Abstract

A reflective quadrature interferometer was constructed by integrating polymeric optical waveguide components, to demonstrate an optical current sensor that could operate without bias feedback control. In order to obtain two interference signals with a phase difference of 90°, half-wave and quarter-wave plates were inserted in the polymeric optical waveguide chip, and a polarization-dependent birefringence modulator was used for the initialization of the optical sensor, including detector gain adjustment. During the bias-free operation of the sensor, the measurement error was less than ± 0.2%, and it was confirmed that the sensor output was stable for 15 h even if the operating point was not maintained.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Integrated-optic current sensors with a multimode interference waveguide device

Sung-Moon Kim, Woo-Sung Chu, Sang-Guk Kim, and Min-Cheol Oh
Opt. Express 24(7) 7426-7435 (2016)

Polymer waveguide integrated-optic current transducers

Min-Cheol Oh, Woo-Sung Chu, Kyung-Jo Kim, and Jun-Whee Kim
Opt. Express 19(10) 9392-9400 (2011)

Demodulation of diaphragm based acoustic sensor using Sagnac interferometer with stable phase bias

Jun Ma, Yongqin Yu, and Wei Jin
Opt. Express 23(22) 29268-29278 (2015)

References

  • View by:
  • |
  • |
  • |

  1. K. Kurosawa, “Development of fiber-optic current sensing technique and its applications in electric power systems,” Photonic Sens. 4(1), 12–20 (2014).
    [Crossref]
  2. K. Bohnert, P. Gabus, J. Nehring, H. Brandle, and M. G. Brunzel, “Fiber-optic current sensor for electrowinning of metals,” J. Lightwave Technol. 25(11), 3602–3609 (2007).
    [Crossref]
  3. J. D. P. Hrabluik, “Optical current sensors eliminate CT saturation,” in Proceedings of IEEE Power Engineering Society Winter Meeting (IEEE, 2002), 2, pp.1478–1481.
    [Crossref]
  4. Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattan, and D. A. Jackson, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum. 66(5), 3097–3111 (1995).
    [Crossref]
  5. K. Bohnert, P. Gabus, J. Kostovic, and H. Brandle, “Optical fiber sensors for the electric power industry,” Opt. Lasers Eng. 43(3–5), 511–526 (2005).
    [Crossref]
  6. R. M. Silva, H. Martins, I. Nascimento, J. M. Baptista, A. L. Ribeiro, J. L. Santos, P. Jorge, and O. Frazao, “Optical current sensors for high power systems: a review,” Appl. Sci. (Basel) 2(3), 602–628 (2012).
    [Crossref]
  7. K. Bohnert, P. Gabus, J. Nehring, and H. Brändle, “Temperature and vibration insensitive fiber-optic current sensor,” J. Lightwave Technol. 20(2), 267–276 (2002).
    [Crossref]
  8. A. Enokihara, M. Izutsum, and T. Sueta, “Optical fiber sensors using the method of polarization-rotated reflection,” J. Lightwave Technol. 5(11), 1584–1590 (1987).
    [Crossref]
  9. G. Frosio and R. Dändliker, “Reciprocal reflection interferometer for a fiber-optic Faraday current sensor,” Appl. Opt. 33(25), 6111–6122 (1994).
    [Crossref] [PubMed]
  10. M.-C. Oh, J.-K. Seo, K.-J. Kim, H. Kim, J.-W. Kim, and W.-S. Chu, “Optical current sensors consisting of polymeric waveguide components,” J. Lightwave Technol. 28(12), 1851–1857 (2010).
    [Crossref]
  11. M.-C. Oh, W.-S. Chu, K.-J. Kim, and J.-W. Kim, “Polymer waveguide integrated-optic current transducers,” Opt. Express 19(10), 9392–9400 (2011).
    [Crossref] [PubMed]
  12. G. M. Müller, L. Yang, A. Frank, and K. Bohnert, “Simple fiber-optic current sensor with integrated-optics polarization splitter for interrogation,” in Applied Industrial Optics: Spectroscopy, Imaging and Metrology Conference, 2014 OSA Technical Digest Series (Optical Society of America, 2014), paper AM4A.3.
  13. T. Masao, K. Sasaki, and K. Terai, “Optical current sensor for DC measurement,” in Proceedings of IEEE conference on Asia Pacific IEEE/PES Transmiss. Distrib. Conf. Exhibit. (IEEE, 2002) 1, 440–443.
  14. F. Briffod, L. Thévenaz, P.-A. Nicati, A. Küng, and P. A. Robert, “Polarimetric current sensor using an in-line faraday rotator,” IEICE Trans. Electron. E83-C(3), 331–335 (2000).
  15. J. Zubia, L. Casado, G. Aldabaldetreku, A. Montero, E. Zubia, and G. Durana, “Design and development of a low-cost optical current sensor,” Sensors (Basel) 13(10), 13584–13595 (2013).
    [Crossref] [PubMed]
  16. D. W. Stowe and T.-Y. Hsu, “Demodulation of interferometric sensors using a fiber-optic passive quadrature demodulator,” J. Lightwave Technol. 1(3), 519–523 (1983).
    [Crossref]
  17. J. Jia, Y. Jiang, L. Zhang, H. Gao, S. Wang, and L. Jiang, “Dual-wavelength DC compensation technique for the demodulation of EFPI fiber sensors,” IEEE Photonics Technol. Lett. 30(15), 1380–1383 (2018).
    [Crossref]
  18. T. Keem, S. Gonda, I. Misumi, Q. Huang, and T. Kurosawa, “Removing nonlinearity of a homodyne interferometer by adjusting the gains of its quadrature detector systems,” Appl. Opt. 43(12), 2443–2448 (2004).
    [Crossref] [PubMed]
  19. P. Hu, J. Zhu, X. Zhai, and J. Tan, “DC-offset-free homodyne interferometer and its nonlinearity compensation,” Opt. Express 23(7), 8399–8408 (2015).
    [Crossref] [PubMed]
  20. S.-M. Kim, W.-S. Chu, S.-G. Kim, and M.-C. Oh, “Integrated-optic current sensors with a multimode interference waveguide device,” Opt. Express 24(7), 7426–7435 (2016).
    [Crossref] [PubMed]
  21. Y. Inoue, Y. Ohmori, M. Kawachi, S. Ando, T. Sawada, and H. Takahashi, “Polarization mode converter with polyimide half waveplate in silica-based planar lightwave circuits,” IEEE Photonics Technol. Lett. 6(5), 626–628 (1994).
    [Crossref]
  22. S.-M. Kim, T.-H. Park, G. Huang, and M.-C. Oh, “Optical waveguide tunable phase delay lines based on the superior thermo-optic effect of polymer,” Polymers (Basel) 10(5), 497 (2018).
    [Crossref]
  23. W.-S. Chu, S.-M. Kim, and M.-C. Oh, “Integrated optic current transducers incorporating photonic crystal fiber for reduced temperature dependence,” Opt. Express 23(17), 22816–22825 (2015).
    [Crossref] [PubMed]
  24. S.-H. Park, J.-W. Kim, M.-C. Oh, Y.-O. Noh, and H.-J. Lee, “Polymer waveguide birefringence modulators,” IEEE Photonics Technol. Lett. 24(10), 845–847 (2012).

