Abstract

Magneto-optical waveguides with a refractive-index change were successfully fabricated inside silica xerogels containing ferrimagnetic Fe3O4 nanoparticles (NPs) using femtosecond laser processing. Aminopropyltriethoxysilane-derived xerogels were prepared via a sol-gel process with aqueous solutions of Fe3O4 NPs synthesized by coprecipitation. The mass/volume concentration of Fe3O4 NPs in the xerogels was determined by comparing the absorbance of the xerogel with that of an aqueous solution of Fe3O4 NPs. We evaluated Faraday rotation angles for light propagating through waveguide structures in xerogels containing Fe3O4 NPs at mass/volume concentrations of 0.087 and 0.148 mg/cm3 at a wavelength of 488 nm. Ferrimagnetic saturation of the Faraday rotation angle was observed, which is consistent with the magnetization curves measured at room temperature. Magneto-optical waveguides can potentially be used to produce micro-sized Faraday devices, such as optical isolators, high-density magnetic recording devices, and optical sensors, which can be integrated with optical and electronic hybrid circuits.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Plasmonically enhanced Faraday effect in metal and ferrite nanoparticles composite precipitated inside glass

Seisuke Nakashima, Koji Sugioka, Katsuhisa Tanaka, Masahiro Shimizu, Yasuhiko Shimotsuma, Kiyotaka Miura, Katsumi Midorikawa, and Kohki Mukai
Opt. Express 20(27) 28191-28199 (2012)

Improving Faraday rotation performance with block copolymer and FePt nanoparticle magneto-optical composite

Alexander Miles, Yue Gai, Palash Gangopadhyay, Xinyu Wang, Robert A. Norwood, and James J. Watkins
Opt. Mater. Express 7(6) 2126-2140 (2017)

3D magneto-photonic crystal made with cobalt ferrite nanoparticles silica composite structured as inverse opal

R. Kekesi, F. Royer, D. Jamon, M. F. Blanc Mignon, E. Abou-Diwan, J. P. Chatelon, S. Neveu, and E. Tombacz
Opt. Mater. Express 3(7) 935-947 (2013)

References

  • View by:
  • |
  • |
  • |

  1. J. M. P. Almeida, P. H. D. Ferreira, D. Manzani, M. Napoli, S. J. L. Ribeiro, and C. R. Mendonça, “Metallic nanoparticles grown in the core of femtosecond laser micromachined waveguides,” J. Appl. Phys. 115(19), 193507 (2014).
    [Crossref]
  2. S. Murai, M. A. Verschuuren, G. Lozano, G. Pirruccio, S. R. K. Rodriguez, and J. G. Rivas, “Hybrid plasmonic-photonic modes in diffractive arrays of nanoparticles coupled to light-emitting optical waveguides,” Opt. Express 21(4), 4250–4262 (2013).
    [Crossref] [PubMed]
  3. T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett. 101(11), 113903 (2008).
    [Crossref] [PubMed]
  4. M. Fujiwara, K. Toubaru, T. Noda, H. Q. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11(10), 4362–4365 (2011).
    [Crossref] [PubMed]
  5. S. Nakashima, T. Tanaka, A. Ishida, and K. Mukai, “Fabrication of optical waveguides inside transparent silica xerogels containing PbS quantum dots using a femtosecond laser,” Appl. Phys. A 123, 723–728 (2017).
  6. P. H. D. Ferreira, A. J. G. Otuka, E. C. Barbano, D. S. Manoel, F. S. De Vicente, D. R. Vollet, D. A. Donatti, L. Misoguti, and C. R. Mendonça, “Femtosecond laser fabrication of waveguides in Rhodamine B-doped GPTS/TEOS-derived organic/silica monolithic xerogel,” Opt. Mater. 47, 310–314 (2015).
    [Crossref]
  7. F. Choueikani, F. Royer, D. Jamon, A. Siblini, J. J. Rousseau, S. Neveu, and J. Charara, “Magneto-optical waveguides made of cobalt ferrite nanoparticles embedded in silica/zirconia organic-inorganic matrix,” Appl. Phys. Lett. 94(5), 051113 (2009).
    [Crossref]
  8. H. Amata, F. Royer, F. Choueikani, D. Jamon, F. Parsy, J. E. Broquin, S. Neveu, and J. J. Rousseau, “Hybrid magneto-optical mode converter made with a magnetic nanoparticles-doped SiO2/ZrO2 layer coated on an ion-exchanged glass waveguide,” Appl. Phys. Lett. 99(25), 251108 (2011).
    [Crossref]
  9. S. Nakashima, K. Sugioka, K. Tanaka, M. Shimizu, Y. Shimotsuma, K. Miura, K. Midorikawa, and K. Mukai, “Plasmonically enhanced Faraday effect in metal and ferrite nanoparticles composite precipitated inside glass,” Opt. Express 20(27), 28191–28199 (2012).
    [Crossref] [PubMed]
  10. K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photonics 7(2), 133–137 (2013).
    [Crossref]
  11. L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
    [Crossref]
  12. J. R. Qiu, M. Shirai, T. Nakaya, J. H. Si, X. W. Jiang, C. S. Zhu, and K. Hirao, “Space-selective precipitation of metal nanoparticles inside glasses,” Appl. Phys. Lett. 81(16), 3040–3042 (2002).
    [Crossref]
  13. J. Qiu, X. Jiang, C. Zhu, H. Inouye, J. Si, and K. Hirao, “Optical properties of structurally modified glasses doped with gold ions,” Opt. Lett. 29(4), 370–372 (2004).
    [Crossref] [PubMed]
  14. K. Miura, K. Hirao, Y. Shimotsuma, M. Sakakura, and S. Kanehira, “Formation of Si structure in glass with a femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 93(1), 183–188 (2008).
    [Crossref]
  15. S. Nakashima, K. Sugioka, and K. Midorikawa, “Space-selective modification of the magnetic properties of transparent Fe3+-doped glass by femtosecond-laser irradiation,” Appl. Phys., A Mater. Sci. Process. 104(3), 993–996 (2011).
    [Crossref]
  16. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
    [Crossref] [PubMed]
  17. T. Tamaki, W. Watanabe, H. Nagai, M. Yoshida, J. Nishii, and K. Itoh, “Structural modification in fused silica by a femtosecond fiber laser at 1558 nm,” Opt. Express 14(15), 6971–6980 (2006).
    [Crossref] [PubMed]
  18. K. Miura, J. R. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71(23), 3329–3331 (1997).
    [Crossref]
  19. K. Hirao and K. Miura, ““Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non-Crys,” Sol. 239, 91–95 (1998).
  20. N. Marquestaut, Y. Petit, A. Royon, P. Mounaix, T. Cardinal, and L. Canioni, “Three-dimensional silver nanoparticle formation using femtosecond laser irradiation in phosphate glasses: Analogy with photography,” Adv. Funct. Mater. 24(37), 5824–5832 (2014).
    [Crossref]
  21. F. Chen and J. R. V’azquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
    [Crossref]
  22. T. Amemiya, A. Ishikawa, Y. Shoji, P. N. Hai, M. Tanaka, T. Mizumoto, T. Tanaka, and S. Arai, “Three-dimensional nanostructuring in YIG ferrite with femtosecond laser,” Opt. Lett. 39(2), 212–215 (2014).
    [Crossref] [PubMed]
  23. J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express 18(15), 16035–16041 (2010).
    [Crossref] [PubMed]
  24. S. Nakashima, K. Fujita, A. Nakao, K. Tanaka, Y. Shimotsuma, K. Miura, and K. Hirao, “Enhanced magnetization and ferrimagnetic behavior of normal spinel ZnFe2O4 thin film irradiated with femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 94, 83–88 (2009).
  25. S. Nakashima, K. Sugioka, and K. Midorikawa, “Enhancement of resolution and quality of nano-hole structure on GaN substrates using the second-harmonic beam of near-infrared femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 101, 475–481 (2010).
  26. S. Sowa, W. Watanabe, T. Tamaki, J. Nishii, and K. Itoh, “Symmetric waveguides in poly(methyl methacrylate) fabricated by femtosecond laser pulses,” Opt. Express 14(1), 291–297 (2006).
    [Crossref] [PubMed]
  27. C. R. Mendonca, L. R. Cerami, T. Shih, R. W. Tilghman, T. Baldacchini, and E. Mazur, “Femtosecond laser waveguide micromachining of PMMA films with azoaromatic chromophores,” Opt. Express 16(1), 200–206 (2008).
    [Crossref] [PubMed]
  28. F. Y. Cheng, C. H. Su, Y. S. Yang, C. S. Yeh, C. Y. Tsai, C. L. Wu, M. T. Wu, and D. B. Shieh, “Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications,” Biomaterials 26(7), 729–738 (2005).
    [Crossref] [PubMed]
  29. M. Ma, Y. Zhang, W. Yu, H. Shen, H. Zhang, and N. Gu, “Preparation and characterization of magnetite nanoparticles coated by amino silane,” Colloids Surf. A Physicochem. Eng. Asp. 212(2-3), 219–226 (2003).
    [Crossref]
  30. A. Campo, T. Sen, J. Lellouche, and I. J. Bruce, “Multifunctional magnetite and silica–magnetite nanoparticles: Synthesis,surface activation and applications in life sciences,” J. Magn. Magn. Mater. 293(1), 33–40 (2005).
    [Crossref]
  31. J. B. Nelson and D. P. Riley, “An experimental investigation of extrapolation methods in the derivation of accurate unit-cell dimensions of crystals,” Proc. Phys. Soc. 57(3), 160–177 (1945).
    [Crossref]
  32. R. Nathans, M. T. Pigott, and C. G. Shull, “The magnetic structure of Fe3Al,” J. Phys. Chem. Solids 6(1), 38–42 (1958).
    [Crossref]
  33. T. Shih, R. R. Gattass, C. R. Mendonca, and E. Mazur, “Faraday rotation in femtosecond laser micromachined waveguides,” Opt. Express 15(9), 5809–5814 (2007).
    [Crossref] [PubMed]

