Abstract

A dielectric nanostructure with a high refractive index can exhibit strong optical resonances with considerable electric field enhancement around the entire structure volume. Here we show theoretically that a dielectric structure with this feature can boost the local electric field of a small plasmonic nanoantenna placed nearby. We construct a hybrid system of a plasmonic nanoantenna and a dielectric nanocavity, where the nanocavity is a concentric disk−ring structure with a lossless material n = 3.3 and the nanoantenna is a gold nanorod dimer. The resonant electric field enhancement at the gap center of the antenna in the hybrid structure reaches more than one order of magnitude higher than that of the individual antenna. The dielectric structure plays two roles in the hybrid system, namely the amplified excitation field and an environment causing the redshift of the antenna resonance. The hybrid configuration is applicable to the cases with various geometries and different materials of the hybrid system. Our results can find applications in enhanced nanoscale light-matter interactions such as surface-enhanced Raman scattering, nonlinear optics, and plasmon-exciton couplings.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Electric field enhancement with plasmonic colloidal nanoantennas excited by a silicon nitride waveguide

Mahsa Darvishzadeh-Varcheie, Caner Guclu, Regina Ragan, Ozdal Boyraz, and Filippo Capolino
Opt. Express 24(25) 28337-28352 (2016)

Tunable optical forces enhanced by plasmonic modes hybridization in optical trapping of gold nanorods with plasmonic nanocavity

Wen-Hao Huang, Shun-Feng Li, Hai-Tao Xu, Zheng-Xun Xiang, Yong-Bing Long, and Hai-Dong Deng
Opt. Express 26(5) 6202-6213 (2018)

Boosting magnetic field enhancement with radiative couplings of magnetic modes in dielectric nanostructures

Zhong-Jian Yang, Qian Zhao, and Jun He
Opt. Express 25(14) 15927-15937 (2017)

References

  • View by:
  • |
  • |
  • |

  1. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
    [Crossref]
  2. P. Biagioni, J. S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
    [Crossref] [PubMed]
  3. F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. de Nijs, R. Esteban, J. Aizpurua, and J. J. Baumberg, “Single-molecule optomechanics in “picocavities”,” Science 354(6313), 726–729 (2016).
    [Crossref] [PubMed]
  4. X. Shi, N. Coca-López, J. Janik, and A. Hartschuh, “Advances in tip-enhanced near-field Raman microscopy using nanoantennas,” Chem. Rev. 117(7), 4945–4960 (2017).
    [Crossref] [PubMed]
  5. F. Neubrech, C. Huck, K. Weber, A. Pucci, and H. Giessen, “Surface-enhanced infrared spectroscopy using resonant nanoantennas,” Chem. Rev. 117(7), 5110–5145 (2017).
    [Crossref] [PubMed]
  6. L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA),” Nano Lett. 15(2), 1272–1280 (2015).
    [Crossref] [PubMed]
  7. M. Pelton, “Modified spontaneous emission in nanophotonic structures,” Nat. Photonics 9(7), 427–435 (2015).
    [Crossref]
  8. A. F. Koenderink, “Single-photon nanoantennas,” ACS Photonics 4(4), 710–722 (2017).
    [Crossref] [PubMed]
  9. G. Haran and L. Chuntonov, “Artificial plasmonic molecules and their interaction with real molecules,” Chem. Rev. 118(11), 5539–5580 (2018).
    [Crossref] [PubMed]
  10. D. G. Baranov, M. Wersall, J. Cuadra, T. J. Antosiewicz, and T. Shegai, “Novel nanostructures and materials for strong light matter interactions,” ACS Photonics 5(1), 24–42 (2018).
    [Crossref]
  11. R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
    [Crossref] [PubMed]
  12. H. Aouani, M. Rahmani, M. Navarro-Cía, and S. A. Maier, “Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna,” Nat. Nanotechnol. 9(4), 290–294 (2014).
    [Crossref] [PubMed]
  13. M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
    [Crossref] [PubMed]
  14. T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary optimization of optical antennas,” Phys. Rev. Lett. 109(12), 127701 (2012).
    [Crossref] [PubMed]
  15. Z. Zhu, B. Bai, O. You, Q. Li, and S. Fan, “Fano resonance boosted cascaded optical field enhancement in a plasmonic nanoparticle-in-cavity nanoantenna array and its SERS application,” Light Sci. Appl. 4(6), e296 (2015).
    [Crossref]
  16. H. Fischer and O. J. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16(12), 9144–9154 (2008).
    [Crossref] [PubMed]
  17. R. Fernández-García, Y. Sonnefraud, A. I. Fernándezdomínguez, V. Giannini, and S. A. Maier, “Design considerations for near-field enhancement in optical antennas,” Contemp. Phys. 55(1), 1–11 (2014).
    [Crossref]
  18. K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491(7425), 574–577 (2012).
    [Crossref] [PubMed]
  19. C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
    [Crossref] [PubMed]
  20. T. B. Hoang, G. M. Akselrod, and M. H. Mikkelsen, “Ultrafast room-temperature single photon emission from quantum dots coupled to plasmonic nanocavities,” Nano Lett. 16(1), 270–275 (2016).
    [Crossref] [PubMed]
  21. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
    [Crossref] [PubMed]
  22. G. M. Akselrod, M. C. Weidman, Y. Li, C. Argyropoulos, W. A. Tisdale, and M. H. Mikkelsen, “Efficient nanosecond photoluminescence from infrared PbS quantum dots coupled to plasmonic nanoantennas,” ACS Photonics 3(10), 1741–1746 (2016).
    [Crossref]
  23. F. Zhou, Y. Liu, and W. Cai, “Huge local electric field enhancement in hybrid plasmonic arrays,” Opt. Lett. 39(5), 1302–1305 (2014).
    [Crossref] [PubMed]
  24. Y. Bao, Y. Hou, and Z. Wang, “Huge Electric Field Enhancement of Magnetic Resonator Integrated with Multiple Concentric Rings,” Plasmonics 10(2), 251–256 (2015).
    [Crossref]
  25. W. Li and Y. Hou, “Electromagnetic field hugely enhanced by coupling to optical energy focusing structure,” Opt. Express 25(7), 7358–7368 (2017).
    [Crossref] [PubMed]
  26. J.-N. Liu, Q. Huang, K.-K. Liu, S. Singamaneni, and B. T. Cunningham, “Nanoantenna- microcavity hybrids with highly cooperative plasmonic-photonic coupling,” Nano Lett. 17(12), 7569–7577 (2017).
    [Crossref] [PubMed]
  27. T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett. 11(7), 2606–2610 (2011).
    [Crossref] [PubMed]
  28. A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
    [Crossref] [PubMed]
  29. Z. J. Yang, R. Jiang, X. Zhuo, Y. M. Xie, J. Wang, and H. Q. Lin, “Dielectric nanoresonators for light manipulation,” Phys. Rep. 701, 1–50 (2017).
    [Crossref]
  30. M. Decker and I. Staude, “Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics,” J. Opt. 18(10), 103001 (2016).
    [Crossref]
  31. M. Khorasaninejad and F. Capasso, “Metalenses: Versatile multifunctional photonic components,” Science 358, 8100 (2017).
  32. A. Arbabi, A. Faraon, E. Arbabi, S. M. Kamali, and H. Yu, “Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces,” Optica 4(6), 625–632 (2017).
    [Crossref]
  33. S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
    [Crossref] [PubMed]
  34. X. Zhu, W. Yan, U. Levy, N. A. Mortensen, and A. Kristensen, “Resonant laser printing of structural colors on high-index dielectric metasurfaces,” Sci. Adv. 3(5), e1602487 (2017).
    [Crossref] [PubMed]
  35. R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
    [Crossref] [PubMed]
  36. M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6(1), 7915 (2015).
    [Crossref] [PubMed]
  37. Y. Yang, V. A. Zenin, and S. I. Bozhevolnyi, “Anapole-assisted strong field enhancement in individual all-dielectric nanostructures,” ACS Photonics 5(5), 1960–1966 (2018).
    [Crossref]
  38. Z. J. Yang, Q. Zhao, and J. He, “Boosting magnetic field enhancement with radiative couplings of magnetic modes in dielectric nanostructures,” Opt. Express 25(14), 15927–15937 (2017).
    [Crossref] [PubMed]
  39. H. Wang, P. Liu, Y. Ke, Y. Su, L. Zhang, N. Xu, S. Deng, and H. Chen, “Janus magneto-electric nanosphere dimers exhibiting unidirectional visible light scattering and strong electromagnetic field enhancement,” ACS Nano 9(1), 436–448 (2015).
    [Crossref] [PubMed]
  40. R. Guo, E. Rusak, I. Staude, J. Dominguez, M. Decker, C. Rockstuhl, I. Brener, D. N. Neshev, and Y. S. Kivshar, “Multipolar coupling in hybrid metal–dielectric metasurfaces,” ACS Photonics 3(3), 349–353 (2016).
    [Crossref]
  41. T. Feng, Y. Xu, W. Zhang, and A. E. Miroshnichenko, “Ideal magnetic dipole scattering,” Phys. Rev. Lett. 118(17), 173901 (2017).
    [Crossref] [PubMed]
  42. T. Shibanuma, G. Grinblat, P. Albella, and S. A. Maier, “Efficient third harmonic generation from metal-dielectric hybrid nanoantennas,” Nano Lett. 17(4), 2647–2651 (2017).
    [Crossref] [PubMed]
  43. Z. J. Yang, Q. Zhao, Y. H. Deng, D. Zhang, and J. He, “Efficient second harmonic generation in gold-silicon core-shell nanostructures,” Opt. Express 26(5), 5835–5844 (2018).
    [Crossref] [PubMed]
  44. Q. Zhao, Z.-J. Yang, and J. He, “Fano resonances in heterogeneous dimers of silicon and gold nanospheres,” Front. Phys. 13(3), 137801 (2018).
    [Crossref]
  45. A. Devilez, B. Stout, and N. Bonod, “Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission,” ACS Nano 4(6), 3390–3396 (2010).
    [Crossref] [PubMed]
  46. Y. Yang, O. D. Miller, T. Christensen, J. D. Joannopoulos, and M. Soljačić, “Low-loss plasmonic dielectric nanoresonators,” Nano Lett. 17(5), 3238–3245 (2017).
    [Crossref] [PubMed]
  47. Z. J. Yang, Q. Zhao, S. Xiao, and J. He, “Engineering two-wire optical antennas for near field enhancement,” Photon. Nanostructures 25, 72–76 (2017).
    [Crossref]
  48. E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).
  49. Z. J. Yang, T. J. Antosiewicz, R. Verre, F. J. García de Abajo, S. P. Apell, and M. Käll, “The ultimate limit of light extinction by nanophotonic structures,” Nano Lett. 15(11), 7633–7638 (2015).
    [Crossref] [PubMed]

