Abstract

Spectroscopic ellipsometry was used for the generation and study of the hybrid TPP-SPP mode as a sensor probe for the real-time formation of amalgam structures on the surface of a plasmon active gold layer. The Au/Hg amalgam formation features and the mercury atoms’ penetration into the gold layer were determined by means of the experimental TIRE data and a regression analysis of a multi-layer model containing the index-profile amalgam layer. The hybrid TPP-SPP mode behavior of the coupled excitations provided more information about the mercury atoms’ penetration into the gold layer than the single TPP and SPP resonances did. The present study demonstrated the possibility of using the hybrid TPP-SPP mode to design advanced optical gas sensor technologies.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Tamm-plasmon and surface-plasmon hybrid-mode based refractometry in photonic bandgap structures

Ritwick Das, Triranjita Srivastava, and Rajan Jha
Opt. Lett. 39(4) 896-899 (2014)

Total internal reflection ellipsometry: principles and applications

Hans Arwin, Michal Poksinski, and Knut Johansen
Appl. Opt. 43(15) 3028-3036 (2004)

Comparing resonant photon tunneling via cavity modes and Tamm plasmon polariton modes in metal-coated Bragg mirrors

K. Leosson, S. Shayestehaminzadeh, T. K. Tryggvason, A. Kossoy, B. Agnarsson, F. Magnus, S. Olafsson, J. T. Gudmundsson, E. B. Magnusson, and I. A. Shelykh
Opt. Lett. 37(19) 4026-4028 (2012)