2017 (1)

S. Nakashima, T. Tanaka, A. Ishida, and K. Mukai, “Fabrication of optical waveguides inside transparent silica xerogels containing PbS quantum dots using a femtosecond laser,” Appl. Phys. A 123, 723–728 (2017).

2015 (1)

P. H. D. Ferreira, A. J. G. Otuka, E. C. Barbano, D. S. Manoel, F. S. De Vicente, D. R. Vollet, D. A. Donatti, L. Misoguti, and C. R. Mendonça, “Femtosecond laser fabrication of waveguides in Rhodamine B-doped GPTS/TEOS-derived organic/silica monolithic xerogel,” Opt. Mater. 47, 310–314 (2015).
[Crossref]

2014 (5)

J. M. P. Almeida, P. H. D. Ferreira, D. Manzani, M. Napoli, S. J. L. Ribeiro, and C. R. Mendonça, “Metallic nanoparticles grown in the core of femtosecond laser micromachined waveguides,” J. Appl. Phys. 115(19), 193507 (2014).
[Crossref]

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

N. Marquestaut, Y. Petit, A. Royon, P. Mounaix, T. Cardinal, and L. Canioni, “Three-dimensional silver nanoparticle formation using femtosecond laser irradiation in phosphate glasses: Analogy with photography,” Adv. Funct. Mater. 24(37), 5824–5832 (2014).
[Crossref]

F. Chen and J. R. V’azquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

T. Amemiya, A. Ishikawa, Y. Shoji, P. N. Hai, M. Tanaka, T. Mizumoto, T. Tanaka, and S. Arai, “Three-dimensional nanostructuring in YIG ferrite with femtosecond laser,” Opt. Lett. 39(2), 212–215 (2014).
[Crossref] [PubMed]

2013 (2)

2012 (1)

2011 (3)

M. Fujiwara, K. Toubaru, T. Noda, H. Q. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11(10), 4362–4365 (2011).
[Crossref] [PubMed]

H. Amata, F. Royer, F. Choueikani, D. Jamon, F. Parsy, J. E. Broquin, S. Neveu, and J. J. Rousseau, “Hybrid magneto-optical mode converter made with a magnetic nanoparticles-doped SiO2/ZrO2 layer coated on an ion-exchanged glass waveguide,” Appl. Phys. Lett. 99(25), 251108 (2011).
[Crossref]

S. Nakashima, K. Sugioka, and K. Midorikawa, “Space-selective modification of the magnetic properties of transparent Fe3+-doped glass by femtosecond-laser irradiation,” Appl. Phys., A Mater. Sci. Process. 104(3), 993–996 (2011).
[Crossref]

2010 (2)

J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express 18(15), 16035–16041 (2010).
[Crossref] [PubMed]

S. Nakashima, K. Sugioka, and K. Midorikawa, “Enhancement of resolution and quality of nano-hole structure on GaN substrates using the second-harmonic beam of near-infrared femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 101, 475–481 (2010).

2009 (2)

S. Nakashima, K. Fujita, A. Nakao, K. Tanaka, Y. Shimotsuma, K. Miura, and K. Hirao, “Enhanced magnetization and ferrimagnetic behavior of normal spinel ZnFe2O4 thin film irradiated with femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 94, 83–88 (2009).

F. Choueikani, F. Royer, D. Jamon, A. Siblini, J. J. Rousseau, S. Neveu, and J. Charara, “Magneto-optical waveguides made of cobalt ferrite nanoparticles embedded in silica/zirconia organic-inorganic matrix,” Appl. Phys. Lett. 94(5), 051113 (2009).
[Crossref]

2008 (3)

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett. 101(11), 113903 (2008).
[Crossref] [PubMed]

K. Miura, K. Hirao, Y. Shimotsuma, M. Sakakura, and S. Kanehira, “Formation of Si structure in glass with a femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 93(1), 183–188 (2008).
[Crossref]

C. R. Mendonca, L. R. Cerami, T. Shih, R. W. Tilghman, T. Baldacchini, and E. Mazur, “Femtosecond laser waveguide micromachining of PMMA films with azoaromatic chromophores,” Opt. Express 16(1), 200–206 (2008).
[Crossref] [PubMed]

2007 (1)

2006 (2)

2005 (2)

F. Y. Cheng, C. H. Su, Y. S. Yang, C. S. Yeh, C. Y. Tsai, C. L. Wu, M. T. Wu, and D. B. Shieh, “Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications,” Biomaterials 26(7), 729–738 (2005).
[Crossref] [PubMed]

A. Campo, T. Sen, J. Lellouche, and I. J. Bruce, “Multifunctional magnetite and silica–magnetite nanoparticles: Synthesis,surface activation and applications in life sciences,” J. Magn. Magn. Mater. 293(1), 33–40 (2005).
[Crossref]

2004 (1)

2003 (1)

M. Ma, Y. Zhang, W. Yu, H. Shen, H. Zhang, and N. Gu, “Preparation and characterization of magnetite nanoparticles coated by amino silane,” Colloids Surf. A Physicochem. Eng. Asp. 212(2-3), 219–226 (2003).
[Crossref]

2002 (1)

J. R. Qiu, M. Shirai, T. Nakaya, J. H. Si, X. W. Jiang, C. S. Zhu, and K. Hirao, “Space-selective precipitation of metal nanoparticles inside glasses,” Appl. Phys. Lett. 81(16), 3040–3042 (2002).
[Crossref]

1998 (1)

K. Hirao and K. Miura, ““Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non-Crys,” Sol. 239, 91–95 (1998).

1997 (1)

K. Miura, J. R. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71(23), 3329–3331 (1997).
[Crossref]

1996 (1)

1958 (1)

R. Nathans, M. T. Pigott, and C. G. Shull, “The magnetic structure of Fe3Al,” J. Phys. Chem. Solids 6(1), 38–42 (1958).
[Crossref]

1945 (1)

J. B. Nelson and D. P. Riley, “An experimental investigation of extrapolation methods in the derivation of accurate unit-cell dimensions of crystals,” Proc. Phys. Soc. 57(3), 160–177 (1945).
[Crossref]

Almeida, J. M. P.