2018 (5)

G. Haran and L. Chuntonov, “Artificial plasmonic molecules and their interaction with real molecules,” Chem. Rev. 118(11), 5539–5580 (2018).
[Crossref] [PubMed]

D. G. Baranov, M. Wersall, J. Cuadra, T. J. Antosiewicz, and T. Shegai, “Novel nanostructures and materials for strong light matter interactions,” ACS Photonics 5(1), 24–42 (2018).
[Crossref]

Y. Yang, V. A. Zenin, and S. I. Bozhevolnyi, “Anapole-assisted strong field enhancement in individual all-dielectric nanostructures,” ACS Photonics 5(5), 1960–1966 (2018).
[Crossref]

Z. J. Yang, Q. Zhao, Y. H. Deng, D. Zhang, and J. He, “Efficient second harmonic generation in gold-silicon core-shell nanostructures,” Opt. Express 26(5), 5835–5844 (2018).
[Crossref] [PubMed]

Q. Zhao, Z.-J. Yang, and J. He, “Fano resonances in heterogeneous dimers of silicon and gold nanospheres,” Front. Phys. 13(3), 137801 (2018).
[Crossref]

2017 (14)

Y. Yang, O. D. Miller, T. Christensen, J. D. Joannopoulos, and M. Soljačić, “Low-loss plasmonic dielectric nanoresonators,” Nano Lett. 17(5), 3238–3245 (2017).
[Crossref] [PubMed]

Z. J. Yang, Q. Zhao, S. Xiao, and J. He, “Engineering two-wire optical antennas for near field enhancement,” Photon. Nanostructures 25, 72–76 (2017).
[Crossref]

Z. J. Yang, Q. Zhao, and J. He, “Boosting magnetic field enhancement with radiative couplings of magnetic modes in dielectric nanostructures,” Opt. Express 25(14), 15927–15937 (2017).
[Crossref] [PubMed]

T. Feng, Y. Xu, W. Zhang, and A. E. Miroshnichenko, “Ideal magnetic dipole scattering,” Phys. Rev. Lett. 118(17), 173901 (2017).
[Crossref] [PubMed]

T. Shibanuma, G. Grinblat, P. Albella, and S. A. Maier, “Efficient third harmonic generation from metal-dielectric hybrid nanoantennas,” Nano Lett. 17(4), 2647–2651 (2017).
[Crossref] [PubMed]

X. Shi, N. Coca-López, J. Janik, and A. Hartschuh, “Advances in tip-enhanced near-field Raman microscopy using nanoantennas,” Chem. Rev. 117(7), 4945–4960 (2017).
[Crossref] [PubMed]

F. Neubrech, C. Huck, K. Weber, A. Pucci, and H. Giessen, “Surface-enhanced infrared spectroscopy using resonant nanoantennas,” Chem. Rev. 117(7), 5110–5145 (2017).
[Crossref] [PubMed]

A. F. Koenderink, “Single-photon nanoantennas,” ACS Photonics 4(4), 710–722 (2017).
[Crossref] [PubMed]

W. Li and Y. Hou, “Electromagnetic field hugely enhanced by coupling to optical energy focusing structure,” Opt. Express 25(7), 7358–7368 (2017).
[Crossref] [PubMed]

J.-N. Liu, Q. Huang, K.-K. Liu, S. Singamaneni, and B. T. Cunningham, “Nanoantenna- microcavity hybrids with highly cooperative plasmonic-photonic coupling,” Nano Lett. 17(12), 7569–7577 (2017).
[Crossref] [PubMed]

Z. J. Yang, R. Jiang, X. Zhuo, Y. M. Xie, J. Wang, and H. Q. Lin, “Dielectric nanoresonators for light manipulation,” Phys. Rep. 701, 1–50 (2017).
[Crossref]

M. Khorasaninejad and F. Capasso, “Metalenses: Versatile multifunctional photonic components,” Science 358, 8100 (2017).

A. Arbabi, A. Faraon, E. Arbabi, S. M. Kamali, and H. Yu, “Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces,” Optica 4(6), 625–632 (2017).
[Crossref]

X. Zhu, W. Yan, U. Levy, N. A. Mortensen, and A. Kristensen, “Resonant laser printing of structural colors on high-index dielectric metasurfaces,” Sci. Adv. 3(5), e1602487 (2017).
[Crossref] [PubMed]

2016 (8)

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref] [PubMed]

M. Decker and I. Staude, “Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics,” J. Opt. 18(10), 103001 (2016).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref] [PubMed]

G. M. Akselrod, M. C. Weidman, Y. Li, C. Argyropoulos, W. A. Tisdale, and M. H. Mikkelsen, “Efficient nanosecond photoluminescence from infrared PbS quantum dots coupled to plasmonic nanoantennas,” ACS Photonics 3(10), 1741–1746 (2016).
[Crossref]

T. B. Hoang, G. M. Akselrod, and M. H. Mikkelsen, “Ultrafast room-temperature single photon emission from quantum dots coupled to plasmonic nanocavities,” Nano Lett. 16(1), 270–275 (2016).
[Crossref] [PubMed]

F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. de Nijs, R. Esteban, J. Aizpurua, and J. J. Baumberg, “Single-molecule optomechanics in “picocavities”,” Science 354(6313), 726–729 (2016).
[Crossref] [PubMed]

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref] [PubMed]

R. Guo, E. Rusak, I. Staude, J. Dominguez, M. Decker, C. Rockstuhl, I. Brener, D. N. Neshev, and Y. S. Kivshar, “Multipolar coupling in hybrid metal–dielectric metasurfaces,” ACS Photonics 3(3), 349–353 (2016).
[Crossref]

2015 (9)

H. Wang, P. Liu, Y. Ke, Y. Su, L. Zhang, N. Xu, S. Deng, and H. Chen, “Janus magneto-electric nanosphere dimers exhibiting unidirectional visible light scattering and strong electromagnetic field enhancement,” ACS Nano 9(1), 436–448 (2015).
[Crossref] [PubMed]

Z. J. Yang, T. J. Antosiewicz, R. Verre, F. J. García de Abajo, S. P. Apell, and M. Käll, “The ultimate limit of light extinction by nanophotonic structures,” Nano Lett. 15(11), 7633–7638 (2015).
[Crossref] [PubMed]

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
[Crossref] [PubMed]

Z. Zhu, B. Bai, O. You, Q. Li, and S. Fan, “Fano resonance boosted cascaded optical field enhancement in a plasmonic nanoparticle-in-cavity nanoantenna array and its SERS application,” Light Sci. Appl. 4(6), e296 (2015).
[Crossref]

L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA),” Nano Lett. 15(2), 1272–1280 (2015).
[Crossref] [PubMed]

M. Pelton, “Modified spontaneous emission in nanophotonic structures,” Nat. Photonics 9(7), 427–435 (2015).
[Crossref]

Y. Bao, Y. Hou, and Z. Wang, “Huge Electric Field Enhancement of Magnetic Resonator Integrated with Multiple Concentric Rings,” Plasmonics 10(2), 251–256 (2015).
[Crossref]

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
[Crossref] [PubMed]

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6(1), 7915 (2015).
[Crossref] [PubMed]

2014 (3)

R. Fernández-García, Y. Sonnefraud, A. I. Fernándezdomínguez, V. Giannini, and S. A. Maier, “Design considerations for near-field enhancement in optical antennas,” Contemp. Phys. 55(1), 1–11 (2014).
[Crossref]

F. Zhou, Y. Liu, and W. Cai, “Huge local electric field enhancement in hybrid plasmonic arrays,” Opt. Lett. 39(5), 1302–1305 (2014).
[Crossref] [PubMed]

H. Aouani, M. Rahmani, M. Navarro-Cía, and S. A. Maier, “Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna,” Nat. Nanotechnol. 9(4), 290–294 (2014).
[Crossref] [PubMed]

2012 (4)

T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary optimization of optical antennas,” Phys. Rev. Lett. 109(12), 127701 (2012).
[Crossref] [PubMed]

P. Biagioni, J. S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[Crossref] [PubMed]

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491(7425), 574–577 (2012).
[Crossref] [PubMed]

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

2011 (2)

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett. 11(7), 2606–2610 (2011).
[Crossref] [PubMed]

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

2010 (1)

A. Devilez, B. Stout, and N. Bonod, “Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission,” ACS Nano 4(6), 3390–3396 (2010).
[Crossref] [PubMed]

2008 (1)

2006 (1)

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[Crossref] [PubMed]

Aizpurua, J.