References

  • View by:
  • |
  • |
  • |

  1. N. A. Joy, M. I. Nandasiri, P. H. Rogers, W. Jiang, T. Varga, S. V. N. T. Kuchibhatla, S. Thevuthasan, and M. A. Carpenter, “Selective plasmonic gas sensing: H2, NO2, and CO spectral discrimination by a single Au-CeO2 nanocomposite film,” Anal. Chem. 84(11), 5025–5034 (2012).
    [Crossref] [PubMed]
  2. A. Paulauskas, A. Selskis, V. Bukauskas, V. Vaicikauskas, A. Ramanavicius, and Z. Balevicius, “Real time study of amalgam formation and mercury adsorption on thin gold film by total internal reflection ellipsometry,” Appl. Surf. Sci. 427, 298–303 (2018).
    [Crossref]
  3. W. L. Barnes, “Surface plasmon–polariton length scales: a route to sub-wavelength optics,” J. Opt. A, Pure Appl. Opt. 8(4), S87–S93 (2006).
    [Crossref]
  4. P. Yeh, A. Yariv, and C.-S. Hong, “Electromagnetic propagation in periodic stratified media I General theory,” J. Opt. Soc. Am. 67(4), 423–438 (1977).
    [Crossref]
  5. T. Kovalevich, A. Ndao, M. Suarez, S. Tumenas, Z. Balevicius, A. Ramanavicius, I. Baleviciute, M. Häyrinen, M. Roussey, M. Kuittinen, T. Grosjean, and M.-P. Bernal, “Tunable Bloch surface waves in anisotropic photonic crystals based on lithium niobate thin films,” Opt. Lett. 41(23), 5616–5619 (2016).
    [Crossref] [PubMed]
  6. A. P. Vinogradov, A. V. Dorofeenko, S. G. Erokhin, M. Inoue, A. A. Lisyansky, A. M. Merzlikin, and A. B. Granovsky, “Surface state peculiarities in one-dimensional photonic crystal interfaces,” Phys. Rev. B Condens. Matter Mater. Phys. 74(4), 045128 (2006).
    [Crossref]
  7. M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
    [Crossref]
  8. I. Tamm, “Über eine mögliche Art der Elektronenbindung an Kristalloberflächen,” Z. Phys. 76(11-12), 849–850 (1932).
    [Crossref]
  9. M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: Slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
    [Crossref]
  10. M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: First experimental observation,” Superlattices Microstruct. 47(1), 44–49 (2010).
    [Crossref]
  11. B. I. Afinogenov, V. O. Bessonov, A. A. Nikulin, and A. A. Fedyanin, “Observation of hybrid state of Tamm and surface plasmon-polaritons in one-dimensional photonic crystals,” Appl. Phys. Lett. 103(6), 061112 (2013).
    [Crossref]
  12. H. Arwin, “TIRE and SPR-Enhanced SE for Adsorption Processes,” in Ellipsometry of Functional Organic Surfaces and Films (2014), pp. 249–264.
  13. Z. Balevicius, A. Makaraviciute, G.-J. Babonas, S. Tumenas, V. Bukauskas, A. Ramanaviciene, and A. Ramanavicius, “Study of optical anisotropy in thin molecular layers by total internal reflection ellipsometry,” Sens. Actuators B Chem. 181, 119–124 (2013).
    [Crossref]
  14. I. Baleviciute, Z. Balevicius, A. Makaraviciute, A. Ramanaviciene, and A. Ramanavicius, “Study of antibody/antigen binding kinetics by total internal reflection ellipsometry,” Biosens. Bioelectron. 39(1), 170–176 (2013).
    [Crossref] [PubMed]
  15. Z. Balevicius, I. Baleviciute, S. Tumenas, L. Tamosaitis, A. Stirke, A. Makaraviciute, A. Ramanaviciene, and A. Ramanavicius, “In situ study of ligand-receptor interaction by total internal reflection ellipsometry,” Thin Solid Films 571, 744–748 (2014).
    [Crossref]
  16. S.-G. Huang, K.-P. Chen, and S.-C. Jeng, “Phase sensitive sensor on Tamm plasmon devices,” Opt. Mater. Express 7(4), 1267 (2017).
    [Crossref]
  17. Y. Tsurimaki, J. K. Tong, V. N. Boriskin, A. Semenov, M. I. Ayzatsky, Y. P. Machekhin, G. Chen, and S. V. Boriskina, “Topological Engineering of Interfacial Optical Tamm States for Highly Sensitive Near-Singular-Phase Optical Detection,” ACS Photonics 5(3), 929–938 (2018).
    [Crossref]
  18. W. L. Zhang, F. Wang, Y. J. Rao, and Y. Jiang, “Novel sensing concept based on optical Tamm plasmon,” Opt. Express 22(12), 14524–14529 (2014).
    [Crossref] [PubMed]
  19. B. Auguié, M. C. Fuertes, P. C. Angelomé, N. L. Abdala, G. J. A. A. Soler Illia, and A. Fainstein, “Tamm Plasmon Resonance in Mesoporous Multilayers: Toward a Sensing Application,” ACS Photonics 1(9), 775–780 (2014).
    [Crossref]
  20. R. Das, T. Srivastava, and R. Jha, “Tamm-plasmon and surface-plasmon hybrid-mode based refractometry in photonic bandgap structures,” Opt. Lett. 39(4), 896–899 (2014).
    [Crossref] [PubMed]
  21. H. Liu, X. Sun, F. Yao, Y. Pei, F. Huang, H. Yuan, and Y. Jiang, “Optical magnetic field enhancement through coupling magnetic plasmons to Tamm plasmons,” Opt. Express 20(17), 19160–19167 (2012).
    [Crossref] [PubMed]
  22. S. Azzini, G. Lheureux, C. Symonds, J.-M. Benoit, P. Senellart, A. Lemaitre, J.-J. Greffet, C. Blanchard, C. Sauvan, and J. Bellessa, “Generation and Spatial Control of Hybrid Tamm Plasmon/Surface Plasmon Modes,” ACS Photonics 3(10), 1776–1781 (2016).
    [Crossref]
  23. K. Vikrant and K.-H. Kim, “Nanomaterials for the adsorptive treatment of Hg(II) ions from water,” Chem. Eng. J. 358, 264–282 (2019).
    [Crossref]
  24. T. Inagaki, E. T. Arakawa, and M. W. Williams, “Optical properties of liquid mercury,” Phys. Rev. B Condens. Matter 23(10), 5246–5262 (1981).
    [Crossref]
  25. “SCHOTT Zemax catalog,” https://www.schott.com/d/advanced_optics/ac85c64c-60a0-4113-a9df-23ee1be20428/1.4/schott-optical-glass-collection-datasheets-english-17012017.pdf .
  26. C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83(6), 3323–3336 (1998).
    [Crossref]
  27. D. I. Yakubovsky, A. V. Arsenin, Y. V. Stebunov, D. Y. Fedyanin, and V. S. Volkov, “Optical constants and structural properties of thin gold films,” Opt. Express 25(21), 25574–25587 (2017).
    [Crossref] [PubMed]
  28. J. A. Woollam, “CompleteEASE”
  29. C. Battistoni, E. Bemporad, A. Galdikas, S. Kačiulis, G. Mattogno, S. Mickevičius, and V. Olevano, “Interaction of mercury vapour with thin films of gold,” Appl. Surf. Sci. 103(2), 107–111 (1996).
    [Crossref]
  30. T. Morris and G. Szulczewski, “A Spectroscopic Ellipsometry, Surface Plasmon Resonance, and X-ray Photoelectron Spectroscopy Study of Hg Adsorption on Gold Surfaces,” Langmuir 18(6), 2260–2264 (2002).
    [Crossref]
  31. M. A. George and W. S. Glaunsinger, “The electrical and structural properties of gold films and mercury-covered gold films,” Thin Solid Films 245(1-2), 215–224 (1994).
    [Crossref]
  32. M. Levlin, H. E.-M. Niemi, P. Hautojärvi, E. Ikävalko, and T. Laitinen, “Mercury adsorption on gold surfaces employed in the sampling and determination of vaporous mercury: a scanning tunneling microscopy study,” Anal. Bioanal. Chem. 355(1), 2–9 (1996).
    [Crossref] [PubMed]
  33. T. Hou, M. Chen, G. W. Greene, and R. G. Horn, “Mercury Vapor Sorption and Amalgamation with a Thin Gold Film,” ACS Appl. Mater. Interfaces 7(41), 23172–23181 (2015).
    [Crossref] [PubMed]