2018 (2)

J. Jia, Y. Jiang, L. Zhang, H. Gao, S. Wang, and L. Jiang, “Dual-wavelength DC compensation technique for the demodulation of EFPI fiber sensors,” IEEE Photonics Technol. Lett. 30(15), 1380–1383 (2018).
[Crossref]

S.-M. Kim, T.-H. Park, G. Huang, and M.-C. Oh, “Optical waveguide tunable phase delay lines based on the superior thermo-optic effect of polymer,” Polymers (Basel) 10(5), 497 (2018).
[Crossref]

2016 (1)

2015 (2)

2014 (1)

K. Kurosawa, “Development of fiber-optic current sensing technique and its applications in electric power systems,” Photonic Sens. 4(1), 12–20 (2014).
[Crossref]

2013 (1)

J. Zubia, L. Casado, G. Aldabaldetreku, A. Montero, E. Zubia, and G. Durana, “Design and development of a low-cost optical current sensor,” Sensors (Basel) 13(10), 13584–13595 (2013).
[Crossref] [PubMed]

2012 (2)

R. M. Silva, H. Martins, I. Nascimento, J. M. Baptista, A. L. Ribeiro, J. L. Santos, P. Jorge, and O. Frazao, “Optical current sensors for high power systems: a review,” Appl. Sci. (Basel) 2(3), 602–628 (2012).
[Crossref]

S.-H. Park, J.-W. Kim, M.-C. Oh, Y.-O. Noh, and H.-J. Lee, “Polymer waveguide birefringence modulators,” IEEE Photonics Technol. Lett. 24(10), 845–847 (2012).