F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. de Nijs, R. Esteban, J. Aizpurua, and J. J. Baumberg, “Single-molecule optomechanics in “picocavities”,” Science 354(6313), 726–729 (2016).
[Crossref] [PubMed]

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491(7425), 574–577 (2012).
[Crossref] [PubMed]

Akselrod, G. M.

T. B. Hoang, G. M. Akselrod, and M. H. Mikkelsen, “Ultrafast room-temperature single photon emission from quantum dots coupled to plasmonic nanocavities,” Nano Lett. 16(1), 270–275 (2016).
[Crossref] [PubMed]

G. M. Akselrod, M. C. Weidman, Y. Li, C. Argyropoulos, W. A. Tisdale, and M. H. Mikkelsen, “Efficient nanosecond photoluminescence from infrared PbS quantum dots coupled to plasmonic nanoantennas,” ACS Photonics 3(10), 1741–1746 (2016).
[Crossref]

Albella, P.

T. Shibanuma, G. Grinblat, P. Albella, and S. A. Maier, “Efficient third harmonic generation from metal-dielectric hybrid nanoantennas,” Nano Lett. 17(4), 2647–2651 (2017).
[Crossref] [PubMed]

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6(1), 7915 (2015).
[Crossref] [PubMed]

Anger, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[Crossref] [PubMed]

Antosiewicz, T. J.

D. G. Baranov, M. Wersall, J. Cuadra, T. J. Antosiewicz, and T. Shegai, “Novel nanostructures and materials for strong light matter interactions,” ACS Photonics 5(1), 24–42 (2018).
[Crossref]

Z. J. Yang, T. J. Antosiewicz, R. Verre, F. J. García de Abajo, S. P. Apell, and M. Käll, “The ultimate limit of light extinction by nanophotonic structures,” Nano Lett. 15(11), 7633–7638 (2015).
[Crossref] [PubMed]

Aouani, H.

H. Aouani, M. Rahmani, M. Navarro-Cía, and S. A. Maier, “Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna,” Nat. Nanotechnol. 9(4), 290–294 (2014).
[Crossref] [PubMed]

Apell, S. P.

Z. J. Yang, T. J. Antosiewicz, R. Verre, F. J. García de Abajo, S. P. Apell, and M. Käll, “The ultimate limit of light extinction by nanophotonic structures,” Nano Lett. 15(11), 7633–7638 (2015).
[Crossref] [PubMed]

Arbabi, A.

Arbabi, E.

Argyropoulos, C.

G. M. Akselrod, M. C. Weidman, Y. Li, C. Argyropoulos, W. A. Tisdale, and M. H. Mikkelsen, “Efficient nanosecond photoluminescence from infrared PbS quantum dots coupled to plasmonic nanoantennas,” ACS Photonics 3(10), 1741–1746 (2016).
[Crossref]

Bai, B.

Z. Zhu, B. Bai, O. You, Q. Li, and S. Fan, “Fano resonance boosted cascaded optical field enhancement in a plasmonic nanoparticle-in-cavity nanoantenna array and its SERS application,” Light Sci. Appl. 4(6), e296 (2015).
[Crossref]

Bakker, R. M.

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
[Crossref] [PubMed]

Bao, Y.

Y. Bao, Y. Hou, and Z. Wang, “Huge Electric Field Enhancement of Magnetic Resonator Integrated with Multiple Concentric Rings,” Plasmonics 10(2), 251–256 (2015).
[Crossref]

Baranov, D. G.

D. G. Baranov, M. Wersall, J. Cuadra, T. J. Antosiewicz, and T. Shegai, “Novel nanostructures and materials for strong light matter interactions,” ACS Photonics 5(1), 24–42 (2018).
[Crossref]

Barrow, S. J.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref] [PubMed]

Baselli, M.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
[Crossref] [PubMed]

Baumberg, J. J.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref] [PubMed]

F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. de Nijs, R. Esteban, J. Aizpurua, and J. J. Baumberg, “Single-molecule optomechanics in “picocavities”,” Science 354(6313), 726–729 (2016).
[Crossref] [PubMed]

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491(7425), 574–577 (2012).
[Crossref] [PubMed]

Benz, F.

F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. de Nijs, R. Esteban, J. Aizpurua, and J. J. Baumberg, “Single-molecule optomechanics in “picocavities”,” Science 354(6313), 726–729 (2016).
[Crossref] [PubMed]

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref] [PubMed]

Bharadwaj, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[Crossref] [PubMed]

Biagioni, P.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
[Crossref] [PubMed]

P. Biagioni, J. S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[Crossref] [PubMed]

Bokor, J.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett. 11(7), 2606–2610 (2011).
[Crossref] [PubMed]

Bonod, N.

A. Devilez, B. Stout, and N. Bonod, “Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission,” ACS Nano 4(6), 3390–3396 (2010).
[Crossref] [PubMed]

Borisov, A. G.

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491(7425), 574–577 (2012).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

Y. Yang, V. A. Zenin, and S. I. Bozhevolnyi, “Anapole-assisted strong field enhancement in individual all-dielectric nanostructures,” ACS Photonics 5(5), 1960–1966 (2018).
[Crossref]

Bragas, A. V.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6(1), 7915 (2015).
[Crossref] [PubMed]

Brener, I.

R. Guo, E. Rusak, I. Staude, J. Dominguez, M. Decker, C. Rockstuhl, I. Brener, D. N. Neshev, and Y. S. Kivshar, “Multipolar coupling in hybrid metal–dielectric metasurfaces,” ACS Photonics 3(3), 349–353 (2016).
[Crossref]

Brongersma, M. L.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref] [PubMed]

Brown, L. V.

L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA),” Nano Lett. 15(2), 1272–1280 (2015).
[Crossref] [PubMed]

Cabrini, S.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett. 11(7), 2606–2610 (2011).
[Crossref] [PubMed]

Cai, W.

Caldarola, M.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6(1), 7915 (2015).
[Crossref] [PubMed]

Capasso, F.

M. Khorasaninejad and F. Capasso, “Metalenses: Versatile multifunctional photonic components,” Science 358, 8100 (2017).

Carnegie, C.

F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. de Nijs, R. Esteban, J. Aizpurua, and J. J. Baumberg, “Single-molecule optomechanics in “picocavities”,” Science 354(6313), 726–729 (2016).
[Crossref] [PubMed]

Celebrano, M.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
[Crossref] [PubMed]

Cerullo, G.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
[Crossref] [PubMed]

Chen, H.

H. Wang, P. Liu, Y. Ke, Y. Su, L. Zhang, N. Xu, S. Deng, and H. Chen, “Janus magneto-electric nanosphere dimers exhibiting unidirectional visible light scattering and strong electromagnetic field enhancement,” ACS Nano 9(1), 436–448 (2015).
[Crossref] [PubMed]

Chikkaraddy, R.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref] [PubMed]

F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. de Nijs, R. Esteban, J. Aizpurua, and J. J. Baumberg, “Single-molecule optomechanics in “picocavities”,” Science 354(6313), 726–729 (2016).
[Crossref] [PubMed]

Chilkoti, A.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

Choo, H.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett. 11(7), 2606–2610 (2011).
[Crossref] [PubMed]

Christensen, T.

Y. Yang, O. D. Miller, T. Christensen, J. D. Joannopoulos, and M. Soljačić, “Low-loss plasmonic dielectric nanoresonators,” Nano Lett. 17(5), 3238–3245 (2017).
[Crossref] [PubMed]

Chuntonov, L.

G. Haran and L. Chuntonov, “Artificial plasmonic molecules and their interaction with real molecules,” Chem. Rev. 118(11), 5539–5580 (2018).
[Crossref] [PubMed]

Ciccacci, F.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
[Crossref] [PubMed]

Ciracì, C.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

Coca-López, N.

X. Shi, N. Coca-López, J. Janik, and A. Hartschuh, “Advances in tip-enhanced near-field Raman microscopy using nanoantennas,” Chem. Rev. 117(7), 4945–4960 (2017).
[Crossref] [PubMed]

Cortés, E.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6(1), 7915 (2015).
[Crossref] [PubMed]

Cuadra, J.