2019 (1)

K. Vikrant and K.-H. Kim, “Nanomaterials for the adsorptive treatment of Hg(II) ions from water,” Chem. Eng. J. 358, 264–282 (2019).
[Crossref]

2018 (2)

A. Paulauskas, A. Selskis, V. Bukauskas, V. Vaicikauskas, A. Ramanavicius, and Z. Balevicius, “Real time study of amalgam formation and mercury adsorption on thin gold film by total internal reflection ellipsometry,” Appl. Surf. Sci. 427, 298–303 (2018).
[Crossref]

Y. Tsurimaki, J. K. Tong, V. N. Boriskin, A. Semenov, M. I. Ayzatsky, Y. P. Machekhin, G. Chen, and S. V. Boriskina, “Topological Engineering of Interfacial Optical Tamm States for Highly Sensitive Near-Singular-Phase Optical Detection,” ACS Photonics 5(3), 929–938 (2018).
[Crossref]

2017 (2)

2016 (2)

T. Kovalevich, A. Ndao, M. Suarez, S. Tumenas, Z. Balevicius, A. Ramanavicius, I. Baleviciute, M. Häyrinen, M. Roussey, M. Kuittinen, T. Grosjean, and M.-P. Bernal, “Tunable Bloch surface waves in anisotropic photonic crystals based on lithium niobate thin films,” Opt. Lett. 41(23), 5616–5619 (2016).
[Crossref] [PubMed]

S. Azzini, G. Lheureux, C. Symonds, J.-M. Benoit, P. Senellart, A. Lemaitre, J.-J. Greffet, C. Blanchard, C. Sauvan, and J. Bellessa, “Generation and Spatial Control of Hybrid Tamm Plasmon/Surface Plasmon Modes,” ACS Photonics 3(10), 1776–1781 (2016).
[Crossref]

2015 (1)

T. Hou, M. Chen, G. W. Greene, and R. G. Horn, “Mercury Vapor Sorption and Amalgamation with a Thin Gold Film,” ACS Appl. Mater. Interfaces 7(41), 23172–23181 (2015).
[Crossref] [PubMed]

2014 (4)

