Abstract

We study the decay of gap plasmons localized between a scanning tunneling microscope tip and metal substrate, excited by inelastic tunneling electrons. The overall excited energy from the tunneling electrons is divided into two categories in the form of resistive dissipation and electromagnetic radiation, which together can further be separated into four diffierent channels, including SPP channel on the tip, SPP channel on the substrate, air mode channel and direct quenching channel. In this work, we study the enhancement factor, i.e. Purcell factor, of the STM tunnel junctions, which are mediated by the nearby metallic structures. We find that the gap plasmon mode is most likely to couple to the SPP channel on the tip, rather than the SPP channel on the substrate or the air mode. The direct quenching in the apex of tip also takes a considerable portion especially in high frequency region, the enhancement factor of direct quenching in the tip is much higher than the direct quenching in the substrate. We adopt four tips with diffierent apex radii, i.e., 1 nm, 5 nm, 10 nm, 20 nm. When the apex size is small, the frequency dependent enhancement factor from the SPPs contribution has a pronounced peak at 1.55 eV, however, as the radius increases, the peak of enhancement factor in the high frequency region appears, the 1.55 eV peak becomes less dominated. This phenomenon can be attributed to the change of tip shape, in the form of mode coupling. Our results also show a relationship between the direct quenching in the substrate and in the tip. With the larger radius of apex, the ratio of these two part of energy approaches 1, which indicate that the energy distribution of direct quenching is sensitive to the shape of the tip-substrate gap.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
The role of gap plasmons in light emission from tunnel junctions

Shawn Divitt, Palash Bharadwaj, and Lukas Novotny
Opt. Express 21(22) 27452-27459 (2013)

Manipulating photon emission efficiency with local electronic states in a tunneling gap

Peng Chen, Weihua Wang, Nian Lin, and Shengwang Du
Opt. Express 22(7) 8234-8242 (2014)

Surface plasmon polariton beams from an electrically excited plasmonic crystal

Damien Canneson, Eric Le Moal, Shuiyan Cao, Xavier Quélin, Hervé Dallaporta, Gérald Dujardin, and Elizabeth Boer-Duchemin
Opt. Express 24(23) 26186-26200 (2016)

References

  • View by:
  • |
  • |
  • |

  1. G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, “Tunneling through a controllable vacuum gap,” Appl. Phys. Lett. 40(2), 178-180 (1982).
    [Crossref]
  2. G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, “Surface studies by scanning tunneling microscopy,” Phys. Rev. Lett. 49(1), 57-61 (1982).
    [Crossref]
  3. J. K. Gimzewski, B. Reihl, J. H. Coomb, and R. R. Schlittler, “Photon emission with the scanning tunneling microscope,” Z. Phys. B 72(4), 497-501 (1988).
    [Crossref]
  4. R. Berndt, J. K. Gimzewski, and P. Johansson, “Inelastic tunneling excitation of tip-induced plasmon modes on noble-metal surfaces,” Phys. Rev. Lett. 67(27), 3796-3799 (1991).
    [Crossref] [PubMed]
  5. R. Berndt, J. K. Gimzewski, and P. Johansson, “Electromagnetic interactions of metallic objects in nanometer proximity,” Phys. Rev. Lett. 71(21), 3493-3496 (1993).
    [Crossref] [PubMed]
  6. R. Berndt, R. Gaisch, J. K. Gimzewski, B. Reihl, R. R. Schlittler, W. D. Schneider, and M. Tschudy, “Photon emission at molecular resolution induced by a scanning tunneling microscope,” Science 262(5138), 1425-1427 (1993).
    [Crossref] [PubMed]
  7. C. Chen, C. A. Bobisch, and W. Ho, “Visualization of Fermi’s golden rule through imaging of light emission from atomic silver chains,” Science 325(5943), 981-985 (2009).
    [Crossref] [PubMed]
  8. A. Yu, S. Li, G. Czap, and W. Ho, “Tunneling-electron-induced light emission from single gold nanoclusters,” Nano Lett. 16(9), 5433-5436 (2016).
    [Crossref] [PubMed]
  9. P. Chen, W. Wang, N. Lin, and S. Du, “Manipulating photon emission efficiency with local electronic states in a tunneling gap,” Opt. Express 22(7), 8234-8242 (2014).
    [Crossref] [PubMed]
  10. N. Nilius, N. Ernst, and H.-J. Freund, “Photon emission spectroscopy of individual oxide-supported silver clusters in a scanning tunneling microscope,” Phys. Rev. Lett. 84(17), 3994-3997 (2000).
    [Crossref] [PubMed]
  11. S. Ushioda, “Scanning tunneling microscope (STM) light emission spectroscopy of surface nanostructures,” J. Electron. Spectrosc. Relat. Phenom. 109(1-2), 169-181 (2000).
    [Crossref]
  12. R. Berndt, Photon Emission from the Scanning Tunneling Microscope (Springer-Verlag, Berlin Heideberg, 1998).
  13. X. H. Qiu, G. V. Nazin, and W. Ho, “Vibrationally resolved fluorescence excited with submolecular precision,” Science 299(5606), 542-546 (2003).
    [Crossref] [PubMed]
  14. Z.-C. Dong, X.-L. Guo, A. S. Trifonov, P. S. Dorozhkin, K. Miki, K. Kimura, S. Yokoyama, and S. Mashiko, “Vibrationally resolved fluorescence from organic molecules near metal surfaces in a scanning tunneling microscope,” Phys. Rev. Lett. 92, 086801 (2004).
    [Crossref] [PubMed]
  15. N. L. Schneider, J. T. Lü, M. Brandbyge, and R. Berndt, “Light emission probing quantum shot noise and charge fluctuations at a biased molecular junction,” Phys. Rev. Lett. 109, 186601 (2012).
    [Crossref] [PubMed]
  16. T. Lutz, C. Große, C. Dette, C. A. Kabakchiev, F. Schramm, M. Ruben, R. Gutzler, K. Kuhnke, U. Schlickum, and K. Kern, “Molecular orbital gates for plasmon excitation,” Nano Lett. 13(6), 2846-2850 (2013).
    [Crossref] [PubMed]
  17. H. Imada, K. Miwa, M. Imai-Imada, S. Kawahara, K. Kimura, and Y. Kim, “Real-space investigation of energy transfer in heterogeneous molecular dimers,” Nature 538(7625), 364-367 (2016).
    [Crossref] [PubMed]
  18. H. Imada, K. Miwa, M. Imai-Imada, S. Kawahara, K. Kimura, and Y. Kim, “Single-molecule investigation of energy dynamics in a coupled plasmon-exciton system,” Phys. Rev. Lett. 119, 013901 (2017).
    [Crossref] [PubMed]
  19. Y. Zhang, Y. Luo, Y. Zhang, Y.-J. Yu, Y.-M. Kuang, L. Zhang, Q.-S. Meng, Y. Luo, J.-L. Yang, Z.-C. Dong, and J.-G. Hou, “Visualizing coherent intermolecular dipole-dipole coupling in real space,” Nature,  531(7596), 623-627 (2016).
    [Crossref] [PubMed]
  20. Y. Zhang, Q.-S. Meng, L. Zhang, Y. Luo, Y.-J. Yu, B. Yang, Y. Zhang, R. Esteban, J. Aizpurua, Y. Luo, J.-L. Yang, Z.-C. Dong, and J. G. Hou, “Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity,” Nat. Comm.  8, 15225 (2017).
    [Crossref]
  21. G. Schull, N. Néel, P. Johansson, and R. Berndt, “Electron-plasmon and electron-electron interactions at a single atom contact,” Phys. Rev. Lett. 102, 057401 (2009).
    [Crossref] [PubMed]
  22. N. L. Schneider, G. Schull, and R. Berndt, “Optical probe of quantum shot-noise reduction at a single-atom contact,” Phys. Rev. Lett. 105, 026601 (2010).
    [Crossref] [PubMed]
  23. J. T. Lü, R. B. Christensen, and M. Brandbyge, “Light emission and finite-frequency shot noise in molecular junctions: From tunneling to contact,” Phys. Rev. B 88, 045413 (2013).
    [Crossref]
  24. F. Xu, C. Holmqvist, and W. Belzig, “Overbias light emission due to higher-order quantum noise in a tunnel junction,” Phys. Rev. Lett. 113, 066801 (2014).
    [Crossref] [PubMed]
  25. K. Kaasbjerg and A. Nitzan, “Theory of light emission from quantum noise in plasmonic contacts: above-threshold emission from higher-order electron-plasmon scattering,” Phys. Rev. Lett. 114, 126803 (2015).
    [Crossref] [PubMed]
  26. B. N. J. Persson and A. Baratoffi, “Theory of photon emission in electron tunneling to metallic particles,” Phys. Rev. Lett. 68(21), 3224-3227 (1992).
    [Crossref] [PubMed]
  27. R. W. Rendell and D. J. Scalapino, “Surface plasmons confined by microstructures on tunnel junctions,” Phys. Rev. B 24(6), 3276-3294, (1981).
    [Crossref]
  28. P. Johansson, R. Monreal, and P. Apell, “Theory for light emission from a scanning tunneling microscope,” Phys. Rev. B 42(14). 9210-9213 (1990).
    [Crossref]
  29. P. Johansson, “Light emission from a scanning tunneling microscope: Fully retarded calculation,” Phys. Rev. B 58(16), 10823-10834 (1998).
    [Crossref]
  30. J. Aizpurua, S. P. Apell, and R. Berndt, “Role of tip shape in light emission from the scanning tunneling microscope,” Phys. Rev. B 62(3), 2065-2073 (2000).
    [Crossref]
  31. T. Wang, E. Boer-Duchemin, Y. Zhang, G. Comtet, and G. Dujardin, “Excitation of propagating surface plasmons with a scanning tunnelling microscope,” Nanotechnology 22, 175201 (2011).
    [Crossref] [PubMed]
  32. P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical excitation of surface plasmons,” Phys. Rev. Lett. 106, 226802 (2011).
    [Crossref] [PubMed]
  33. T. Wang, G. Comtet, E. L. Moal, G. Dujardin, A. Drezet, S. Huant, and E. Boer-Duchemin, “Temporal coherence of propagating surface plasmons,” Opt. Lett. 39(23), 6679-6682 (2014).
    [Crossref] [PubMed]
  34. S. Cao, E. L. Moal, E. Boer-Duchemin, G. Dujardin, A. Drezet, and S. Huant, “Cylindrical vector beams of light from an electrically excited plasmonic lens,” Appl. Phys. Lett. 105, 111103 (2014).
    [Crossref]
  35. T. Wang, B. Rogez, G. Comtet, E. L. Moal, W. Abidi, H. Remita, G. Dujardin, and E. Boer-Duchemin, “Scattering of electrically excited surface plasmon polaritons by gold nanoparticles studied by optical interferometry with a scanning tunneling microscope,” Phys. Rev. B 92, 045438 (2015).
    [Crossref]
  36. W. Du, T. Wang, H.-S. Chu, L. Wu, R. Liu, S. Sun, W. K. Phua, L. Wang, N. Tomczak, and Ch. A. Nijhuis, “On-chip molecular electronic plasmon sources based on self-assembled monolayer tunnel junctions,” Nature Photon. 10(4), 274-280 (2016).
    [Crossref]
  37. W. Du, T. Wang, H.-S. Chu, and Ch. A. Nijhuis, “Highly efficient on-chip direct electronic-plasmonic transducers,” Nature Photon. 11, 623-627 (2017).
    [Crossref]
  38. N. Cazier, M. Buret, A. V. Uskov, L. Markey, J. Arocas, G. C. D. Francs, and A. Bouhelier, “Electrical excitation of waveguided surface plasmons by a light-emitting tunneling optical gap antenna,” Opt. Express 24(4), 3873-3884 (2016).
    [Crossref] [PubMed]
  39. F. Bigourdan, J. P. Hugonin, F. Marquier, C. Sauvan, and J. J. Greffiet, “Nanoantenna for electrical generation of surface plasmon polaritons,” Phys. Rev. Lett. 116, 106803 (2016).
    [Crossref] [PubMed]
  40. R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
    [Crossref] [PubMed]
  41. W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, “Quantum mechanical effiects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7, 11495 (2016).
    [Crossref]
  42. J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp, and B. Hecht, “Electrically driven optical antennas,” Nature Photon. 9, 582-586 (2015).
    [Crossref]
  43. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370-4379 (1972).
    [Crossref]
  44. D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum Optics with Surface Plasmons,” Phys. Rev. Lett. 97053002 (2006).
    [Crossref] [PubMed]
  45. D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Strong coupling of single emitters to surface plasmons,” Phys. Rev. B 76035420 (2007).
    [Crossref]
  46. Y. Chen, T. R. Nielsen, N. Gregersen, P. Lodahl, and J. Mørk, “Finite-element modeling of spontaneous emission of a quantum emitter at nanoscale proximity to plasmonic waveguides,” Phys. Rev. B 81125431 (2010).
    [Crossref]
  47. Y. Chen, N. Gregersen, T. R. Nielsen, J. Mørk, and P. Lodahl, “Spontaneous decay of a single quantum dot coupled to a metallic slot waveguide in the presence of leaky plasmonic modes,” Opt. Express 18(12), 12489-12498 (2010).
    [Crossref] [PubMed]
  48. L. Novotny and B. Hecht, Principles of nano-optics, Cambridge University Press2006
    [Crossref]
  49. T. Søndergaard and S. I. Bozhevolnyi, “Surface plasmon polariton scattering by a small particle placed near a metal surface: An analytical study,” Phys. Rev. B 69, 045422 (2004).
    [Crossref]