J. M. P. Almeida, P. H. D. Ferreira, D. Manzani, M. Napoli, S. J. L. Ribeiro, and C. R. Mendonça, “Metallic nanoparticles grown in the core of femtosecond laser micromachined waveguides,” J. Appl. Phys. 115(19), 193507 (2014).
[Crossref]

Amata, H.

H. Amata, F. Royer, F. Choueikani, D. Jamon, F. Parsy, J. E. Broquin, S. Neveu, and J. J. Rousseau, “Hybrid magneto-optical mode converter made with a magnetic nanoparticles-doped SiO2/ZrO2 layer coated on an ion-exchanged glass waveguide,” Appl. Phys. Lett. 99(25), 251108 (2011).
[Crossref]

Amemiya, T.

Arai, S.

Baldacchini, T.

Barbano, E. C.

P. H. D. Ferreira, A. J. G. Otuka, E. C. Barbano, D. S. Manoel, F. S. De Vicente, D. R. Vollet, D. A. Donatti, L. Misoguti, and C. R. Mendonça, “Femtosecond laser fabrication of waveguides in Rhodamine B-doped GPTS/TEOS-derived organic/silica monolithic xerogel,” Opt. Mater. 47, 310–314 (2015).
[Crossref]

Broquin, J. E.

H. Amata, F. Royer, F. Choueikani, D. Jamon, F. Parsy, J. E. Broquin, S. Neveu, and J. J. Rousseau, “Hybrid magneto-optical mode converter made with a magnetic nanoparticles-doped SiO2/ZrO2 layer coated on an ion-exchanged glass waveguide,” Appl. Phys. Lett. 99(25), 251108 (2011).
[Crossref]

Bruce, I. J.

A. Campo, T. Sen, J. Lellouche, and I. J. Bruce, “Multifunctional magnetite and silica–magnetite nanoparticles: Synthesis,surface activation and applications in life sciences,” J. Magn. Magn. Mater. 293(1), 33–40 (2005).
[Crossref]

Calmano, T.

Campo, A.

A. Campo, T. Sen, J. Lellouche, and I. J. Bruce, “Multifunctional magnetite and silica–magnetite nanoparticles: Synthesis,surface activation and applications in life sciences,” J. Magn. Magn. Mater. 293(1), 33–40 (2005).
[Crossref]

Canioni, L.

N. Marquestaut, Y. Petit, A. Royon, P. Mounaix, T. Cardinal, and L. Canioni, “Three-dimensional silver nanoparticle formation using femtosecond laser irradiation in phosphate glasses: Analogy with photography,” Adv. Funct. Mater. 24(37), 5824–5832 (2014).
[Crossref]

Cardinal, T.

N. Marquestaut, Y. Petit, A. Royon, P. Mounaix, T. Cardinal, and L. Canioni, “Three-dimensional silver nanoparticle formation using femtosecond laser irradiation in phosphate glasses: Analogy with photography,” Adv. Funct. Mater. 24(37), 5824–5832 (2014).
[Crossref]

Cerami, L. R.

Charara, J.

F. Choueikani, F. Royer, D. Jamon, A. Siblini, J. J. Rousseau, S. Neveu, and J. Charara, “Magneto-optical waveguides made of cobalt ferrite nanoparticles embedded in silica/zirconia organic-inorganic matrix,” Appl. Phys. Lett. 94(5), 051113 (2009).
[Crossref]

Chen, F.

F. Chen and J. R. V’azquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

Cheng, F. Y.

F. Y. Cheng, C. H. Su, Y. S. Yang, C. S. Yeh, C. Y. Tsai, C. L. Wu, M. T. Wu, and D. B. Shieh, “Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications,” Biomaterials 26(7), 729–738 (2005).
[Crossref] [PubMed]

Choueikani, F.

H. Amata, F. Royer, F. Choueikani, D. Jamon, F. Parsy, J. E. Broquin, S. Neveu, and J. J. Rousseau, “Hybrid magneto-optical mode converter made with a magnetic nanoparticles-doped SiO2/ZrO2 layer coated on an ion-exchanged glass waveguide,” Appl. Phys. Lett. 99(25), 251108 (2011).
[Crossref]

F. Choueikani, F. Royer, D. Jamon, A. Siblini, J. J. Rousseau, S. Neveu, and J. Charara, “Magneto-optical waveguides made of cobalt ferrite nanoparticles embedded in silica/zirconia organic-inorganic matrix,” Appl. Phys. Lett. 94(5), 051113 (2009).
[Crossref]

Danto, S.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

Davis, K. M.

De Vicente, F. S.

P. H. D. Ferreira, A. J. G. Otuka, E. C. Barbano, D. S. Manoel, F. S. De Vicente, D. R. Vollet, D. A. Donatti, L. Misoguti, and C. R. Mendonça, “Femtosecond laser fabrication of waveguides in Rhodamine B-doped GPTS/TEOS-derived organic/silica monolithic xerogel,” Opt. Mater. 47, 310–314 (2015).
[Crossref]

Donatti, D. A.

P. H. D. Ferreira, A. J. G. Otuka, E. C. Barbano, D. S. Manoel, F. S. De Vicente, D. R. Vollet, D. A. Donatti, L. Misoguti, and C. R. Mendonça, “Femtosecond laser fabrication of waveguides in Rhodamine B-doped GPTS/TEOS-derived organic/silica monolithic xerogel,” Opt. Mater. 47, 310–314 (2015).
[Crossref]

Ferreira, P. H. D.

P. H. D. Ferreira, A. J. G. Otuka, E. C. Barbano, D. S. Manoel, F. S. De Vicente, D. R. Vollet, D. A. Donatti, L. Misoguti, and C. R. Mendonça, “Femtosecond laser fabrication of waveguides in Rhodamine B-doped GPTS/TEOS-derived organic/silica monolithic xerogel,” Opt. Mater. 47, 310–314 (2015).
[Crossref]

J. M. P. Almeida, P. H. D. Ferreira, D. Manzani, M. Napoli, S. J. L. Ribeiro, and C. R. Mendonça, “Metallic nanoparticles grown in the core of femtosecond laser micromachined waveguides,” J. Appl. Phys. 115(19), 193507 (2014).
[Crossref]

Forchel, A.

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett. 101(11), 113903 (2008).
[Crossref] [PubMed]

Fujita, K.

S. Nakashima, K. Fujita, A. Nakao, K. Tanaka, Y. Shimotsuma, K. Miura, and K. Hirao, “Enhanced magnetization and ferrimagnetic behavior of normal spinel ZnFe2O4 thin film irradiated with femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 94, 83–88 (2009).

Fujiwara, M.

M. Fujiwara, K. Toubaru, T. Noda, H. Q. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11(10), 4362–4365 (2011).
[Crossref] [PubMed]

Gattass, R. R.