R. Das, T. Srivastava, and R. Jha, “Tamm-plasmon and surface-plasmon hybrid-mode based refractometry in photonic bandgap structures,” Opt. Lett. 39(4), 896–899 (2014).
[Crossref] [PubMed]

W. L. Zhang, F. Wang, Y. J. Rao, and Y. Jiang, “Novel sensing concept based on optical Tamm plasmon,” Opt. Express 22(12), 14524–14529 (2014).
[Crossref] [PubMed]

B. Auguié, M. C. Fuertes, P. C. Angelomé, N. L. Abdala, G. J. A. A. Soler Illia, and A. Fainstein, “Tamm Plasmon Resonance in Mesoporous Multilayers: Toward a Sensing Application,” ACS Photonics 1(9), 775–780 (2014).
[Crossref]

Z. Balevicius, I. Baleviciute, S. Tumenas, L. Tamosaitis, A. Stirke, A. Makaraviciute, A. Ramanaviciene, and A. Ramanavicius, “In situ study of ligand-receptor interaction by total internal reflection ellipsometry,” Thin Solid Films 571, 744–748 (2014).
[Crossref]

2013 (3)

B. I. Afinogenov, V. O. Bessonov, A. A. Nikulin, and A. A. Fedyanin, “Observation of hybrid state of Tamm and surface plasmon-polaritons in one-dimensional photonic crystals,” Appl. Phys. Lett. 103(6), 061112 (2013).
[Crossref]

Z. Balevicius, A. Makaraviciute, G.-J. Babonas, S. Tumenas, V. Bukauskas, A. Ramanaviciene, and A. Ramanavicius, “Study of optical anisotropy in thin molecular layers by total internal reflection ellipsometry,” Sens. Actuators B Chem. 181, 119–124 (2013).
[Crossref]

I. Baleviciute, Z. Balevicius, A. Makaraviciute, A. Ramanaviciene, and A. Ramanavicius, “Study of antibody/antigen binding kinetics by total internal reflection ellipsometry,” Biosens. Bioelectron. 39(1), 170–176 (2013).
[Crossref] [PubMed]

2012 (2)

N. A. Joy, M. I. Nandasiri, P. H. Rogers, W. Jiang, T. Varga, S. V. N. T. Kuchibhatla, S. Thevuthasan, and M. A. Carpenter, “Selective plasmonic gas sensing: H2, NO2, and CO spectral discrimination by a single Au-CeO2 nanocomposite film,” Anal. Chem. 84(11), 5025–5034 (2012).
[Crossref] [PubMed]

H. Liu, X. Sun, F. Yao, Y. Pei, F. Huang, H. Yuan, and Y. Jiang, “Optical magnetic field enhancement through coupling magnetic plasmons to Tamm plasmons,” Opt. Express 20(17), 19160–19167 (2012).
[Crossref] [PubMed]

2010 (1)

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: First experimental observation,” Superlattices Microstruct. 47(1), 44–49 (2010).
[Crossref]

2008 (1)

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: Slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]

2007 (1)

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
[Crossref]

2006 (2)

A. P. Vinogradov, A. V. Dorofeenko, S. G. Erokhin, M. Inoue, A. A. Lisyansky, A. M. Merzlikin, and A. B. Granovsky, “Surface state peculiarities in one-dimensional photonic crystal interfaces,” Phys. Rev. B Condens. Matter Mater. Phys. 74(4), 045128 (2006).
[Crossref]

W. L. Barnes, “Surface plasmon–polariton length scales: a route to sub-wavelength optics,” J. Opt. A, Pure Appl. Opt. 8(4), S87–S93 (2006).
[Crossref]

2002 (1)

T. Morris and G. Szulczewski, “A Spectroscopic Ellipsometry, Surface Plasmon Resonance, and X-ray Photoelectron Spectroscopy Study of Hg Adsorption on Gold Surfaces,” Langmuir 18(6), 2260–2264 (2002).
[Crossref]

1998 (1)

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83(6), 3323–3336 (1998).
[Crossref]

1996 (2)

