Abstract

In this paper, we propose an intensity modulation and coherent detection scheme with high phase noise tolerance for polarization division multiplexing (PDM) discrete multi-tone (DMT) signal transmission by employing Kramers-Kronig (KK) detection and digital carrier regeneration (DCR). At the transmitter side, DMT signal is modulated by a Mach-Zehnder modulator (MZM) setting bias around the null point and transmitted with the suppressed optical carrier. At the receiver side, a directly modulated lasers (DMLs) locating at the edge of DMT signal is used as the local oscillator (LO) for coherent detection. For signal recovery, KK detection is first used to reduce the signal to signal beating noise. Digital optical carrier is then regenerated by the DCR scheme and the DMT signal could be recovered by enveloping detection with the regenerated digital carrier, which can achieve high laser line-width tolerance and mitigate the residual phase noise caused by KK detection. To verify the effectiveness of the proposed scheme, we compare the KK and DCR based receiver digital signal processing (DSP) with conventional receiver DSP by using both DMLs with larger linewidth (~10 MHz) or external cavity lasers (ECLs) with smaller linewidth (less than 100 kHz) as optical carrier and LO. The results show that KK and DCR can mutually improve the system performance with ECLs as optical carrier and LO. Moreover, it is shown that the signal using DMLs cannot be recovered without the DCR method due to the high laser line-width of DML. Finally, we successfully demonstrate 4 × 128-Gb/s KK and DCR based PDM-DMT signal transmission over 1440-km SSMF by employing DMLs as optical carrier and LO.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fading-free transmission of 124-Gb/s PDM-DMT signal over 100-km SSMF using digital carrier regeneration

Cai Li, Rong Hu, Qi Yang, Ming Luo, Wei Li, and Shaohua Yu
Opt. Express 24(2) 817-824 (2016)

Cost-effective coherent PON using silicon Mach-Zehnder modulator and digital carrier regeneration

Miaofeng Li, Rong Hu, Jinsong Xia, Qi Yang, Xi Xiao, Cai Li, Xiang Li, and Shaohua Yu
Opt. Express 23(15) 19799-19805 (2015)

Maximizing the spectral efficiency of Stokes vector receiver with optical field recovery

Di Che, Chuanbowen Sun, and William Shieh
Opt. Express 26(22) 28976-28981 (2018)

