Abstract

Ultra-precision diamond machining is a promising technique for non-rotationally symmetrical surfaces with sub-micrometer form accuracy. The measurement and compensation processes in the fabrication process must be conducted carefully to achieve high form accuracy. However, significant challenges remain to improve the measurement accuracy and machining efficiency. Because of the remounting process, the off-machine measurements would reduce the efficiency. On the other hand, contact-type measurements can cause physical damage to some soft materials. To overcome these problems, a noncontact on-machine measurement (OMM) system is developed using two optical probes, and a two-step compensation strategy is proposed to generate a modified tool path. To verify the accuracy of the proposed measurement system, OMMs were performed on a spherical mirror using this system and were later compared with off-machine measurements. To evaluate the compensation strategy, an off-axis paraboloid mirror was diamond-machined and compensated using the proposed method. The results show that the OMM system and compensation strategy are effective for improving the form accuracy while simultaneously enhancing the machining efficiency.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Large-scale fabrication of micro-lens array by novel end-fly-cutting-servo diamond machining

Zhiwei Zhu, Suet To, and Shaojian Zhang
Opt. Express 23(16) 20593-20604 (2015)

Development of pseudo-random diamond turning method for fabricating freeform optics with scattering homogenization

Zhiwei Zhu, Xiaoqin Zhou, Dan Luo, and Qiang Liu
Opt. Express 21(23) 28469-28482 (2013)

References

  • View by:
  • |
  • |
  • |

  1. A. Bauer and J. P. Rolland, “Visual space assessment of two all-reflective, freeform, optical see-through head-worn displays,” Opt. Express 22(11), 13155–13163 (2014).
    [Crossref] [PubMed]
  2. P. Benitez, J. C. Minano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernandez, J. L. Alvarez, and W. Falicoff, “SMS design method in 3D geometry: examples and applications,” Proc. SPIE 5185, 506857 (2004).
    [Crossref]
  3. F. Z. Fang, X. D. Zhang, A. Weckenmann, G. X. Zhang, and C. Evans, “Manufacturing and measurement of freeform optics,” CIRP Annals-Manufacturing Technology 62(2), 823–846 (2013).
    [Crossref]
  4. X. Jiang, P. Scott, and D. Whitehouse, “Freeform surface characterisation - a fresh strategy,” CIRP Annals-Manufacturing Technology 56(1), 553–556 (2007).
    [Crossref]
  5. J. F. Ye, L. Chen, X. H. Li, Q. Yuan, and Z. S. Gao, “Review of optical freeform surface representation technique and its application,” Opt. Eng. 56(11), 110901 (2017).
    [Crossref]
  6. Y. Ding, X. Liu, Z. R. Zheng, and P. F. Gu, “Freeform LED lens for uniform illumination,” Opt. Express 16(17), 12958–12966 (2008).
    [Crossref] [PubMed]
  7. F. P. W. Melchels, J. Feijen, and D. W. Grijpma, “A review on stereolithography and its applications in biomedical engineering,” Biomaterials 31(24), 6121–6130 (2010).
    [Crossref] [PubMed]
  8. F. J. Chen, S. H. Yin, H. Huang, H. Ohmori, Y. Wang, Y. F. Fan, and Y. J. Zhu, “Profile error compensation in ultra-precision grinding of aspheric surfaces with on-machine measurement,” Int. J. Mach. Tools Manuf. 50(5), 480–486 (2010).
    [Crossref]
  9. Z. Dong, H. Cheng, X. Ye, and H. Y. Tam, “Developing on-machine 3D profile measurement for deterministic fabrication of aspheric mirrors,” Appl. Opt. 53(22), 4997–5007 (2014).
    [Crossref] [PubMed]
  10. S. J. Ludwick, D. A. Chargin, J. A. Calzaretta, and D. L. Trumper, “Design of a rotary fast tool servo for ophthalmic lens fabrication,” Precis. Eng. 23(4), 253–259 (1999).
    [Crossref]
  11. S. To, T. C. Kwok, C. F. Cheung, and W. B. Lee, “Study of ultra-precision diamond turning of a microlens array with a fast tool servo system,” Proc. SPIE 6149, 61490S1 (2006).
  12. J. B. Zhou, L. Li, N. Naples, T. Sun, and A. Y. Yi, “Fabrication of continuous diffractive optical elements using a fast tool servo diamond turning process,” J. Micromech. Microeng. 23(7), 075010 (2013).
    [Crossref]
  13. Y. E. Tohme and J. A. Lowe, “Machining of freeform optical surfaces by slow slide servo method,” In Proceedings of the American Society for Precision Engineering, (2004).
  14. A. Y. Yi and L. Li, “Design and fabrication of a microlens array by use of a slow tool servo,” Opt. Lett. 30(13), 1707–1709 (2005).
    [Crossref] [PubMed]
  15. Z. Zhu and S. To, “Adaptive tool servo diamond turning for enhancing machining efficiency and surface quality of freeform optics,” Opt. Express 23(16), 20234–20248 (2015).
    [Crossref] [PubMed]
  16. P. Qu, F. Chen, H. Liu, Q. Yang, J. Lu, J. Si, Y. Wang, and X. Hou, “A simple route to fabricate artificial compound eye structures,” Opt. Express 20(5), 5775–5782 (2012).
    [Crossref] [PubMed]
  17. L. Chang, M. Dijkstra, N. Ismail, M. Pollnau, R. M. de Ridder, K. Wörhoff, V. Subramaniam, and J. S. Kanger, “Waveguide-coupled micro-ball lens array suitable for mass fabrication,” Opt. Express 23(17), 22414–22423 (2015).
    [Crossref] [PubMed]
  18. M. Weck, S. Fischer, and M. Vos, “Fabrication of microcomponents using ultraprecision machine tools,” Nanotechnology 8(3), 145–148 (1997).
    [Crossref]
  19. J. W. Yan, K. Maekawa, J. Tamaki, and T. Kuriyagawa, “Micro grooving on single-crystal germanium for infrared Fresnel lenses,” J. Micromech. Microeng. 15(10), 1925–1931 (2005).
    [Crossref]
  20. Z. Q. Yin, Y. F. Dai, S. Y. Li, C. L. Guan, and G. P. Tie, “Fabrication of off-axis aspheric surfaces using a slow tool servo,” Int. J. Mach. Tools Manuf. 51(5), 404–410 (2011).
    [Crossref]
  21. F. Z. Fang, X. D. Zhang, and X. T. Hu, “Cylindrical coordinate machining of optical freeform surfaces,” Opt. Express 16(10), 7323–7329 (2008).
    [Crossref] [PubMed]
  22. X. Zhang, Z. Zeng, X. Liu, and F. Fang, “Compensation strategy for machining optical freeform surfaces by the combined on- and off-machine measurement,” Opt. Express 23(19), 24800–24810 (2015).
    [Crossref] [PubMed]
  23. E. Savio, L. D. Chiffre, and R. Schmitt, “Metrology of freeform shaped parts,” CIRP Annals-Manufacturing Technology 56(2), 810–835 (2007).
    [Crossref]
  24. J. Ye, W. Wang, Z. Gao, Z. Liu, S. Wang, P. Benítez, J. C. Miñano, and Q. Yuan, “Modal wavefront estimation from its slopes by numerical orthogonal transformation method over general shaped aperture,” Opt. Express 23(20), 26208–26220 (2015).
    [Crossref] [PubMed]
  25. C. C. Chen, Y. C. Cheng, W. Y. Hsu, H. Y. Chou, P. J. Wang, and D. P. Tsai, “Slow tool servo diamond turning of optical freeform surface for astigmatic contact lens,” Proc. SPIE 8126, 812617 (2011).
    [Crossref]
  26. Y. F. Li and Z. G. Liu, “Method for determining the probing points for efficient measurement and reconstruction of freeform surfaces,” Meas. Sci. Technol. 14(8), 1280–1288 (2003).
    [Crossref]
  27. A. Shibuya, Y. Arai, Y. Yoshikawa, W. Gao, Y. Nagaike, and Y. Nakamura, “A spiral scanning probe system for micro-aspheric surface profile measurement,” Int. J. Adv. Manuf. Technol. 46(9), 845–862 (2010).
    [Crossref]
  28. S. DeFisher, M. Bechtold, and D. Mohring, “A noncontact surface measurement system for freeform and conformal optics,” Proc. SPIE 8016, 80160W (2011).
    [Crossref]
  29. B. Li, F. Li, H. Q. Liu, H. Cai, X. Y. Mao, and F. Y. Peng, “A measurement strategy and an error-compensation model for the on-machine laser measurement of large-scale free-form surfaces,” Meas. Sci. Technol. 25(1), 015204 (2014).
    [Crossref]
  30. W. L. Zhu, S. Y. Yang, B. F. Ju, J. C. Jiang, and A. Y. Sun, “On-machine measurement of a slow slide servo diamond-machined 3D microstructure with a curved substrate,” Meas. Sci. Technol. 26(7), 075003 (2015).
    [Crossref]
  31. W. L. Zhu, Z. W. Zhu, M. J. Ren, K. F. Ehmann, and B. F. Ju, “Modeling and analysis of uncertainty in on-machine form characterization of diamond-machined optical micro-structured surfaces,” Meas. Sci. Technol. 27(12), 125017 (2016).
    [Crossref]
  32. H. Nouira, N. E. Hayek, X. Yuan, and N. Anwer, “Characterization of the main error sources of chromatic confocal probes for dimensional measurement,” Meas. Sci. Technol. 25(4), 044011 (2014).
    [Crossref]
  33. Website of DIFFSYS software, http://www.precitech.com/product/diffsys .
  34. H. L. Du, P. Y. Zeng, B. F. Ju, Z. Z. Zhou, S. N. Xu, and A. Y. Sun, “A new centering method of the measuring probe for spiral scanning-based surface profile measurement systems,” Meas. Sci. Technol. 28(2), 025006 (2016).
    [Crossref]
  35. Website of Optical probes, http://www.chrocodile.com .