2011 (1)

2010 (1)

2007 (1)

2005 (1)

K. Bohnert, P. Gabus, J. Kostovic, and H. Brandle, “Optical fiber sensors for the electric power industry,” Opt. Lasers Eng. 43(3–5), 511–526 (2005).
[Crossref]

2004 (1)

2002 (1)

2000 (1)

F. Briffod, L. Thévenaz, P.-A. Nicati, A. Küng, and P. A. Robert, “Polarimetric current sensor using an in-line faraday rotator,” IEICE Trans. Electron. E83-C(3), 331–335 (2000).

1995 (1)

Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattan, and D. A. Jackson, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum. 66(5), 3097–3111 (1995).
[Crossref]

1994 (2)

G. Frosio and R. Dändliker, “Reciprocal reflection interferometer for a fiber-optic Faraday current sensor,” Appl. Opt. 33(25), 6111–6122 (1994).
[Crossref] [PubMed]

Y. Inoue, Y. Ohmori, M. Kawachi, S. Ando, T. Sawada, and H. Takahashi, “Polarization mode converter with polyimide half waveplate in silica-based planar lightwave circuits,” IEEE Photonics Technol. Lett. 6(5), 626–628 (1994).
[Crossref]

1987 (1)

A. Enokihara, M. Izutsum, and T. Sueta, “Optical fiber sensors using the method of polarization-rotated reflection,” J. Lightwave Technol. 5(11), 1584–1590 (1987).
[Crossref]

1983 (1)

D. W. Stowe and T.-Y. Hsu, “Demodulation of interferometric sensors using a fiber-optic passive quadrature demodulator,” J. Lightwave Technol. 1(3), 519–523 (1983).
[Crossref]

Aldabaldetreku, G.

J. Zubia, L. Casado, G. Aldabaldetreku, A. Montero, E. Zubia, and G. Durana, “Design and development of a low-cost optical current sensor,” Sensors (Basel) 13(10), 13584–13595 (2013).
[Crossref] [PubMed]

Ando, S.

Y. Inoue, Y. Ohmori, M. Kawachi, S. Ando, T. Sawada, and H. Takahashi, “Polarization mode converter with polyimide half waveplate in silica-based planar lightwave circuits,” IEEE Photonics Technol. Lett. 6(5), 626–628 (1994).
[Crossref]

Baptista, J. M.

R. M. Silva, H. Martins, I. Nascimento, J. M. Baptista, A. L. Ribeiro, J. L. Santos, P. Jorge, and O. Frazao, “Optical current sensors for high power systems: a review,” Appl. Sci. (Basel) 2(3), 602–628 (2012).
[Crossref]

Bohnert, K.

Brandle, H.

K. Bohnert, P. Gabus, J. Nehring, H. Brandle, and M. G. Brunzel, “Fiber-optic current sensor for electrowinning of metals,” J. Lightwave Technol. 25(11), 3602–3609 (2007).
[Crossref]

K. Bohnert, P. Gabus, J. Kostovic, and H. Brandle, “Optical fiber sensors for the electric power industry,” Opt. Lasers Eng. 43(3–5), 511–526 (2005).
[Crossref]

Brändle, H.

Briffod, F.

F. Briffod, L. Thévenaz, P.-A. Nicati, A. Küng, and P. A. Robert, “Polarimetric current sensor using an in-line faraday rotator,” IEICE Trans. Electron. E83-C(3), 331–335 (2000).

Brunzel, M. G.

Casado, L.

J. Zubia, L. Casado, G. Aldabaldetreku, A. Montero, E. Zubia, and G. Durana, “Design and development of a low-cost optical current sensor,” Sensors (Basel) 13(10), 13584–13595 (2013).
[Crossref] [PubMed]

Chu, W.-S.

Dändliker, R.

Durana, G.

J. Zubia, L. Casado, G. Aldabaldetreku, A. Montero, E. Zubia, and G. Durana, “Design and development of a low-cost optical current sensor,” Sensors (Basel) 13(10), 13584–13595 (2013).
[Crossref] [PubMed]

Enokihara, A.

A. Enokihara, M. Izutsum, and T. Sueta, “Optical fiber sensors using the method of polarization-rotated reflection,” J. Lightwave Technol. 5(11), 1584–1590 (1987).
[Crossref]

Frazao, O.