2017 (3)

H. Imada, K. Miwa, M. Imai-Imada, S. Kawahara, K. Kimura, and Y. Kim, “Single-molecule investigation of energy dynamics in a coupled plasmon-exciton system,” Phys. Rev. Lett. 119, 013901 (2017).
[Crossref] [PubMed]

Y. Zhang, Q.-S. Meng, L. Zhang, Y. Luo, Y.-J. Yu, B. Yang, Y. Zhang, R. Esteban, J. Aizpurua, Y. Luo, J.-L. Yang, Z.-C. Dong, and J. G. Hou, “Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity,” Nat. Comm.  8, 15225 (2017).
[Crossref]

W. Du, T. Wang, H.-S. Chu, and Ch. A. Nijhuis, “Highly efficient on-chip direct electronic-plasmonic transducers,” Nature Photon. 11, 623-627 (2017).
[Crossref]

2016 (7)

N. Cazier, M. Buret, A. V. Uskov, L. Markey, J. Arocas, G. C. D. Francs, and A. Bouhelier, “Electrical excitation of waveguided surface plasmons by a light-emitting tunneling optical gap antenna,” Opt. Express 24(4), 3873-3884 (2016).
[Crossref] [PubMed]

F. Bigourdan, J. P. Hugonin, F. Marquier, C. Sauvan, and J. J. Greffiet, “Nanoantenna for electrical generation of surface plasmon polaritons,” Phys. Rev. Lett. 116, 106803 (2016).
[Crossref] [PubMed]

W. Du, T. Wang, H.-S. Chu, L. Wu, R. Liu, S. Sun, W. K. Phua, L. Wang, N. Tomczak, and Ch. A. Nijhuis, “On-chip molecular electronic plasmon sources based on self-assembled monolayer tunnel junctions,” Nature Photon. 10(4), 274-280 (2016).
[Crossref]

W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, “Quantum mechanical effiects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7, 11495 (2016).
[Crossref]

Y. Zhang, Y. Luo, Y. Zhang, Y.-J. Yu, Y.-M. Kuang, L. Zhang, Q.-S. Meng, Y. Luo, J.-L. Yang, Z.-C. Dong, and J.-G. Hou, “Visualizing coherent intermolecular dipole-dipole coupling in real space,” Nature,  531(7596), 623-627 (2016).
[Crossref] [PubMed]

A. Yu, S. Li, G. Czap, and W. Ho, “Tunneling-electron-induced light emission from single gold nanoclusters,” Nano Lett. 16(9), 5433-5436 (2016).
[Crossref] [PubMed]

H. Imada, K. Miwa, M. Imai-Imada, S. Kawahara, K. Kimura, and Y. Kim, “Real-space investigation of energy transfer in heterogeneous molecular dimers,” Nature 538(7625), 364-367 (2016).
[Crossref] [PubMed]

2015 (3)

K. Kaasbjerg and A. Nitzan, “Theory of light emission from quantum noise in plasmonic contacts: above-threshold emission from higher-order electron-plasmon scattering,” Phys. Rev. Lett. 114, 126803 (2015).
[Crossref] [PubMed]

J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp, and B. Hecht, “Electrically driven optical antennas,” Nature Photon. 9, 582-586 (2015).
[Crossref]

T. Wang, B. Rogez, G. Comtet, E. L. Moal, W. Abidi, H. Remita, G. Dujardin, and E. Boer-Duchemin, “Scattering of electrically excited surface plasmon polaritons by gold nanoparticles studied by optical interferometry with a scanning tunneling microscope,” Phys. Rev. B 92, 045438 (2015).
[Crossref]

2014 (4)

F. Xu, C. Holmqvist, and W. Belzig, “Overbias light emission due to higher-order quantum noise in a tunnel junction,” Phys. Rev. Lett. 113, 066801 (2014).
[Crossref] [PubMed]

T. Wang, G. Comtet, E. L. Moal, G. Dujardin, A. Drezet, S. Huant, and E. Boer-Duchemin, “Temporal coherence of propagating surface plasmons,” Opt. Lett. 39(23), 6679-6682 (2014).
[Crossref] [PubMed]

S. Cao, E. L. Moal, E. Boer-Duchemin, G. Dujardin, A. Drezet, and S. Huant, “Cylindrical vector beams of light from an electrically excited plasmonic lens,” Appl. Phys. Lett. 105, 111103 (2014).
[Crossref]

P. Chen, W. Wang, N. Lin, and S. Du, “Manipulating photon emission efficiency with local electronic states in a tunneling gap,” Opt. Express 22(7), 8234-8242 (2014).
[Crossref] [PubMed]

2013 (2)

T. Lutz, C. Große, C. Dette, C. A. Kabakchiev, F. Schramm, M. Ruben, R. Gutzler, K. Kuhnke, U. Schlickum, and K. Kern, “Molecular orbital gates for plasmon excitation,” Nano Lett. 13(6), 2846-2850 (2013).
[Crossref] [PubMed]

J. T. Lü, R. B. Christensen, and M. Brandbyge, “Light emission and finite-frequency shot noise in molecular junctions: From tunneling to contact,” Phys. Rev. B 88, 045413 (2013).
[Crossref]

2012 (2)

N. L. Schneider, J. T. Lü, M. Brandbyge, and R. Berndt, “Light emission probing quantum shot noise and charge fluctuations at a biased molecular junction,” Phys. Rev. Lett. 109, 186601 (2012).
[Crossref] [PubMed]

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
[Crossref] [PubMed]

2011 (2)

T. Wang, E. Boer-Duchemin, Y. Zhang, G. Comtet, and G. Dujardin, “Excitation of propagating surface plasmons with a scanning tunnelling microscope,” Nanotechnology 22, 175201 (2011).
[Crossref] [PubMed]

P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical excitation of surface plasmons,” Phys. Rev. Lett. 106, 226802 (2011).
[Crossref] [PubMed]

2010 (3)

N. L. Schneider, G. Schull, and R. Berndt, “Optical probe of quantum shot-noise reduction at a single-atom contact,” Phys. Rev. Lett. 105, 026601 (2010).
[Crossref] [PubMed]

Y. Chen, T. R. Nielsen, N. Gregersen, P. Lodahl, and J. Mørk, “Finite-element modeling of spontaneous emission of a quantum emitter at nanoscale proximity to plasmonic waveguides,” Phys. Rev. B 81125431 (2010).
[Crossref]

Y. Chen, N. Gregersen, T. R. Nielsen, J. Mørk, and P. Lodahl, “Spontaneous decay of a single quantum dot coupled to a metallic slot waveguide in the presence of leaky plasmonic modes,” Opt. Express 18(12), 12489-12498 (2010).
[Crossref] [PubMed]

2009 (2)

G. Schull, N. Néel, P. Johansson, and R. Berndt, “Electron-plasmon and electron-electron interactions at a single atom contact,” Phys. Rev. Lett. 102, 057401 (2009).
[Crossref] [PubMed]

C. Chen, C. A. Bobisch, and W. Ho, “Visualization of Fermi’s golden rule through imaging of light emission from atomic silver chains,” Science 325(5943), 981-985 (2009).
[Crossref] [PubMed]

2007 (1)

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Strong coupling of single emitters to surface plasmons,” Phys. Rev. B 76035420 (2007).
[Crossref]

2006 (1)

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum Optics with Surface Plasmons,” Phys. Rev. Lett. 97053002 (2006).
[Crossref] [PubMed]

2004 (2)

T. Søndergaard and S. I. Bozhevolnyi, “Surface plasmon polariton scattering by a small particle placed near a metal surface: An analytical study,” Phys. Rev. B 69, 045422 (2004).
[Crossref]

Z.-C. Dong, X.-L. Guo, A. S. Trifonov, P. S. Dorozhkin, K. Miki, K. Kimura, S. Yokoyama, and S. Mashiko, “Vibrationally resolved fluorescence from organic molecules near metal surfaces in a scanning tunneling microscope,” Phys. Rev. Lett. 92, 086801 (2004).
[Crossref] [PubMed]

2003 (1)

X. H. Qiu, G. V. Nazin, and W. Ho, “Vibrationally resolved fluorescence excited with submolecular precision,” Science 299(5606), 542-546 (2003).
[Crossref] [PubMed]

2000 (3)

N. Nilius, N. Ernst, and H.-J. Freund, “Photon emission spectroscopy of individual oxide-supported silver clusters in a scanning tunneling microscope,” Phys. Rev. Lett. 84(17), 3994-3997 (2000).
[Crossref] [PubMed]

S. Ushioda, “Scanning tunneling microscope (STM) light emission spectroscopy of surface nanostructures,” J. Electron. Spectrosc. Relat. Phenom. 109(1-2), 169-181 (2000).
[Crossref]

J. Aizpurua, S. P. Apell, and R. Berndt, “Role of tip shape in light emission from the scanning tunneling microscope,” Phys. Rev. B 62(3), 2065-2073 (2000).
[Crossref]

1998 (1)

P. Johansson, “Light emission from a scanning tunneling microscope: Fully retarded calculation,” Phys. Rev. B 58(16), 10823-10834 (1998).
[Crossref]

1993 (2)

R. Berndt, J. K. Gimzewski, and P. Johansson, “Electromagnetic interactions of metallic objects in nanometer proximity,” Phys. Rev. Lett. 71(21), 3493-3496 (1993).
[Crossref] [PubMed]

R. Berndt, R. Gaisch, J. K. Gimzewski, B. Reihl, R. R. Schlittler, W. D. Schneider, and M. Tschudy, “Photon emission at molecular resolution induced by a scanning tunneling microscope,” Science 262(5138), 1425-1427 (1993).
[Crossref] [PubMed]

1992 (1)

B. N. J. Persson and A. Baratoffi, “Theory of photon emission in electron tunneling to metallic particles,” Phys. Rev. Lett. 68(21), 3224-3227 (1992).
[Crossref] [PubMed]

1991 (1)

R. Berndt, J. K. Gimzewski, and P. Johansson, “Inelastic tunneling excitation of tip-induced plasmon modes on noble-metal surfaces,” Phys. Rev. Lett. 67(27), 3796-3799 (1991).
[Crossref] [PubMed]

1990 (1)

P. Johansson, R. Monreal, and P. Apell, “Theory for light emission from a scanning tunneling microscope,” Phys. Rev. B 42(14). 9210-9213 (1990).
[Crossref]

1988 (1)

J. K. Gimzewski, B. Reihl, J. H. Coomb, and R. R. Schlittler, “Photon emission with the scanning tunneling microscope,” Z. Phys. B 72(4), 497-501 (1988).
[Crossref]

1982 (2)

G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, “Tunneling through a controllable vacuum gap,” Appl. Phys. Lett. 40(2), 178-180 (1982).
[Crossref]

G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, “Surface studies by scanning tunneling microscopy,” Phys. Rev. Lett. 49(1), 57-61 (1982).
[Crossref]

1981 (1)

R. W. Rendell and D. J. Scalapino, “Surface plasmons confined by microstructures on tunnel junctions,” Phys. Rev. B 24(6), 3276-3294, (1981).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370-4379 (1972).
[Crossref]

Abidi, W.