2017 (1)

J. F. Ye, L. Chen, X. H. Li, Q. Yuan, and Z. S. Gao, “Review of optical freeform surface representation technique and its application,” Opt. Eng. 56(11), 110901 (2017).
[Crossref]

2016 (2)

W. L. Zhu, Z. W. Zhu, M. J. Ren, K. F. Ehmann, and B. F. Ju, “Modeling and analysis of uncertainty in on-machine form characterization of diamond-machined optical micro-structured surfaces,” Meas. Sci. Technol. 27(12), 125017 (2016).
[Crossref]

H. L. Du, P. Y. Zeng, B. F. Ju, Z. Z. Zhou, S. N. Xu, and A. Y. Sun, “A new centering method of the measuring probe for spiral scanning-based surface profile measurement systems,” Meas. Sci. Technol. 28(2), 025006 (2016).
[Crossref]

2015 (5)

2014 (4)

Z. Dong, H. Cheng, X. Ye, and H. Y. Tam, “Developing on-machine 3D profile measurement for deterministic fabrication of aspheric mirrors,” Appl. Opt. 53(22), 4997–5007 (2014).
[Crossref] [PubMed]

A. Bauer and J. P. Rolland, “Visual space assessment of two all-reflective, freeform, optical see-through head-worn displays,” Opt. Express 22(11), 13155–13163 (2014).
[Crossref] [PubMed]

B. Li, F. Li, H. Q. Liu, H. Cai, X. Y. Mao, and F. Y. Peng, “A measurement strategy and an error-compensation model for the on-machine laser measurement of large-scale free-form surfaces,” Meas. Sci. Technol. 25(1), 015204 (2014).
[Crossref]

H. Nouira, N. E. Hayek, X. Yuan, and N. Anwer, “Characterization of the main error sources of chromatic confocal probes for dimensional measurement,” Meas. Sci. Technol. 25(4), 044011 (2014).
[Crossref]

2013 (2)

F. Z. Fang, X. D. Zhang, A. Weckenmann, G. X. Zhang, and C. Evans, “Manufacturing and measurement of freeform optics,” CIRP Annals-Manufacturing Technology 62(2), 823–846 (2013).
[Crossref]

J. B. Zhou, L. Li, N. Naples, T. Sun, and A. Y. Yi, “Fabrication of continuous diffractive optical elements using a fast tool servo diamond turning process,” J. Micromech. Microeng. 23(7), 075010 (2013).
[Crossref]

2012 (1)

2011 (3)

S. DeFisher, M. Bechtold, and D. Mohring, “A noncontact surface measurement system for freeform and conformal optics,” Proc. SPIE 8016, 80160W (2011).
[Crossref]

C. C. Chen, Y. C. Cheng, W. Y. Hsu, H. Y. Chou, P. J. Wang, and D. P. Tsai, “Slow tool servo diamond turning of optical freeform surface for astigmatic contact lens,” Proc. SPIE 8126, 812617 (2011).
[Crossref]

Z. Q. Yin, Y. F. Dai, S. Y. Li, C. L. Guan, and G. P. Tie, “Fabrication of off-axis aspheric surfaces using a slow tool servo,” Int. J. Mach. Tools Manuf. 51(5), 404–410 (2011).
[Crossref]

2010 (3)

A. Shibuya, Y. Arai, Y. Yoshikawa, W. Gao, Y. Nagaike, and Y. Nakamura, “A spiral scanning probe system for micro-aspheric surface profile measurement,” Int. J. Adv. Manuf. Technol. 46(9), 845–862 (2010).
[Crossref]

F. P. W. Melchels, J. Feijen, and D. W. Grijpma, “A review on stereolithography and its applications in biomedical engineering,” Biomaterials 31(24), 6121–6130 (2010).
[Crossref] [PubMed]

F. J. Chen, S. H. Yin, H. Huang, H. Ohmori, Y. Wang, Y. F. Fan, and Y. J. Zhu, “Profile error compensation in ultra-precision grinding of aspheric surfaces with on-machine measurement,” Int. J. Mach. Tools Manuf. 50(5), 480–486 (2010).
[Crossref]

2008 (2)

2007 (2)

E. Savio, L. D. Chiffre, and R. Schmitt, “Metrology of freeform shaped parts,” CIRP Annals-Manufacturing Technology 56(2), 810–835 (2007).
[Crossref]

X. Jiang, P. Scott, and D. Whitehouse, “Freeform surface characterisation - a fresh strategy,” CIRP Annals-Manufacturing Technology 56(1), 553–556 (2007).
[Crossref]

2006 (1)

S. To, T. C. Kwok, C. F. Cheung, and W. B. Lee, “Study of ultra-precision diamond turning of a microlens array with a fast tool servo system,” Proc. SPIE 6149, 61490S1 (2006).