D. G. Baranov, M. Wersall, J. Cuadra, T. J. Antosiewicz, and T. Shegai, “Novel nanostructures and materials for strong light matter interactions,” ACS Photonics 5(1), 24–42 (2018).
[Crossref]

Cunningham, B. T.

J.-N. Liu, Q. Huang, K.-K. Liu, S. Singamaneni, and B. T. Cunningham, “Nanoantenna- microcavity hybrids with highly cooperative plasmonic-photonic coupling,” Nano Lett. 17(12), 7569–7577 (2017).
[Crossref] [PubMed]

De Angelis, C.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
[Crossref] [PubMed]

de Nijs, B.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref] [PubMed]

F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. de Nijs, R. Esteban, J. Aizpurua, and J. J. Baumberg, “Single-molecule optomechanics in “picocavities”,” Science 354(6313), 726–729 (2016).
[Crossref] [PubMed]

Decker, M.

M. Decker and I. Staude, “Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics,” J. Opt. 18(10), 103001 (2016).
[Crossref]

R. Guo, E. Rusak, I. Staude, J. Dominguez, M. Decker, C. Rockstuhl, I. Brener, D. N. Neshev, and Y. S. Kivshar, “Multipolar coupling in hybrid metal–dielectric metasurfaces,” ACS Photonics 3(3), 349–353 (2016).
[Crossref]

Demetriadou, A.

F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. de Nijs, R. Esteban, J. Aizpurua, and J. J. Baumberg, “Single-molecule optomechanics in “picocavities”,” Science 354(6313), 726–729 (2016).
[Crossref] [PubMed]

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref] [PubMed]

Deng, S.

H. Wang, P. Liu, Y. Ke, Y. Su, L. Zhang, N. Xu, S. Deng, and H. Chen, “Janus magneto-electric nanosphere dimers exhibiting unidirectional visible light scattering and strong electromagnetic field enhancement,” ACS Nano 9(1), 436–448 (2015).
[Crossref] [PubMed]

Deng, Y. H.

Devilez, A.

A. Devilez, B. Stout, and N. Bonod, “Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission,” ACS Nano 4(6), 3390–3396 (2010).
[Crossref] [PubMed]

Dhuey, S.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett. 11(7), 2606–2610 (2011).
[Crossref] [PubMed]

Dominguez, J.

R. Guo, E. Rusak, I. Staude, J. Dominguez, M. Decker, C. Rockstuhl, I. Brener, D. N. Neshev, and Y. S. Kivshar, “Multipolar coupling in hybrid metal–dielectric metasurfaces,” ACS Photonics 3(3), 349–353 (2016).
[Crossref]

Dreismann, A.

F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. de Nijs, R. Esteban, J. Aizpurua, and J. J. Baumberg, “Single-molecule optomechanics in “picocavities”,” Science 354(6313), 726–729 (2016).
[Crossref] [PubMed]

Duò, L.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
[Crossref] [PubMed]

Esteban, R.

F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. de Nijs, R. Esteban, J. Aizpurua, and J. J. Baumberg, “Single-molecule optomechanics in “picocavities”,” Science 354(6313), 726–729 (2016).
[Crossref] [PubMed]

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491(7425), 574–577 (2012).
[Crossref] [PubMed]

Fan, S.

Z. Zhu, B. Bai, O. You, Q. Li, and S. Fan, “Fano resonance boosted cascaded optical field enhancement in a plasmonic nanoparticle-in-cavity nanoantenna array and its SERS application,” Light Sci. Appl. 4(6), e296 (2015).
[Crossref]

Faraon, A.

Feichtner, T.

T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary optimization of optical antennas,” Phys. Rev. Lett. 109(12), 127701 (2012).
[Crossref] [PubMed]

Feng, T.

T. Feng, Y. Xu, W. Zhang, and A. E. Miroshnichenko, “Ideal magnetic dipole scattering,” Phys. Rev. Lett. 118(17), 173901 (2017).
[Crossref] [PubMed]

Fernándezdomínguez, A. I.

R. Fernández-García, Y. Sonnefraud, A. I. Fernándezdomínguez, V. Giannini, and S. A. Maier, “Design considerations for near-field enhancement in optical antennas,” Contemp. Phys. 55(1), 1–11 (2014).
[Crossref]

Fernández-Domínguez, A. I.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

Fernández-García, R.

R. Fernández-García, Y. Sonnefraud, A. I. Fernándezdomínguez, V. Giannini, and S. A. Maier, “Design considerations for near-field enhancement in optical antennas,” Contemp. Phys. 55(1), 1–11 (2014).
[Crossref]

Finazzi, M.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
[Crossref] [PubMed]

Fischer, H.

Fox, P.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref] [PubMed]

García de Abajo, F. J.

Z. J. Yang, T. J. Antosiewicz, R. Verre, F. J. García de Abajo, S. P. Apell, and M. Käll, “The ultimate limit of light extinction by nanophotonic structures,” Nano Lett. 15(11), 7633–7638 (2015).
[Crossref] [PubMed]

Giannini, V.

R. Fernández-García, Y. Sonnefraud, A. I. Fernándezdomínguez, V. Giannini, and S. A. Maier, “Design considerations for near-field enhancement in optical antennas,” Contemp. Phys. 55(1), 1–11 (2014).
[Crossref]

Giessen, H.

F. Neubrech, C. Huck, K. Weber, A. Pucci, and H. Giessen, “Surface-enhanced infrared spectroscopy using resonant nanoantennas,” Chem. Rev. 117(7), 5110–5145 (2017).
[Crossref] [PubMed]

Gonzaga, L.

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
[Crossref] [PubMed]

Grinblat, G.

T. Shibanuma, G. Grinblat, P. Albella, and S. A. Maier, “Efficient third harmonic generation from metal-dielectric hybrid nanoantennas,” Nano Lett. 17(4), 2647–2651 (2017).
[Crossref] [PubMed]

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6(1), 7915 (2015).
[Crossref] [PubMed]

Großmann, S.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
[Crossref] [PubMed]

Guo, R.

R. Guo, E. Rusak, I. Staude, J. Dominguez, M. Decker, C. Rockstuhl, I. Brener, D. N. Neshev, and Y. S. Kivshar, “Multipolar coupling in hybrid metal–dielectric metasurfaces,” ACS Photonics 3(3), 349–353 (2016).
[Crossref]

Halas, N. J.

L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA),” Nano Lett. 15(2), 1272–1280 (2015).
[Crossref] [PubMed]

Haran, G.

G. Haran and L. Chuntonov, “Artificial plasmonic molecules and their interaction with real molecules,” Chem. Rev. 118(11), 5539–5580 (2018).
[Crossref] [PubMed]

Hartschuh, A.

X. Shi, N. Coca-López, J. Janik, and A. Hartschuh, “Advances in tip-enhanced near-field Raman microscopy using nanoantennas,” Chem. Rev. 117(7), 4945–4960 (2017).
[Crossref] [PubMed]

Hawkeye, M. M.

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491(7425), 574–577 (2012).
[Crossref] [PubMed]

He, J.

Q. Zhao, Z.-J. Yang, and J. He, “Fano resonances in heterogeneous dimers of silicon and gold nanospheres,” Front. Phys. 13(3), 137801 (2018).
[Crossref]

Z. J. Yang, Q. Zhao, Y. H. Deng, D. Zhang, and J. He, “Efficient second harmonic generation in gold-silicon core-shell nanostructures,” Opt. Express 26(5), 5835–5844 (2018).
[Crossref] [PubMed]

Z. J. Yang, Q. Zhao, and J. He, “Boosting magnetic field enhancement with radiative couplings of magnetic modes in dielectric nanostructures,” Opt. Express 25(14), 15927–15937 (2017).
[Crossref] [PubMed]

Z. J. Yang, Q. Zhao, S. Xiao, and J. He, “Engineering two-wire optical antennas for near field enhancement,” Photon. Nanostructures 25, 72–76 (2017).
[Crossref]

Hecht, B.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
[Crossref] [PubMed]

P. Biagioni, J. S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[Crossref] [PubMed]

T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary optimization of optical antennas,” Phys. Rev. Lett. 109(12), 127701 (2012).
[Crossref] [PubMed]

Hess, O.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref] [PubMed]

Hill, R. T.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

Hoang, T. B.

T. B. Hoang, G. M. Akselrod, and M. H. Mikkelsen, “Ultrafast room-temperature single photon emission from quantum dots coupled to plasmonic nanocavities,” Nano Lett. 16(1), 270–275 (2016).
[Crossref] [PubMed]

Hou, Y.

W. Li and Y. Hou, “Electromagnetic field hugely enhanced by coupling to optical energy focusing structure,” Opt. Express 25(7), 7358–7368 (2017).
[Crossref] [PubMed]

Y. Bao, Y. Hou, and Z. Wang, “Huge Electric Field Enhancement of Magnetic Resonator Integrated with Multiple Concentric Rings,” Plasmonics 10(2), 251–256 (2015).
[Crossref]

Huang, J. S.

P. Biagioni, J. S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[Crossref] [PubMed]

Huang, Q.

J.-N. Liu, Q. Huang, K.-K. Liu, S. Singamaneni, and B. T. Cunningham, “Nanoantenna- microcavity hybrids with highly cooperative plasmonic-photonic coupling,” Nano Lett. 17(12), 7569–7577 (2017).
[Crossref] [PubMed]

Huck, C.