C. Battistoni, E. Bemporad, A. Galdikas, S. Kačiulis, G. Mattogno, S. Mickevičius, and V. Olevano, “Interaction of mercury vapour with thin films of gold,” Appl. Surf. Sci. 103(2), 107–111 (1996).
[Crossref]

M. Levlin, H. E.-M. Niemi, P. Hautojärvi, E. Ikävalko, and T. Laitinen, “Mercury adsorption on gold surfaces employed in the sampling and determination of vaporous mercury: a scanning tunneling microscopy study,” Anal. Bioanal. Chem. 355(1), 2–9 (1996).
[Crossref] [PubMed]

1994 (1)

M. A. George and W. S. Glaunsinger, “The electrical and structural properties of gold films and mercury-covered gold films,” Thin Solid Films 245(1-2), 215–224 (1994).
[Crossref]

1981 (1)

T. Inagaki, E. T. Arakawa, and M. W. Williams, “Optical properties of liquid mercury,” Phys. Rev. B Condens. Matter 23(10), 5246–5262 (1981).
[Crossref]

1977 (1)

1932 (1)

I. Tamm, “Über eine mögliche Art der Elektronenbindung an Kristalloberflächen,” Z. Phys. 76(11-12), 849–850 (1932).
[Crossref]

Abdala, N. L.

B. Auguié, M. C. Fuertes, P. C. Angelomé, N. L. Abdala, G. J. A. A. Soler Illia, and A. Fainstein, “Tamm Plasmon Resonance in Mesoporous Multilayers: Toward a Sensing Application,” ACS Photonics 1(9), 775–780 (2014).
[Crossref]

Abram, R. A.

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: First experimental observation,” Superlattices Microstruct. 47(1), 44–49 (2010).
[Crossref]

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: Slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
[Crossref]

Afinogenov, B. I.

B. I. Afinogenov, V. O. Bessonov, A. A. Nikulin, and A. A. Fedyanin, “Observation of hybrid state of Tamm and surface plasmon-polaritons in one-dimensional photonic crystals,” Appl. Phys. Lett. 103(6), 061112 (2013).
[Crossref]

Angelomé, P. C.

B. Auguié, M. C. Fuertes, P. C. Angelomé, N. L. Abdala, G. J. A. A. Soler Illia, and A. Fainstein, “Tamm Plasmon Resonance in Mesoporous Multilayers: Toward a Sensing Application,” ACS Photonics 1(9), 775–780 (2014).
[Crossref]

Arakawa, E. T.

T. Inagaki, E. T. Arakawa, and M. W. Williams, “Optical properties of liquid mercury,” Phys. Rev. B Condens. Matter 23(10), 5246–5262 (1981).
[Crossref]

Arsenin, A. V.

Auguié, B.

B. Auguié, M. C. Fuertes, P. C. Angelomé, N. L. Abdala, G. J. A. A. Soler Illia, and A. Fainstein, “Tamm Plasmon Resonance in Mesoporous Multilayers: Toward a Sensing Application,” ACS Photonics 1(9), 775–780 (2014).
[Crossref]

Ayzatsky, M. I.

Y. Tsurimaki, J. K. Tong, V. N. Boriskin, A. Semenov, M. I. Ayzatsky, Y. P. Machekhin, G. Chen, and S. V. Boriskina, “Topological Engineering of Interfacial Optical Tamm States for Highly Sensitive Near-Singular-Phase Optical Detection,” ACS Photonics 5(3), 929–938 (2018).
[Crossref]

Azzini, S.

S. Azzini, G. Lheureux, C. Symonds, J.-M. Benoit, P. Senellart, A. Lemaitre, J.-J. Greffet, C. Blanchard, C. Sauvan, and J. Bellessa, “Generation and Spatial Control of Hybrid Tamm Plasmon/Surface Plasmon Modes,” ACS Photonics 3(10), 1776–1781 (2016).
[Crossref]

Babonas, G.-J.

Z. Balevicius, A. Makaraviciute, G.-J. Babonas, S. Tumenas, V. Bukauskas, A. Ramanaviciene, and A. Ramanavicius, “Study of optical anisotropy in thin molecular layers by total internal reflection ellipsometry,” Sens. Actuators B Chem. 181, 119–124 (2013).
[Crossref]

Balevicius, Z.