References

  • View by:
  • |
  • |
  • |

  1. G. N. Liu, L. Zhang, T. Zuo, and Q. Zhang, “IM/DD transmission techniques for emerging 5G fronthaul, DCI and metro applications,” J. Lightwave Technol. 36(2), 560–567 (2018).
    [Crossref]
  2. K. Zhong, X. Zhou, J. Huo, C. Yu, C. Lu, and A. P. T. Lau, “Digital signal processing for short-reach optical communications: a review of current technologies and future trends,” J. Lightwave Technol. 36(2), 377–400 (2018).
    [Crossref]
  3. J. Shi, J. Zhang, Y. Zhou, Y. Wang, N. Chi, and J. Yu, “Transmission performance comparison for 100-Gb/s PAM-4, CAP-16, and DFT-S OFDM with direct detection,” J. Lightwave Technol. 35(23), 5127–5133 (2017).
    [Crossref]
  4. D. Che, Q. Hu, and W. Shieh, “Linearization of direct detection optical channels using self-coherent subsystems,” J. Lightwave Technol. 34(2), 516–524 (2016).
    [Crossref]
  5. Y. Zhu, K. Zou, Z. Chen, and F. Zhang, “224Gb/s optical carrier-assisted Nyquist 16-QAM half-cycle singlesideband direct detection transmission over 160km SSMF,” J. Lightwave Technol. 35(9), 1557–1565 (2017).
    [Crossref]
  6. X. Chen, C. Antonelli, S. Chandrasekhar, G. Raybon, J. Sinsky, A. Mecozzi, M. Shtaif, and P. Winzer, “218- Gb/s single-wavelength, single-polarization, single-photodiode transmission over 125-km of standard single mode fiber using Kramers-Kronig detection,” Proc. Optical Fiber Communication Conference, Paper Th5B.6 (2017).
  7. W. Peng, X. Wu, V. R. Arbab, K. Feng, B. Shamee, L. C. Christen, J. Yang, and A. E. Willner, “Theoretical and experimental investigations of direct-detected RF-tone assisted optical OFDM systems,” J. Lightwave Technol. 27(10), 1332–1339 (2009).
    [Crossref]
  8. T. M. F. Alves, L. M. M. Mendes, and A. V. T. Cartaxo, “High granularity multiband OFDM virtual carrier assisted direct-detection metro networks,” J. Lightwave Technol. 33(1), 42–54 (2015).
    [Crossref]
  9. S. T. Le, K. Schuh, M. Chagnon, F. Buchali, R. Dischler, V. Aref, H. Buelow, and K. M. Engenhardt, “1.72Tb/s virtual-carrier assisted direct-detection transmission over 200km,” J. Lightwave Technol. 36(6), 1347–1353 (2018).
    [Crossref]
  10. W. R. Peng, X. Wu, K. M. Feng, V. R. Arbab, B. Shamee, J. Y. Yang, L. C. Christen, A. E. Willner, and S. Chi, “Spectrally efficient direct-detected OFDM transmission employing an iterative estimation and cancellation technique,” Opt. Express 17(11), 9099–9111 (2009).
    [Crossref] [PubMed]
  11. K. Zou, Y. Zhu, F. Zhang, and Z. Chen, “Spectrally efficient terabit optical transmission with Nyquist 64-QAM half-cycle subcarrier modulation and direct detection,” Opt. Lett. 41(12), 2767–2770 (2016).
    [Crossref] [PubMed]
  12. Z. Li, M. Erkılınç, K. Shi, E. Sillekens, L. Galdino, B. Thomsen, P. Bayvel, and R. Killey, “SSBI mitigation and the Kramers-Kronig scheme in single-sideband direct-detection transmission with receiver-based electronic dispersion compensation,” J. Lightwave Technol. 35(10), 1887–1893 (2017).
    [Crossref]
  13. A. Mecozzi, C. Antonelli, and M. Shtaif, “Kramers-kronig coherent receiver,” Optica 3(11), 1220–1227 (2016).
    [Crossref]
  14. D. Qian, N. Cvijetic, J. Hu, and T. Wang, “108 Gb/s OFDMA-PON with polarization multiplexing and direct detection,” J. Lightwave Technol. 28(4), 484–493 (2010).
    [Crossref]
  15. T. M. Hoang, M. Y. S. Sowailem, Q. Zhuge, Z. Xing, M. Morsy-Osman, E. El-Fiky, S. Fan, M. Xiang, and D. V. Plant, “Single wavelength 480 Gb/s direct detection over 80km SSMF enabled by Stokes vector Kramers Kronig transceiver,” Opt. Express 25(26), 33534–33542 (2017).
    [Crossref]
  16. D. Che, C. Sun, and W. Shieh, “Single-channel 480-Gb/s direct detection of POL-MUX IQ signal using single side band Stokes vector receiver,” Proc. Optical Fiber Communication Conference, Tu2C.7 (2018).
  17. C. Antonelli, A. Mecozzi, M. Shtaif, X. Chen, S. Chandrasekhar, and P. J. Winzer, “Polarization multiplexing with the Kramers-Kronig receiver,” J. Lightwave Technol. 35(24), 5418–5424 (2017).
    [Crossref]
  18. C. Li, R. Hu, Q. Yang, M. Luo, W. Li, and S. Yu, “Fading-free transmission of 124-Gb/s PDM-DMT signal over 100-km SSMF using digital carrier regeneration,” Opt. Express 24(2), 817–824 (2016).
    [Crossref] [PubMed]
  19. X. Chen, C. Antonelli, S. Chandrasekhar, G. Raybon, A. Mecozzi, M. Shtaif, and P. J. Winzer, “4 x 240 Gb/s Dense WDM and PDM Kramers-Kronig Detection with 125-km SSMF Transmission,” Proc. European Conference on Optical Communication, W.2.D.4 (2017).

2018 (3)

2017 (5)

2016 (4)

2015 (1)

2010 (1)

2009 (2)

Alves, T. M. F.

Antonelli, C.

Arbab, V. R.

Aref, V.

Bayvel, P.

Buchali, F.

Buelow, H.

Cartaxo, A. V. T.

Chagnon, M.

Chandrasekhar, S.

Che, D.

Chen, X.

Chen, Z.

Chi, N.

Chi, S.

Christen, L. C.

Cvijetic, N.

Dischler, R.

El-Fiky, E.

Engenhardt, K. M.

Erkilinç, M.

Fan, S.