F. Neubrech, C. Huck, K. Weber, A. Pucci, and H. Giessen, “Surface-enhanced infrared spectroscopy using resonant nanoantennas,” Chem. Rev. 117(7), 5110–5145 (2017).
[Crossref] [PubMed]

Jacob, Z.

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref] [PubMed]

Jahani, S.

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref] [PubMed]

Jamshidi, A.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett. 11(7), 2606–2610 (2011).
[Crossref] [PubMed]

Janik, J.

X. Shi, N. Coca-López, J. Janik, and A. Hartschuh, “Advances in tip-enhanced near-field Raman microscopy using nanoantennas,” Chem. Rev. 117(7), 4945–4960 (2017).
[Crossref] [PubMed]

Jiang, R.

Z. J. Yang, R. Jiang, X. Zhuo, Y. M. Xie, J. Wang, and H. Q. Lin, “Dielectric nanoresonators for light manipulation,” Phys. Rep. 701, 1–50 (2017).
[Crossref]

Joannopoulos, J. D.

Y. Yang, O. D. Miller, T. Christensen, J. D. Joannopoulos, and M. Soljačić, “Low-loss plasmonic dielectric nanoresonators,” Nano Lett. 17(5), 3238–3245 (2017).
[Crossref] [PubMed]

Käll, M.

Z. J. Yang, T. J. Antosiewicz, R. Verre, F. J. García de Abajo, S. P. Apell, and M. Käll, “The ultimate limit of light extinction by nanophotonic structures,” Nano Lett. 15(11), 7633–7638 (2015).
[Crossref] [PubMed]

Kamali, S. M.

Ke, Y.

H. Wang, P. Liu, Y. Ke, Y. Su, L. Zhang, N. Xu, S. Deng, and H. Chen, “Janus magneto-electric nanosphere dimers exhibiting unidirectional visible light scattering and strong electromagnetic field enhancement,” ACS Nano 9(1), 436–448 (2015).
[Crossref] [PubMed]

Khorasaninejad, M.

M. Khorasaninejad and F. Capasso, “Metalenses: Versatile multifunctional photonic components,” Science 358, 8100 (2017).

Kim, M.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett. 11(7), 2606–2610 (2011).
[Crossref] [PubMed]

Kiunke, M.

T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary optimization of optical antennas,” Phys. Rev. Lett. 109(12), 127701 (2012).
[Crossref] [PubMed]

Kivshar, Y.

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
[Crossref] [PubMed]

Kivshar, Y. S.

R. Guo, E. Rusak, I. Staude, J. Dominguez, M. Decker, C. Rockstuhl, I. Brener, D. N. Neshev, and Y. S. Kivshar, “Multipolar coupling in hybrid metal–dielectric metasurfaces,” ACS Photonics 3(3), 349–353 (2016).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref] [PubMed]

Koenderink, A. F.

A. F. Koenderink, “Single-photon nanoantennas,” ACS Photonics 4(4), 710–722 (2017).
[Crossref] [PubMed]

Kristensen, A.

X. Zhu, W. Yan, U. Levy, N. A. Mortensen, and A. Kristensen, “Resonant laser printing of structural colors on high-index dielectric metasurfaces,” Sci. Adv. 3(5), e1602487 (2017).
[Crossref] [PubMed]

Kuznetsov, A. I.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref] [PubMed]

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
[Crossref] [PubMed]

Lakhani, A.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett. 11(7), 2606–2610 (2011).
[Crossref] [PubMed]

Levy, U.

X. Zhu, W. Yan, U. Levy, N. A. Mortensen, and A. Kristensen, “Resonant laser printing of structural colors on high-index dielectric metasurfaces,” Sci. Adv. 3(5), e1602487 (2017).
[Crossref] [PubMed]

Li, Q.

Z. Zhu, B. Bai, O. You, Q. Li, and S. Fan, “Fano resonance boosted cascaded optical field enhancement in a plasmonic nanoparticle-in-cavity nanoantenna array and its SERS application,” Light Sci. Appl. 4(6), e296 (2015).
[Crossref]

Li, W.

Li, Y.

G. M. Akselrod, M. C. Weidman, Y. Li, C. Argyropoulos, W. A. Tisdale, and M. H. Mikkelsen, “Efficient nanosecond photoluminescence from infrared PbS quantum dots coupled to plasmonic nanoantennas,” ACS Photonics 3(10), 1741–1746 (2016).
[Crossref]

Lin, H. Q.

Z. J. Yang, R. Jiang, X. Zhuo, Y. M. Xie, J. Wang, and H. Q. Lin, “Dielectric nanoresonators for light manipulation,” Phys. Rep. 701, 1–50 (2017).
[Crossref]

Liu, J.-N.

J.-N. Liu, Q. Huang, K.-K. Liu, S. Singamaneni, and B. T. Cunningham, “Nanoantenna- microcavity hybrids with highly cooperative plasmonic-photonic coupling,” Nano Lett. 17(12), 7569–7577 (2017).
[Crossref] [PubMed]

Liu, K.-K.

J.-N. Liu, Q. Huang, K.-K. Liu, S. Singamaneni, and B. T. Cunningham, “Nanoantenna- microcavity hybrids with highly cooperative plasmonic-photonic coupling,” Nano Lett. 17(12), 7569–7577 (2017).
[Crossref] [PubMed]

Liu, P.

H. Wang, P. Liu, Y. Ke, Y. Su, L. Zhang, N. Xu, S. Deng, and H. Chen, “Janus magneto-electric nanosphere dimers exhibiting unidirectional visible light scattering and strong electromagnetic field enhancement,” ACS Nano 9(1), 436–448 (2015).
[Crossref] [PubMed]

Liu, Y.

Locatelli, A.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
[Crossref] [PubMed]

Luk’yanchuk, B.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref] [PubMed]

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
[Crossref] [PubMed]

Maier, S. A.

T. Shibanuma, G. Grinblat, P. Albella, and S. A. Maier, “Efficient third harmonic generation from metal-dielectric hybrid nanoantennas,” Nano Lett. 17(4), 2647–2651 (2017).
[Crossref] [PubMed]

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6(1), 7915 (2015).
[Crossref] [PubMed]

R. Fernández-García, Y. Sonnefraud, A. I. Fernándezdomínguez, V. Giannini, and S. A. Maier, “Design considerations for near-field enhancement in optical antennas,” Contemp. Phys. 55(1), 1–11 (2014).
[Crossref]

H. Aouani, M. Rahmani, M. Navarro-Cía, and S. A. Maier, “Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna,” Nat. Nanotechnol. 9(4), 290–294 (2014).
[Crossref] [PubMed]

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

Markovich, D.

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
[Crossref] [PubMed]

Martin, O. J.

Mikkelsen, M. H.

T. B. Hoang, G. M. Akselrod, and M. H. Mikkelsen, “Ultrafast room-temperature single photon emission from quantum dots coupled to plasmonic nanocavities,” Nano Lett. 16(1), 270–275 (2016).
[Crossref] [PubMed]

G. M. Akselrod, M. C. Weidman, Y. Li, C. Argyropoulos, W. A. Tisdale, and M. H. Mikkelsen, “Efficient nanosecond photoluminescence from infrared PbS quantum dots coupled to plasmonic nanoantennas,” ACS Photonics 3(10), 1741–1746 (2016).
[Crossref]

Miller, O. D.

Y. Yang, O. D. Miller, T. Christensen, J. D. Joannopoulos, and M. Soljačić, “Low-loss plasmonic dielectric nanoresonators,” Nano Lett. 17(5), 3238–3245 (2017).
[Crossref] [PubMed]

Miroshnichenko, A. E.

T. Feng, Y. Xu, W. Zhang, and A. E. Miroshnichenko, “Ideal magnetic dipole scattering,” Phys. Rev. Lett. 118(17), 173901 (2017).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref] [PubMed]

Mock, J. J.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

Mortensen, N. A.

X. Zhu, W. Yan, U. Levy, N. A. Mortensen, and A. Kristensen, “Resonant laser printing of structural colors on high-index dielectric metasurfaces,” Sci. Adv. 3(5), e1602487 (2017).
[Crossref] [PubMed]

Navarro-Cía, M.

H. Aouani, M. Rahmani, M. Navarro-Cía, and S. A. Maier, “Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna,” Nat. Nanotechnol. 9(4), 290–294 (2014).
[Crossref] [PubMed]

Neshev, D. N.

R. Guo, E. Rusak, I. Staude, J. Dominguez, M. Decker, C. Rockstuhl, I. Brener, D. N. Neshev, and Y. S. Kivshar, “Multipolar coupling in hybrid metal–dielectric metasurfaces,” ACS Photonics 3(3), 349–353 (2016).
[Crossref]

Neubrech, F.

F. Neubrech, C. Huck, K. Weber, A. Pucci, and H. Giessen, “Surface-enhanced infrared spectroscopy using resonant nanoantennas,” Chem. Rev. 117(7), 5110–5145 (2017).
[Crossref] [PubMed]

Nordlander, P.