A. Paulauskas, A. Selskis, V. Bukauskas, V. Vaicikauskas, A. Ramanavicius, and Z. Balevicius, “Real time study of amalgam formation and mercury adsorption on thin gold film by total internal reflection ellipsometry,” Appl. Surf. Sci. 427, 298–303 (2018).
[Crossref]

T. Kovalevich, A. Ndao, M. Suarez, S. Tumenas, Z. Balevicius, A. Ramanavicius, I. Baleviciute, M. Häyrinen, M. Roussey, M. Kuittinen, T. Grosjean, and M.-P. Bernal, “Tunable Bloch surface waves in anisotropic photonic crystals based on lithium niobate thin films,” Opt. Lett. 41(23), 5616–5619 (2016).
[Crossref] [PubMed]

Z. Balevicius, I. Baleviciute, S. Tumenas, L. Tamosaitis, A. Stirke, A. Makaraviciute, A. Ramanaviciene, and A. Ramanavicius, “In situ study of ligand-receptor interaction by total internal reflection ellipsometry,” Thin Solid Films 571, 744–748 (2014).
[Crossref]

I. Baleviciute, Z. Balevicius, A. Makaraviciute, A. Ramanaviciene, and A. Ramanavicius, “Study of antibody/antigen binding kinetics by total internal reflection ellipsometry,” Biosens. Bioelectron. 39(1), 170–176 (2013).
[Crossref] [PubMed]

Z. Balevicius, A. Makaraviciute, G.-J. Babonas, S. Tumenas, V. Bukauskas, A. Ramanaviciene, and A. Ramanavicius, “Study of optical anisotropy in thin molecular layers by total internal reflection ellipsometry,” Sens. Actuators B Chem. 181, 119–124 (2013).
[Crossref]

Baleviciute, I.

T. Kovalevich, A. Ndao, M. Suarez, S. Tumenas, Z. Balevicius, A. Ramanavicius, I. Baleviciute, M. Häyrinen, M. Roussey, M. Kuittinen, T. Grosjean, and M.-P. Bernal, “Tunable Bloch surface waves in anisotropic photonic crystals based on lithium niobate thin films,” Opt. Lett. 41(23), 5616–5619 (2016).
[Crossref] [PubMed]

Z. Balevicius, I. Baleviciute, S. Tumenas, L. Tamosaitis, A. Stirke, A. Makaraviciute, A. Ramanaviciene, and A. Ramanavicius, “In situ study of ligand-receptor interaction by total internal reflection ellipsometry,” Thin Solid Films 571, 744–748 (2014).
[Crossref]

I. Baleviciute, Z. Balevicius, A. Makaraviciute, A. Ramanaviciene, and A. Ramanavicius, “Study of antibody/antigen binding kinetics by total internal reflection ellipsometry,” Biosens. Bioelectron. 39(1), 170–176 (2013).
[Crossref] [PubMed]

Barnes, W. L.

W. L. Barnes, “Surface plasmon–polariton length scales: a route to sub-wavelength optics,” J. Opt. A, Pure Appl. Opt. 8(4), S87–S93 (2006).
[Crossref]

Battistoni, C.

C. Battistoni, E. Bemporad, A. Galdikas, S. Kačiulis, G. Mattogno, S. Mickevičius, and V. Olevano, “Interaction of mercury vapour with thin films of gold,” Appl. Surf. Sci. 103(2), 107–111 (1996).
[Crossref]

Bellessa, J.

S. Azzini, G. Lheureux, C. Symonds, J.-M. Benoit, P. Senellart, A. Lemaitre, J.-J. Greffet, C. Blanchard, C. Sauvan, and J. Bellessa, “Generation and Spatial Control of Hybrid Tamm Plasmon/Surface Plasmon Modes,” ACS Photonics 3(10), 1776–1781 (2016).
[Crossref]

Bemporad, E.