2005 (2)

J. W. Yan, K. Maekawa, J. Tamaki, and T. Kuriyagawa, “Micro grooving on single-crystal germanium for infrared Fresnel lenses,” J. Micromech. Microeng. 15(10), 1925–1931 (2005).
[Crossref]

A. Y. Yi and L. Li, “Design and fabrication of a microlens array by use of a slow tool servo,” Opt. Lett. 30(13), 1707–1709 (2005).
[Crossref] [PubMed]

2004 (1)

P. Benitez, J. C. Minano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernandez, J. L. Alvarez, and W. Falicoff, “SMS design method in 3D geometry: examples and applications,” Proc. SPIE 5185, 506857 (2004).
[Crossref]

2003 (1)

Y. F. Li and Z. G. Liu, “Method for determining the probing points for efficient measurement and reconstruction of freeform surfaces,” Meas. Sci. Technol. 14(8), 1280–1288 (2003).
[Crossref]

1999 (1)

S. J. Ludwick, D. A. Chargin, J. A. Calzaretta, and D. L. Trumper, “Design of a rotary fast tool servo for ophthalmic lens fabrication,” Precis. Eng. 23(4), 253–259 (1999).
[Crossref]

1997 (1)

M. Weck, S. Fischer, and M. Vos, “Fabrication of microcomponents using ultraprecision machine tools,” Nanotechnology 8(3), 145–148 (1997).
[Crossref]

Alvarez, J. L.

P. Benitez, J. C. Minano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernandez, J. L. Alvarez, and W. Falicoff, “SMS design method in 3D geometry: examples and applications,” Proc. SPIE 5185, 506857 (2004).
[Crossref]

Anwer, N.

H. Nouira, N. E. Hayek, X. Yuan, and N. Anwer, “Characterization of the main error sources of chromatic confocal probes for dimensional measurement,” Meas. Sci. Technol. 25(4), 044011 (2014).
[Crossref]

Arai, Y.

A. Shibuya, Y. Arai, Y. Yoshikawa, W. Gao, Y. Nagaike, and Y. Nakamura, “A spiral scanning probe system for micro-aspheric surface profile measurement,” Int. J. Adv. Manuf. Technol. 46(9), 845–862 (2010).
[Crossref]

Bauer, A.

Bechtold, M.

S. DeFisher, M. Bechtold, and D. Mohring, “A noncontact surface measurement system for freeform and conformal optics,” Proc. SPIE 8016, 80160W (2011).
[Crossref]

Benitez, P.

P. Benitez, J. C. Minano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernandez, J. L. Alvarez, and W. Falicoff, “SMS design method in 3D geometry: examples and applications,” Proc. SPIE 5185, 506857 (2004).
[Crossref]

Benítez, P.

Blen, J.

P. Benitez, J. C. Minano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernandez, J. L. Alvarez, and W. Falicoff, “SMS design method in 3D geometry: examples and applications,” Proc. SPIE 5185, 506857 (2004).
[Crossref]

Cai, H.

B. Li, F. Li, H. Q. Liu, H. Cai, X. Y. Mao, and F. Y. Peng, “A measurement strategy and an error-compensation model for the on-machine laser measurement of large-scale free-form surfaces,” Meas. Sci. Technol. 25(1), 015204 (2014).
[Crossref]

Calzaretta, J. A.

S. J. Ludwick, D. A. Chargin, J. A. Calzaretta, and D. L. Trumper, “Design of a rotary fast tool servo for ophthalmic lens fabrication,” Precis. Eng. 23(4), 253–259 (1999).
[Crossref]

Chang, L.

Chargin, D. A.

S. J. Ludwick, D. A. Chargin, J. A. Calzaretta, and D. L. Trumper, “Design of a rotary fast tool servo for ophthalmic lens fabrication,” Precis. Eng. 23(4), 253–259 (1999).
[Crossref]

Chaves, J.

P. Benitez, J. C. Minano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernandez, J. L. Alvarez, and W. Falicoff, “SMS design method in 3D geometry: examples and applications,” Proc. SPIE 5185, 506857 (2004).
[Crossref]

Chen, C. C.

C. C. Chen, Y. C. Cheng, W. Y. Hsu, H. Y. Chou, P. J. Wang, and D. P. Tsai, “Slow tool servo diamond turning of optical freeform surface for astigmatic contact lens,” Proc. SPIE 8126, 812617 (2011).
[Crossref]

Chen, F.

Chen, F. J.

F. J. Chen, S. H. Yin, H. Huang, H. Ohmori, Y. Wang, Y. F. Fan, and Y. J. Zhu, “Profile error compensation in ultra-precision grinding of aspheric surfaces with on-machine measurement,” Int. J. Mach. Tools Manuf. 50(5), 480–486 (2010).
[Crossref]

Chen, L.

J. F. Ye, L. Chen, X. H. Li, Q. Yuan, and Z. S. Gao, “Review of optical freeform surface representation technique and its application,” Opt. Eng. 56(11), 110901 (2017).
[Crossref]

Cheng, H.

Cheng, Y. C.

C. C. Chen, Y. C. Cheng, W. Y. Hsu, H. Y. Chou, P. J. Wang, and D. P. Tsai, “Slow tool servo diamond turning of optical freeform surface for astigmatic contact lens,” Proc. SPIE 8126, 812617 (2011).
[Crossref]

Cheung, C. F.

S. To, T. C. Kwok, C. F. Cheung, and W. B. Lee, “Study of ultra-precision diamond turning of a microlens array with a fast tool servo system,” Proc. SPIE 6149, 61490S1 (2006).

Chiffre, L. D.

E. Savio, L. D. Chiffre, and R. Schmitt, “Metrology of freeform shaped parts,” CIRP Annals-Manufacturing Technology 56(2), 810–835 (2007).
[Crossref]

Chou, H. Y.

C. C. Chen, Y. C. Cheng, W. Y. Hsu, H. Y. Chou, P. J. Wang, and D. P. Tsai, “Slow tool servo diamond turning of optical freeform surface for astigmatic contact lens,” Proc. SPIE 8126, 812617 (2011).
[Crossref]

Dai, Y. F.

Z. Q. Yin, Y. F. Dai, S. Y. Li, C. L. Guan, and G. P. Tie, “Fabrication of off-axis aspheric surfaces using a slow tool servo,” Int. J. Mach. Tools Manuf. 51(5), 404–410 (2011).
[Crossref]

de Ridder, R. M.

DeFisher, S.

S. DeFisher, M. Bechtold, and D. Mohring, “A noncontact surface measurement system for freeform and conformal optics,” Proc. SPIE 8016, 80160W (2011).
[Crossref]

Dijkstra, M.

Ding, Y.

Dong, Z.

Dross, O.

P. Benitez, J. C. Minano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernandez, J. L. Alvarez, and W. Falicoff, “SMS design method in 3D geometry: examples and applications,” Proc. SPIE 5185, 506857 (2004).
[Crossref]

Du, H. L.