Gondaira, K.

K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photonics 7(2), 133–137 (2013).
[Crossref]

Gu, N.

M. Ma, Y. Zhang, W. Yu, H. Shen, H. Zhang, and N. Gu, “Preparation and characterization of magnetite nanoparticles coated by amino silane,” Colloids Surf. A Physicochem. Eng. Asp. 212(2-3), 219–226 (2003).
[Crossref]

Hai, P. N.

Hirao, K.

S. Nakashima, K. Fujita, A. Nakao, K. Tanaka, Y. Shimotsuma, K. Miura, and K. Hirao, “Enhanced magnetization and ferrimagnetic behavior of normal spinel ZnFe2O4 thin film irradiated with femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 94, 83–88 (2009).

K. Miura, K. Hirao, Y. Shimotsuma, M. Sakakura, and S. Kanehira, “Formation of Si structure in glass with a femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 93(1), 183–188 (2008).
[Crossref]

J. Qiu, X. Jiang, C. Zhu, H. Inouye, J. Si, and K. Hirao, “Optical properties of structurally modified glasses doped with gold ions,” Opt. Lett. 29(4), 370–372 (2004).
[Crossref] [PubMed]

J. R. Qiu, M. Shirai, T. Nakaya, J. H. Si, X. W. Jiang, C. S. Zhu, and K. Hirao, “Space-selective precipitation of metal nanoparticles inside glasses,” Appl. Phys. Lett. 81(16), 3040–3042 (2002).
[Crossref]

K. Hirao and K. Miura, ““Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non-Crys,” Sol. 239, 91–95 (1998).

K. Miura, J. R. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71(23), 3329–3331 (1997).
[Crossref]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
[Crossref] [PubMed]

Hu, J.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

Huber, G.

Inouye, H.

J. Qiu, X. Jiang, C. Zhu, H. Inouye, J. Si, and K. Hirao, “Optical properties of structurally modified glasses doped with gold ions,” Opt. Lett. 29(4), 370–372 (2004).
[Crossref] [PubMed]

K. Miura, J. R. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71(23), 3329–3331 (1997).
[Crossref]

Ishida, A.

S. Nakashima, T. Tanaka, A. Ishida, and K. Mukai, “Fabrication of optical waveguides inside transparent silica xerogels containing PbS quantum dots using a femtosecond laser,” Appl. Phys. A 123, 723–728 (2017).

Ishikawa, A.

Ishizaki, K.

K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photonics 7(2), 133–137 (2013).
[Crossref]

Itoh, K.

Jamon, D.

H. Amata, F. Royer, F. Choueikani, D. Jamon, F. Parsy, J. E. Broquin, S. Neveu, and J. J. Rousseau, “Hybrid magneto-optical mode converter made with a magnetic nanoparticles-doped SiO2/ZrO2 layer coated on an ion-exchanged glass waveguide,” Appl. Phys. Lett. 99(25), 251108 (2011).
[Crossref]

F. Choueikani, F. Royer, D. Jamon, A. Siblini, J. J. Rousseau, S. Neveu, and J. Charara, “Magneto-optical waveguides made of cobalt ferrite nanoparticles embedded in silica/zirconia organic-inorganic matrix,” Appl. Phys. Lett. 94(5), 051113 (2009).
[Crossref]

Jiang, X.

Jiang, X. W.

J. R. Qiu, M. Shirai, T. Nakaya, J. H. Si, X. W. Jiang, C. S. Zhu, and K. Hirao, “Space-selective precipitation of metal nanoparticles inside glasses,” Appl. Phys. Lett. 81(16), 3040–3042 (2002).
[Crossref]

Julsgaard, B.

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett. 101(11), 113903 (2008).
[Crossref] [PubMed]

Kamp, M.

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett. 101(11), 113903 (2008).
[Crossref] [PubMed]

Kanehira, S.

K. Miura, K. Hirao, Y. Shimotsuma, M. Sakakura, and S. Kanehira, “Formation of Si structure in glass with a femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 93(1), 183–188 (2008).
[Crossref]

Koumura, M.

K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photonics 7(2), 133–137 (2013).
[Crossref]

Lellouche, J.

A. Campo, T. Sen, J. Lellouche, and I. J. Bruce, “Multifunctional magnetite and silica–magnetite nanoparticles: Synthesis,surface activation and applications in life sciences,” J. Magn. Magn. Mater. 293(1), 33–40 (2005).
[Crossref]

Li, L.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

Lin, H.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

Lodahl, P.

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett. 101(11), 113903 (2008).
[Crossref] [PubMed]

Lozano, G.

Lu, N.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

Lund-Hansen, T.

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett. 101(11), 113903 (2008).
[Crossref] [PubMed]

Ma, M.

M. Ma, Y. Zhang, W. Yu, H. Shen, H. Zhang, and N. Gu, “Preparation and characterization of magnetite nanoparticles coated by amino silane,” Colloids Surf. A Physicochem. Eng. Asp. 212(2-3), 219–226 (2003).
[Crossref]

Manoel, D. S.

P. H. D. Ferreira, A. J. G. Otuka, E. C. Barbano, D. S. Manoel, F. S. De Vicente, D. R. Vollet, D. A. Donatti, L. Misoguti, and C. R. Mendonça, “Femtosecond laser fabrication of waveguides in Rhodamine B-doped GPTS/TEOS-derived organic/silica monolithic xerogel,” Opt. Mater. 47, 310–314 (2015).
[Crossref]

Manzani, D.

J. M. P. Almeida, P. H. D. Ferreira, D. Manzani, M. Napoli, S. J. L. Ribeiro, and C. R. Mendonça, “Metallic nanoparticles grown in the core of femtosecond laser micromachined waveguides,” J. Appl. Phys. 115(19), 193507 (2014).
[Crossref]

Marquestaut, N.

N. Marquestaut, Y. Petit, A. Royon, P. Mounaix, T. Cardinal, and L. Canioni, “Three-dimensional silver nanoparticle formation using femtosecond laser irradiation in phosphate glasses: Analogy with photography,” Adv. Funct. Mater. 24(37), 5824–5832 (2014).
[Crossref]

Mazur, E.

Mendonca, C. R.

Mendonça, C. R.

P. H. D. Ferreira, A. J. G. Otuka, E. C. Barbano, D. S. Manoel, F. S. De Vicente, D. R. Vollet, D. A. Donatti, L. Misoguti, and C. R. Mendonça, “Femtosecond laser fabrication of waveguides in Rhodamine B-doped GPTS/TEOS-derived organic/silica monolithic xerogel,” Opt. Mater. 47, 310–314 (2015).
[Crossref]

J. M. P. Almeida, P. H. D. Ferreira, D. Manzani, M. Napoli, S. J. L. Ribeiro, and C. R. Mendonça, “Metallic nanoparticles grown in the core of femtosecond laser micromachined waveguides,” J. Appl. Phys. 115(19), 193507 (2014).
[Crossref]

Midorikawa, K.

S. Nakashima, K. Sugioka, K. Tanaka, M. Shimizu, Y. Shimotsuma, K. Miura, K. Midorikawa, and K. Mukai, “Plasmonically enhanced Faraday effect in metal and ferrite nanoparticles composite precipitated inside glass,” Opt. Express 20(27), 28191–28199 (2012).
[Crossref] [PubMed]

S. Nakashima, K. Sugioka, and K. Midorikawa, “Space-selective modification of the magnetic properties of transparent Fe3+-doped glass by femtosecond-laser irradiation,” Appl. Phys., A Mater. Sci. Process. 104(3), 993–996 (2011).
[Crossref]

S. Nakashima, K. Sugioka, and K. Midorikawa, “Enhancement of resolution and quality of nano-hole structure on GaN substrates using the second-harmonic beam of near-infrared femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 101, 475–481 (2010).

