, K. Zhu, and G. Bahl, “Opto-mechano-fluidic viscometer,” Appl. Phys. Lett. 105(1), 014103 (2014).
[Crossref]

K. Zhu, K. Han, T. Carmon, X. Fan, and G. Bahl, “Opto-acoustic sensing of fluids and bioparticles with optomechanofluidic resonators,” Eur. Phys. J. Special Top. 223, 1937–1947 (2014).
[Crossref]

Acta Biomater. (1)

S. Suresh, J. Spatz, J. Mills, A. Micoulet, M. Dao, C. Lim, M. Beil, and T. Seufferlein, “Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria,” Acta Biomater. 1, 15–30 (2005).
[Crossref]

Acta Mater. (1)

C. Lim, M. Dao, S. Suresh, C. Sow, and K. Chew, “Large deformation of living cells using laser traps,” Acta Mater. 52, 1837–1845 (2004).
[Crossref]

Annu. Rev. Biophys. Biomol. Struct. (1)

N. Mohandas and E. Evans, “Mechanical properties of the red cell membrane in relation to molecular structure and genetic defects,” Annu. Rev. Biophys. Biomol. Struct. 23, 787–818 (1994).
[Crossref] [PubMed]

APL Photonics (1)

J. Suh, K. Han, C. W. Peterson, and G. Bahl, “Invited article: real-time sensing of flowing nanoparticles with electro-opto-mechanics,” APL Photonics 2(1), 010801 (2017).
[Crossref]

Appl. Phys. Lett. (3)

J. Suh, K. Han, and G. Bahl, “Imaging of acoustic pressure modes in opto-mechano-fluidic resonators with a single particle probe,” Appl. Phys. Lett. 112(7), 071106 (2018).
[Crossref]

K. Han, K. Zhu, and G. Bahl, “Opto-mechano-fluidic viscometer,” Appl. Phys. Lett. 105(1), 014103 (2014).
[Crossref]

E. A. Corbin, O. O. Adeniba, R. H. Ewoldt, and R. Bashir, “Dynamic mechanical measurement of the viscoelasticity of single adherent cells,” Appl. Phys. Lett. 108(9), 093701 (2016).
[Crossref]

Biomicrofluidics (1)

S. H. Cho, J. M. Godin, C. Chen, W. Qiao, H. Lee, and Y. Lo, “Review article: recent advancements in optofluidic flow cytometer,” Biomicrofluidics 4, 043001 (2010).
[Crossref]

Eur. Phys. J. Special Top. (1)

K. Zhu, K. Han, T. Carmon, X. Fan, and G. Bahl, “Opto-acoustic sensing of fluids and bioparticles with optomechanofluidic resonators,” Eur. Phys. J. Special Top. 223, 1937–1947 (2014).
[Crossref]

J. Biomech. (1)

R. M. Hochmuth, “Micropipette aspiration of living cells,” J. Biomech. 33, 15–22 (2000).
[Crossref]

J. Histochem. Cytochem. (1)

D. W. Hedley, M. L. Friedlander, I. W. Taylor, C. A. Rugg, and E. A. Musgrove, “Method for analysis of cellular DNA content of paraffin-embedded pathological material using flow cytometry,” J. Histochem. Cytochem. 31, 1333–1335 (1983).
[Crossref] [PubMed]

Lab Chip (2)

K. Park, A. Mehrnezhad, E. A. Corbin, and R. Bashir, “Optomechanical measurement of the stiffness of single adherent cells,” Lab Chip 15, 3460–3464 (2015).
[Crossref] [PubMed]

D. Hartono, Y. Liu, P. L. Tan, X. Y. S. Then, L.-Y. L. Yung, and K.-M. Lim, “On-chip measurements of cell compressibility via acoustic radiation,” Lab Chip 11, 4072–4080 (2011).
[Crossref] [PubMed]

Light. Sci. Appl. (1)

K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light. Sci. Appl. 2(11), e110 (2013).
[Crossref]

Micron (1)

T. G. Kuznetsova, M. N. Starodubtseva, N. I. Yegorenkov, S. A. Chizhik, and R. I. Zhdanov, “Atomic force microscopy probing of cell elasticity,” Micron 38, 824–833 (2007).
[Crossref] [PubMed]

Nat. Commun. (5)

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[Crossref] [PubMed]

S. Olcum, N. Cermak, S. C. Wasserman, and S. R. Manalis, “High-speed multiple-mode mass-sensing resolves dynamic nanoscale mass distributions,” Nat. Commun. 6, 7070 (2015).
[Crossref] [PubMed]

O. Malvar, J. J. Ruz, P. M. Kosaka, C. M. Domínguez, E. Gil-Santos, M. Calleja, and J. Tamayo, “Mass and stiffness spectrometry of nanoparticles and whole intact bacteria by multimode nanomechanical resonators,” Nat. Commun. 7, 13452 (2016).
[Crossref] [PubMed]

P. H. Kim, B. D. Hauer, T. J. Clark, F. Fani Sani, M. R. Freeman, and J. P. Davis, “Magnetic actuation and feedback cooling of a cavity optomechanical torque sensor,” Nat. Commun. 8, 1355 (2017).
[Crossref] [PubMed]

W. Yu, W. C. Jiang, Q. Lin, and T. Lu, “Cavity optomechanical spring sensing of single molecules,” Nat. Commun. 7, 12311 (2016).
[Crossref] [PubMed]

Nat. Nanotech. (3)