T. Wang, B. Rogez, G. Comtet, E. L. Moal, W. Abidi, H. Remita, G. Dujardin, and E. Boer-Duchemin, “Scattering of electrically excited surface plasmon polaritons by gold nanoparticles studied by optical interferometry with a scanning tunneling microscope,” Phys. Rev. B 92, 045438 (2015).
[Crossref]

Aizpurua, J.

Y. Zhang, Q.-S. Meng, L. Zhang, Y. Luo, Y.-J. Yu, B. Yang, Y. Zhang, R. Esteban, J. Aizpurua, Y. Luo, J.-L. Yang, Z.-C. Dong, and J. G. Hou, “Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity,” Nat. Comm.  8, 15225 (2017).
[Crossref]

W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, “Quantum mechanical effiects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7, 11495 (2016).
[Crossref]

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
[Crossref] [PubMed]

J. Aizpurua, S. P. Apell, and R. Berndt, “Role of tip shape in light emission from the scanning tunneling microscope,” Phys. Rev. B 62(3), 2065-2073 (2000).
[Crossref]

Apell, P.

P. Johansson, R. Monreal, and P. Apell, “Theory for light emission from a scanning tunneling microscope,” Phys. Rev. B 42(14). 9210-9213 (1990).
[Crossref]

Apell, S. P.

J. Aizpurua, S. P. Apell, and R. Berndt, “Role of tip shape in light emission from the scanning tunneling microscope,” Phys. Rev. B 62(3), 2065-2073 (2000).
[Crossref]

Arocas, J.

Baratoffi, A.

B. N. J. Persson and A. Baratoffi, “Theory of photon emission in electron tunneling to metallic particles,” Phys. Rev. Lett. 68(21), 3224-3227 (1992).
[Crossref] [PubMed]

Baumberg, J. J.

W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, “Quantum mechanical effiects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7, 11495 (2016).
[Crossref]

Belzig, W.

F. Xu, C. Holmqvist, and W. Belzig, “Overbias light emission due to higher-order quantum noise in a tunnel junction,” Phys. Rev. Lett. 113, 066801 (2014).
[Crossref] [PubMed]

Berndt, R.

N. L. Schneider, J. T. Lü, M. Brandbyge, and R. Berndt, “Light emission probing quantum shot noise and charge fluctuations at a biased molecular junction,” Phys. Rev. Lett. 109, 186601 (2012).
[Crossref] [PubMed]

N. L. Schneider, G. Schull, and R. Berndt, “Optical probe of quantum shot-noise reduction at a single-atom contact,” Phys. Rev. Lett. 105, 026601 (2010).
[Crossref] [PubMed]

G. Schull, N. Néel, P. Johansson, and R. Berndt, “Electron-plasmon and electron-electron interactions at a single atom contact,” Phys. Rev. Lett. 102, 057401 (2009).
[Crossref] [PubMed]

J. Aizpurua, S. P. Apell, and R. Berndt, “Role of tip shape in light emission from the scanning tunneling microscope,” Phys. Rev. B 62(3), 2065-2073 (2000).
[Crossref]

R. Berndt, J. K. Gimzewski, and P. Johansson, “Electromagnetic interactions of metallic objects in nanometer proximity,” Phys. Rev. Lett. 71(21), 3493-3496 (1993).
[Crossref] [PubMed]

R. Berndt, R. Gaisch, J. K. Gimzewski, B. Reihl, R. R. Schlittler, W. D. Schneider, and M. Tschudy, “Photon emission at molecular resolution induced by a scanning tunneling microscope,” Science 262(5138), 1425-1427 (1993).
[Crossref] [PubMed]

R. Berndt, J. K. Gimzewski, and P. Johansson, “Inelastic tunneling excitation of tip-induced plasmon modes on noble-metal surfaces,” Phys. Rev. Lett. 67(27), 3796-3799 (1991).
[Crossref] [PubMed]

R. Berndt, Photon Emission from the Scanning Tunneling Microscope (Springer-Verlag, Berlin Heideberg, 1998).

Bharadwaj, P.

P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical excitation of surface plasmons,” Phys. Rev. Lett. 106, 226802 (2011).
[Crossref] [PubMed]

Bigourdan, F.

F. Bigourdan, J. P. Hugonin, F. Marquier, C. Sauvan, and J. J. Greffiet, “Nanoantenna for electrical generation of surface plasmon polaritons,” Phys. Rev. Lett. 116, 106803 (2016).
[Crossref] [PubMed]

Binnig, G.

G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, “Tunneling through a controllable vacuum gap,” Appl. Phys. Lett. 40(2), 178-180 (1982).
[Crossref]

G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, “Surface studies by scanning tunneling microscopy,” Phys. Rev. Lett. 49(1), 57-61 (1982).
[Crossref]

Bobisch, C. A.

C. Chen, C. A. Bobisch, and W. Ho, “Visualization of Fermi’s golden rule through imaging of light emission from atomic silver chains,” Science 325(5943), 981-985 (2009).
[Crossref] [PubMed]

Boer-Duchemin, E.

T. Wang, B. Rogez, G. Comtet, E. L. Moal, W. Abidi, H. Remita, G. Dujardin, and E. Boer-Duchemin, “Scattering of electrically excited surface plasmon polaritons by gold nanoparticles studied by optical interferometry with a scanning tunneling microscope,” Phys. Rev. B 92, 045438 (2015).
[Crossref]

S. Cao, E. L. Moal, E. Boer-Duchemin, G. Dujardin, A. Drezet, and S. Huant, “Cylindrical vector beams of light from an electrically excited plasmonic lens,” Appl. Phys. Lett. 105, 111103 (2014).
[Crossref]

T. Wang, G. Comtet, E. L. Moal, G. Dujardin, A. Drezet, S. Huant, and E. Boer-Duchemin, “Temporal coherence of propagating surface plasmons,” Opt. Lett. 39(23), 6679-6682 (2014).
[Crossref] [PubMed]

T. Wang, E. Boer-Duchemin, Y. Zhang, G. Comtet, and G. Dujardin, “Excitation of propagating surface plasmons with a scanning tunnelling microscope,” Nanotechnology 22, 175201 (2011).
[Crossref] [PubMed]

Borisov, A. G.

W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, “Quantum mechanical effiects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7, 11495 (2016).
[Crossref]

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
[Crossref] [PubMed]

Bouhelier, A.

Bozhevolnyi, S. I.

T. Søndergaard and S. I. Bozhevolnyi, “Surface plasmon polariton scattering by a small particle placed near a metal surface: An analytical study,” Phys. Rev. B 69, 045422 (2004).
[Crossref]

Brandbyge, M.

J. T. Lü, R. B. Christensen, and M. Brandbyge, “Light emission and finite-frequency shot noise in molecular junctions: From tunneling to contact,” Phys. Rev. B 88, 045413 (2013).
[Crossref]

N. L. Schneider, J. T. Lü, M. Brandbyge, and R. Berndt, “Light emission probing quantum shot noise and charge fluctuations at a biased molecular junction,” Phys. Rev. Lett. 109, 186601 (2012).
[Crossref] [PubMed]

Buret, M.

Cao, S.

S. Cao, E. L. Moal, E. Boer-Duchemin, G. Dujardin, A. Drezet, and S. Huant, “Cylindrical vector beams of light from an electrically excited plasmonic lens,” Appl. Phys. Lett. 105, 111103 (2014).
[Crossref]

Cazier, N.

Chang, D. E.

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Strong coupling of single emitters to surface plasmons,” Phys. Rev. B 76035420 (2007).
[Crossref]

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum Optics with Surface Plasmons,” Phys. Rev. Lett. 97053002 (2006).
[Crossref] [PubMed]

Chen, C.

C. Chen, C. A. Bobisch, and W. Ho, “Visualization of Fermi’s golden rule through imaging of light emission from atomic silver chains,” Science 325(5943), 981-985 (2009).
[Crossref] [PubMed]

Chen, P.

Chen, Y.

Y. Chen, N. Gregersen, T. R. Nielsen, J. Mørk, and P. Lodahl, “Spontaneous decay of a single quantum dot coupled to a metallic slot waveguide in the presence of leaky plasmonic modes,” Opt. Express 18(12), 12489-12498 (2010).
[Crossref] [PubMed]

Y. Chen, T. R. Nielsen, N. Gregersen, P. Lodahl, and J. Mørk, “Finite-element modeling of spontaneous emission of a quantum emitter at nanoscale proximity to plasmonic waveguides,” Phys. Rev. B 81125431 (2010).
[Crossref]

Christensen, R. B.

J. T. Lü, R. B. Christensen, and M. Brandbyge, “Light emission and finite-frequency shot noise in molecular junctions: From tunneling to contact,” Phys. Rev. B 88, 045413 (2013).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370-4379 (1972).
[Crossref]

Chu, H.-S.

W. Du, T. Wang, H.-S. Chu, and Ch. A. Nijhuis, “Highly efficient on-chip direct electronic-plasmonic transducers,” Nature Photon. 11, 623-627 (2017).
[Crossref]

W. Du, T. Wang, H.-S. Chu, L. Wu, R. Liu, S. Sun, W. K. Phua, L. Wang, N. Tomczak, and Ch. A. Nijhuis, “On-chip molecular electronic plasmon sources based on self-assembled monolayer tunnel junctions,” Nature Photon. 10(4), 274-280 (2016).
[Crossref]

Comtet, G.

T. Wang, B. Rogez, G. Comtet, E. L. Moal, W. Abidi, H. Remita, G. Dujardin, and E. Boer-Duchemin, “Scattering of electrically excited surface plasmon polaritons by gold nanoparticles studied by optical interferometry with a scanning tunneling microscope,” Phys. Rev. B 92, 045438 (2015).
[Crossref]

T. Wang, G. Comtet, E. L. Moal, G. Dujardin, A. Drezet, S. Huant, and E. Boer-Duchemin, “Temporal coherence of propagating surface plasmons,” Opt. Lett. 39(23), 6679-6682 (2014).
[Crossref] [PubMed]

T. Wang, E. Boer-Duchemin, Y. Zhang, G. Comtet, and G. Dujardin, “Excitation of propagating surface plasmons with a scanning tunnelling microscope,” Nanotechnology 22, 175201 (2011).
[Crossref] [PubMed]

Coomb, J. H.

J. K. Gimzewski, B. Reihl, J. H. Coomb, and R. R. Schlittler, “Photon emission with the scanning tunneling microscope,” Z. Phys. B 72(4), 497-501 (1988).
[Crossref]

Crozier, K. B.

W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, “Quantum mechanical effiects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7, 11495 (2016).
[Crossref]

Czap, G.