Misoguti, L.

P. H. D. Ferreira, A. J. G. Otuka, E. C. Barbano, D. S. Manoel, F. S. De Vicente, D. R. Vollet, D. A. Donatti, L. Misoguti, and C. R. Mendonça, “Femtosecond laser fabrication of waveguides in Rhodamine B-doped GPTS/TEOS-derived organic/silica monolithic xerogel,” Opt. Mater. 47, 310–314 (2015).
[Crossref]

Mitsuyu, T.

K. Miura, J. R. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71(23), 3329–3331 (1997).
[Crossref]

Miura, K.

S. Nakashima, K. Sugioka, K. Tanaka, M. Shimizu, Y. Shimotsuma, K. Miura, K. Midorikawa, and K. Mukai, “Plasmonically enhanced Faraday effect in metal and ferrite nanoparticles composite precipitated inside glass,” Opt. Express 20(27), 28191–28199 (2012).
[Crossref] [PubMed]

S. Nakashima, K. Fujita, A. Nakao, K. Tanaka, Y. Shimotsuma, K. Miura, and K. Hirao, “Enhanced magnetization and ferrimagnetic behavior of normal spinel ZnFe2O4 thin film irradiated with femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 94, 83–88 (2009).

K. Miura, K. Hirao, Y. Shimotsuma, M. Sakakura, and S. Kanehira, “Formation of Si structure in glass with a femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 93(1), 183–188 (2008).
[Crossref]

K. Hirao and K. Miura, ““Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non-Crys,” Sol. 239, 91–95 (1998).

K. Miura, J. R. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71(23), 3329–3331 (1997).
[Crossref]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
[Crossref] [PubMed]

Mizumoto, T.

Mounaix, P.

N. Marquestaut, Y. Petit, A. Royon, P. Mounaix, T. Cardinal, and L. Canioni, “Three-dimensional silver nanoparticle formation using femtosecond laser irradiation in phosphate glasses: Analogy with photography,” Adv. Funct. Mater. 24(37), 5824–5832 (2014).
[Crossref]

Mukai, K.

S. Nakashima, T. Tanaka, A. Ishida, and K. Mukai, “Fabrication of optical waveguides inside transparent silica xerogels containing PbS quantum dots using a femtosecond laser,” Appl. Phys. A 123, 723–728 (2017).

S. Nakashima, K. Sugioka, K. Tanaka, M. Shimizu, Y. Shimotsuma, K. Miura, K. Midorikawa, and K. Mukai, “Plasmonically enhanced Faraday effect in metal and ferrite nanoparticles composite precipitated inside glass,” Opt. Express 20(27), 28191–28199 (2012).
[Crossref] [PubMed]

Murai, S.

Musgraves, J. D.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

Nagai, H.

Nakao, A.

S. Nakashima, K. Fujita, A. Nakao, K. Tanaka, Y. Shimotsuma, K. Miura, and K. Hirao, “Enhanced magnetization and ferrimagnetic behavior of normal spinel ZnFe2O4 thin film irradiated with femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 94, 83–88 (2009).

Nakashima, S.

S. Nakashima, T. Tanaka, A. Ishida, and K. Mukai, “Fabrication of optical waveguides inside transparent silica xerogels containing PbS quantum dots using a femtosecond laser,” Appl. Phys. A 123, 723–728 (2017).

S. Nakashima, K. Sugioka, K. Tanaka, M. Shimizu, Y. Shimotsuma, K. Miura, K. Midorikawa, and K. Mukai, “Plasmonically enhanced Faraday effect in metal and ferrite nanoparticles composite precipitated inside glass,” Opt. Express 20(27), 28191–28199 (2012).
[Crossref] [PubMed]

S. Nakashima, K. Sugioka, and K. Midorikawa, “Space-selective modification of the magnetic properties of transparent Fe3+-doped glass by femtosecond-laser irradiation,” Appl. Phys., A Mater. Sci. Process. 104(3), 993–996 (2011).
[Crossref]

S. Nakashima, K. Sugioka, and K. Midorikawa, “Enhancement of resolution and quality of nano-hole structure on GaN substrates using the second-harmonic beam of near-infrared femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 101, 475–481 (2010).

S. Nakashima, K. Fujita, A. Nakao, K. Tanaka, Y. Shimotsuma, K. Miura, and K. Hirao, “Enhanced magnetization and ferrimagnetic behavior of normal spinel ZnFe2O4 thin film irradiated with femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 94, 83–88 (2009).

Nakaya, T.

J. R. Qiu, M. Shirai, T. Nakaya, J. H. Si, X. W. Jiang, C. S. Zhu, and K. Hirao, “Space-selective precipitation of metal nanoparticles inside glasses,” Appl. Phys. Lett. 81(16), 3040–3042 (2002).
[Crossref]

Napoli, M.

J. M. P. Almeida, P. H. D. Ferreira, D. Manzani, M. Napoli, S. J. L. Ribeiro, and C. R. Mendonça, “Metallic nanoparticles grown in the core of femtosecond laser micromachined waveguides,” J. Appl. Phys. 115(19), 193507 (2014).
[Crossref]

Nathans, R.

R. Nathans, M. T. Pigott, and C. G. Shull, “The magnetic structure of Fe3Al,” J. Phys. Chem. Solids 6(1), 38–42 (1958).
[Crossref]

Nelson, J. B.

J. B. Nelson and D. P. Riley, “An experimental investigation of extrapolation methods in the derivation of accurate unit-cell dimensions of crystals,” Proc. Phys. Soc. 57(3), 160–177 (1945).
[Crossref]

Neveu, S.

H. Amata, F. Royer, F. Choueikani, D. Jamon, F. Parsy, J. E. Broquin, S. Neveu, and J. J. Rousseau, “Hybrid magneto-optical mode converter made with a magnetic nanoparticles-doped SiO2/ZrO2 layer coated on an ion-exchanged glass waveguide,” Appl. Phys. Lett. 99(25), 251108 (2011).
[Crossref]

F. Choueikani, F. Royer, D. Jamon, A. Siblini, J. J. Rousseau, S. Neveu, and J. Charara, “Magneto-optical waveguides made of cobalt ferrite nanoparticles embedded in silica/zirconia organic-inorganic matrix,” Appl. Phys. Lett. 94(5), 051113 (2009).
[Crossref]

Nishii, J.

Noda, S.

K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photonics 7(2), 133–137 (2013).
[Crossref]

Noda, T.

M. Fujiwara, K. Toubaru, T. Noda, H. Q. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11(10), 4362–4365 (2011).
[Crossref] [PubMed]

Otuka, A. J. G.

P. H. D. Ferreira, A. J. G. Otuka, E. C. Barbano, D. S. Manoel, F. S. De Vicente, D. R. Vollet, D. A. Donatti, L. Misoguti, and C. R. Mendonça, “Femtosecond laser fabrication of waveguides in Rhodamine B-doped GPTS/TEOS-derived organic/silica monolithic xerogel,” Opt. Mater. 47, 310–314 (2015).
[Crossref]

Parsy, F.

H. Amata, F. Royer, F. Choueikani, D. Jamon, F. Parsy, J. E. Broquin, S. Neveu, and J. J. Rousseau, “Hybrid magneto-optical mode converter made with a magnetic nanoparticles-doped SiO2/ZrO2 layer coated on an ion-exchanged glass waveguide,” Appl. Phys. Lett. 99(25), 251108 (2011).
[Crossref]

Petermann, K.

Petit, Y.