Feng, K.

Feng, K. M.

Galdino, L.

Hoang, T. M.

Hu, J.

Hu, Q.

Hu, R.

Huo, J.

Killey, R.

Lau, A. P. T.

Le, S. T.

Li, C.

Li, W.

Li, Z.

Liu, G. N.

Lu, C.

Luo, M.

Mecozzi, A.

Mendes, L. M. M.

Morsy-Osman, M.

Peng, W.

Peng, W. R.

Plant, D. V.

Qian, D.

Schuh, K.

Shamee, B.

Shi, J.

Shi, K.

Shieh, W.

Shtaif, M.

Sillekens, E.

Sowailem, M. Y. S.

Thomsen, B.

Wang, T.

Wang, Y.

Willner, A. E.

Winzer, P. J.

Wu, X.

Xiang, M.

Xing, Z.

Yang, J.

Yang, J. Y.

Yang, Q.

Yu, C.

Yu, J.

Yu, S.

Zhang, F.

Zhang, J.

Zhang, L.

Zhang, Q.

Zhong, K.

Zhou, X.

Zhou, Y.

Zhu, Y.

Zhuge, Q.

Zou, K.

Zuo, T.

J. Lightwave Technol. (11)

G. N. Liu, L. Zhang, T. Zuo, and Q. Zhang, “IM/DD transmission techniques for emerging 5G fronthaul, DCI and metro applications,” J. Lightwave Technol. 36(2), 560–567 (2018).
[Crossref]

K. Zhong, X. Zhou, J. Huo, C. Yu, C. Lu, and A. P. T. Lau, “Digital signal processing for short-reach optical communications: a review of current technologies and future trends,” J. Lightwave Technol. 36(2), 377–400 (2018).
[Crossref]

J. Shi, J. Zhang, Y. Zhou, Y. Wang, N. Chi, and J. Yu, “Transmission performance comparison for 100-Gb/s PAM-4, CAP-16, and DFT-S OFDM with direct detection,” J. Lightwave Technol. 35(23), 5127–5133 (2017).
[Crossref]

D. Che, Q. Hu, and W. Shieh, “Linearization of direct detection optical channels using self-coherent subsystems,” J. Lightwave Technol. 34(2), 516–524 (2016).
[Crossref]

Y. Zhu, K. Zou, Z. Chen, and F. Zhang, “224Gb/s optical carrier-assisted Nyquist 16-QAM half-cycle singlesideband direct detection transmission over 160km SSMF,” J. Lightwave Technol. 35(9), 1557–1565 (2017).
[Crossref]

W. Peng, X. Wu, V. R. Arbab, K. Feng, B. Shamee, L. C. Christen, J. Yang, and A. E. Willner, “Theoretical and experimental investigations of direct-detected RF-tone assisted optical OFDM systems,” J. Lightwave Technol. 27(10), 1332–1339 (2009).
[Crossref]

T. M. F. Alves, L. M. M. Mendes, and A. V. T. Cartaxo, “High granularity multiband OFDM virtual carrier assisted direct-detection metro networks,” J. Lightwave Technol. 33(1), 42–54 (2015).
[Crossref]

S. T. Le, K. Schuh, M. Chagnon, F. Buchali, R. Dischler, V. Aref, H. Buelow, and K. M. Engenhardt, “1.72Tb/s virtual-carrier assisted direct-detection transmission over 200km,” J. Lightwave Technol. 36(6), 1347–1353 (2018).
[Crossref]

Z. Li, M. Erkılınç, K. Shi, E. Sillekens, L. Galdino, B. Thomsen, P. Bayvel, and R. Killey, “SSBI mitigation and the Kramers-Kronig scheme in single-sideband direct-detection transmission with receiver-based electronic dispersion compensation,” J. Lightwave Technol. 35(10), 1887–1893 (2017).
[Crossref]

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “108 Gb/s OFDMA-PON with polarization multiplexing and direct detection,” J. Lightwave Technol. 28(4), 484–493 (2010).
[Crossref]

C. Antonelli, A. Mecozzi, M. Shtaif, X. Chen, S. Chandrasekhar, and P. J. Winzer, “Polarization multiplexing with the Kramers-Kronig receiver,” J. Lightwave Technol. 35(24), 5418–5424 (2017).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Optica (1)

Other (3)

D. Che, C. Sun, and W. Shieh, “Single-channel 480-Gb/s direct detection of POL-MUX IQ signal using single side band Stokes vector receiver,” Proc. Optical Fiber Communication Conference, Tu2C.7 (2018).