H. L. Du, P. Y. Zeng, B. F. Ju, Z. Z. Zhou, S. N. Xu, and A. Y. Sun, “A new centering method of the measuring probe for spiral scanning-based surface profile measurement systems,” Meas. Sci. Technol. 28(2), 025006 (2016).
[Crossref]

Ehmann, K. F.

W. L. Zhu, Z. W. Zhu, M. J. Ren, K. F. Ehmann, and B. F. Ju, “Modeling and analysis of uncertainty in on-machine form characterization of diamond-machined optical micro-structured surfaces,” Meas. Sci. Technol. 27(12), 125017 (2016).
[Crossref]

Evans, C.

F. Z. Fang, X. D. Zhang, A. Weckenmann, G. X. Zhang, and C. Evans, “Manufacturing and measurement of freeform optics,” CIRP Annals-Manufacturing Technology 62(2), 823–846 (2013).
[Crossref]

Falicoff, W.

P. Benitez, J. C. Minano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernandez, J. L. Alvarez, and W. Falicoff, “SMS design method in 3D geometry: examples and applications,” Proc. SPIE 5185, 506857 (2004).
[Crossref]

Fan, Y. F.

F. J. Chen, S. H. Yin, H. Huang, H. Ohmori, Y. Wang, Y. F. Fan, and Y. J. Zhu, “Profile error compensation in ultra-precision grinding of aspheric surfaces with on-machine measurement,” Int. J. Mach. Tools Manuf. 50(5), 480–486 (2010).
[Crossref]

Fang, F.

Fang, F. Z.

F. Z. Fang, X. D. Zhang, A. Weckenmann, G. X. Zhang, and C. Evans, “Manufacturing and measurement of freeform optics,” CIRP Annals-Manufacturing Technology 62(2), 823–846 (2013).
[Crossref]

F. Z. Fang, X. D. Zhang, and X. T. Hu, “Cylindrical coordinate machining of optical freeform surfaces,” Opt. Express 16(10), 7323–7329 (2008).
[Crossref] [PubMed]

Feijen, J.

F. P. W. Melchels, J. Feijen, and D. W. Grijpma, “A review on stereolithography and its applications in biomedical engineering,” Biomaterials 31(24), 6121–6130 (2010).
[Crossref] [PubMed]

Fischer, S.

M. Weck, S. Fischer, and M. Vos, “Fabrication of microcomponents using ultraprecision machine tools,” Nanotechnology 8(3), 145–148 (1997).
[Crossref]

Gao, W.

A. Shibuya, Y. Arai, Y. Yoshikawa, W. Gao, Y. Nagaike, and Y. Nakamura, “A spiral scanning probe system for micro-aspheric surface profile measurement,” Int. J. Adv. Manuf. Technol. 46(9), 845–862 (2010).
[Crossref]

Gao, Z.

Gao, Z. S.

J. F. Ye, L. Chen, X. H. Li, Q. Yuan, and Z. S. Gao, “Review of optical freeform surface representation technique and its application,” Opt. Eng. 56(11), 110901 (2017).
[Crossref]

Grijpma, D. W.

F. P. W. Melchels, J. Feijen, and D. W. Grijpma, “A review on stereolithography and its applications in biomedical engineering,” Biomaterials 31(24), 6121–6130 (2010).
[Crossref] [PubMed]

Gu, P. F.

Guan, C. L.

Z. Q. Yin, Y. F. Dai, S. Y. Li, C. L. Guan, and G. P. Tie, “Fabrication of off-axis aspheric surfaces using a slow tool servo,” Int. J. Mach. Tools Manuf. 51(5), 404–410 (2011).
[Crossref]

Hayek, N. E.

H. Nouira, N. E. Hayek, X. Yuan, and N. Anwer, “Characterization of the main error sources of chromatic confocal probes for dimensional measurement,” Meas. Sci. Technol. 25(4), 044011 (2014).
[Crossref]

Hernandez, M.

P. Benitez, J. C. Minano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernandez, J. L. Alvarez, and W. Falicoff, “SMS design method in 3D geometry: examples and applications,” Proc. SPIE 5185, 506857 (2004).
[Crossref]

Hou, X.

Hsu, W. Y.

C. C. Chen, Y. C. Cheng, W. Y. Hsu, H. Y. Chou, P. J. Wang, and D. P. Tsai, “Slow tool servo diamond turning of optical freeform surface for astigmatic contact lens,” Proc. SPIE 8126, 812617 (2011).
[Crossref]

Hu, X. T.

Huang, H.

F. J. Chen, S. H. Yin, H. Huang, H. Ohmori, Y. Wang, Y. F. Fan, and Y. J. Zhu, “Profile error compensation in ultra-precision grinding of aspheric surfaces with on-machine measurement,” Int. J. Mach. Tools Manuf. 50(5), 480–486 (2010).
[Crossref]

Ismail, N.

Jiang, J. C.

W. L. Zhu, S. Y. Yang, B. F. Ju, J. C. Jiang, and A. Y. Sun, “On-machine measurement of a slow slide servo diamond-machined 3D microstructure with a curved substrate,” Meas. Sci. Technol. 26(7), 075003 (2015).
[Crossref]

Jiang, X.

X. Jiang, P. Scott, and D. Whitehouse, “Freeform surface characterisation - a fresh strategy,” CIRP Annals-Manufacturing Technology 56(1), 553–556 (2007).
[Crossref]

Ju, B. F.

W. L. Zhu, Z. W. Zhu, M. J. Ren, K. F. Ehmann, and B. F. Ju, “Modeling and analysis of uncertainty in on-machine form characterization of diamond-machined optical micro-structured surfaces,” Meas. Sci. Technol. 27(12), 125017 (2016).
[Crossref]

H. L. Du, P. Y. Zeng, B. F. Ju, Z. Z. Zhou, S. N. Xu, and A. Y. Sun, “A new centering method of the measuring probe for spiral scanning-based surface profile measurement systems,” Meas. Sci. Technol. 28(2), 025006 (2016).
[Crossref]

W. L. Zhu, S. Y. Yang, B. F. Ju, J. C. Jiang, and A. Y. Sun, “On-machine measurement of a slow slide servo diamond-machined 3D microstructure with a curved substrate,” Meas. Sci. Technol. 26(7), 075003 (2015).
[Crossref]

Kanger, J. S.

Kuriyagawa, T.

J. W. Yan, K. Maekawa, J. Tamaki, and T. Kuriyagawa, “Micro grooving on single-crystal germanium for infrared Fresnel lenses,” J. Micromech. Microeng. 15(10), 1925–1931 (2005).
[Crossref]

Kwok, T. C.

S. To, T. C. Kwok, C. F. Cheung, and W. B. Lee, “Study of ultra-precision diamond turning of a microlens array with a fast tool servo system,” Proc. SPIE 6149, 61490S1 (2006).

Lee, W. B.

S. To, T. C. Kwok, C. F. Cheung, and W. B. Lee, “Study of ultra-precision diamond turning of a microlens array with a fast tool servo system,” Proc. SPIE 6149, 61490S1 (2006).

Li, B.

B. Li, F. Li, H. Q. Liu, H. Cai, X. Y. Mao, and F. Y. Peng, “A measurement strategy and an error-compensation model for the on-machine laser measurement of large-scale free-form surfaces,” Meas. Sci. Technol. 25(1), 015204 (2014).
[Crossref]

Li, F.