A. Yu, S. Li, G. Czap, and W. Ho, “Tunneling-electron-induced light emission from single gold nanoclusters,” Nano Lett. 16(9), 5433-5436 (2016).
[Crossref] [PubMed]

Dette, C.

T. Lutz, C. Große, C. Dette, C. A. Kabakchiev, F. Schramm, M. Ruben, R. Gutzler, K. Kuhnke, U. Schlickum, and K. Kern, “Molecular orbital gates for plasmon excitation,” Nano Lett. 13(6), 2846-2850 (2013).
[Crossref] [PubMed]

Dong, Z.-C.

Y. Zhang, Q.-S. Meng, L. Zhang, Y. Luo, Y.-J. Yu, B. Yang, Y. Zhang, R. Esteban, J. Aizpurua, Y. Luo, J.-L. Yang, Z.-C. Dong, and J. G. Hou, “Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity,” Nat. Comm.  8, 15225 (2017).
[Crossref]

Y. Zhang, Y. Luo, Y. Zhang, Y.-J. Yu, Y.-M. Kuang, L. Zhang, Q.-S. Meng, Y. Luo, J.-L. Yang, Z.-C. Dong, and J.-G. Hou, “Visualizing coherent intermolecular dipole-dipole coupling in real space,” Nature,  531(7596), 623-627 (2016).
[Crossref] [PubMed]

Z.-C. Dong, X.-L. Guo, A. S. Trifonov, P. S. Dorozhkin, K. Miki, K. Kimura, S. Yokoyama, and S. Mashiko, “Vibrationally resolved fluorescence from organic molecules near metal surfaces in a scanning tunneling microscope,” Phys. Rev. Lett. 92, 086801 (2004).
[Crossref] [PubMed]

Dorozhkin, P. S.

Z.-C. Dong, X.-L. Guo, A. S. Trifonov, P. S. Dorozhkin, K. Miki, K. Kimura, S. Yokoyama, and S. Mashiko, “Vibrationally resolved fluorescence from organic molecules near metal surfaces in a scanning tunneling microscope,” Phys. Rev. Lett. 92, 086801 (2004).
[Crossref] [PubMed]

Drezet, A.

S. Cao, E. L. Moal, E. Boer-Duchemin, G. Dujardin, A. Drezet, and S. Huant, “Cylindrical vector beams of light from an electrically excited plasmonic lens,” Appl. Phys. Lett. 105, 111103 (2014).
[Crossref]

T. Wang, G. Comtet, E. L. Moal, G. Dujardin, A. Drezet, S. Huant, and E. Boer-Duchemin, “Temporal coherence of propagating surface plasmons,” Opt. Lett. 39(23), 6679-6682 (2014).
[Crossref] [PubMed]

Du, S.

Du, W.

W. Du, T. Wang, H.-S. Chu, and Ch. A. Nijhuis, “Highly efficient on-chip direct electronic-plasmonic transducers,” Nature Photon. 11, 623-627 (2017).
[Crossref]

W. Du, T. Wang, H.-S. Chu, L. Wu, R. Liu, S. Sun, W. K. Phua, L. Wang, N. Tomczak, and Ch. A. Nijhuis, “On-chip molecular electronic plasmon sources based on self-assembled monolayer tunnel junctions,” Nature Photon. 10(4), 274-280 (2016).
[Crossref]

Dujardin, G.

T. Wang, B. Rogez, G. Comtet, E. L. Moal, W. Abidi, H. Remita, G. Dujardin, and E. Boer-Duchemin, “Scattering of electrically excited surface plasmon polaritons by gold nanoparticles studied by optical interferometry with a scanning tunneling microscope,” Phys. Rev. B 92, 045438 (2015).
[Crossref]

S. Cao, E. L. Moal, E. Boer-Duchemin, G. Dujardin, A. Drezet, and S. Huant, “Cylindrical vector beams of light from an electrically excited plasmonic lens,” Appl. Phys. Lett. 105, 111103 (2014).
[Crossref]

T. Wang, G. Comtet, E. L. Moal, G. Dujardin, A. Drezet, S. Huant, and E. Boer-Duchemin, “Temporal coherence of propagating surface plasmons,” Opt. Lett. 39(23), 6679-6682 (2014).
[Crossref] [PubMed]

T. Wang, E. Boer-Duchemin, Y. Zhang, G. Comtet, and G. Dujardin, “Excitation of propagating surface plasmons with a scanning tunnelling microscope,” Nanotechnology 22, 175201 (2011).
[Crossref] [PubMed]

Emmerling, M.

J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp, and B. Hecht, “Electrically driven optical antennas,” Nature Photon. 9, 582-586 (2015).
[Crossref]

Ernst, N.

N. Nilius, N. Ernst, and H.-J. Freund, “Photon emission spectroscopy of individual oxide-supported silver clusters in a scanning tunneling microscope,” Phys. Rev. Lett. 84(17), 3994-3997 (2000).
[Crossref] [PubMed]

Esteban, R.

Y. Zhang, Q.-S. Meng, L. Zhang, Y. Luo, Y.-J. Yu, B. Yang, Y. Zhang, R. Esteban, J. Aizpurua, Y. Luo, J.-L. Yang, Z.-C. Dong, and J. G. Hou, “Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity,” Nat. Comm.  8, 15225 (2017).
[Crossref]

W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, “Quantum mechanical effiects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7, 11495 (2016).
[Crossref]

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
[Crossref] [PubMed]

Francs, G. C. D.

Freund, H.-J.

N. Nilius, N. Ernst, and H.-J. Freund, “Photon emission spectroscopy of individual oxide-supported silver clusters in a scanning tunneling microscope,” Phys. Rev. Lett. 84(17), 3994-3997 (2000).
[Crossref] [PubMed]

Gaisch, R.

R. Berndt, R. Gaisch, J. K. Gimzewski, B. Reihl, R. R. Schlittler, W. D. Schneider, and M. Tschudy, “Photon emission at molecular resolution induced by a scanning tunneling microscope,” Science 262(5138), 1425-1427 (1993).
[Crossref] [PubMed]

Gerber, Ch.

G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, “Surface studies by scanning tunneling microscopy,” Phys. Rev. Lett. 49(1), 57-61 (1982).
[Crossref]

G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, “Tunneling through a controllable vacuum gap,” Appl. Phys. Lett. 40(2), 178-180 (1982).
[Crossref]

Gimzewski, J. K.

R. Berndt, J. K. Gimzewski, and P. Johansson, “Electromagnetic interactions of metallic objects in nanometer proximity,” Phys. Rev. Lett. 71(21), 3493-3496 (1993).
[Crossref] [PubMed]

R. Berndt, R. Gaisch, J. K. Gimzewski, B. Reihl, R. R. Schlittler, W. D. Schneider, and M. Tschudy, “Photon emission at molecular resolution induced by a scanning tunneling microscope,” Science 262(5138), 1425-1427 (1993).
[Crossref] [PubMed]

R. Berndt, J. K. Gimzewski, and P. Johansson, “Inelastic tunneling excitation of tip-induced plasmon modes on noble-metal surfaces,” Phys. Rev. Lett. 67(27), 3796-3799 (1991).
[Crossref] [PubMed]

J. K. Gimzewski, B. Reihl, J. H. Coomb, and R. R. Schlittler, “Photon emission with the scanning tunneling microscope,” Z. Phys. B 72(4), 497-501 (1988).
[Crossref]

Greffiet, J. J.

F. Bigourdan, J. P. Hugonin, F. Marquier, C. Sauvan, and J. J. Greffiet, “Nanoantenna for electrical generation of surface plasmon polaritons,” Phys. Rev. Lett. 116, 106803 (2016).
[Crossref] [PubMed]

Gregersen, N.

Y. Chen, T. R. Nielsen, N. Gregersen, P. Lodahl, and J. Mørk, “Finite-element modeling of spontaneous emission of a quantum emitter at nanoscale proximity to plasmonic waveguides,” Phys. Rev. B 81125431 (2010).
[Crossref]

Y. Chen, N. Gregersen, T. R. Nielsen, J. Mørk, and P. Lodahl, “Spontaneous decay of a single quantum dot coupled to a metallic slot waveguide in the presence of leaky plasmonic modes,” Opt. Express 18(12), 12489-12498 (2010).
[Crossref] [PubMed]

Große, C.

T. Lutz, C. Große, C. Dette, C. A. Kabakchiev, F. Schramm, M. Ruben, R. Gutzler, K. Kuhnke, U. Schlickum, and K. Kern, “Molecular orbital gates for plasmon excitation,” Nano Lett. 13(6), 2846-2850 (2013).
[Crossref] [PubMed]

Guo, X.-L.

Z.-C. Dong, X.-L. Guo, A. S. Trifonov, P. S. Dorozhkin, K. Miki, K. Kimura, S. Yokoyama, and S. Mashiko, “Vibrationally resolved fluorescence from organic molecules near metal surfaces in a scanning tunneling microscope,” Phys. Rev. Lett. 92, 086801 (2004).
[Crossref] [PubMed]

Gutzler, R.

T. Lutz, C. Große, C. Dette, C. A. Kabakchiev, F. Schramm, M. Ruben, R. Gutzler, K. Kuhnke, U. Schlickum, and K. Kern, “Molecular orbital gates for plasmon excitation,” Nano Lett. 13(6), 2846-2850 (2013).
[Crossref] [PubMed]

Hecht, B.

J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp, and B. Hecht, “Electrically driven optical antennas,” Nature Photon. 9, 582-586 (2015).
[Crossref]

L. Novotny and B. Hecht, Principles of nano-optics, Cambridge University Press2006
[Crossref]

Hemmer, P. R.

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Strong coupling of single emitters to surface plasmons,” Phys. Rev. B 76035420 (2007).
[Crossref]

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum Optics with Surface Plasmons,” Phys. Rev. Lett. 97053002 (2006).
[Crossref] [PubMed]

Ho, W.

A. Yu, S. Li, G. Czap, and W. Ho, “Tunneling-electron-induced light emission from single gold nanoclusters,” Nano Lett. 16(9), 5433-5436 (2016).
[Crossref] [PubMed]

C. Chen, C. A. Bobisch, and W. Ho, “Visualization of Fermi’s golden rule through imaging of light emission from atomic silver chains,” Science 325(5943), 981-985 (2009).
[Crossref] [PubMed]

X. H. Qiu, G. V. Nazin, and W. Ho, “Vibrationally resolved fluorescence excited with submolecular precision,” Science 299(5606), 542-546 (2003).
[Crossref] [PubMed]

Holmqvist, C.

F. Xu, C. Holmqvist, and W. Belzig, “Overbias light emission due to higher-order quantum noise in a tunnel junction,” Phys. Rev. Lett. 113, 066801 (2014).
[Crossref] [PubMed]

Hou, J. G.

Y. Zhang, Q.-S. Meng, L. Zhang, Y. Luo, Y.-J. Yu, B. Yang, Y. Zhang, R. Esteban, J. Aizpurua, Y. Luo, J.-L. Yang, Z.-C. Dong, and J. G. Hou, “Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity,” Nat. Comm.  8, 15225 (2017).
[Crossref]

Hou, J.-G.

Y. Zhang, Y. Luo, Y. Zhang, Y.-J. Yu, Y.-M. Kuang, L. Zhang, Q.-S. Meng, Y. Luo, J.-L. Yang, Z.-C. Dong, and J.-G. Hou, “Visualizing coherent intermolecular dipole-dipole coupling in real space,” Nature,  531(7596), 623-627 (2016).
[Crossref] [PubMed]

Huant, S.

S. Cao, E. L. Moal, E. Boer-Duchemin, G. Dujardin, A. Drezet, and S. Huant, “Cylindrical vector beams of light from an electrically excited plasmonic lens,” Appl. Phys. Lett. 105, 111103 (2014).
[Crossref]

T. Wang, G. Comtet, E. L. Moal, G. Dujardin, A. Drezet, S. Huant, and E. Boer-Duchemin, “Temporal coherence of propagating surface plasmons,” Opt. Lett. 39(23), 6679-6682 (2014).
[Crossref] [PubMed]

Hugonin, J. P.