R. M. Silva, H. Martins, I. Nascimento, J. M. Baptista, A. L. Ribeiro, J. L. Santos, P. Jorge, and O. Frazao, “Optical current sensors for high power systems: a review,” Appl. Sci. (Basel) 2(3), 602–628 (2012).
[Crossref]

Frosio, G.

Gabus, P.

Gao, H.

J. Jia, Y. Jiang, L. Zhang, H. Gao, S. Wang, and L. Jiang, “Dual-wavelength DC compensation technique for the demodulation of EFPI fiber sensors,” IEEE Photonics Technol. Lett. 30(15), 1380–1383 (2018).
[Crossref]

Gonda, S.

Grattan, K. T. V.

Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattan, and D. A. Jackson, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum. 66(5), 3097–3111 (1995).
[Crossref]

Hrabluik, J. D. P.

J. D. P. Hrabluik, “Optical current sensors eliminate CT saturation,” in Proceedings of IEEE Power Engineering Society Winter Meeting (IEEE, 2002), 2, pp.1478–1481.
[Crossref]

Hsu, T.-Y.

D. W. Stowe and T.-Y. Hsu, “Demodulation of interferometric sensors using a fiber-optic passive quadrature demodulator,” J. Lightwave Technol. 1(3), 519–523 (1983).
[Crossref]

Hu, P.

Huang, G.

S.-M. Kim, T.-H. Park, G. Huang, and M.-C. Oh, “Optical waveguide tunable phase delay lines based on the superior thermo-optic effect of polymer,” Polymers (Basel) 10(5), 497 (2018).
[Crossref]

Huang, Q.

Inoue, Y.

Y. Inoue, Y. Ohmori, M. Kawachi, S. Ando, T. Sawada, and H. Takahashi, “Polarization mode converter with polyimide half waveplate in silica-based planar lightwave circuits,” IEEE Photonics Technol. Lett. 6(5), 626–628 (1994).
[Crossref]

Izutsum, M.

A. Enokihara, M. Izutsum, and T. Sueta, “Optical fiber sensors using the method of polarization-rotated reflection,” J. Lightwave Technol. 5(11), 1584–1590 (1987).
[Crossref]

Jackson, D. A.

Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattan, and D. A. Jackson, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum. 66(5), 3097–3111 (1995).
[Crossref]

Jia, J.

J. Jia, Y. Jiang, L. Zhang, H. Gao, S. Wang, and L. Jiang, “Dual-wavelength DC compensation technique for the demodulation of EFPI fiber sensors,” IEEE Photonics Technol. Lett. 30(15), 1380–1383 (2018).
[Crossref]

Jiang, L.

J. Jia, Y. Jiang, L. Zhang, H. Gao, S. Wang, and L. Jiang, “Dual-wavelength DC compensation technique for the demodulation of EFPI fiber sensors,” IEEE Photonics Technol. Lett. 30(15), 1380–1383 (2018).
[Crossref]

Jiang, Y.

J. Jia, Y. Jiang, L. Zhang, H. Gao, S. Wang, and L. Jiang, “Dual-wavelength DC compensation technique for the demodulation of EFPI fiber sensors,” IEEE Photonics Technol. Lett. 30(15), 1380–1383 (2018).
[Crossref]

Jorge, P.

R. M. Silva, H. Martins, I. Nascimento, J. M. Baptista, A. L. Ribeiro, J. L. Santos, P. Jorge, and O. Frazao, “Optical current sensors for high power systems: a review,” Appl. Sci. (Basel) 2(3), 602–628 (2012).
[Crossref]

Kawachi, M.

Y. Inoue, Y. Ohmori, M. Kawachi, S. Ando, T. Sawada, and H. Takahashi, “Polarization mode converter with polyimide half waveplate in silica-based planar lightwave circuits,” IEEE Photonics Technol. Lett. 6(5), 626–628 (1994).
[Crossref]

Keem, T.

Kim, H.

Kim, J.-W.

Kim, K.-J.

Kim, S.-G.

Kim, S.-M.

Kostovic, J.

K. Bohnert, P. Gabus, J. Kostovic, and H. Brandle, “Optical fiber sensors for the electric power industry,” Opt. Lasers Eng. 43(3–5), 511–526 (2005).
[Crossref]

Küng, A.