B. Li, F. Li, H. Q. Liu, H. Cai, X. Y. Mao, and F. Y. Peng, “A measurement strategy and an error-compensation model for the on-machine laser measurement of large-scale free-form surfaces,” Meas. Sci. Technol. 25(1), 015204 (2014).
[Crossref]

Li, L.

J. B. Zhou, L. Li, N. Naples, T. Sun, and A. Y. Yi, “Fabrication of continuous diffractive optical elements using a fast tool servo diamond turning process,” J. Micromech. Microeng. 23(7), 075010 (2013).
[Crossref]

A. Y. Yi and L. Li, “Design and fabrication of a microlens array by use of a slow tool servo,” Opt. Lett. 30(13), 1707–1709 (2005).
[Crossref] [PubMed]

Li, S. Y.

Z. Q. Yin, Y. F. Dai, S. Y. Li, C. L. Guan, and G. P. Tie, “Fabrication of off-axis aspheric surfaces using a slow tool servo,” Int. J. Mach. Tools Manuf. 51(5), 404–410 (2011).
[Crossref]

Li, X. H.

J. F. Ye, L. Chen, X. H. Li, Q. Yuan, and Z. S. Gao, “Review of optical freeform surface representation technique and its application,” Opt. Eng. 56(11), 110901 (2017).
[Crossref]

Li, Y. F.

Y. F. Li and Z. G. Liu, “Method for determining the probing points for efficient measurement and reconstruction of freeform surfaces,” Meas. Sci. Technol. 14(8), 1280–1288 (2003).
[Crossref]

Liu, H.

Liu, H. Q.

B. Li, F. Li, H. Q. Liu, H. Cai, X. Y. Mao, and F. Y. Peng, “A measurement strategy and an error-compensation model for the on-machine laser measurement of large-scale free-form surfaces,” Meas. Sci. Technol. 25(1), 015204 (2014).
[Crossref]

Liu, X.

Liu, Z.

Liu, Z. G.

Y. F. Li and Z. G. Liu, “Method for determining the probing points for efficient measurement and reconstruction of freeform surfaces,” Meas. Sci. Technol. 14(8), 1280–1288 (2003).
[Crossref]

Lowe, J. A.

Y. E. Tohme and J. A. Lowe, “Machining of freeform optical surfaces by slow slide servo method,” In Proceedings of the American Society for Precision Engineering, (2004).

Lu, J.

Ludwick, S. J.

S. J. Ludwick, D. A. Chargin, J. A. Calzaretta, and D. L. Trumper, “Design of a rotary fast tool servo for ophthalmic lens fabrication,” Precis. Eng. 23(4), 253–259 (1999).
[Crossref]

Maekawa, K.

J. W. Yan, K. Maekawa, J. Tamaki, and T. Kuriyagawa, “Micro grooving on single-crystal germanium for infrared Fresnel lenses,” J. Micromech. Microeng. 15(10), 1925–1931 (2005).
[Crossref]

Mao, X. Y.

B. Li, F. Li, H. Q. Liu, H. Cai, X. Y. Mao, and F. Y. Peng, “A measurement strategy and an error-compensation model for the on-machine laser measurement of large-scale free-form surfaces,” Meas. Sci. Technol. 25(1), 015204 (2014).
[Crossref]

Melchels, F. P. W.

F. P. W. Melchels, J. Feijen, and D. W. Grijpma, “A review on stereolithography and its applications in biomedical engineering,” Biomaterials 31(24), 6121–6130 (2010).
[Crossref] [PubMed]

Minano, J. C.

P. Benitez, J. C. Minano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernandez, J. L. Alvarez, and W. Falicoff, “SMS design method in 3D geometry: examples and applications,” Proc. SPIE 5185, 506857 (2004).
[Crossref]

Miñano, J. C.

Mohedano, R.

P. Benitez, J. C. Minano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernandez, J. L. Alvarez, and W. Falicoff, “SMS design method in 3D geometry: examples and applications,” Proc. SPIE 5185, 506857 (2004).
[Crossref]

Mohring, D.

S. DeFisher, M. Bechtold, and D. Mohring, “A noncontact surface measurement system for freeform and conformal optics,” Proc. SPIE 8016, 80160W (2011).
[Crossref]

Nagaike, Y.

A. Shibuya, Y. Arai, Y. Yoshikawa, W. Gao, Y. Nagaike, and Y. Nakamura, “A spiral scanning probe system for micro-aspheric surface profile measurement,” Int. J. Adv. Manuf. Technol. 46(9), 845–862 (2010).
[Crossref]

Nakamura, Y.

A. Shibuya, Y. Arai, Y. Yoshikawa, W. Gao, Y. Nagaike, and Y. Nakamura, “A spiral scanning probe system for micro-aspheric surface profile measurement,” Int. J. Adv. Manuf. Technol. 46(9), 845–862 (2010).
[Crossref]

Naples, N.

J. B. Zhou, L. Li, N. Naples, T. Sun, and A. Y. Yi, “Fabrication of continuous diffractive optical elements using a fast tool servo diamond turning process,” J. Micromech. Microeng. 23(7), 075010 (2013).
[Crossref]

Nouira, H.

H. Nouira, N. E. Hayek, X. Yuan, and N. Anwer, “Characterization of the main error sources of chromatic confocal probes for dimensional measurement,” Meas. Sci. Technol. 25(4), 044011 (2014).
[Crossref]

Ohmori, H.

F. J. Chen, S. H. Yin, H. Huang, H. Ohmori, Y. Wang, Y. F. Fan, and Y. J. Zhu, “Profile error compensation in ultra-precision grinding of aspheric surfaces with on-machine measurement,” Int. J. Mach. Tools Manuf. 50(5), 480–486 (2010).
[Crossref]

Peng, F. Y.

B. Li, F. Li, H. Q. Liu, H. Cai, X. Y. Mao, and F. Y. Peng, “A measurement strategy and an error-compensation model for the on-machine laser measurement of large-scale free-form surfaces,” Meas. Sci. Technol. 25(1), 015204 (2014).
[Crossref]

Pollnau, M.

Qu, P.

Ren, M. J.

W. L. Zhu, Z. W. Zhu, M. J. Ren, K. F. Ehmann, and B. F. Ju, “Modeling and analysis of uncertainty in on-machine form characterization of diamond-machined optical micro-structured surfaces,” Meas. Sci. Technol. 27(12), 125017 (2016).
[Crossref]

Rolland, J. P.

Savio, E.

E. Savio, L. D. Chiffre, and R. Schmitt, “Metrology of freeform shaped parts,” CIRP Annals-Manufacturing Technology 56(2), 810–835 (2007).
[Crossref]

Schmitt, R.

E. Savio, L. D. Chiffre, and R. Schmitt, “Metrology of freeform shaped parts,” CIRP Annals-Manufacturing Technology 56(2), 810–835 (2007).
[Crossref]

Scott, P.

X. Jiang, P. Scott, and D. Whitehouse, “Freeform surface characterisation - a fresh strategy,” CIRP Annals-Manufacturing Technology 56(1), 553–556 (2007).
[Crossref]

Shibuya, A.

A. Shibuya, Y. Arai, Y. Yoshikawa, W. Gao, Y. Nagaike, and Y. Nakamura, “A spiral scanning probe system for micro-aspheric surface profile measurement,” Int. J. Adv. Manuf. Technol. 46(9), 845–862 (2010).
[Crossref]

Si, J.