F. Bigourdan, J. P. Hugonin, F. Marquier, C. Sauvan, and J. J. Greffiet, “Nanoantenna for electrical generation of surface plasmon polaritons,” Phys. Rev. Lett. 116, 106803 (2016).
[Crossref] [PubMed]

Imada, H.

H. Imada, K. Miwa, M. Imai-Imada, S. Kawahara, K. Kimura, and Y. Kim, “Single-molecule investigation of energy dynamics in a coupled plasmon-exciton system,” Phys. Rev. Lett. 119, 013901 (2017).
[Crossref] [PubMed]

H. Imada, K. Miwa, M. Imai-Imada, S. Kawahara, K. Kimura, and Y. Kim, “Real-space investigation of energy transfer in heterogeneous molecular dimers,” Nature 538(7625), 364-367 (2016).
[Crossref] [PubMed]

Imai-Imada, M.

H. Imada, K. Miwa, M. Imai-Imada, S. Kawahara, K. Kimura, and Y. Kim, “Single-molecule investigation of energy dynamics in a coupled plasmon-exciton system,” Phys. Rev. Lett. 119, 013901 (2017).
[Crossref] [PubMed]

H. Imada, K. Miwa, M. Imai-Imada, S. Kawahara, K. Kimura, and Y. Kim, “Real-space investigation of energy transfer in heterogeneous molecular dimers,” Nature 538(7625), 364-367 (2016).
[Crossref] [PubMed]

Johansson, P.

G. Schull, N. Néel, P. Johansson, and R. Berndt, “Electron-plasmon and electron-electron interactions at a single atom contact,” Phys. Rev. Lett. 102, 057401 (2009).
[Crossref] [PubMed]

P. Johansson, “Light emission from a scanning tunneling microscope: Fully retarded calculation,” Phys. Rev. B 58(16), 10823-10834 (1998).
[Crossref]

R. Berndt, J. K. Gimzewski, and P. Johansson, “Electromagnetic interactions of metallic objects in nanometer proximity,” Phys. Rev. Lett. 71(21), 3493-3496 (1993).
[Crossref] [PubMed]

R. Berndt, J. K. Gimzewski, and P. Johansson, “Inelastic tunneling excitation of tip-induced plasmon modes on noble-metal surfaces,” Phys. Rev. Lett. 67(27), 3796-3799 (1991).
[Crossref] [PubMed]

P. Johansson, R. Monreal, and P. Apell, “Theory for light emission from a scanning tunneling microscope,” Phys. Rev. B 42(14). 9210-9213 (1990).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370-4379 (1972).
[Crossref]

Kaasbjerg, K.

K. Kaasbjerg and A. Nitzan, “Theory of light emission from quantum noise in plasmonic contacts: above-threshold emission from higher-order electron-plasmon scattering,” Phys. Rev. Lett. 114, 126803 (2015).
[Crossref] [PubMed]

Kabakchiev, C. A.

T. Lutz, C. Große, C. Dette, C. A. Kabakchiev, F. Schramm, M. Ruben, R. Gutzler, K. Kuhnke, U. Schlickum, and K. Kern, “Molecular orbital gates for plasmon excitation,” Nano Lett. 13(6), 2846-2850 (2013).
[Crossref] [PubMed]

Kamp, M.

J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp, and B. Hecht, “Electrically driven optical antennas,” Nature Photon. 9, 582-586 (2015).
[Crossref]

Kawahara, S.

H. Imada, K. Miwa, M. Imai-Imada, S. Kawahara, K. Kimura, and Y. Kim, “Single-molecule investigation of energy dynamics in a coupled plasmon-exciton system,” Phys. Rev. Lett. 119, 013901 (2017).
[Crossref] [PubMed]

H. Imada, K. Miwa, M. Imai-Imada, S. Kawahara, K. Kimura, and Y. Kim, “Real-space investigation of energy transfer in heterogeneous molecular dimers,” Nature 538(7625), 364-367 (2016).
[Crossref] [PubMed]

Kern, J.

J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp, and B. Hecht, “Electrically driven optical antennas,” Nature Photon. 9, 582-586 (2015).
[Crossref]

Kern, K.

T. Lutz, C. Große, C. Dette, C. A. Kabakchiev, F. Schramm, M. Ruben, R. Gutzler, K. Kuhnke, U. Schlickum, and K. Kern, “Molecular orbital gates for plasmon excitation,” Nano Lett. 13(6), 2846-2850 (2013).
[Crossref] [PubMed]

Kim, Y.

H. Imada, K. Miwa, M. Imai-Imada, S. Kawahara, K. Kimura, and Y. Kim, “Single-molecule investigation of energy dynamics in a coupled plasmon-exciton system,” Phys. Rev. Lett. 119, 013901 (2017).
[Crossref] [PubMed]

H. Imada, K. Miwa, M. Imai-Imada, S. Kawahara, K. Kimura, and Y. Kim, “Real-space investigation of energy transfer in heterogeneous molecular dimers,” Nature 538(7625), 364-367 (2016).
[Crossref] [PubMed]

Kimura, K.

H. Imada, K. Miwa, M. Imai-Imada, S. Kawahara, K. Kimura, and Y. Kim, “Single-molecule investigation of energy dynamics in a coupled plasmon-exciton system,” Phys. Rev. Lett. 119, 013901 (2017).
[Crossref] [PubMed]

H. Imada, K. Miwa, M. Imai-Imada, S. Kawahara, K. Kimura, and Y. Kim, “Real-space investigation of energy transfer in heterogeneous molecular dimers,” Nature 538(7625), 364-367 (2016).
[Crossref] [PubMed]

Z.-C. Dong, X.-L. Guo, A. S. Trifonov, P. S. Dorozhkin, K. Miki, K. Kimura, S. Yokoyama, and S. Mashiko, “Vibrationally resolved fluorescence from organic molecules near metal surfaces in a scanning tunneling microscope,” Phys. Rev. Lett. 92, 086801 (2004).
[Crossref] [PubMed]

Kuang, Y.-M.

Y. Zhang, Y. Luo, Y. Zhang, Y.-J. Yu, Y.-M. Kuang, L. Zhang, Q.-S. Meng, Y. Luo, J.-L. Yang, Z.-C. Dong, and J.-G. Hou, “Visualizing coherent intermolecular dipole-dipole coupling in real space,” Nature,  531(7596), 623-627 (2016).
[Crossref] [PubMed]

Kuhnke, K.

T. Lutz, C. Große, C. Dette, C. A. Kabakchiev, F. Schramm, M. Ruben, R. Gutzler, K. Kuhnke, U. Schlickum, and K. Kern, “Molecular orbital gates for plasmon excitation,” Nano Lett. 13(6), 2846-2850 (2013).
[Crossref] [PubMed]

Kullock, R.

J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp, and B. Hecht, “Electrically driven optical antennas,” Nature Photon. 9, 582-586 (2015).
[Crossref]

Lezec, H. J.

W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, “Quantum mechanical effiects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7, 11495 (2016).
[Crossref]

Li, S.

A. Yu, S. Li, G. Czap, and W. Ho, “Tunneling-electron-induced light emission from single gold nanoclusters,” Nano Lett. 16(9), 5433-5436 (2016).
[Crossref] [PubMed]

Lin, N.

Liu, R.

W. Du, T. Wang, H.-S. Chu, L. Wu, R. Liu, S. Sun, W. K. Phua, L. Wang, N. Tomczak, and Ch. A. Nijhuis, “On-chip molecular electronic plasmon sources based on self-assembled monolayer tunnel junctions,” Nature Photon. 10(4), 274-280 (2016).
[Crossref]

Lodahl, P.

Y. Chen, T. R. Nielsen, N. Gregersen, P. Lodahl, and J. Mørk, “Finite-element modeling of spontaneous emission of a quantum emitter at nanoscale proximity to plasmonic waveguides,” Phys. Rev. B 81125431 (2010).
[Crossref]

Y. Chen, N. Gregersen, T. R. Nielsen, J. Mørk, and P. Lodahl, “Spontaneous decay of a single quantum dot coupled to a metallic slot waveguide in the presence of leaky plasmonic modes,” Opt. Express 18(12), 12489-12498 (2010).
[Crossref] [PubMed]

Lü, J. T.

J. T. Lü, R. B. Christensen, and M. Brandbyge, “Light emission and finite-frequency shot noise in molecular junctions: From tunneling to contact,” Phys. Rev. B 88, 045413 (2013).
[Crossref]

N. L. Schneider, J. T. Lü, M. Brandbyge, and R. Berndt, “Light emission probing quantum shot noise and charge fluctuations at a biased molecular junction,” Phys. Rev. Lett. 109, 186601 (2012).
[Crossref] [PubMed]

Lukin, M. D.

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Strong coupling of single emitters to surface plasmons,” Phys. Rev. B 76035420 (2007).
[Crossref]

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum Optics with Surface Plasmons,” Phys. Rev. Lett. 97053002 (2006).
[Crossref] [PubMed]

Luo, Y.

Y. Zhang, Q.-S. Meng, L. Zhang, Y. Luo, Y.-J. Yu, B. Yang, Y. Zhang, R. Esteban, J. Aizpurua, Y. Luo, J.-L. Yang, Z.-C. Dong, and J. G. Hou, “Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity,” Nat. Comm.  8, 15225 (2017).
[Crossref]

Y. Zhang, Q.-S. Meng, L. Zhang, Y. Luo, Y.-J. Yu, B. Yang, Y. Zhang, R. Esteban, J. Aizpurua, Y. Luo, J.-L. Yang, Z.-C. Dong, and J. G. Hou, “Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity,” Nat. Comm.  8, 15225 (2017).
[Crossref]

Y. Zhang, Y. Luo, Y. Zhang, Y.-J. Yu, Y.-M. Kuang, L. Zhang, Q.-S. Meng, Y. Luo, J.-L. Yang, Z.-C. Dong, and J.-G. Hou, “Visualizing coherent intermolecular dipole-dipole coupling in real space,” Nature,  531(7596), 623-627 (2016).
[Crossref] [PubMed]

Y. Zhang, Y. Luo, Y. Zhang, Y.-J. Yu, Y.-M. Kuang, L. Zhang, Q.-S. Meng, Y. Luo, J.-L. Yang, Z.-C. Dong, and J.-G. Hou, “Visualizing coherent intermolecular dipole-dipole coupling in real space,” Nature,  531(7596), 623-627 (2016).
[Crossref] [PubMed]

Lutz, T.

T. Lutz, C. Große, C. Dette, C. A. Kabakchiev, F. Schramm, M. Ruben, R. Gutzler, K. Kuhnke, U. Schlickum, and K. Kern, “Molecular orbital gates for plasmon excitation,” Nano Lett. 13(6), 2846-2850 (2013).
[Crossref] [PubMed]

Markey, L.

Marquier, F.

F. Bigourdan, J. P. Hugonin, F. Marquier, C. Sauvan, and J. J. Greffiet, “Nanoantenna for electrical generation of surface plasmon polaritons,” Phys. Rev. Lett. 116, 106803 (2016).
[Crossref] [PubMed]

Mashiko, S.

Z.-C. Dong, X.-L. Guo, A. S. Trifonov, P. S. Dorozhkin, K. Miki, K. Kimura, S. Yokoyama, and S. Mashiko, “Vibrationally resolved fluorescence from organic molecules near metal surfaces in a scanning tunneling microscope,” Phys. Rev. Lett. 92, 086801 (2004).
[Crossref] [PubMed]

Meng, Q.-S.