L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA),” Nano Lett. 15(2), 1272–1280 (2015).
[Crossref] [PubMed]

Novotny, L.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[Crossref] [PubMed]

Ohadi, H.

F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. de Nijs, R. Esteban, J. Aizpurua, and J. J. Baumberg, “Single-molecule optomechanics in “picocavities”,” Science 354(6313), 726–729 (2016).
[Crossref] [PubMed]

Osellame, R.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
[Crossref] [PubMed]

Oulton, R. F.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6(1), 7915 (2015).
[Crossref] [PubMed]

Paniagua-Domínguez, R.

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
[Crossref] [PubMed]

Pelton, M.

M. Pelton, “Modified spontaneous emission in nanophotonic structures,” Nat. Photonics 9(7), 427–435 (2015).
[Crossref]

Pendry, J. B.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

Permyakov, D.

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
[Crossref] [PubMed]

Pucci, A.

F. Neubrech, C. Huck, K. Weber, A. Pucci, and H. Giessen, “Surface-enhanced infrared spectroscopy using resonant nanoantennas,” Chem. Rev. 117(7), 5110–5145 (2017).
[Crossref] [PubMed]

Rahmani, M.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6(1), 7915 (2015).
[Crossref] [PubMed]

H. Aouani, M. Rahmani, M. Navarro-Cía, and S. A. Maier, “Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna,” Nat. Nanotechnol. 9(4), 290–294 (2014).
[Crossref] [PubMed]

Rockstuhl, C.

R. Guo, E. Rusak, I. Staude, J. Dominguez, M. Decker, C. Rockstuhl, I. Brener, D. N. Neshev, and Y. S. Kivshar, “Multipolar coupling in hybrid metal–dielectric metasurfaces,” ACS Photonics 3(3), 349–353 (2016).
[Crossref]

Roschuk, T.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6(1), 7915 (2015).
[Crossref] [PubMed]

Rosta, E.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref] [PubMed]

Rusak, E.

R. Guo, E. Rusak, I. Staude, J. Dominguez, M. Decker, C. Rockstuhl, I. Brener, D. N. Neshev, and Y. S. Kivshar, “Multipolar coupling in hybrid metal–dielectric metasurfaces,” ACS Photonics 3(3), 349–353 (2016).
[Crossref]

Samusev, A.

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
[Crossref] [PubMed]

Savage, K. J.

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491(7425), 574–577 (2012).
[Crossref] [PubMed]

Scherman, O. A.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref] [PubMed]

Schmidt, M. K.

F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. de Nijs, R. Esteban, J. Aizpurua, and J. J. Baumberg, “Single-molecule optomechanics in “picocavities”,” Science 354(6313), 726–729 (2016).
[Crossref] [PubMed]

Schuck, P. J.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett. 11(7), 2606–2610 (2011).
[Crossref] [PubMed]

Schwartzberg, A. M.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett. 11(7), 2606–2610 (2011).
[Crossref] [PubMed]

Selig, O.

T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary optimization of optical antennas,” Phys. Rev. Lett. 109(12), 127701 (2012).
[Crossref] [PubMed]

Seok, T. J.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett. 11(7), 2606–2610 (2011).
[Crossref] [PubMed]

Shegai, T.

D. G. Baranov, M. Wersall, J. Cuadra, T. J. Antosiewicz, and T. Shegai, “Novel nanostructures and materials for strong light matter interactions,” ACS Photonics 5(1), 24–42 (2018).
[Crossref]

Shi, X.

X. Shi, N. Coca-López, J. Janik, and A. Hartschuh, “Advances in tip-enhanced near-field Raman microscopy using nanoantennas,” Chem. Rev. 117(7), 4945–4960 (2017).
[Crossref] [PubMed]

Shibanuma, T.

T. Shibanuma, G. Grinblat, P. Albella, and S. A. Maier, “Efficient third harmonic generation from metal-dielectric hybrid nanoantennas,” Nano Lett. 17(4), 2647–2651 (2017).
[Crossref] [PubMed]

Singamaneni, S.

J.-N. Liu, Q. Huang, K.-K. Liu, S. Singamaneni, and B. T. Cunningham, “Nanoantenna- microcavity hybrids with highly cooperative plasmonic-photonic coupling,” Nano Lett. 17(12), 7569–7577 (2017).
[Crossref] [PubMed]

Smith, D. R.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

Soljacic, M.

Y. Yang, O. D. Miller, T. Christensen, J. D. Joannopoulos, and M. Soljačić, “Low-loss plasmonic dielectric nanoresonators,” Nano Lett. 17(5), 3238–3245 (2017).
[Crossref] [PubMed]

Sonnefraud, Y.

R. Fernández-García, Y. Sonnefraud, A. I. Fernándezdomínguez, V. Giannini, and S. A. Maier, “Design considerations for near-field enhancement in optical antennas,” Contemp. Phys. 55(1), 1–11 (2014).
[Crossref]

Staude, I.

R. Guo, E. Rusak, I. Staude, J. Dominguez, M. Decker, C. Rockstuhl, I. Brener, D. N. Neshev, and Y. S. Kivshar, “Multipolar coupling in hybrid metal–dielectric metasurfaces,” ACS Photonics 3(3), 349–353 (2016).
[Crossref]

M. Decker and I. Staude, “Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics,” J. Opt. 18(10), 103001 (2016).
[Crossref]

Stout, B.

A. Devilez, B. Stout, and N. Bonod, “Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission,” ACS Nano 4(6), 3390–3396 (2010).
[Crossref] [PubMed]

Su, Y.

H. Wang, P. Liu, Y. Ke, Y. Su, L. Zhang, N. Xu, S. Deng, and H. Chen, “Janus magneto-electric nanosphere dimers exhibiting unidirectional visible light scattering and strong electromagnetic field enhancement,” ACS Nano 9(1), 436–448 (2015).
[Crossref] [PubMed]

Tisdale, W. A.

G. M. Akselrod, M. C. Weidman, Y. Li, C. Argyropoulos, W. A. Tisdale, and M. H. Mikkelsen, “Efficient nanosecond photoluminescence from infrared PbS quantum dots coupled to plasmonic nanoantennas,” ACS Photonics 3(10), 1741–1746 (2016).
[Crossref]

Urzhumov, Y.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

van Hulst, N.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

Verre, R.

Z. J. Yang, T. J. Antosiewicz, R. Verre, F. J. García de Abajo, S. P. Apell, and M. Käll, “The ultimate limit of light extinction by nanophotonic structures,” Nano Lett. 15(11), 7633–7638 (2015).
[Crossref] [PubMed]

Wang, H.

H. Wang, P. Liu, Y. Ke, Y. Su, L. Zhang, N. Xu, S. Deng, and H. Chen, “Janus magneto-electric nanosphere dimers exhibiting unidirectional visible light scattering and strong electromagnetic field enhancement,” ACS Nano 9(1), 436–448 (2015).
[Crossref] [PubMed]

Wang, J.

Z. J. Yang, R. Jiang, X. Zhuo, Y. M. Xie, J. Wang, and H. Q. Lin, “Dielectric nanoresonators for light manipulation,” Phys. Rep. 701, 1–50 (2017).
[Crossref]

Wang, Z.

Y. Bao, Y. Hou, and Z. Wang, “Huge Electric Field Enhancement of Magnetic Resonator Integrated with Multiple Concentric Rings,” Plasmonics 10(2), 251–256 (2015).
[Crossref]

Weber, K.

F. Neubrech, C. Huck, K. Weber, A. Pucci, and H. Giessen, “Surface-enhanced infrared spectroscopy using resonant nanoantennas,” Chem. Rev. 117(7), 5110–5145 (2017).
[Crossref] [PubMed]

Weidman, M. C.

G. M. Akselrod, M. C. Weidman, Y. Li, C. Argyropoulos, W. A. Tisdale, and M. H. Mikkelsen, “Efficient nanosecond photoluminescence from infrared PbS quantum dots coupled to plasmonic nanoantennas,” ACS Photonics 3(10), 1741–1746 (2016).
[Crossref]

Wersall, M.

D. G. Baranov, M. Wersall, J. Cuadra, T. J. Antosiewicz, and T. Shegai, “Novel nanostructures and materials for strong light matter interactions,” ACS Photonics 5(1), 24–42 (2018).
[Crossref]

Wu, M. C.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett. 11(7), 2606–2610 (2011).
[Crossref] [PubMed]

Wu, X.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
[Crossref] [PubMed]

Xiao, S.

Z. J. Yang, Q. Zhao, S. Xiao, and J. He, “Engineering two-wire optical antennas for near field enhancement,” Photon. Nanostructures 25, 72–76 (2017).
[Crossref]

Xie, Y. M.

Z. J. Yang, R. Jiang, X. Zhuo, Y. M. Xie, J. Wang, and H. Q. Lin, “Dielectric nanoresonators for light manipulation,” Phys. Rep. 701, 1–50 (2017).
[Crossref]

Xu, N.

H. Wang, P. Liu, Y. Ke, Y. Su, L. Zhang, N. Xu, S. Deng, and H. Chen, “Janus magneto-electric nanosphere dimers exhibiting unidirectional visible light scattering and strong electromagnetic field enhancement,” ACS Nano 9(1), 436–448 (2015).
[Crossref] [PubMed]

Xu, Y.