Subramaniam, V.

Sun, A. Y.

H. L. Du, P. Y. Zeng, B. F. Ju, Z. Z. Zhou, S. N. Xu, and A. Y. Sun, “A new centering method of the measuring probe for spiral scanning-based surface profile measurement systems,” Meas. Sci. Technol. 28(2), 025006 (2016).
[Crossref]

W. L. Zhu, S. Y. Yang, B. F. Ju, J. C. Jiang, and A. Y. Sun, “On-machine measurement of a slow slide servo diamond-machined 3D microstructure with a curved substrate,” Meas. Sci. Technol. 26(7), 075003 (2015).
[Crossref]

Sun, T.

J. B. Zhou, L. Li, N. Naples, T. Sun, and A. Y. Yi, “Fabrication of continuous diffractive optical elements using a fast tool servo diamond turning process,” J. Micromech. Microeng. 23(7), 075010 (2013).
[Crossref]

Tam, H. Y.

Tamaki, J.

J. W. Yan, K. Maekawa, J. Tamaki, and T. Kuriyagawa, “Micro grooving on single-crystal germanium for infrared Fresnel lenses,” J. Micromech. Microeng. 15(10), 1925–1931 (2005).
[Crossref]

Tie, G. P.

Z. Q. Yin, Y. F. Dai, S. Y. Li, C. L. Guan, and G. P. Tie, “Fabrication of off-axis aspheric surfaces using a slow tool servo,” Int. J. Mach. Tools Manuf. 51(5), 404–410 (2011).
[Crossref]

To, S.

Z. Zhu and S. To, “Adaptive tool servo diamond turning for enhancing machining efficiency and surface quality of freeform optics,” Opt. Express 23(16), 20234–20248 (2015).
[Crossref] [PubMed]

S. To, T. C. Kwok, C. F. Cheung, and W. B. Lee, “Study of ultra-precision diamond turning of a microlens array with a fast tool servo system,” Proc. SPIE 6149, 61490S1 (2006).

Tohme, Y. E.

Y. E. Tohme and J. A. Lowe, “Machining of freeform optical surfaces by slow slide servo method,” In Proceedings of the American Society for Precision Engineering, (2004).

Trumper, D. L.

S. J. Ludwick, D. A. Chargin, J. A. Calzaretta, and D. L. Trumper, “Design of a rotary fast tool servo for ophthalmic lens fabrication,” Precis. Eng. 23(4), 253–259 (1999).
[Crossref]

Tsai, D. P.

C. C. Chen, Y. C. Cheng, W. Y. Hsu, H. Y. Chou, P. J. Wang, and D. P. Tsai, “Slow tool servo diamond turning of optical freeform surface for astigmatic contact lens,” Proc. SPIE 8126, 812617 (2011).
[Crossref]

Vos, M.

M. Weck, S. Fischer, and M. Vos, “Fabrication of microcomponents using ultraprecision machine tools,” Nanotechnology 8(3), 145–148 (1997).
[Crossref]

Wang, P. J.

C. C. Chen, Y. C. Cheng, W. Y. Hsu, H. Y. Chou, P. J. Wang, and D. P. Tsai, “Slow tool servo diamond turning of optical freeform surface for astigmatic contact lens,” Proc. SPIE 8126, 812617 (2011).
[Crossref]

Wang, S.

Wang, W.

Wang, Y.

P. Qu, F. Chen, H. Liu, Q. Yang, J. Lu, J. Si, Y. Wang, and X. Hou, “A simple route to fabricate artificial compound eye structures,” Opt. Express 20(5), 5775–5782 (2012).
[Crossref] [PubMed]

F. J. Chen, S. H. Yin, H. Huang, H. Ohmori, Y. Wang, Y. F. Fan, and Y. J. Zhu, “Profile error compensation in ultra-precision grinding of aspheric surfaces with on-machine measurement,” Int. J. Mach. Tools Manuf. 50(5), 480–486 (2010).
[Crossref]

Weck, M.

M. Weck, S. Fischer, and M. Vos, “Fabrication of microcomponents using ultraprecision machine tools,” Nanotechnology 8(3), 145–148 (1997).
[Crossref]

Weckenmann, A.

F. Z. Fang, X. D. Zhang, A. Weckenmann, G. X. Zhang, and C. Evans, “Manufacturing and measurement of freeform optics,” CIRP Annals-Manufacturing Technology 62(2), 823–846 (2013).
[Crossref]

Whitehouse, D.

X. Jiang, P. Scott, and D. Whitehouse, “Freeform surface characterisation - a fresh strategy,” CIRP Annals-Manufacturing Technology 56(1), 553–556 (2007).
[Crossref]

Wörhoff, K.

Xu, S. N.

H. L. Du, P. Y. Zeng, B. F. Ju, Z. Z. Zhou, S. N. Xu, and A. Y. Sun, “A new centering method of the measuring probe for spiral scanning-based surface profile measurement systems,” Meas. Sci. Technol. 28(2), 025006 (2016).
[Crossref]

Yan, J. W.

J. W. Yan, K. Maekawa, J. Tamaki, and T. Kuriyagawa, “Micro grooving on single-crystal germanium for infrared Fresnel lenses,” J. Micromech. Microeng. 15(10), 1925–1931 (2005).
[Crossref]

Yang, Q.

Yang, S. Y.

W. L. Zhu, S. Y. Yang, B. F. Ju, J. C. Jiang, and A. Y. Sun, “On-machine measurement of a slow slide servo diamond-machined 3D microstructure with a curved substrate,” Meas. Sci. Technol. 26(7), 075003 (2015).
[Crossref]

Ye, J.

Ye, J. F.

J. F. Ye, L. Chen, X. H. Li, Q. Yuan, and Z. S. Gao, “Review of optical freeform surface representation technique and its application,” Opt. Eng. 56(11), 110901 (2017).
[Crossref]

Ye, X.

Yi, A. Y.

J. B. Zhou, L. Li, N. Naples, T. Sun, and A. Y. Yi, “Fabrication of continuous diffractive optical elements using a fast tool servo diamond turning process,” J. Micromech. Microeng. 23(7), 075010 (2013).
[Crossref]

A. Y. Yi and L. Li, “Design and fabrication of a microlens array by use of a slow tool servo,” Opt. Lett. 30(13), 1707–1709 (2005).
[Crossref] [PubMed]

Yin, S. H.

F. J. Chen, S. H. Yin, H. Huang, H. Ohmori, Y. Wang, Y. F. Fan, and Y. J. Zhu, “Profile error compensation in ultra-precision grinding of aspheric surfaces with on-machine measurement,” Int. J. Mach. Tools Manuf. 50(5), 480–486 (2010).
[Crossref]

Yin, Z. Q.

Z. Q. Yin, Y. F. Dai, S. Y. Li, C. L. Guan, and G. P. Tie, “Fabrication of off-axis aspheric surfaces using a slow tool servo,” Int. J. Mach. Tools Manuf. 51(5), 404–410 (2011).
[Crossref]

Yoshikawa, Y.

A. Shibuya, Y. Arai, Y. Yoshikawa, W. Gao, Y. Nagaike, and Y. Nakamura, “A spiral scanning probe system for micro-aspheric surface profile measurement,” Int. J. Adv. Manuf. Technol. 46(9), 845–862 (2010).
[Crossref]

Yuan, Q.