Y. Zhang, Q.-S. Meng, L. Zhang, Y. Luo, Y.-J. Yu, B. Yang, Y. Zhang, R. Esteban, J. Aizpurua, Y. Luo, J.-L. Yang, Z.-C. Dong, and J. G. Hou, “Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity,” Nat. Comm.  8, 15225 (2017).
[Crossref]

Y. Zhang, Y. Luo, Y. Zhang, Y.-J. Yu, Y.-M. Kuang, L. Zhang, Q.-S. Meng, Y. Luo, J.-L. Yang, Z.-C. Dong, and J.-G. Hou, “Visualizing coherent intermolecular dipole-dipole coupling in real space,” Nature,  531(7596), 623-627 (2016).
[Crossref] [PubMed]

Miki, K.

Z.-C. Dong, X.-L. Guo, A. S. Trifonov, P. S. Dorozhkin, K. Miki, K. Kimura, S. Yokoyama, and S. Mashiko, “Vibrationally resolved fluorescence from organic molecules near metal surfaces in a scanning tunneling microscope,” Phys. Rev. Lett. 92, 086801 (2004).
[Crossref] [PubMed]

Miwa, K.

H. Imada, K. Miwa, M. Imai-Imada, S. Kawahara, K. Kimura, and Y. Kim, “Single-molecule investigation of energy dynamics in a coupled plasmon-exciton system,” Phys. Rev. Lett. 119, 013901 (2017).
[Crossref] [PubMed]

H. Imada, K. Miwa, M. Imai-Imada, S. Kawahara, K. Kimura, and Y. Kim, “Real-space investigation of energy transfer in heterogeneous molecular dimers,” Nature 538(7625), 364-367 (2016).
[Crossref] [PubMed]

Moal, E. L.

T. Wang, B. Rogez, G. Comtet, E. L. Moal, W. Abidi, H. Remita, G. Dujardin, and E. Boer-Duchemin, “Scattering of electrically excited surface plasmon polaritons by gold nanoparticles studied by optical interferometry with a scanning tunneling microscope,” Phys. Rev. B 92, 045438 (2015).
[Crossref]

S. Cao, E. L. Moal, E. Boer-Duchemin, G. Dujardin, A. Drezet, and S. Huant, “Cylindrical vector beams of light from an electrically excited plasmonic lens,” Appl. Phys. Lett. 105, 111103 (2014).
[Crossref]

T. Wang, G. Comtet, E. L. Moal, G. Dujardin, A. Drezet, S. Huant, and E. Boer-Duchemin, “Temporal coherence of propagating surface plasmons,” Opt. Lett. 39(23), 6679-6682 (2014).
[Crossref] [PubMed]

Monreal, R.

P. Johansson, R. Monreal, and P. Apell, “Theory for light emission from a scanning tunneling microscope,” Phys. Rev. B 42(14). 9210-9213 (1990).
[Crossref]

Mørk, J.

Y. Chen, T. R. Nielsen, N. Gregersen, P. Lodahl, and J. Mørk, “Finite-element modeling of spontaneous emission of a quantum emitter at nanoscale proximity to plasmonic waveguides,” Phys. Rev. B 81125431 (2010).
[Crossref]

Y. Chen, N. Gregersen, T. R. Nielsen, J. Mørk, and P. Lodahl, “Spontaneous decay of a single quantum dot coupled to a metallic slot waveguide in the presence of leaky plasmonic modes,” Opt. Express 18(12), 12489-12498 (2010).
[Crossref] [PubMed]

Nazin, G. V.

X. H. Qiu, G. V. Nazin, and W. Ho, “Vibrationally resolved fluorescence excited with submolecular precision,” Science 299(5606), 542-546 (2003).
[Crossref] [PubMed]

Néel, N.

G. Schull, N. Néel, P. Johansson, and R. Berndt, “Electron-plasmon and electron-electron interactions at a single atom contact,” Phys. Rev. Lett. 102, 057401 (2009).
[Crossref] [PubMed]

Nielsen, T. R.

Y. Chen, T. R. Nielsen, N. Gregersen, P. Lodahl, and J. Mørk, “Finite-element modeling of spontaneous emission of a quantum emitter at nanoscale proximity to plasmonic waveguides,” Phys. Rev. B 81125431 (2010).
[Crossref]

Y. Chen, N. Gregersen, T. R. Nielsen, J. Mørk, and P. Lodahl, “Spontaneous decay of a single quantum dot coupled to a metallic slot waveguide in the presence of leaky plasmonic modes,” Opt. Express 18(12), 12489-12498 (2010).
[Crossref] [PubMed]

Nijhuis, Ch. A.

W. Du, T. Wang, H.-S. Chu, and Ch. A. Nijhuis, “Highly efficient on-chip direct electronic-plasmonic transducers,” Nature Photon. 11, 623-627 (2017).
[Crossref]

W. Du, T. Wang, H.-S. Chu, L. Wu, R. Liu, S. Sun, W. K. Phua, L. Wang, N. Tomczak, and Ch. A. Nijhuis, “On-chip molecular electronic plasmon sources based on self-assembled monolayer tunnel junctions,” Nature Photon. 10(4), 274-280 (2016).
[Crossref]

Nilius, N.

N. Nilius, N. Ernst, and H.-J. Freund, “Photon emission spectroscopy of individual oxide-supported silver clusters in a scanning tunneling microscope,” Phys. Rev. Lett. 84(17), 3994-3997 (2000).
[Crossref] [PubMed]

Nitzan, A.

K. Kaasbjerg and A. Nitzan, “Theory of light emission from quantum noise in plasmonic contacts: above-threshold emission from higher-order electron-plasmon scattering,” Phys. Rev. Lett. 114, 126803 (2015).
[Crossref] [PubMed]

Nordlander, P.

W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, “Quantum mechanical effiects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7, 11495 (2016).
[Crossref]

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
[Crossref] [PubMed]

Novotny, L.

P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical excitation of surface plasmons,” Phys. Rev. Lett. 106, 226802 (2011).
[Crossref] [PubMed]

L. Novotny and B. Hecht, Principles of nano-optics, Cambridge University Press2006
[Crossref]

Persson, B. N. J.

B. N. J. Persson and A. Baratoffi, “Theory of photon emission in electron tunneling to metallic particles,” Phys. Rev. Lett. 68(21), 3224-3227 (1992).
[Crossref] [PubMed]

Phua, W. K.

W. Du, T. Wang, H.-S. Chu, L. Wu, R. Liu, S. Sun, W. K. Phua, L. Wang, N. Tomczak, and Ch. A. Nijhuis, “On-chip molecular electronic plasmon sources based on self-assembled monolayer tunnel junctions,” Nature Photon. 10(4), 274-280 (2016).
[Crossref]

Prangsma, J.

J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp, and B. Hecht, “Electrically driven optical antennas,” Nature Photon. 9, 582-586 (2015).
[Crossref]

Qiu, X. H.

X. H. Qiu, G. V. Nazin, and W. Ho, “Vibrationally resolved fluorescence excited with submolecular precision,” Science 299(5606), 542-546 (2003).
[Crossref] [PubMed]

Reihl, B.

R. Berndt, R. Gaisch, J. K. Gimzewski, B. Reihl, R. R. Schlittler, W. D. Schneider, and M. Tschudy, “Photon emission at molecular resolution induced by a scanning tunneling microscope,” Science 262(5138), 1425-1427 (1993).
[Crossref] [PubMed]

J. K. Gimzewski, B. Reihl, J. H. Coomb, and R. R. Schlittler, “Photon emission with the scanning tunneling microscope,” Z. Phys. B 72(4), 497-501 (1988).
[Crossref]

Remita, H.

T. Wang, B. Rogez, G. Comtet, E. L. Moal, W. Abidi, H. Remita, G. Dujardin, and E. Boer-Duchemin, “Scattering of electrically excited surface plasmon polaritons by gold nanoparticles studied by optical interferometry with a scanning tunneling microscope,” Phys. Rev. B 92, 045438 (2015).
[Crossref]

Rendell, R. W.

R. W. Rendell and D. J. Scalapino, “Surface plasmons confined by microstructures on tunnel junctions,” Phys. Rev. B 24(6), 3276-3294, (1981).
[Crossref]

Rogez, B.

T. Wang, B. Rogez, G. Comtet, E. L. Moal, W. Abidi, H. Remita, G. Dujardin, and E. Boer-Duchemin, “Scattering of electrically excited surface plasmon polaritons by gold nanoparticles studied by optical interferometry with a scanning tunneling microscope,” Phys. Rev. B 92, 045438 (2015).
[Crossref]

Rohrer, H.

G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, “Tunneling through a controllable vacuum gap,” Appl. Phys. Lett. 40(2), 178-180 (1982).
[Crossref]

G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, “Surface studies by scanning tunneling microscopy,” Phys. Rev. Lett. 49(1), 57-61 (1982).
[Crossref]

Ruben, M.

T. Lutz, C. Große, C. Dette, C. A. Kabakchiev, F. Schramm, M. Ruben, R. Gutzler, K. Kuhnke, U. Schlickum, and K. Kern, “Molecular orbital gates for plasmon excitation,” Nano Lett. 13(6), 2846-2850 (2013).
[Crossref] [PubMed]

Sauvan, C.

F. Bigourdan, J. P. Hugonin, F. Marquier, C. Sauvan, and J. J. Greffiet, “Nanoantenna for electrical generation of surface plasmon polaritons,” Phys. Rev. Lett. 116, 106803 (2016).
[Crossref] [PubMed]

Scalapino, D. J.

R. W. Rendell and D. J. Scalapino, “Surface plasmons confined by microstructures on tunnel junctions,” Phys. Rev. B 24(6), 3276-3294, (1981).
[Crossref]

Schlickum, U.

T. Lutz, C. Große, C. Dette, C. A. Kabakchiev, F. Schramm, M. Ruben, R. Gutzler, K. Kuhnke, U. Schlickum, and K. Kern, “Molecular orbital gates for plasmon excitation,” Nano Lett. 13(6), 2846-2850 (2013).
[Crossref] [PubMed]

Schlittler, R. R.

R. Berndt, R. Gaisch, J. K. Gimzewski, B. Reihl, R. R. Schlittler, W. D. Schneider, and M. Tschudy, “Photon emission at molecular resolution induced by a scanning tunneling microscope,” Science 262(5138), 1425-1427 (1993).
[Crossref] [PubMed]

J. K. Gimzewski, B. Reihl, J. H. Coomb, and R. R. Schlittler, “Photon emission with the scanning tunneling microscope,” Z. Phys. B 72(4), 497-501 (1988).
[Crossref]

Schneider, L.

N. L. Schneider, G. Schull, and R. Berndt, “Optical probe of quantum shot-noise reduction at a single-atom contact,” Phys. Rev. Lett. 105, 026601 (2010).
[Crossref] [PubMed]

Schneider, N. L.

N. L. Schneider, J. T. Lü, M. Brandbyge, and R. Berndt, “Light emission probing quantum shot noise and charge fluctuations at a biased molecular junction,” Phys. Rev. Lett. 109, 186601 (2012).
[Crossref] [PubMed]

Schneider, W. D.

R. Berndt, R. Gaisch, J. K. Gimzewski, B. Reihl, R. R. Schlittler, W. D. Schneider, and M. Tschudy, “Photon emission at molecular resolution induced by a scanning tunneling microscope,” Science 262(5138), 1425-1427 (1993).
[Crossref] [PubMed]

Schramm, F.

T. Lutz, C. Große, C. Dette, C. A. Kabakchiev, F. Schramm, M. Ruben, R. Gutzler, K. Kuhnke, U. Schlickum, and K. Kern, “Molecular orbital gates for plasmon excitation,” Nano Lett. 13(6), 2846-2850 (2013).
[Crossref] [PubMed]

Schull, G.