T. Feng, Y. Xu, W. Zhang, and A. E. Miroshnichenko, “Ideal magnetic dipole scattering,” Phys. Rev. Lett. 118(17), 173901 (2017).
[Crossref] [PubMed]

Yablonovitch, E.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett. 11(7), 2606–2610 (2011).
[Crossref] [PubMed]

Yan, W.

X. Zhu, W. Yan, U. Levy, N. A. Mortensen, and A. Kristensen, “Resonant laser printing of structural colors on high-index dielectric metasurfaces,” Sci. Adv. 3(5), e1602487 (2017).
[Crossref] [PubMed]

Yang, X.

L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA),” Nano Lett. 15(2), 1272–1280 (2015).
[Crossref] [PubMed]

Yang, Y.

Y. Yang, V. A. Zenin, and S. I. Bozhevolnyi, “Anapole-assisted strong field enhancement in individual all-dielectric nanostructures,” ACS Photonics 5(5), 1960–1966 (2018).
[Crossref]

Y. Yang, O. D. Miller, T. Christensen, J. D. Joannopoulos, and M. Soljačić, “Low-loss plasmonic dielectric nanoresonators,” Nano Lett. 17(5), 3238–3245 (2017).
[Crossref] [PubMed]

Yang, Z. J.

Z. J. Yang, Q. Zhao, Y. H. Deng, D. Zhang, and J. He, “Efficient second harmonic generation in gold-silicon core-shell nanostructures,” Opt. Express 26(5), 5835–5844 (2018).
[Crossref] [PubMed]

Z. J. Yang, Q. Zhao, and J. He, “Boosting magnetic field enhancement with radiative couplings of magnetic modes in dielectric nanostructures,” Opt. Express 25(14), 15927–15937 (2017).
[Crossref] [PubMed]

Z. J. Yang, Q. Zhao, S. Xiao, and J. He, “Engineering two-wire optical antennas for near field enhancement,” Photon. Nanostructures 25, 72–76 (2017).
[Crossref]

Z. J. Yang, R. Jiang, X. Zhuo, Y. M. Xie, J. Wang, and H. Q. Lin, “Dielectric nanoresonators for light manipulation,” Phys. Rep. 701, 1–50 (2017).
[Crossref]

Z. J. Yang, T. J. Antosiewicz, R. Verre, F. J. García de Abajo, S. P. Apell, and M. Käll, “The ultimate limit of light extinction by nanophotonic structures,” Nano Lett. 15(11), 7633–7638 (2015).
[Crossref] [PubMed]

Yang, Z.-J.

Q. Zhao, Z.-J. Yang, and J. He, “Fano resonances in heterogeneous dimers of silicon and gold nanospheres,” Front. Phys. 13(3), 137801 (2018).
[Crossref]

You, O.

Z. Zhu, B. Bai, O. You, Q. Li, and S. Fan, “Fano resonance boosted cascaded optical field enhancement in a plasmonic nanoparticle-in-cavity nanoantenna array and its SERS application,” Light Sci. Appl. 4(6), e296 (2015).
[Crossref]

Yu, H.

Yu, Y. F.

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
[Crossref] [PubMed]

Zenin, V. A.

Y. Yang, V. A. Zenin, and S. I. Bozhevolnyi, “Anapole-assisted strong field enhancement in individual all-dielectric nanostructures,” ACS Photonics 5(5), 1960–1966 (2018).
[Crossref]

Zhang, D.

Zhang, L.

H. Wang, P. Liu, Y. Ke, Y. Su, L. Zhang, N. Xu, S. Deng, and H. Chen, “Janus magneto-electric nanosphere dimers exhibiting unidirectional visible light scattering and strong electromagnetic field enhancement,” ACS Nano 9(1), 436–448 (2015).
[Crossref] [PubMed]

Zhang, W.

T. Feng, Y. Xu, W. Zhang, and A. E. Miroshnichenko, “Ideal magnetic dipole scattering,” Phys. Rev. Lett. 118(17), 173901 (2017).
[Crossref] [PubMed]

Zhang, Y.

F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. de Nijs, R. Esteban, J. Aizpurua, and J. J. Baumberg, “Single-molecule optomechanics in “picocavities”,” Science 354(6313), 726–729 (2016).
[Crossref] [PubMed]

Zhao, K.

L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA),” Nano Lett. 15(2), 1272–1280 (2015).
[Crossref] [PubMed]

Zhao, Q.

Q. Zhao, Z.-J. Yang, and J. He, “Fano resonances in heterogeneous dimers of silicon and gold nanospheres,” Front. Phys. 13(3), 137801 (2018).
[Crossref]

Z. J. Yang, Q. Zhao, Y. H. Deng, D. Zhang, and J. He, “Efficient second harmonic generation in gold-silicon core-shell nanostructures,” Opt. Express 26(5), 5835–5844 (2018).
[Crossref] [PubMed]

Z. J. Yang, Q. Zhao, and J. He, “Boosting magnetic field enhancement with radiative couplings of magnetic modes in dielectric nanostructures,” Opt. Express 25(14), 15927–15937 (2017).
[Crossref] [PubMed]

Z. J. Yang, Q. Zhao, S. Xiao, and J. He, “Engineering two-wire optical antennas for near field enhancement,” Photon. Nanostructures 25, 72–76 (2017).
[Crossref]

Zheng, B. Y.

L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA),” Nano Lett. 15(2), 1272–1280 (2015).
[Crossref] [PubMed]

Zhou, F.

Zhu, X.

X. Zhu, W. Yan, U. Levy, N. A. Mortensen, and A. Kristensen, “Resonant laser printing of structural colors on high-index dielectric metasurfaces,” Sci. Adv. 3(5), e1602487 (2017).
[Crossref] [PubMed]

Zhu, Z.

Z. Zhu, B. Bai, O. You, Q. Li, and S. Fan, “Fano resonance boosted cascaded optical field enhancement in a plasmonic nanoparticle-in-cavity nanoantenna array and its SERS application,” Light Sci. Appl. 4(6), e296 (2015).
[Crossref]

Zhuo, X.

Z. J. Yang, R. Jiang, X. Zhuo, Y. M. Xie, J. Wang, and H. Q. Lin, “Dielectric nanoresonators for light manipulation,” Phys. Rep. 701, 1–50 (2017).
[Crossref]

ACS Nano (2)

H. Wang, P. Liu, Y. Ke, Y. Su, L. Zhang, N. Xu, S. Deng, and H. Chen, “Janus magneto-electric nanosphere dimers exhibiting unidirectional visible light scattering and strong electromagnetic field enhancement,” ACS Nano 9(1), 436–448 (2015).
[Crossref] [PubMed]

A. Devilez, B. Stout, and N. Bonod, “Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission,” ACS Nano 4(6), 3390–3396 (2010).
[Crossref] [PubMed]

ACS Photonics (5)

R. Guo, E. Rusak, I. Staude, J. Dominguez, M. Decker, C. Rockstuhl, I. Brener, D. N. Neshev, and Y. S. Kivshar, “Multipolar coupling in hybrid metal–dielectric metasurfaces,” ACS Photonics 3(3), 349–353 (2016).
[Crossref]

A. F. Koenderink, “Single-photon nanoantennas,” ACS Photonics 4(4), 710–722 (2017).
[Crossref] [PubMed]

D. G. Baranov, M. Wersall, J. Cuadra, T. J. Antosiewicz, and T. Shegai, “Novel nanostructures and materials for strong light matter interactions,” ACS Photonics 5(1), 24–42 (2018).
[Crossref]

G. M. Akselrod, M. C. Weidman, Y. Li, C. Argyropoulos, W. A. Tisdale, and M. H. Mikkelsen, “Efficient nanosecond photoluminescence from infrared PbS quantum dots coupled to plasmonic nanoantennas,” ACS Photonics 3(10), 1741–1746 (2016).
[Crossref]

Y. Yang, V. A. Zenin, and S. I. Bozhevolnyi, “Anapole-assisted strong field enhancement in individual all-dielectric nanostructures,” ACS Photonics 5(5), 1960–1966 (2018).
[Crossref]

Chem. Rev. (3)

G. Haran and L. Chuntonov, “Artificial plasmonic molecules and their interaction with real molecules,” Chem. Rev. 118(11), 5539–5580 (2018).
[Crossref] [PubMed]

X. Shi, N. Coca-López, J. Janik, and A. Hartschuh, “Advances in tip-enhanced near-field Raman microscopy using nanoantennas,” Chem. Rev. 117(7), 4945–4960 (2017).
[Crossref] [PubMed]

F. Neubrech, C. Huck, K. Weber, A. Pucci, and H. Giessen, “Surface-enhanced infrared spectroscopy using resonant nanoantennas,” Chem. Rev. 117(7), 5110–5145 (2017).
[Crossref] [PubMed]

Contemp. Phys. (1)

R. Fernández-García, Y. Sonnefraud, A. I. Fernándezdomínguez, V. Giannini, and S. A. Maier, “Design considerations for near-field enhancement in optical antennas,” Contemp. Phys. 55(1), 1–11 (2014).
[Crossref]

Front. Phys. (1)