F. Briffod, L. Thévenaz, P.-A. Nicati, A. Küng, and P. A. Robert, “Polarimetric current sensor using an in-line faraday rotator,” IEICE Trans. Electron. E83-C(3), 331–335 (2000).

Kurosawa, K.

K. Kurosawa, “Development of fiber-optic current sensing technique and its applications in electric power systems,” Photonic Sens. 4(1), 12–20 (2014).
[Crossref]

Kurosawa, T.

Lee, H.-J.

S.-H. Park, J.-W. Kim, M.-C. Oh, Y.-O. Noh, and H.-J. Lee, “Polymer waveguide birefringence modulators,” IEEE Photonics Technol. Lett. 24(10), 845–847 (2012).

Martins, H.

R. M. Silva, H. Martins, I. Nascimento, J. M. Baptista, A. L. Ribeiro, J. L. Santos, P. Jorge, and O. Frazao, “Optical current sensors for high power systems: a review,” Appl. Sci. (Basel) 2(3), 602–628 (2012).
[Crossref]

Misumi, I.

Montero, A.

J. Zubia, L. Casado, G. Aldabaldetreku, A. Montero, E. Zubia, and G. Durana, “Design and development of a low-cost optical current sensor,” Sensors (Basel) 13(10), 13584–13595 (2013).
[Crossref] [PubMed]

Nascimento, I.

R. M. Silva, H. Martins, I. Nascimento, J. M. Baptista, A. L. Ribeiro, J. L. Santos, P. Jorge, and O. Frazao, “Optical current sensors for high power systems: a review,” Appl. Sci. (Basel) 2(3), 602–628 (2012).
[Crossref]

Nehring, J.

Nicati, P.-A.

F. Briffod, L. Thévenaz, P.-A. Nicati, A. Küng, and P. A. Robert, “Polarimetric current sensor using an in-line faraday rotator,” IEICE Trans. Electron. E83-C(3), 331–335 (2000).

Ning, Y. N.

Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattan, and D. A. Jackson, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum. 66(5), 3097–3111 (1995).
[Crossref]

Noh, Y.-O.

S.-H. Park, J.-W. Kim, M.-C. Oh, Y.-O. Noh, and H.-J. Lee, “Polymer waveguide birefringence modulators,” IEEE Photonics Technol. Lett. 24(10), 845–847 (2012).

Oh, M.-C.

Ohmori, Y.

Y. Inoue, Y. Ohmori, M. Kawachi, S. Ando, T. Sawada, and H. Takahashi, “Polarization mode converter with polyimide half waveplate in silica-based planar lightwave circuits,” IEEE Photonics Technol. Lett. 6(5), 626–628 (1994).
[Crossref]

Palmer, A. W.

Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattan, and D. A. Jackson, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum. 66(5), 3097–3111 (1995).
[Crossref]

Park, S.-H.

S.-H. Park, J.-W. Kim, M.-C. Oh, Y.-O. Noh, and H.-J. Lee, “Polymer waveguide birefringence modulators,” IEEE Photonics Technol. Lett. 24(10), 845–847 (2012).

Park, T.-H.

S.-M. Kim, T.-H. Park, G. Huang, and M.-C. Oh, “Optical waveguide tunable phase delay lines based on the superior thermo-optic effect of polymer,” Polymers (Basel) 10(5), 497 (2018).
[Crossref]

Ribeiro, A. L.

R. M. Silva, H. Martins, I. Nascimento, J. M. Baptista, A. L. Ribeiro, J. L. Santos, P. Jorge, and O. Frazao, “Optical current sensors for high power systems: a review,” Appl. Sci. (Basel) 2(3), 602–628 (2012).
[Crossref]

Robert, P. A.

F. Briffod, L. Thévenaz, P.-A. Nicati, A. Küng, and P. A. Robert, “Polarimetric current sensor using an in-line faraday rotator,” IEICE Trans. Electron. E83-C(3), 331–335 (2000).

Santos, J. L.

R. M. Silva, H. Martins, I. Nascimento, J. M. Baptista, A. L. Ribeiro, J. L. Santos, P. Jorge, and O. Frazao, “Optical current sensors for high power systems: a review,” Appl. Sci. (Basel) 2(3), 602–628 (2012).
[Crossref]

Sawada, T.