N. L. Schneider, G. Schull, and R. Berndt, “Optical probe of quantum shot-noise reduction at a single-atom contact,” Phys. Rev. Lett. 105, 026601 (2010).
[Crossref] [PubMed]

G. Schull, N. Néel, P. Johansson, and R. Berndt, “Electron-plasmon and electron-electron interactions at a single atom contact,” Phys. Rev. Lett. 102, 057401 (2009).
[Crossref] [PubMed]

Søndergaard, T.

T. Søndergaard and S. I. Bozhevolnyi, “Surface plasmon polariton scattering by a small particle placed near a metal surface: An analytical study,” Phys. Rev. B 69, 045422 (2004).
[Crossref]

Sørensen, A. S.

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Strong coupling of single emitters to surface plasmons,” Phys. Rev. B 76035420 (2007).
[Crossref]

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum Optics with Surface Plasmons,” Phys. Rev. Lett. 97053002 (2006).
[Crossref] [PubMed]

Sun, S.

W. Du, T. Wang, H.-S. Chu, L. Wu, R. Liu, S. Sun, W. K. Phua, L. Wang, N. Tomczak, and Ch. A. Nijhuis, “On-chip molecular electronic plasmon sources based on self-assembled monolayer tunnel junctions,” Nature Photon. 10(4), 274-280 (2016).
[Crossref]

Tomczak, N.

W. Du, T. Wang, H.-S. Chu, L. Wu, R. Liu, S. Sun, W. K. Phua, L. Wang, N. Tomczak, and Ch. A. Nijhuis, “On-chip molecular electronic plasmon sources based on self-assembled monolayer tunnel junctions,” Nature Photon. 10(4), 274-280 (2016).
[Crossref]

Trifonov, A. S.

Z.-C. Dong, X.-L. Guo, A. S. Trifonov, P. S. Dorozhkin, K. Miki, K. Kimura, S. Yokoyama, and S. Mashiko, “Vibrationally resolved fluorescence from organic molecules near metal surfaces in a scanning tunneling microscope,” Phys. Rev. Lett. 92, 086801 (2004).
[Crossref] [PubMed]

Tschudy, M.

R. Berndt, R. Gaisch, J. K. Gimzewski, B. Reihl, R. R. Schlittler, W. D. Schneider, and M. Tschudy, “Photon emission at molecular resolution induced by a scanning tunneling microscope,” Science 262(5138), 1425-1427 (1993).
[Crossref] [PubMed]

Ushioda, S.

S. Ushioda, “Scanning tunneling microscope (STM) light emission spectroscopy of surface nanostructures,” J. Electron. Spectrosc. Relat. Phenom. 109(1-2), 169-181 (2000).
[Crossref]

Uskov, A. V.

Wang, L.

W. Du, T. Wang, H.-S. Chu, L. Wu, R. Liu, S. Sun, W. K. Phua, L. Wang, N. Tomczak, and Ch. A. Nijhuis, “On-chip molecular electronic plasmon sources based on self-assembled monolayer tunnel junctions,” Nature Photon. 10(4), 274-280 (2016).
[Crossref]

Wang, T.

W. Du, T. Wang, H.-S. Chu, and Ch. A. Nijhuis, “Highly efficient on-chip direct electronic-plasmonic transducers,” Nature Photon. 11, 623-627 (2017).
[Crossref]

W. Du, T. Wang, H.-S. Chu, L. Wu, R. Liu, S. Sun, W. K. Phua, L. Wang, N. Tomczak, and Ch. A. Nijhuis, “On-chip molecular electronic plasmon sources based on self-assembled monolayer tunnel junctions,” Nature Photon. 10(4), 274-280 (2016).
[Crossref]

T. Wang, B. Rogez, G. Comtet, E. L. Moal, W. Abidi, H. Remita, G. Dujardin, and E. Boer-Duchemin, “Scattering of electrically excited surface plasmon polaritons by gold nanoparticles studied by optical interferometry with a scanning tunneling microscope,” Phys. Rev. B 92, 045438 (2015).
[Crossref]

T. Wang, G. Comtet, E. L. Moal, G. Dujardin, A. Drezet, S. Huant, and E. Boer-Duchemin, “Temporal coherence of propagating surface plasmons,” Opt. Lett. 39(23), 6679-6682 (2014).
[Crossref] [PubMed]

T. Wang, E. Boer-Duchemin, Y. Zhang, G. Comtet, and G. Dujardin, “Excitation of propagating surface plasmons with a scanning tunnelling microscope,” Nanotechnology 22, 175201 (2011).
[Crossref] [PubMed]

Wang, W.

Weibel, E.

G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, “Surface studies by scanning tunneling microscopy,” Phys. Rev. Lett. 49(1), 57-61 (1982).
[Crossref]

G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, “Tunneling through a controllable vacuum gap,” Appl. Phys. Lett. 40(2), 178-180 (1982).
[Crossref]

Wu, L.

W. Du, T. Wang, H.-S. Chu, L. Wu, R. Liu, S. Sun, W. K. Phua, L. Wang, N. Tomczak, and Ch. A. Nijhuis, “On-chip molecular electronic plasmon sources based on self-assembled monolayer tunnel junctions,” Nature Photon. 10(4), 274-280 (2016).
[Crossref]

Xu, F.

F. Xu, C. Holmqvist, and W. Belzig, “Overbias light emission due to higher-order quantum noise in a tunnel junction,” Phys. Rev. Lett. 113, 066801 (2014).
[Crossref] [PubMed]

Yang, B.

Y. Zhang, Q.-S. Meng, L. Zhang, Y. Luo, Y.-J. Yu, B. Yang, Y. Zhang, R. Esteban, J. Aizpurua, Y. Luo, J.-L. Yang, Z.-C. Dong, and J. G. Hou, “Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity,” Nat. Comm.  8, 15225 (2017).
[Crossref]

Yang, J.-L.

Y. Zhang, Q.-S. Meng, L. Zhang, Y. Luo, Y.-J. Yu, B. Yang, Y. Zhang, R. Esteban, J. Aizpurua, Y. Luo, J.-L. Yang, Z.-C. Dong, and J. G. Hou, “Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity,” Nat. Comm.  8, 15225 (2017).
[Crossref]

Y. Zhang, Y. Luo, Y. Zhang, Y.-J. Yu, Y.-M. Kuang, L. Zhang, Q.-S. Meng, Y. Luo, J.-L. Yang, Z.-C. Dong, and J.-G. Hou, “Visualizing coherent intermolecular dipole-dipole coupling in real space,” Nature,  531(7596), 623-627 (2016).
[Crossref] [PubMed]

Yokoyama, S.

Z.-C. Dong, X.-L. Guo, A. S. Trifonov, P. S. Dorozhkin, K. Miki, K. Kimura, S. Yokoyama, and S. Mashiko, “Vibrationally resolved fluorescence from organic molecules near metal surfaces in a scanning tunneling microscope,” Phys. Rev. Lett. 92, 086801 (2004).
[Crossref] [PubMed]

Yu, A.

A. Yu, S. Li, G. Czap, and W. Ho, “Tunneling-electron-induced light emission from single gold nanoclusters,” Nano Lett. 16(9), 5433-5436 (2016).
[Crossref] [PubMed]

Yu, Y.-J.

Y. Zhang, Q.-S. Meng, L. Zhang, Y. Luo, Y.-J. Yu, B. Yang, Y. Zhang, R. Esteban, J. Aizpurua, Y. Luo, J.-L. Yang, Z.-C. Dong, and J. G. Hou, “Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity,” Nat. Comm.  8, 15225 (2017).
[Crossref]

Y. Zhang, Y. Luo, Y. Zhang, Y.-J. Yu, Y.-M. Kuang, L. Zhang, Q.-S. Meng, Y. Luo, J.-L. Yang, Z.-C. Dong, and J.-G. Hou, “Visualizing coherent intermolecular dipole-dipole coupling in real space,” Nature,  531(7596), 623-627 (2016).
[Crossref] [PubMed]

Zhang, L.

Y. Zhang, Q.-S. Meng, L. Zhang, Y. Luo, Y.-J. Yu, B. Yang, Y. Zhang, R. Esteban, J. Aizpurua, Y. Luo, J.-L. Yang, Z.-C. Dong, and J. G. Hou, “Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity,” Nat. Comm.  8, 15225 (2017).
[Crossref]

Y. Zhang, Y. Luo, Y. Zhang, Y.-J. Yu, Y.-M. Kuang, L. Zhang, Q.-S. Meng, Y. Luo, J.-L. Yang, Z.-C. Dong, and J.-G. Hou, “Visualizing coherent intermolecular dipole-dipole coupling in real space,” Nature,  531(7596), 623-627 (2016).
[Crossref] [PubMed]

Zhang, Y.

Y. Zhang, Q.-S. Meng, L. Zhang, Y. Luo, Y.-J. Yu, B. Yang, Y. Zhang, R. Esteban, J. Aizpurua, Y. Luo, J.-L. Yang, Z.-C. Dong, and J. G. Hou, “Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity,” Nat. Comm.  8, 15225 (2017).
[Crossref]

Y. Zhang, Q.-S. Meng, L. Zhang, Y. Luo, Y.-J. Yu, B. Yang, Y. Zhang, R. Esteban, J. Aizpurua, Y. Luo, J.-L. Yang, Z.-C. Dong, and J. G. Hou, “Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity,” Nat. Comm.  8, 15225 (2017).
[Crossref]

Y. Zhang, Y. Luo, Y. Zhang, Y.-J. Yu, Y.-M. Kuang, L. Zhang, Q.-S. Meng, Y. Luo, J.-L. Yang, Z.-C. Dong, and J.-G. Hou, “Visualizing coherent intermolecular dipole-dipole coupling in real space,” Nature,  531(7596), 623-627 (2016).
[Crossref] [PubMed]

Y. Zhang, Y. Luo, Y. Zhang, Y.-J. Yu, Y.-M. Kuang, L. Zhang, Q.-S. Meng, Y. Luo, J.-L. Yang, Z.-C. Dong, and J.-G. Hou, “Visualizing coherent intermolecular dipole-dipole coupling in real space,” Nature,  531(7596), 623-627 (2016).
[Crossref] [PubMed]

T. Wang, E. Boer-Duchemin, Y. Zhang, G. Comtet, and G. Dujardin, “Excitation of propagating surface plasmons with a scanning tunnelling microscope,” Nanotechnology 22, 175201 (2011).
[Crossref] [PubMed]

Zhu, W.