Q. Zhao, Z.-J. Yang, and J. He, “Fano resonances in heterogeneous dimers of silicon and gold nanospheres,” Front. Phys. 13(3), 137801 (2018).
[Crossref]

J. Opt. (1)

M. Decker and I. Staude, “Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics,” J. Opt. 18(10), 103001 (2016).
[Crossref]

Light Sci. Appl. (1)

Z. Zhu, B. Bai, O. You, Q. Li, and S. Fan, “Fano resonance boosted cascaded optical field enhancement in a plasmonic nanoparticle-in-cavity nanoantenna array and its SERS application,” Light Sci. Appl. 4(6), e296 (2015).
[Crossref]

Nano Lett. (8)

L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA),” Nano Lett. 15(2), 1272–1280 (2015).
[Crossref] [PubMed]

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
[Crossref] [PubMed]

T. B. Hoang, G. M. Akselrod, and M. H. Mikkelsen, “Ultrafast room-temperature single photon emission from quantum dots coupled to plasmonic nanocavities,” Nano Lett. 16(1), 270–275 (2016).
[Crossref] [PubMed]

J.-N. Liu, Q. Huang, K.-K. Liu, S. Singamaneni, and B. T. Cunningham, “Nanoantenna- microcavity hybrids with highly cooperative plasmonic-photonic coupling,” Nano Lett. 17(12), 7569–7577 (2017).
[Crossref] [PubMed]

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett. 11(7), 2606–2610 (2011).
[Crossref] [PubMed]

Z. J. Yang, T. J. Antosiewicz, R. Verre, F. J. García de Abajo, S. P. Apell, and M. Käll, “The ultimate limit of light extinction by nanophotonic structures,” Nano Lett. 15(11), 7633–7638 (2015).
[Crossref] [PubMed]

T. Shibanuma, G. Grinblat, P. Albella, and S. A. Maier, “Efficient third harmonic generation from metal-dielectric hybrid nanoantennas,” Nano Lett. 17(4), 2647–2651 (2017).
[Crossref] [PubMed]

Y. Yang, O. D. Miller, T. Christensen, J. D. Joannopoulos, and M. Soljačić, “Low-loss plasmonic dielectric nanoresonators,” Nano Lett. 17(5), 3238–3245 (2017).
[Crossref] [PubMed]

Nat. Commun. (1)

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6(1), 7915 (2015).
[Crossref] [PubMed]

Nat. Nanotechnol. (3)

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref] [PubMed]

H. Aouani, M. Rahmani, M. Navarro-Cía, and S. A. Maier, “Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna,” Nat. Nanotechnol. 9(4), 290–294 (2014).
[Crossref] [PubMed]

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
[Crossref] [PubMed]

Nat. Photonics (2)

M. Pelton, “Modified spontaneous emission in nanophotonic structures,” Nat. Photonics 9(7), 427–435 (2015).
[Crossref]

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

Nature (2)

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref] [PubMed]

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491(7425), 574–577 (2012).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Optica (1)

Photon. Nanostructures (1)

Z. J. Yang, Q. Zhao, S. Xiao, and J. He, “Engineering two-wire optical antennas for near field enhancement,” Photon. Nanostructures 25, 72–76 (2017).
[Crossref]

Phys. Rep. (1)

Z. J. Yang, R. Jiang, X. Zhuo, Y. M. Xie, J. Wang, and H. Q. Lin, “Dielectric nanoresonators for light manipulation,” Phys. Rep. 701, 1–50 (2017).
[Crossref]

Phys. Rev. Lett. (3)

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[Crossref] [PubMed]

T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary optimization of optical antennas,” Phys. Rev. Lett. 109(12), 127701 (2012).
[Crossref] [PubMed]

T. Feng, Y. Xu, W. Zhang, and A. E. Miroshnichenko, “Ideal magnetic dipole scattering,” Phys. Rev. Lett. 118(17), 173901 (2017).
[Crossref] [PubMed]

Plasmonics (1)

Y. Bao, Y. Hou, and Z. Wang, “Huge Electric Field Enhancement of Magnetic Resonator Integrated with Multiple Concentric Rings,” Plasmonics 10(2), 251–256 (2015).
[Crossref]

Rep. Prog. Phys. (1)

P. Biagioni, J. S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[Crossref] [PubMed]

Sci. Adv. (1)

X. Zhu, W. Yan, U. Levy, N. A. Mortensen, and A. Kristensen, “Resonant laser printing of structural colors on high-index dielectric metasurfaces,” Sci. Adv. 3(5), e1602487 (2017).
[Crossref] [PubMed]

Science (4)

M. Khorasaninejad and F. Capasso, “Metalenses: Versatile multifunctional photonic components,” Science 358, 8100 (2017).

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref] [PubMed]

F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. de Nijs, R. Esteban, J. Aizpurua, and J. J. Baumberg, “Single-molecule optomechanics in “picocavities”,” Science 354(6313), 726–729 (2016).
[Crossref] [PubMed]

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

Other (1)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Far-field optical responses and near field enhancement of a coupled system of a plasmonic nanoantenna and a dielectric nanodisk. (a) Schematic of a coupled structure under normal incident illumination. The polarization of the incident wave is along the antenna (x-axis). (b) The absorption spectra of the individual (black) and coupled (red) plasmonic antenna, and the scattering spectrum of the individual dielectric disk (blue). The scattering of the disk is multiplied by 0.1 for clearer comparison. (c, d) The resonant electric near-field profiles on the y = 0 plane of (c) the individual dielectric disk at λ = 615 nm and (d) the coupled system at λ = 637 nm. The dashed lines show the outline of the disk. (e) Electric field enhancement at the center of the Au antenna in the coupled system (red). The case for the individual Au antenna (black) is also shown for comparison.
Fig. 2
Fig. 2 Far-field optical responses and near-field enhancement of a coupled system of a Au nanoantenna and a dielectric disk−ring structure. (a) Schematic of the coupled structure under normal incidence. The polarization of the incident wave is along the x-axis. The Au antenna is the same as that in Fig. 1. (b) The extinction spectra of the individual disk−ring (black) and the coupled structure (red). (c) The absorption spectra of the individual (black) and coupled (red) Au antenna. The absorption of the individual antenna is multiplied by 10 for clearer comparison. (d) The electric near-field profiles on the y = 0 plane of the coupled system (top) and the individual dielectric disk−ring structure (bottom). The wavelength is λ = 637 nm. The dashed lines show the outline of the dielectric structures. (e) Electric field enhancement at the gap center of the individual (black) and coupled (red) Au antenna. The case for the Au antenna on a substrate (blue) is also shown for comparison.
Fig. 3
Fig. 3 Electric field enhancements with different lengths L of each Au nanorod. The dielectric disk−ring is the same as that in Fig. 2. The diameter of each gold nanorod and the gap size are 10 and 5 nm, respectively. (a-c) Spectra of electric near field enhancement of (a) individual Au antennas, (b) Au antennas on substrate and (c) Au antennas in the coupled systems.
Fig. 4
Fig. 4 Electric field enhancement with varying the geometries of the coupled system. (a, b) Resonant electric field enhancement | E C |/| E 0 | of the Au antenna in the coupled system (black) and the corresponding relative enhancements (| E C |/| E C 0 |, blue; | E C |/| E C sub |, red) as a function of (a) the gap distance between the two Au nanorods and (b) the diameter of each Au nanorod. The dielectric disk−ring structure is the same as that in Fig. 2. For each case, the length L of the Au nanorod is optimized to obtain the maximal resonant | E C |/| E 0 |. (c) Resonant | E C |/| E 0 | (black), | E C |/| E C 0 | (blue) and | E C |/| E C sub | (red) as a function of the resonant wavelength of the dielectric disk−ring structure. The length of the Au nanorod is also optimized to obtain the maximal resonant | E C |/| E 0 | for each case.
Fig. 5
Fig. 5 Experimentally feasible Au antenna−dielectric disk−ring coupled systems. (a) Schematic of a coupled system with substrate. The refractive index of substrate is n = 1.46. The coupled structure of the antenna and dielectric disk−ring is the same as that in Fig. 2. (b) Electric field enhancement at the center of the Au antenna in the coupled structure on the substrate. The case for the individual antenna (black) is also shown for comparison. (c) The electric near-field profiles on the y = 0 plane of the coupled structure on the substrate (top) and the dielectric structure with substrate (bottom). The wavelength is λ = 637 nm. The dashed lines show the outline of the structures. (d), (e) and (f) show the same contents as that in (a), (b) and (c), respectively. But the material of the dielectric disk−ring structure is now replaced by Si.
Fig. 6
Fig. 6 The near field enhancement of a coupled system of a Ag nanoantenna and a dielectric disk−ring structure. The configuration of the coupled system is the same as that in Fig. 2. The material and length of the plasmonic nanoantenna is now changed to Ag and L = 32 nm, respectively. (a) The electric near-field profiles on the y = 0 plane of the coupled system (top) and the individual dielectric disk−ring structure (bottom). The wavelength is λ = 637 nm. The dashed lines show the outline of the dielectric structures. (b) Electric field enhancements at the center of the individual (black) and coupled (red) Ag antenna. The case for the Ag antenna with substrate (blue) is also shown for comparison.

Metrics