N. Marquestaut, Y. Petit, A. Royon, P. Mounaix, T. Cardinal, and L. Canioni, “Three-dimensional silver nanoparticle formation using femtosecond laser irradiation in phosphate glasses: Analogy with photography,” Adv. Funct. Mater. 24(37), 5824–5832 (2014).
[Crossref]

Pigott, M. T.

R. Nathans, M. T. Pigott, and C. G. Shull, “The magnetic structure of Fe3Al,” J. Phys. Chem. Solids 6(1), 38–42 (1958).
[Crossref]

Pirruccio, G.

Qiao, S.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

Qiu, J.

Qiu, J. R.

J. R. Qiu, M. Shirai, T. Nakaya, J. H. Si, X. W. Jiang, C. S. Zhu, and K. Hirao, “Space-selective precipitation of metal nanoparticles inside glasses,” Appl. Phys. Lett. 81(16), 3040–3042 (2002).
[Crossref]

K. Miura, J. R. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71(23), 3329–3331 (1997).
[Crossref]

Ribeiro, S. J. L.

J. M. P. Almeida, P. H. D. Ferreira, D. Manzani, M. Napoli, S. J. L. Ribeiro, and C. R. Mendonça, “Metallic nanoparticles grown in the core of femtosecond laser micromachined waveguides,” J. Appl. Phys. 115(19), 193507 (2014).
[Crossref]

Richardson, K.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

Riley, D. P.

J. B. Nelson and D. P. Riley, “An experimental investigation of extrapolation methods in the derivation of accurate unit-cell dimensions of crystals,” Proc. Phys. Soc. 57(3), 160–177 (1945).
[Crossref]

Rivas, J. G.

Rodriguez, S. R. K.

Rousseau, J. J.

H. Amata, F. Royer, F. Choueikani, D. Jamon, F. Parsy, J. E. Broquin, S. Neveu, and J. J. Rousseau, “Hybrid magneto-optical mode converter made with a magnetic nanoparticles-doped SiO2/ZrO2 layer coated on an ion-exchanged glass waveguide,” Appl. Phys. Lett. 99(25), 251108 (2011).
[Crossref]

F. Choueikani, F. Royer, D. Jamon, A. Siblini, J. J. Rousseau, S. Neveu, and J. Charara, “Magneto-optical waveguides made of cobalt ferrite nanoparticles embedded in silica/zirconia organic-inorganic matrix,” Appl. Phys. Lett. 94(5), 051113 (2009).
[Crossref]

Royer, F.

H. Amata, F. Royer, F. Choueikani, D. Jamon, F. Parsy, J. E. Broquin, S. Neveu, and J. J. Rousseau, “Hybrid magneto-optical mode converter made with a magnetic nanoparticles-doped SiO2/ZrO2 layer coated on an ion-exchanged glass waveguide,” Appl. Phys. Lett. 99(25), 251108 (2011).
[Crossref]

F. Choueikani, F. Royer, D. Jamon, A. Siblini, J. J. Rousseau, S. Neveu, and J. Charara, “Magneto-optical waveguides made of cobalt ferrite nanoparticles embedded in silica/zirconia organic-inorganic matrix,” Appl. Phys. Lett. 94(5), 051113 (2009).
[Crossref]

Royon, A.

N. Marquestaut, Y. Petit, A. Royon, P. Mounaix, T. Cardinal, and L. Canioni, “Three-dimensional silver nanoparticle formation using femtosecond laser irradiation in phosphate glasses: Analogy with photography,” Adv. Funct. Mater. 24(37), 5824–5832 (2014).
[Crossref]

Sakakura, M.

K. Miura, K. Hirao, Y. Shimotsuma, M. Sakakura, and S. Kanehira, “Formation of Si structure in glass with a femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 93(1), 183–188 (2008).
[Crossref]

Sen, T.

A. Campo, T. Sen, J. Lellouche, and I. J. Bruce, “Multifunctional magnetite and silica–magnetite nanoparticles: Synthesis,surface activation and applications in life sciences,” J. Magn. Magn. Mater. 293(1), 33–40 (2005).
[Crossref]

Shen, H.

M. Ma, Y. Zhang, W. Yu, H. Shen, H. Zhang, and N. Gu, “Preparation and characterization of magnetite nanoparticles coated by amino silane,” Colloids Surf. A Physicochem. Eng. Asp. 212(2-3), 219–226 (2003).
[Crossref]

Shieh, D. B.

F. Y. Cheng, C. H. Su, Y. S. Yang, C. S. Yeh, C. Y. Tsai, C. L. Wu, M. T. Wu, and D. B. Shieh, “Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications,” Biomaterials 26(7), 729–738 (2005).
[Crossref] [PubMed]

Shih, T.

Shimizu, M.

Shimotsuma, Y.

S. Nakashima, K. Sugioka, K. Tanaka, M. Shimizu, Y. Shimotsuma, K. Miura, K. Midorikawa, and K. Mukai, “Plasmonically enhanced Faraday effect in metal and ferrite nanoparticles composite precipitated inside glass,” Opt. Express 20(27), 28191–28199 (2012).
[Crossref] [PubMed]

S. Nakashima, K. Fujita, A. Nakao, K. Tanaka, Y. Shimotsuma, K. Miura, and K. Hirao, “Enhanced magnetization and ferrimagnetic behavior of normal spinel ZnFe2O4 thin film irradiated with femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 94, 83–88 (2009).

K. Miura, K. Hirao, Y. Shimotsuma, M. Sakakura, and S. Kanehira, “Formation of Si structure in glass with a femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 93(1), 183–188 (2008).
[Crossref]

Shirai, M.

J. R. Qiu, M. Shirai, T. Nakaya, J. H. Si, X. W. Jiang, C. S. Zhu, and K. Hirao, “Space-selective precipitation of metal nanoparticles inside glasses,” Appl. Phys. Lett. 81(16), 3040–3042 (2002).
[Crossref]

Shoji, Y.

Shull, C. G.

R. Nathans, M. T. Pigott, and C. G. Shull, “The magnetic structure of Fe3Al,” J. Phys. Chem. Solids 6(1), 38–42 (1958).
[Crossref]

Si, J.

Si, J. H.

J. R. Qiu, M. Shirai, T. Nakaya, J. H. Si, X. W. Jiang, C. S. Zhu, and K. Hirao, “Space-selective precipitation of metal nanoparticles inside glasses,” Appl. Phys. Lett. 81(16), 3040–3042 (2002).
[Crossref]

Siblini, A.

F. Choueikani, F. Royer, D. Jamon, A. Siblini, J. J. Rousseau, S. Neveu, and J. Charara, “Magneto-optical waveguides made of cobalt ferrite nanoparticles embedded in silica/zirconia organic-inorganic matrix,” Appl. Phys. Lett. 94(5), 051113 (2009).
[Crossref]

Siebenmorgen, J.

Sowa, S.

Stobbe, S.

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett. 101(11), 113903 (2008).
[Crossref] [PubMed]

Su, C. H.

F. Y. Cheng, C. H. Su, Y. S. Yang, C. S. Yeh, C. Y. Tsai, C. L. Wu, M. T. Wu, and D. B. Shieh, “Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications,” Biomaterials 26(7), 729–738 (2005).
[Crossref] [PubMed]

Sugimoto, N.

Sugioka, K.

S. Nakashima, K. Sugioka, K. Tanaka, M. Shimizu, Y. Shimotsuma, K. Miura, K. Midorikawa, and K. Mukai, “Plasmonically enhanced Faraday effect in metal and ferrite nanoparticles composite precipitated inside glass,” Opt. Express 20(27), 28191–28199 (2012).
[Crossref] [PubMed]

S. Nakashima, K. Sugioka, and K. Midorikawa, “Space-selective modification of the magnetic properties of transparent Fe3+-doped glass by femtosecond-laser irradiation,” Appl. Phys., A Mater. Sci. Process. 104(3), 993–996 (2011).
[Crossref]

S. Nakashima, K. Sugioka, and K. Midorikawa, “Enhancement of resolution and quality of nano-hole structure on GaN substrates using the second-harmonic beam of near-infrared femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 101, 475–481 (2010).