X. Chen, C. Antonelli, S. Chandrasekhar, G. Raybon, A. Mecozzi, M. Shtaif, and P. J. Winzer, “4 x 240 Gb/s Dense WDM and PDM Kramers-Kronig Detection with 125-km SSMF Transmission,” Proc. European Conference on Optical Communication, W.2.D.4 (2017).

X. Chen, C. Antonelli, S. Chandrasekhar, G. Raybon, J. Sinsky, A. Mecozzi, M. Shtaif, and P. Winzer, “218- Gb/s single-wavelength, single-polarization, single-photodiode transmission over 125-km of standard single mode fiber using Kramers-Kronig detection,” Proc. Optical Fiber Communication Conference, Paper Th5B.6 (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic diagram of receiver DSP. (a) Optical spectrum of received signal; (b) electrical spectrum of received signal; (c) electrical spectrum after KK Scheme; (d) electrical spectrum after frequency offset compensation.
Fig. 2
Fig. 2 (a) Schematic diagram of KK detection; (b) Schematic diagram of the DCR scheme; (c) Recovered DMT signal with regenerated digital carrier.
Fig. 3
Fig. 3 Experimental setup and four DSP cases for the transmission of 4 × 100-Gb/s PDM-DMT signal over 1440-km SSMF. (a) 4 × 128-Gb/s modulated PDM-DMT spectrum at the transmitter; (b) 4 × 128-Gb/s modulated PDM-DMT spectrum after 1440km transmission; (c) filtered 128-Gb/s modulated PDM-DMT spectrum at the receiver; (d) the spectrum of received optical signals combined with LO.
Fig. 4
Fig. 4 (a) CSPR versus BER with ECLs at back to back case; (b) OSNR versus BER with ECLs at back to back case.
Fig. 5
Fig. 5 (a) CSPR versus BER with DMLs at back to back case; (b) OSNR versus BER with DMLs at back to back case.
Fig. 6
Fig. 6 BER performance versus alpha factor of DCR scheme at back-to-back case.
Fig. 7
Fig. 7 (a) Launch power versus BER performance for the transmission of 4 × 128-Gb/s PDM-DMT signal using ECLs over 1040-km SSMF; (b) transmission distance versus BER performance with ECLs of 4 × 128-Gb/s PDM-DMT signal.
Fig. 8
Fig. 8 (a) Launch power versus BER performance with DMLs for the transmission of 4 × 128-Gb/s PDM-DMT signal over 1040-km SSMF; (b) transmission distance versus BER performance with DMLs of 4 × 128-Gb/s PDM-DMT signal.

Tables (2)

Tables Icon

Table 1 The hardware complexity comparisons of the proposed scheme, typical DD, and typical CohD systems.

Tables Icon

Table 2 The DSP complexity comparisons of the proposed scheme, typical DD, and typical CohD systems.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

r( n )= | A lo +( A c +s( n ) ) e j( 2πΔfn+Δφ( n ) ) | 2 = | A lo | 2 + | A c +s( n ) | 2 + A lo ( A c +s( n ) ) e j( 2πΔfn+Δφ( n ) ) + A lo ( A c +s( n ) ) e j( 2πΔfn+Δφ( n ) )
A kk ( n )= r( n ) =| A lo +( A c +s( n ) ) e j( 2πΔfn+Δφ( n ) ) | θ kk ( n )=H( ln( A kk ( n ) ) )
r kk ( n )=| A lo +( A c +s( n ) ) e j( 2πΔfn+Δφ( n ) ) | e j θ kk ( n ) =( A lo +( A c +s( n ) ) e j( 2πΔfn+Δφ( n ) ) ) e j θ sig ( n ) e j θ kk ( n ) =( A lo +( A c +s( n ) ) e j( 2πΔfn+Δφ( n ) ) ) e jΔθ( n )
r DCR_in ( n )=( A c +s( n ) ) e j( Δφ( n )+Δθ( n ) ) = A c e j( Δφ( n )+Δθ( n ) ) +s( n ) e j( Δφ( n )+Δθ( n ) )
r DCR_out ( n )=| r DCR_in ( n )+αc( n ) || αc( n ) | =| ( α+1 ) A c +s( n ) || α A c | = A c +s( n ),α1

Metrics