W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, “Quantum mechanical effiects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7, 11495 (2016).
[Crossref]

Appl. Phys. Lett. (2)

G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, “Tunneling through a controllable vacuum gap,” Appl. Phys. Lett. 40(2), 178-180 (1982).
[Crossref]

S. Cao, E. L. Moal, E. Boer-Duchemin, G. Dujardin, A. Drezet, and S. Huant, “Cylindrical vector beams of light from an electrically excited plasmonic lens,” Appl. Phys. Lett. 105, 111103 (2014).
[Crossref]

J. Electron. Spectrosc. Relat. Phenom. (1)

S. Ushioda, “Scanning tunneling microscope (STM) light emission spectroscopy of surface nanostructures,” J. Electron. Spectrosc. Relat. Phenom. 109(1-2), 169-181 (2000).
[Crossref]

Nano Lett. (2)

T. Lutz, C. Große, C. Dette, C. A. Kabakchiev, F. Schramm, M. Ruben, R. Gutzler, K. Kuhnke, U. Schlickum, and K. Kern, “Molecular orbital gates for plasmon excitation,” Nano Lett. 13(6), 2846-2850 (2013).
[Crossref] [PubMed]

A. Yu, S. Li, G. Czap, and W. Ho, “Tunneling-electron-induced light emission from single gold nanoclusters,” Nano Lett. 16(9), 5433-5436 (2016).
[Crossref] [PubMed]

Nanotechnology (1)

T. Wang, E. Boer-Duchemin, Y. Zhang, G. Comtet, and G. Dujardin, “Excitation of propagating surface plasmons with a scanning tunnelling microscope,” Nanotechnology 22, 175201 (2011).
[Crossref] [PubMed]

Nat. Comm (1)

Y. Zhang, Q.-S. Meng, L. Zhang, Y. Luo, Y.-J. Yu, B. Yang, Y. Zhang, R. Esteban, J. Aizpurua, Y. Luo, J.-L. Yang, Z.-C. Dong, and J. G. Hou, “Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity,” Nat. Comm.  8, 15225 (2017).
[Crossref]

Nat. Commun. (2)

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
[Crossref] [PubMed]

W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, “Quantum mechanical effiects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7, 11495 (2016).
[Crossref]

Nature (2)

H. Imada, K. Miwa, M. Imai-Imada, S. Kawahara, K. Kimura, and Y. Kim, “Real-space investigation of energy transfer in heterogeneous molecular dimers,” Nature 538(7625), 364-367 (2016).
[Crossref] [PubMed]

Y. Zhang, Y. Luo, Y. Zhang, Y.-J. Yu, Y.-M. Kuang, L. Zhang, Q.-S. Meng, Y. Luo, J.-L. Yang, Z.-C. Dong, and J.-G. Hou, “Visualizing coherent intermolecular dipole-dipole coupling in real space,” Nature,  531(7596), 623-627 (2016).
[Crossref] [PubMed]

Nature Photon. (3)

W. Du, T. Wang, H.-S. Chu, L. Wu, R. Liu, S. Sun, W. K. Phua, L. Wang, N. Tomczak, and Ch. A. Nijhuis, “On-chip molecular electronic plasmon sources based on self-assembled monolayer tunnel junctions,” Nature Photon. 10(4), 274-280 (2016).
[Crossref]

W. Du, T. Wang, H.-S. Chu, and Ch. A. Nijhuis, “Highly efficient on-chip direct electronic-plasmonic transducers,” Nature Photon. 11, 623-627 (2017).
[Crossref]

J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp, and B. Hecht, “Electrically driven optical antennas,” Nature Photon. 9, 582-586 (2015).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (10)

T. Søndergaard and S. I. Bozhevolnyi, “Surface plasmon polariton scattering by a small particle placed near a metal surface: An analytical study,” Phys. Rev. B 69, 045422 (2004).
[Crossref]

T. Wang, B. Rogez, G. Comtet, E. L. Moal, W. Abidi, H. Remita, G. Dujardin, and E. Boer-Duchemin, “Scattering of electrically excited surface plasmon polaritons by gold nanoparticles studied by optical interferometry with a scanning tunneling microscope,” Phys. Rev. B 92, 045438 (2015).
[Crossref]

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Strong coupling of single emitters to surface plasmons,” Phys. Rev. B 76035420 (2007).
[Crossref]

Y. Chen, T. R. Nielsen, N. Gregersen, P. Lodahl, and J. Mørk, “Finite-element modeling of spontaneous emission of a quantum emitter at nanoscale proximity to plasmonic waveguides,” Phys. Rev. B 81125431 (2010).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370-4379 (1972).
[Crossref]

J. T. Lü, R. B. Christensen, and M. Brandbyge, “Light emission and finite-frequency shot noise in molecular junctions: From tunneling to contact,” Phys. Rev. B 88, 045413 (2013).
[Crossref]

R. W. Rendell and D. J. Scalapino, “Surface plasmons confined by microstructures on tunnel junctions,” Phys. Rev. B 24(6), 3276-3294, (1981).
[Crossref]

P. Johansson, R. Monreal, and P. Apell, “Theory for light emission from a scanning tunneling microscope,” Phys. Rev. B 42(14). 9210-9213 (1990).
[Crossref]

P. Johansson, “Light emission from a scanning tunneling microscope: Fully retarded calculation,” Phys. Rev. B 58(16), 10823-10834 (1998).
[Crossref]

J. Aizpurua, S. P. Apell, and R. Berndt, “Role of tip shape in light emission from the scanning tunneling microscope,” Phys. Rev. B 62(3), 2065-2073 (2000).
[Crossref]

Phys. Rev. Lett. (15)

F. Xu, C. Holmqvist, and W. Belzig, “Overbias light emission due to higher-order quantum noise in a tunnel junction,” Phys. Rev. Lett. 113, 066801 (2014).
[Crossref] [PubMed]

K. Kaasbjerg and A. Nitzan, “Theory of light emission from quantum noise in plasmonic contacts: above-threshold emission from higher-order electron-plasmon scattering,” Phys. Rev. Lett. 114, 126803 (2015).
[Crossref] [PubMed]

B. N. J. Persson and A. Baratoffi, “Theory of photon emission in electron tunneling to metallic particles,” Phys. Rev. Lett. 68(21), 3224-3227 (1992).
[Crossref] [PubMed]

H. Imada, K. Miwa, M. Imai-Imada, S. Kawahara, K. Kimura, and Y. Kim, “Single-molecule investigation of energy dynamics in a coupled plasmon-exciton system,” Phys. Rev. Lett. 119, 013901 (2017).
[Crossref] [PubMed]

Z.-C. Dong, X.-L. Guo, A. S. Trifonov, P. S. Dorozhkin, K. Miki, K. Kimura, S. Yokoyama, and S. Mashiko, “Vibrationally resolved fluorescence from organic molecules near metal surfaces in a scanning tunneling microscope,” Phys. Rev. Lett. 92, 086801 (2004).
[Crossref] [PubMed]

N. L. Schneider, J. T. Lü, M. Brandbyge, and R. Berndt, “Light emission probing quantum shot noise and charge fluctuations at a biased molecular junction,” Phys. Rev. Lett. 109, 186601 (2012).
[Crossref] [PubMed]

N. Nilius, N. Ernst, and H.-J. Freund, “Photon emission spectroscopy of individual oxide-supported silver clusters in a scanning tunneling microscope,” Phys. Rev. Lett. 84(17), 3994-3997 (2000).
[Crossref] [PubMed]

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum Optics with Surface Plasmons,” Phys. Rev. Lett. 97053002 (2006).
[Crossref] [PubMed]

F. Bigourdan, J. P. Hugonin, F. Marquier, C. Sauvan, and J. J. Greffiet, “Nanoantenna for electrical generation of surface plasmon polaritons,” Phys. Rev. Lett. 116, 106803 (2016).
[Crossref] [PubMed]

G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, “Surface studies by scanning tunneling microscopy,” Phys. Rev. Lett. 49(1), 57-61 (1982).
[Crossref]

G. Schull, N. Néel, P. Johansson, and R. Berndt, “Electron-plasmon and electron-electron interactions at a single atom contact,” Phys. Rev. Lett. 102, 057401 (2009).
[Crossref] [PubMed]

N. L. Schneider, G. Schull, and R. Berndt, “Optical probe of quantum shot-noise reduction at a single-atom contact,” Phys. Rev. Lett. 105, 026601 (2010).
[Crossref] [PubMed]

P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical excitation of surface plasmons,” Phys. Rev. Lett. 106, 226802 (2011).
[Crossref] [PubMed]

R. Berndt, J. K. Gimzewski, and P. Johansson, “Inelastic tunneling excitation of tip-induced plasmon modes on noble-metal surfaces,” Phys. Rev. Lett. 67(27), 3796-3799 (1991).
[Crossref] [PubMed]

R. Berndt, J. K. Gimzewski, and P. Johansson, “Electromagnetic interactions of metallic objects in nanometer proximity,” Phys. Rev. Lett. 71(21), 3493-3496 (1993).
[Crossref] [PubMed]

Science (3)

R. Berndt, R. Gaisch, J. K. Gimzewski, B. Reihl, R. R. Schlittler, W. D. Schneider, and M. Tschudy, “Photon emission at molecular resolution induced by a scanning tunneling microscope,” Science 262(5138), 1425-1427 (1993).
[Crossref] [PubMed]

C. Chen, C. A. Bobisch, and W. Ho, “Visualization of Fermi’s golden rule through imaging of light emission from atomic silver chains,” Science 325(5943), 981-985 (2009).
[Crossref] [PubMed]

X. H. Qiu, G. V. Nazin, and W. Ho, “Vibrationally resolved fluorescence excited with submolecular precision,” Science 299(5606), 542-546 (2003).
[Crossref] [PubMed]

Z. Phys. B (1)

J. K. Gimzewski, B. Reihl, J. H. Coomb, and R. R. Schlittler, “Photon emission with the scanning tunneling microscope,” Z. Phys. B 72(4), 497-501 (1988).
[Crossref]

Other (2)

R. Berndt, Photon Emission from the Scanning Tunneling Microscope (Springer-Verlag, Berlin Heideberg, 1998).

L. Novotny and B. Hecht, Principles of nano-optics, Cambridge University Press2006
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) A three dimensional model of STM structure. Blue areas represent the direct quenching, the generatrix is about λ/50. (b) The sketch of the silver tip apex, the apex is approximated as a circle with a radius r. (c) The 2D plane of the STM structure and the radiative modes pattern. S1 and S3 are used to collect the energy of SPPs, while S2 is used to collect the energy of air mode. We integrate the energy of the SPPs modes and the air mode at a distance of 40 wavelengths away from the tip apex, while this figure is plotted at the 500 nm-wavelength (d) The sketch of the resistive dissipation contours in the area near the source. As the resistive dissipation can be attributed to both the direct quenching and the propagation loss of SPPs, we define a separation line (the dash line) to separate the areas of direct quenching and propagation losses of SPPs. The contours which are concentric to the apex are allocated to direct quenching. The contours that are much far away from the apex tend to be parallel to the tip surface, indicating the dominating effiect from the propagation losses of SPPs. The height of the direct quenching area is approximately wavelength/50 for all the wavelengths.
Fig. 2
Fig. 2 (a) The enhancement factor of total power (blue) and its distribution into diffierent channels as a function of photon energy when the radius of apex is 1 nm. The red, yellow, purple curves represent the enhancement factor of energy goes into the SPPs, direct quenching and the air mode channels, respectively. The SPPs and direct quenching (DQ) include both tip and substrate contributions. (b) (c) (d) represent the results which adopt the tip with 5 nm, 10 nm, 20 nm radius apex.
Fig. 3
Fig. 3 (a) The enhancement factors of SPPs in tip surface and substrate surface as a function of photon energy when the radius of apex is 1 nm. (b)–(d) represent the results with tip radius being 5 nm, 10 nm, 20 nm. The two peaks with the 1.55 eV and 3.3 eV photon energy change when the apex radius increases.
Fig. 4
Fig. 4 (a) The enhancement factor of direct quenching in tip surface and substrate surface as a function of photon energy when the radius of apex is 1nm; (b), (c), (d) represent the results with 5nm, 10nm, 20nm tip radius.

Tables (1)

Tables Icon

Table 1 Four decay channels

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

f V J E d V = V E × H d A .
Q = π ω ϵ 0 0 ( 40 λ ) a λ ( 41 λ ) d ρ λ 0 d z ρ Im [ ϵ r ( E ρ E ρ * + E z E z   * ) ] .
G ¯ S P P ( r , r ) = 0 b 1 2 κ ρ 2 e b 2 κ ρ ( z + z ) a ( k S P P 2 κ ρ 2 ) d κ ρ ( J 0 ( κ ρ ρ ) 0 b 1 J 0 ( κ ρ ρ ) 0 J 0 ( κ ρ ρ ) κ ρ ρ 0 b 1 J 0 ( κ ρ ρ ) 0 b 1   2 J 0 ( κ ρ ρ ) ) ,
E ( ρ , φ , z ) = 0 b 1 3 κ ρ 2 e b 2 κ ρ ( z + z ) a ( k S P P 2 κ ρ 2 ) d κ ρ ( J 1 ( κ ρ ρ ) e ρ + b 1 J 0 ( κ ρ ρ ) e z ) .

Metrics