Yuan, X.

H. Nouira, N. E. Hayek, X. Yuan, and N. Anwer, “Characterization of the main error sources of chromatic confocal probes for dimensional measurement,” Meas. Sci. Technol. 25(4), 044011 (2014).
[Crossref]

Zeng, P. Y.

H. L. Du, P. Y. Zeng, B. F. Ju, Z. Z. Zhou, S. N. Xu, and A. Y. Sun, “A new centering method of the measuring probe for spiral scanning-based surface profile measurement systems,” Meas. Sci. Technol. 28(2), 025006 (2016).
[Crossref]

Zeng, Z.

Zhang, G. X.

F. Z. Fang, X. D. Zhang, A. Weckenmann, G. X. Zhang, and C. Evans, “Manufacturing and measurement of freeform optics,” CIRP Annals-Manufacturing Technology 62(2), 823–846 (2013).
[Crossref]

Zhang, X.

Zhang, X. D.

F. Z. Fang, X. D. Zhang, A. Weckenmann, G. X. Zhang, and C. Evans, “Manufacturing and measurement of freeform optics,” CIRP Annals-Manufacturing Technology 62(2), 823–846 (2013).
[Crossref]

F. Z. Fang, X. D. Zhang, and X. T. Hu, “Cylindrical coordinate machining of optical freeform surfaces,” Opt. Express 16(10), 7323–7329 (2008).
[Crossref] [PubMed]

Zheng, Z. R.

Zhou, J. B.

J. B. Zhou, L. Li, N. Naples, T. Sun, and A. Y. Yi, “Fabrication of continuous diffractive optical elements using a fast tool servo diamond turning process,” J. Micromech. Microeng. 23(7), 075010 (2013).
[Crossref]

Zhou, Z. Z.

H. L. Du, P. Y. Zeng, B. F. Ju, Z. Z. Zhou, S. N. Xu, and A. Y. Sun, “A new centering method of the measuring probe for spiral scanning-based surface profile measurement systems,” Meas. Sci. Technol. 28(2), 025006 (2016).
[Crossref]

Zhu, W. L.

W. L. Zhu, Z. W. Zhu, M. J. Ren, K. F. Ehmann, and B. F. Ju, “Modeling and analysis of uncertainty in on-machine form characterization of diamond-machined optical micro-structured surfaces,” Meas. Sci. Technol. 27(12), 125017 (2016).
[Crossref]

W. L. Zhu, S. Y. Yang, B. F. Ju, J. C. Jiang, and A. Y. Sun, “On-machine measurement of a slow slide servo diamond-machined 3D microstructure with a curved substrate,” Meas. Sci. Technol. 26(7), 075003 (2015).
[Crossref]

Zhu, Y. J.

F. J. Chen, S. H. Yin, H. Huang, H. Ohmori, Y. Wang, Y. F. Fan, and Y. J. Zhu, “Profile error compensation in ultra-precision grinding of aspheric surfaces with on-machine measurement,” Int. J. Mach. Tools Manuf. 50(5), 480–486 (2010).
[Crossref]

Zhu, Z.

Zhu, Z. W.

W. L. Zhu, Z. W. Zhu, M. J. Ren, K. F. Ehmann, and B. F. Ju, “Modeling and analysis of uncertainty in on-machine form characterization of diamond-machined optical micro-structured surfaces,” Meas. Sci. Technol. 27(12), 125017 (2016).
[Crossref]

Appl. Opt. (1)

Biomaterials (1)

F. P. W. Melchels, J. Feijen, and D. W. Grijpma, “A review on stereolithography and its applications in biomedical engineering,” Biomaterials 31(24), 6121–6130 (2010).
[Crossref] [PubMed]

CIRP Annals-Manufacturing Technology (3)

F. Z. Fang, X. D. Zhang, A. Weckenmann, G. X. Zhang, and C. Evans, “Manufacturing and measurement of freeform optics,” CIRP Annals-Manufacturing Technology 62(2), 823–846 (2013).
[Crossref]

X. Jiang, P. Scott, and D. Whitehouse, “Freeform surface characterisation - a fresh strategy,” CIRP Annals-Manufacturing Technology 56(1), 553–556 (2007).
[Crossref]

E. Savio, L. D. Chiffre, and R. Schmitt, “Metrology of freeform shaped parts,” CIRP Annals-Manufacturing Technology 56(2), 810–835 (2007).
[Crossref]

Int. J. Adv. Manuf. Technol. (1)

A. Shibuya, Y. Arai, Y. Yoshikawa, W. Gao, Y. Nagaike, and Y. Nakamura, “A spiral scanning probe system for micro-aspheric surface profile measurement,” Int. J. Adv. Manuf. Technol. 46(9), 845–862 (2010).
[Crossref]

Int. J. Mach. Tools Manuf. (2)

Z. Q. Yin, Y. F. Dai, S. Y. Li, C. L. Guan, and G. P. Tie, “Fabrication of off-axis aspheric surfaces using a slow tool servo,” Int. J. Mach. Tools Manuf. 51(5), 404–410 (2011).
[Crossref]

F. J. Chen, S. H. Yin, H. Huang, H. Ohmori, Y. Wang, Y. F. Fan, and Y. J. Zhu, “Profile error compensation in ultra-precision grinding of aspheric surfaces with on-machine measurement,” Int. J. Mach. Tools Manuf. 50(5), 480–486 (2010).
[Crossref]

J. Micromech. Microeng. (2)

J. B. Zhou, L. Li, N. Naples, T. Sun, and A. Y. Yi, “Fabrication of continuous diffractive optical elements using a fast tool servo diamond turning process,” J. Micromech. Microeng. 23(7), 075010 (2013).
[Crossref]

J. W. Yan, K. Maekawa, J. Tamaki, and T. Kuriyagawa, “Micro grooving on single-crystal germanium for infrared Fresnel lenses,” J. Micromech. Microeng. 15(10), 1925–1931 (2005).
[Crossref]

Meas. Sci. Technol. (6)

Y. F. Li and Z. G. Liu, “Method for determining the probing points for efficient measurement and reconstruction of freeform surfaces,” Meas. Sci. Technol. 14(8), 1280–1288 (2003).
[Crossref]

B. Li, F. Li, H. Q. Liu, H. Cai, X. Y. Mao, and F. Y. Peng, “A measurement strategy and an error-compensation model for the on-machine laser measurement of large-scale free-form surfaces,” Meas. Sci. Technol. 25(1), 015204 (2014).
[Crossref]

W. L. Zhu, S. Y. Yang, B. F. Ju, J. C. Jiang, and A. Y. Sun, “On-machine measurement of a slow slide servo diamond-machined 3D microstructure with a curved substrate,” Meas. Sci. Technol. 26(7), 075003 (2015).
[Crossref]

W. L. Zhu, Z. W. Zhu, M. J. Ren, K. F. Ehmann, and B. F. Ju, “Modeling and analysis of uncertainty in on-machine form characterization of diamond-machined optical micro-structured surfaces,” Meas. Sci. Technol. 27(12), 125017 (2016).
[Crossref]

H. Nouira, N. E. Hayek, X. Yuan, and N. Anwer, “Characterization of the main error sources of chromatic confocal probes for dimensional measurement,” Meas. Sci. Technol. 25(4), 044011 (2014).
[Crossref]