Y. Inoue, Y. Ohmori, M. Kawachi, S. Ando, T. Sawada, and H. Takahashi, “Polarization mode converter with polyimide half waveplate in silica-based planar lightwave circuits,” IEEE Photonics Technol. Lett. 6(5), 626–628 (1994).
[Crossref]

Seo, J.-K.

Silva, R. M.

R. M. Silva, H. Martins, I. Nascimento, J. M. Baptista, A. L. Ribeiro, J. L. Santos, P. Jorge, and O. Frazao, “Optical current sensors for high power systems: a review,” Appl. Sci. (Basel) 2(3), 602–628 (2012).
[Crossref]

Stowe, D. W.

D. W. Stowe and T.-Y. Hsu, “Demodulation of interferometric sensors using a fiber-optic passive quadrature demodulator,” J. Lightwave Technol. 1(3), 519–523 (1983).
[Crossref]

Sueta, T.

A. Enokihara, M. Izutsum, and T. Sueta, “Optical fiber sensors using the method of polarization-rotated reflection,” J. Lightwave Technol. 5(11), 1584–1590 (1987).
[Crossref]

Takahashi, H.

Y. Inoue, Y. Ohmori, M. Kawachi, S. Ando, T. Sawada, and H. Takahashi, “Polarization mode converter with polyimide half waveplate in silica-based planar lightwave circuits,” IEEE Photonics Technol. Lett. 6(5), 626–628 (1994).
[Crossref]

Tan, J.

Thévenaz, L.

F. Briffod, L. Thévenaz, P.-A. Nicati, A. Küng, and P. A. Robert, “Polarimetric current sensor using an in-line faraday rotator,” IEICE Trans. Electron. E83-C(3), 331–335 (2000).

Wang, S.

J. Jia, Y. Jiang, L. Zhang, H. Gao, S. Wang, and L. Jiang, “Dual-wavelength DC compensation technique for the demodulation of EFPI fiber sensors,” IEEE Photonics Technol. Lett. 30(15), 1380–1383 (2018).
[Crossref]

Wang, Z. P.

Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattan, and D. A. Jackson, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum. 66(5), 3097–3111 (1995).
[Crossref]

Zhai, X.

Zhang, L.

J. Jia, Y. Jiang, L. Zhang, H. Gao, S. Wang, and L. Jiang, “Dual-wavelength DC compensation technique for the demodulation of EFPI fiber sensors,” IEEE Photonics Technol. Lett. 30(15), 1380–1383 (2018).
[Crossref]

Zhu, J.

Zubia, E.

J. Zubia, L. Casado, G. Aldabaldetreku, A. Montero, E. Zubia, and G. Durana, “Design and development of a low-cost optical current sensor,” Sensors (Basel) 13(10), 13584–13595 (2013).
[Crossref] [PubMed]

Zubia, J.

J. Zubia, L. Casado, G. Aldabaldetreku, A. Montero, E. Zubia, and G. Durana, “Design and development of a low-cost optical current sensor,” Sensors (Basel) 13(10), 13584–13595 (2013).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Sci. (Basel) (1)

R. M. Silva, H. Martins, I. Nascimento, J. M. Baptista, A. L. Ribeiro, J. L. Santos, P. Jorge, and O. Frazao, “Optical current sensors for high power systems: a review,” Appl. Sci. (Basel) 2(3), 602–628 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (3)

Y. Inoue, Y. Ohmori, M. Kawachi, S. Ando, T. Sawada, and H. Takahashi, “Polarization mode converter with polyimide half waveplate in silica-based planar lightwave circuits,” IEEE Photonics Technol. Lett. 6(5), 626–628 (1994).
[Crossref]

J. Jia, Y. Jiang, L. Zhang, H. Gao, S. Wang, and L. Jiang, “Dual-wavelength DC compensation technique for the demodulation of EFPI fiber sensors,” IEEE Photonics Technol. Lett. 30(15), 1380–1383 (2018).
[Crossref]

S.-H. Park, J.-W. Kim, M.-C. Oh, Y.-O. Noh, and H.-J. Lee, “Polymer waveguide birefringence modulators,” IEEE Photonics Technol. Lett. 24(10), 845–847 (2012).

IEICE Trans. Electron. (1)

F. Briffod, L. Thévenaz, P.-A. Nicati, A. Küng, and P. A. Robert, “Polarimetric current sensor using an in-line faraday rotator,” IEICE Trans. Electron. E83-C(3), 331–335 (2000).