Sünner, T.

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett. 101(11), 113903 (2008).
[Crossref] [PubMed]

Suzuki, K.

K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photonics 7(2), 133–137 (2013).
[Crossref]

Takeuchi, S.

M. Fujiwara, K. Toubaru, T. Noda, H. Q. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11(10), 4362–4365 (2011).
[Crossref] [PubMed]

Tamaki, T.

Tanaka, K.

S. Nakashima, K. Sugioka, K. Tanaka, M. Shimizu, Y. Shimotsuma, K. Miura, K. Midorikawa, and K. Mukai, “Plasmonically enhanced Faraday effect in metal and ferrite nanoparticles composite precipitated inside glass,” Opt. Express 20(27), 28191–28199 (2012).
[Crossref] [PubMed]

S. Nakashima, K. Fujita, A. Nakao, K. Tanaka, Y. Shimotsuma, K. Miura, and K. Hirao, “Enhanced magnetization and ferrimagnetic behavior of normal spinel ZnFe2O4 thin film irradiated with femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 94, 83–88 (2009).

Tanaka, M.

Tanaka, T.

S. Nakashima, T. Tanaka, A. Ishida, and K. Mukai, “Fabrication of optical waveguides inside transparent silica xerogels containing PbS quantum dots using a femtosecond laser,” Appl. Phys. A 123, 723–728 (2017).

T. Amemiya, A. Ishikawa, Y. Shoji, P. N. Hai, M. Tanaka, T. Mizumoto, T. Tanaka, and S. Arai, “Three-dimensional nanostructuring in YIG ferrite with femtosecond laser,” Opt. Lett. 39(2), 212–215 (2014).
[Crossref] [PubMed]

Thyrrestrup, H.

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett. 101(11), 113903 (2008).
[Crossref] [PubMed]

Tilghman, R. W.

Toubaru, K.

M. Fujiwara, K. Toubaru, T. Noda, H. Q. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11(10), 4362–4365 (2011).
[Crossref] [PubMed]

Tsai, C. Y.

F. Y. Cheng, C. H. Su, Y. S. Yang, C. S. Yeh, C. Y. Tsai, C. L. Wu, M. T. Wu, and D. B. Shieh, “Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications,” Biomaterials 26(7), 729–738 (2005).
[Crossref] [PubMed]

V’azquez de Aldana, J. R.

F. Chen and J. R. V’azquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

Verschuuren, M. A.

Vollet, D. R.

P. H. D. Ferreira, A. J. G. Otuka, E. C. Barbano, D. S. Manoel, F. S. De Vicente, D. R. Vollet, D. A. Donatti, L. Misoguti, and C. R. Mendonça, “Femtosecond laser fabrication of waveguides in Rhodamine B-doped GPTS/TEOS-derived organic/silica monolithic xerogel,” Opt. Mater. 47, 310–314 (2015).
[Crossref]

Watanabe, W.

Wu, C. L.

F. Y. Cheng, C. H. Su, Y. S. Yang, C. S. Yeh, C. Y. Tsai, C. L. Wu, M. T. Wu, and D. B. Shieh, “Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications,” Biomaterials 26(7), 729–738 (2005).
[Crossref] [PubMed]

Wu, M. T.

F. Y. Cheng, C. H. Su, Y. S. Yang, C. S. Yeh, C. Y. Tsai, C. L. Wu, M. T. Wu, and D. B. Shieh, “Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications,” Biomaterials 26(7), 729–738 (2005).
[Crossref] [PubMed]

Yang, Y. S.

F. Y. Cheng, C. H. Su, Y. S. Yang, C. S. Yeh, C. Y. Tsai, C. L. Wu, M. T. Wu, and D. B. Shieh, “Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications,” Biomaterials 26(7), 729–738 (2005).
[Crossref] [PubMed]

Yeh, C. S.

F. Y. Cheng, C. H. Su, Y. S. Yang, C. S. Yeh, C. Y. Tsai, C. L. Wu, M. T. Wu, and D. B. Shieh, “Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications,” Biomaterials 26(7), 729–738 (2005).
[Crossref] [PubMed]

Yoshida, M.

Yu, W.

M. Ma, Y. Zhang, W. Yu, H. Shen, H. Zhang, and N. Gu, “Preparation and characterization of magnetite nanoparticles coated by amino silane,” Colloids Surf. A Physicochem. Eng. Asp. 212(2-3), 219–226 (2003).
[Crossref]

Zhang, H.

M. Ma, Y. Zhang, W. Yu, H. Shen, H. Zhang, and N. Gu, “Preparation and characterization of magnetite nanoparticles coated by amino silane,” Colloids Surf. A Physicochem. Eng. Asp. 212(2-3), 219–226 (2003).
[Crossref]

Zhang, Y.

M. Ma, Y. Zhang, W. Yu, H. Shen, H. Zhang, and N. Gu, “Preparation and characterization of magnetite nanoparticles coated by amino silane,” Colloids Surf. A Physicochem. Eng. Asp. 212(2-3), 219–226 (2003).
[Crossref]

Zhao, H. Q.

M. Fujiwara, K. Toubaru, T. Noda, H. Q. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11(10), 4362–4365 (2011).
[Crossref] [PubMed]

Zhu, C.

Zhu, C. S.

J. R. Qiu, M. Shirai, T. Nakaya, J. H. Si, X. W. Jiang, C. S. Zhu, and K. Hirao, “Space-selective precipitation of metal nanoparticles inside glasses,” Appl. Phys. Lett. 81(16), 3040–3042 (2002).
[Crossref]

Zou, Y.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

Adv. Funct. Mater. (1)

N. Marquestaut, Y. Petit, A. Royon, P. Mounaix, T. Cardinal, and L. Canioni, “Three-dimensional silver nanoparticle formation using femtosecond laser irradiation in phosphate glasses: Analogy with photography,” Adv. Funct. Mater. 24(37), 5824–5832 (2014).
[Crossref]

Appl. Phys. A (1)

S. Nakashima, T. Tanaka, A. Ishida, and K. Mukai, “Fabrication of optical waveguides inside transparent silica xerogels containing PbS quantum dots using a femtosecond laser,” Appl. Phys. A 123, 723–728 (2017).

Appl. Phys. Lett. (4)

F. Choueikani, F. Royer, D. Jamon, A. Siblini, J. J. Rousseau, S. Neveu, and J. Charara, “Magneto-optical waveguides made of cobalt ferrite nanoparticles embedded in silica/zirconia organic-inorganic matrix,” Appl. Phys. Lett. 94(5), 051113 (2009).
[Crossref]

H. Amata, F. Royer, F. Choueikani, D. Jamon, F. Parsy, J. E. Broquin, S. Neveu, and J. J. Rousseau, “Hybrid magneto-optical mode converter made with a magnetic nanoparticles-doped SiO2/ZrO2 layer coated on an ion-exchanged glass waveguide,” Appl. Phys. Lett. 99(25), 251108 (2011).
[Crossref]

J. R. Qiu, M. Shirai, T. Nakaya, J. H. Si, X. W. Jiang, C. S. Zhu, and K. Hirao, “Space-selective precipitation of metal nanoparticles inside glasses,” Appl. Phys. Lett. 81(16), 3040–3042 (2002).
[Crossref]

K. Miura, J. R. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71(23), 3329–3331 (1997).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (4)

K. Miura, K. Hirao, Y. Shimotsuma, M. Sakakura, and S. Kanehira, “Formation of Si structure in glass with a femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 93(1), 183–188 (2008).
[Crossref]

S. Nakashima, K. Sugioka, and K. Midorikawa, “Space-selective modification of the magnetic properties of transparent Fe3+-doped glass by femtosecond-laser irradiation,” Appl. Phys., A Mater. Sci. Process. 104(3), 993–996 (2011).
[Crossref]

S. Nakashima, K. Fujita, A. Nakao, K. Tanaka, Y. Shimotsuma, K. Miura, and K. Hirao, “Enhanced magnetization and ferrimagnetic behavior of normal spinel ZnFe2O4 thin film irradiated with femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 94, 83–88 (2009).