H. L. Du, P. Y. Zeng, B. F. Ju, Z. Z. Zhou, S. N. Xu, and A. Y. Sun, “A new centering method of the measuring probe for spiral scanning-based surface profile measurement systems,” Meas. Sci. Technol. 28(2), 025006 (2016).
[Crossref]

Nanotechnology (1)

M. Weck, S. Fischer, and M. Vos, “Fabrication of microcomponents using ultraprecision machine tools,” Nanotechnology 8(3), 145–148 (1997).
[Crossref]

Opt. Eng. (1)

J. F. Ye, L. Chen, X. H. Li, Q. Yuan, and Z. S. Gao, “Review of optical freeform surface representation technique and its application,” Opt. Eng. 56(11), 110901 (2017).
[Crossref]

Opt. Express (8)

Y. Ding, X. Liu, Z. R. Zheng, and P. F. Gu, “Freeform LED lens for uniform illumination,” Opt. Express 16(17), 12958–12966 (2008).
[Crossref] [PubMed]

A. Bauer and J. P. Rolland, “Visual space assessment of two all-reflective, freeform, optical see-through head-worn displays,” Opt. Express 22(11), 13155–13163 (2014).
[Crossref] [PubMed]

Z. Zhu and S. To, “Adaptive tool servo diamond turning for enhancing machining efficiency and surface quality of freeform optics,” Opt. Express 23(16), 20234–20248 (2015).
[Crossref] [PubMed]

P. Qu, F. Chen, H. Liu, Q. Yang, J. Lu, J. Si, Y. Wang, and X. Hou, “A simple route to fabricate artificial compound eye structures,” Opt. Express 20(5), 5775–5782 (2012).
[Crossref] [PubMed]

L. Chang, M. Dijkstra, N. Ismail, M. Pollnau, R. M. de Ridder, K. Wörhoff, V. Subramaniam, and J. S. Kanger, “Waveguide-coupled micro-ball lens array suitable for mass fabrication,” Opt. Express 23(17), 22414–22423 (2015).
[Crossref] [PubMed]

F. Z. Fang, X. D. Zhang, and X. T. Hu, “Cylindrical coordinate machining of optical freeform surfaces,” Opt. Express 16(10), 7323–7329 (2008).
[Crossref] [PubMed]

X. Zhang, Z. Zeng, X. Liu, and F. Fang, “Compensation strategy for machining optical freeform surfaces by the combined on- and off-machine measurement,” Opt. Express 23(19), 24800–24810 (2015).
[Crossref] [PubMed]

J. Ye, W. Wang, Z. Gao, Z. Liu, S. Wang, P. Benítez, J. C. Miñano, and Q. Yuan, “Modal wavefront estimation from its slopes by numerical orthogonal transformation method over general shaped aperture,” Opt. Express 23(20), 26208–26220 (2015).
[Crossref] [PubMed]

Opt. Lett. (1)

Precis. Eng. (1)

S. J. Ludwick, D. A. Chargin, J. A. Calzaretta, and D. L. Trumper, “Design of a rotary fast tool servo for ophthalmic lens fabrication,” Precis. Eng. 23(4), 253–259 (1999).
[Crossref]

Proc. SPIE (4)

S. To, T. C. Kwok, C. F. Cheung, and W. B. Lee, “Study of ultra-precision diamond turning of a microlens array with a fast tool servo system,” Proc. SPIE 6149, 61490S1 (2006).

P. Benitez, J. C. Minano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernandez, J. L. Alvarez, and W. Falicoff, “SMS design method in 3D geometry: examples and applications,” Proc. SPIE 5185, 506857 (2004).
[Crossref]

C. C. Chen, Y. C. Cheng, W. Y. Hsu, H. Y. Chou, P. J. Wang, and D. P. Tsai, “Slow tool servo diamond turning of optical freeform surface for astigmatic contact lens,” Proc. SPIE 8126, 812617 (2011).
[Crossref]

S. DeFisher, M. Bechtold, and D. Mohring, “A noncontact surface measurement system for freeform and conformal optics,” Proc. SPIE 8016, 80160W (2011).
[Crossref]

Other (3)

Website of Optical probes, http://www.chrocodile.com .

Website of DIFFSYS software, http://www.precitech.com/product/diffsys .

Y. E. Tohme and J. A. Lowe, “Machining of freeform optical surfaces by slow slide servo method,” In Proceedings of the American Society for Precision Engineering, (2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Schematic of the chromatic confocal probe.
Fig. 2
Fig. 2 Schematic of the manufacturing and OMM system mounted on an ultraprecision diamond turning lathe.
Fig. 3
Fig. 3 Control diagram for the in situ noncontact measurement system.
Fig. 4
Fig. 4 Flowchart of the fabrication process of the TCS.
Fig. 5
Fig. 5 Schematic of the on-machine scanning path: (a) Spiral scanning path, (b) Radial scanning path.
Fig. 6
Fig. 6 Tool centering error during the manufacturing process and probe tip centering error during the OMM.
Fig. 7
Fig. 7 Schematic of the slide error of the Z-axis and the spindle: (a) The method of cutting a rotating cylinder for a slide error measurement, (b) The practical influence of the machine motion errors for the OMM.
Fig. 8
Fig. 8 Schematic of the tool-surface intersection: (a) Schematic of tool nose radius compensation, (b) The spiral testing path and tool compensated cutting path.
Fig. 9
Fig. 9 Stability testing of optical probe and environmental uncertainty during the OMM: (a) Measurement drift and noise of the optical probe, (b) Environmental temperature and relative humidity during the test.
Fig. 10
Fig. 10 Measurement results of the spherical mirror: (a) Profile error data and angular marker data obtained from the optical probes A and B, (b) Form error of the spherical mirror, (c) Off-line measured result using Zygo interferometer, and (d) Radial profile errors of the OMM and off-machine measurement results.
Fig. 11
Fig. 11 Experimental setup used for the fabrication and on-machine measurement.
Fig. 12
Fig. 12 Data for the first compensation process: (a) Shape error after initial cutting, (b) Shape error after first compensation, (c) Circumferential profile errors before and after the first compensation, and (d) Radial profile errors before and after the second compensation.
Fig. 13
Fig. 13 Data for the second compensation process: (a) Shape error after second compensation, (b) Measured result using Zygo interferometer, and (c) The surface shape subtraction between the on-machine and off-machine measurements.

Tables (3)

Tables Icon

Table 1 Performance test of the ultraprecision lathe.

Tables Icon

Table 2 Parameters of the optical probe.

Tables Icon

Table 3 Workpiece parameters and cutting conditions.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δr= 1 2 Δzcot(γ)
x 0 = x 1 +(δ x 1 cosθ-δ y 1 sinθ) y 0 = y 1 +(δ x 1 sinθ+δ y 1 cosθ)
x 2 = x 0 +(δ x 2 cosθ-δ y 2 sinθ) y 2 = y 0 +(δ x 2 sinθ+δ y 2 cosθ)
δz( x 0 , y 0 )=z( x 1 , y 1 )-z( x 0 , y 0 ) δm( x 0 , y 0 )=s( x 2 , y 2 )-s( x 0 , y 0 )
u=ΔL θ 2 2
u= e 1 + e 2 ×d