J. Lightwave Technol. (5)

Opt. Express (4)

Opt. Lasers Eng. (1)

K. Bohnert, P. Gabus, J. Kostovic, and H. Brandle, “Optical fiber sensors for the electric power industry,” Opt. Lasers Eng. 43(3–5), 511–526 (2005).
[Crossref]

Photonic Sens. (1)

K. Kurosawa, “Development of fiber-optic current sensing technique and its applications in electric power systems,” Photonic Sens. 4(1), 12–20 (2014).
[Crossref]

Polymers (Basel) (1)

S.-M. Kim, T.-H. Park, G. Huang, and M.-C. Oh, “Optical waveguide tunable phase delay lines based on the superior thermo-optic effect of polymer,” Polymers (Basel) 10(5), 497 (2018).
[Crossref]

Rev. Sci. Instrum. (1)

Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattan, and D. A. Jackson, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum. 66(5), 3097–3111 (1995).
[Crossref]

Sensors (Basel) (1)

J. Zubia, L. Casado, G. Aldabaldetreku, A. Montero, E. Zubia, and G. Durana, “Design and development of a low-cost optical current sensor,” Sensors (Basel) 13(10), 13584–13595 (2013).
[Crossref] [PubMed]

Other (3)

J. D. P. Hrabluik, “Optical current sensors eliminate CT saturation,” in Proceedings of IEEE Power Engineering Society Winter Meeting (IEEE, 2002), 2, pp.1478–1481.
[Crossref]

G. M. Müller, L. Yang, A. Frank, and K. Bohnert, “Simple fiber-optic current sensor with integrated-optics polarization splitter for interrogation,” in Applied Industrial Optics: Spectroscopy, Imaging and Metrology Conference, 2014 OSA Technical Digest Series (Optical Society of America, 2014), paper AM4A.3.

T. Masao, K. Sasaki, and K. Terai, “Optical current sensor for DC measurement,” in Proceedings of IEEE conference on Asia Pacific IEEE/PES Transmiss. Distrib. Conf. Exhibit. (IEEE, 2002) 1, 440–443.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic configuration of a reflective quadrature interferometer type OCT.
Fig. 2
Fig. 2 Fabrication procedure of the PIC for optical current sensors. (a) Coated buffer layer on silicon substrate. (b) Patterned metal thin film on the buffer layer for birefringence modulator and polarizer. (c) Optical waveguide core pattern. (d) Grooving process for inserting waveplates. (e) Inserted waveplates in the middle of waveguide
Fig. 3
Fig. 3 Photographs of (a) the fabricated PIC after inserting waveplates and (b) the packaged PIC with pigtailed optical fibers
Fig. 4
Fig. 4 (a) Interference signals detected at PDs when voltage was applied to the birefringence modulator, (b) Lissajous diagrams drawn using the two measured signal (black) and ideal case (red) for comparison, and (c) Deviation of Lissajous pattern by turning on the birefringence modulator (BM).
Fig. 5
Fig. 5 (a) Photograph of the current toroid setup utilized to amplify the intensity of the magnetic field transferred to the sensing fiber coil 10 times (b) Schematic of the toroid setup exhibiting the wires under the support plate.
Fig. 6
Fig. 6 Linearity of the sensor output measured when the applied current varied from 0.3 to 5.0 kArms and relative error compared with the electrical CT.
Fig. 7
Fig. 7 Result of the long-term current measurement without operating point feedback bias control, the error data (blue) was calculated with measured data from OCT (black) and applied current signal (red).

Tables (1)

Tables Icon

Table 1 Jones matrix representation of the optical components included in the optical integrated circuits for PRRI

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

( E x E y ) 1 = M Pol M ' QWP M ' QWP M ' FR M M M FR M QWP M HWP ( E 0 0 ) = 1 2 i E 0 ( (cos2 θ F +sin2 θ F )+i(cos2 θ F +sin2 θ F ) 0 ),
( E x E y ) 2 = M Pol M ' HWP M ' QWP M ' FR M M M FR M QWP M HWP ( E 0 0 ) =i E 0 ( cos2 θ F 0 ).
I 1 = I 0 2 [1+sin(4 θ F )],
I 2 = I 0 2 [1+cos(4 θ F )].
θ F = 1 4 tan 1 ( sin4 θ F cos4 θ F )= 1 4 tan 1 ( I 1 I 0 /2 I 2 I 0 /2 ).

Metrics