S. Nakashima, K. Sugioka, and K. Midorikawa, “Enhancement of resolution and quality of nano-hole structure on GaN substrates using the second-harmonic beam of near-infrared femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 101, 475–481 (2010).

Biomaterials (1)

F. Y. Cheng, C. H. Su, Y. S. Yang, C. S. Yeh, C. Y. Tsai, C. L. Wu, M. T. Wu, and D. B. Shieh, “Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications,” Biomaterials 26(7), 729–738 (2005).
[Crossref] [PubMed]

Colloids Surf. A Physicochem. Eng. Asp. (1)

M. Ma, Y. Zhang, W. Yu, H. Shen, H. Zhang, and N. Gu, “Preparation and characterization of magnetite nanoparticles coated by amino silane,” Colloids Surf. A Physicochem. Eng. Asp. 212(2-3), 219–226 (2003).
[Crossref]

J. Appl. Phys. (1)

J. M. P. Almeida, P. H. D. Ferreira, D. Manzani, M. Napoli, S. J. L. Ribeiro, and C. R. Mendonça, “Metallic nanoparticles grown in the core of femtosecond laser micromachined waveguides,” J. Appl. Phys. 115(19), 193507 (2014).
[Crossref]

J. Magn. Magn. Mater. (1)

A. Campo, T. Sen, J. Lellouche, and I. J. Bruce, “Multifunctional magnetite and silica–magnetite nanoparticles: Synthesis,surface activation and applications in life sciences,” J. Magn. Magn. Mater. 293(1), 33–40 (2005).
[Crossref]

J. Phys. Chem. Solids (1)

R. Nathans, M. T. Pigott, and C. G. Shull, “The magnetic structure of Fe3Al,” J. Phys. Chem. Solids 6(1), 38–42 (1958).
[Crossref]

Laser Photonics Rev. (1)

F. Chen and J. R. V’azquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

Nano Lett. (1)

M. Fujiwara, K. Toubaru, T. Noda, H. Q. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11(10), 4362–4365 (2011).
[Crossref] [PubMed]

Nat. Photonics (2)

K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photonics 7(2), 133–137 (2013).
[Crossref]

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

Opt. Express (7)

S. Sowa, W. Watanabe, T. Tamaki, J. Nishii, and K. Itoh, “Symmetric waveguides in poly(methyl methacrylate) fabricated by femtosecond laser pulses,” Opt. Express 14(1), 291–297 (2006).
[Crossref] [PubMed]

T. Tamaki, W. Watanabe, H. Nagai, M. Yoshida, J. Nishii, and K. Itoh, “Structural modification in fused silica by a femtosecond fiber laser at 1558 nm,” Opt. Express 14(15), 6971–6980 (2006).
[Crossref] [PubMed]

T. Shih, R. R. Gattass, C. R. Mendonca, and E. Mazur, “Faraday rotation in femtosecond laser micromachined waveguides,” Opt. Express 15(9), 5809–5814 (2007).
[Crossref] [PubMed]

C. R. Mendonca, L. R. Cerami, T. Shih, R. W. Tilghman, T. Baldacchini, and E. Mazur, “Femtosecond laser waveguide micromachining of PMMA films with azoaromatic chromophores,” Opt. Express 16(1), 200–206 (2008).
[Crossref] [PubMed]

J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express 18(15), 16035–16041 (2010).
[Crossref] [PubMed]

S. Nakashima, K. Sugioka, K. Tanaka, M. Shimizu, Y. Shimotsuma, K. Miura, K. Midorikawa, and K. Mukai, “Plasmonically enhanced Faraday effect in metal and ferrite nanoparticles composite precipitated inside glass,” Opt. Express 20(27), 28191–28199 (2012).
[Crossref] [PubMed]

S. Murai, M. A. Verschuuren, G. Lozano, G. Pirruccio, S. R. K. Rodriguez, and J. G. Rivas, “Hybrid plasmonic-photonic modes in diffractive arrays of nanoparticles coupled to light-emitting optical waveguides,” Opt. Express 21(4), 4250–4262 (2013).
[Crossref] [PubMed]

Opt. Lett. (3)

Opt. Mater. (1)

P. H. D. Ferreira, A. J. G. Otuka, E. C. Barbano, D. S. Manoel, F. S. De Vicente, D. R. Vollet, D. A. Donatti, L. Misoguti, and C. R. Mendonça, “Femtosecond laser fabrication of waveguides in Rhodamine B-doped GPTS/TEOS-derived organic/silica monolithic xerogel,” Opt. Mater. 47, 310–314 (2015).
[Crossref]

Phys. Rev. Lett. (1)

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett. 101(11), 113903 (2008).
[Crossref] [PubMed]

Proc. Phys. Soc. (1)

J. B. Nelson and D. P. Riley, “An experimental investigation of extrapolation methods in the derivation of accurate unit-cell dimensions of crystals,” Proc. Phys. Soc. 57(3), 160–177 (1945).
[Crossref]

Sol. (1)

K. Hirao and K. Miura, ““Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non-Crys,” Sol. 239, 91–95 (1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematics of experimental setup for (a) fabrication of waveguide structures inside xerogels using an fs-laser irradiation system and (b) measurement of Faraday rotation angle.
Fig. 2
Fig. 2 XRD pattern for Fe3O4 NPs synthesized by coprecipitation. The XRD pattern for polycrystalline Fe3O4 prepared by a solid-state reaction is also shown for comparison.
Fig. 3
Fig. 3 (a) Bright-field and (b) high-resolution TEM images of Fe3O4 NPs synthesized by coprecipitation. (c) Size distribution histogram obtained from TEM images.
Fig. 4
Fig. 4 (a) Absorption spectra measured for Fe3O4 NPs-dispersed aqueous solutions diluted 25-, 50-, 100-, and 200-fold. (b) Absorption spectra for xerogels prepared using 10- and 20-fold-diluted Fe3O4 solutions and for xerogel without NPs.
Fig. 5
Fig. 5 Magnetic field dependence of magnetization for xerogels containing Fe3O4 NPs at concentrations of 0.028 and 0.18 mg/cm3.
Fig. 6
Fig. 6 (a)-(f) Optical microscope images of waveguide structures fabricated under different conditions. All scale bars represent 10 μm. (g) Summary of results for waveguide fabrication under different conditions.
Fig. 7
Fig. 7 Cross-sectional images (upper Figs.) and near-field images (middle Figs.) of the output ends of waveguides in xerogels containing Fe3O4 NPs at a concentration of 0.087 mg/cm3. Horizontal intensity profiles of the bright spots are shown in the bottom Figs.
Fig. 8
Fig. 8 Magnetic field dependence of Faraday rotation angle for light propagating through the low-loss waveguide fabricated inside xerogels containing Fe3O4 NPs at concentrations of 0.087 and 0.148 mg/cm3.

Metrics