M. Wu, N. L.-Y. Wu, T. Firdous, F. F. Sani, J. E. Losby, M. R. Freeman, and P. E. Barclay, “Nanocavity optomechanical torque magnetometry and radiofrequency susceptometry,” Nat. Nanotech. 12, 127–131 (2016).
[Crossref]

E. Gil-Santos, C. Baker, D. T. Nguyen, W. Hease, C. Gomez, A. Lemaître, S. Ducci, G. Leo, and I. Favero, “High-frequency nano-optomechanical disk resonators in liquids,” Nat. Nanotech. 10, 810–816 (2015).
[Crossref]

S. E. Cross, Y.-S. Jin, J. Rao, and J. K. Gimzewski, “Nanomechanical analysis of cells from cancer patients,” Nat. Nanotech. 2, 780–783 (2007).
[Crossref]

Nat. Photon. (1)

S. Kaminski, L. L. Martin, S. Maayani, and T. Carmon, “Ripplon laser through stimulated emission mediated by water waves,” Nat. Photon. 10, 758–761 (2016).
[Crossref]

Optica (1)

Proc. Natl. Acad. Sci. U.S.A. (1)

R. D. González-Cruz, V. C. Fonseca, and E. M. Darling, “Cellular mechanical properties reflect the differentiation potential of adipose-derived mesenchymal stem cells,” Proc. Natl. Acad. Sci. U.S.A. 109, E1523–9 (2012).
[Crossref] [PubMed]

Other (1)

D. R. Lide, CRC handbook of chemistry and physics (CRC Press, 1991).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 (a) False colored SEM image of an opto-mechano-fluidic resonator (OMFR). (b) A fluid-shell hybrid breathing mechanical (phonon) mode in an OMFR. (c) Particles of density contrast Δρ and compressibility contrast Δκ change the vibrational mode shape as indicated by the slight broken symmetry. (d) The thermal mechanical fluctuations of the OMFR mode can be measured optically [6] via a single-point tapered fiber measurement. Analysis of this spectrum conveys information on the particle.
Fig. 2
Fig. 2 Theoretical predictions vs experimental measurements. (a) The sensitivity variables A, B, C, and D are required for making a prediction of the mechanical frequency shift using the models presented in Eq. 1 and Eq. 2. These coefficients can be obtained from finite element simulation of the OMFR device. The results are fitted to third-order polynomial curves for interpolation. (b) The simulated coefficients A, B, C, and D are then used to predict the frequency shifts anticipated due to 6 um spherical silica and polystyrene particles as described in the text. Experimentally measured frequency shifts of the mechanical mode follow the trend predicted by theory. The particle position is subject to both the image processing fitting error (shown here by the error bar) and a roughly 2 um error (not shown in figure) that exists in determining the central axis of the OMFR [6].
Fig. 3
Fig. 3 (a) Least-square curve fitting for Eq. (3) is applied to the silica data to obtain N = 0.812. The material properties are listed in Table 1. The prediction with N = 1 is given as a comparison. (b) The obtained N is now used for least-squares curve fitting to the polystyrene data with the compressibility of polystyrene as the unknown variable. Fitting to the experimental data extracts the compressibility of polystyrene as 2.5 × 10−10 Pa−1, which is only 3% different from the data in Table 1. The predictions with compressibility from Table 1, with and without scaling factor N, are given as comparisons.

Tables (1)

Tables Icon

Table 1 Material properties [26]

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Δ f f 1 = κ s κ 2 κ A ρ s ρ 2 ρ s B ,
Δ f f 1 = κ s κ 2 κ C ρ s ρ 2 ρ s D ,
Δ f = N f 1 ( κ s κ 2 κ C ρ s ρ 2 ρ s D ) .
W w p + W p = W w k + W k ,
W w p 1 + V 1 2 κ P 1 2 d V = V w 1 2 ρ w Ω 1 2 | U 1 | 2 d V + V 1 2 | P 1 | 2 ρ Ω 1 2 d V ,
W w p 1 + κ 4 V p 1 2 d V = 1 4 ρ w Ω 1 2 V w | u 1 | 2 d V + 1 4 1 ρ Ω 1 2 V | p 1 | 2 d V .
W w p 2 + κ 4 V V s p 2 2 d V + κ s 4 V s p 2 2 d V = 1 4 ρ w Ω 2 2 V w | u 2 | 2 d V + 1 4 1 ρ Ω 2 2 V V s | p 2 | 2 d V + 1 4 1 ρ s Ω 2 2 V s | p 2 | 2 d V .
κ 4 ( T 1 T 2 ) + 1 4 ( κ t 1 κ s t 2 ) 1 4 ρ Ω 1 2 ( G 1 G 2 ) 1 4 ( g 1 ρ Ω 1 2 g 2 ρ s Ω 2 2 ) = F 4 ( Ω 1 2 Ω 2 2 ) + G 2 4 ρ ( 1 Ω 1 2 1 Ω 2 2 ) ,
Δ Ω Ω 1 = 1 Ω 1 2 F 2 + G 2 2 ρ Ω 1 2 ( κ 4 ( T 1 T 2 ) + 1 4 ( κ t 1 κ s t 2 ) 1 4 ρ Ω 1 2 ( G 1 G 2 ) 1 4 Ω 1 2 ( g 1 ρ g 2 ρ s ) ) .
Δ Ω Ω 1 = t 4 ( κ κ s ) g 4 Ω 1 2 ( 1 ρ 1 ρ s ) Ω 1 2 F 2 + G 2 ρ Ω 1 2 .
Δ f f 1 = κ s κ 2 κ C ρ s ρ 2 ρ s D ,

Metrics