C. Battistoni, E. Bemporad, A. Galdikas, S. Kačiulis, G. Mattogno, S. Mickevičius, and V. Olevano, “Interaction of mercury vapour with thin films of gold,” Appl. Surf. Sci. 103(2), 107–111 (1996).
[Crossref]

Benoit, J.-M.

S. Azzini, G. Lheureux, C. Symonds, J.-M. Benoit, P. Senellart, A. Lemaitre, J.-J. Greffet, C. Blanchard, C. Sauvan, and J. Bellessa, “Generation and Spatial Control of Hybrid Tamm Plasmon/Surface Plasmon Modes,” ACS Photonics 3(10), 1776–1781 (2016).
[Crossref]

Bernal, M.-P.

Bessonov, V. O.

B. I. Afinogenov, V. O. Bessonov, A. A. Nikulin, and A. A. Fedyanin, “Observation of hybrid state of Tamm and surface plasmon-polaritons in one-dimensional photonic crystals,” Appl. Phys. Lett. 103(6), 061112 (2013).
[Crossref]

Blanchard, C.

S. Azzini, G. Lheureux, C. Symonds, J.-M. Benoit, P. Senellart, A. Lemaitre, J.-J. Greffet, C. Blanchard, C. Sauvan, and J. Bellessa, “Generation and Spatial Control of Hybrid Tamm Plasmon/Surface Plasmon Modes,” ACS Photonics 3(10), 1776–1781 (2016).
[Crossref]

Boriskin, V. N.

Y. Tsurimaki, J. K. Tong, V. N. Boriskin, A. Semenov, M. I. Ayzatsky, Y. P. Machekhin, G. Chen, and S. V. Boriskina, “Topological Engineering of Interfacial Optical Tamm States for Highly Sensitive Near-Singular-Phase Optical Detection,” ACS Photonics 5(3), 929–938 (2018).
[Crossref]

Boriskina, S. V.

Y. Tsurimaki, J. K. Tong, V. N. Boriskin, A. Semenov, M. I. Ayzatsky, Y. P. Machekhin, G. Chen, and S. V. Boriskina, “Topological Engineering of Interfacial Optical Tamm States for Highly Sensitive Near-Singular-Phase Optical Detection,” ACS Photonics 5(3), 929–938 (2018).
[Crossref]

Brand, S.

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: First experimental observation,” Superlattices Microstruct. 47(1), 44–49 (2010).
[Crossref]

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: Slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
[Crossref]

Bukauskas, V.

A. Paulauskas, A. Selskis, V. Bukauskas, V. Vaicikauskas, A. Ramanavicius, and Z. Balevicius, “Real time study of amalgam formation and mercury adsorption on thin gold film by total internal reflection ellipsometry,” Appl. Surf. Sci. 427, 298–303 (2018).
[Crossref]

Z. Balevicius, A. Makaraviciute, G.-J. Babonas, S. Tumenas, V. Bukauskas, A. Ramanaviciene, and A. Ramanavicius, “Study of optical anisotropy in thin molecular layers by total internal reflection ellipsometry,” Sens. Actuators B Chem. 181, 119–124 (2013).
[Crossref]

Carpenter, M. A.

N. A. Joy, M. I. Nandasiri, P. H. Rogers, W. Jiang, T. Varga, S. V. N. T. Kuchibhatla, S. Thevuthasan, and M. A. Carpenter, “Selective plasmonic gas sensing: H2, NO2, and CO spectral discrimination by a single Au-CeO2 nanocomposite film,” Anal. Chem. 84(11), 5025–5034 (2012).
[Crossref] [PubMed]

Chamberlain, J. M.

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: First experimental observation,” Superlattices Microstruct. 47(1), 44–49 (2010).
[Crossref]

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: Slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
[Crossref]

Chen, G.

Y. Tsurimaki, J. K. Tong, V. N. Boriskin, A. Semenov, M. I. Ayzatsky, Y. P. Machekhin, G. Chen, and S. V. Boriskina, “Topological Engineering of Interfacial Optical Tamm States for Highly Sensitive Near-Singular-Phase Optical Detection,” ACS Photonics 5(3), 929–938 (2018).
[Crossref]

Chen, K.-P.

Chen, M.

T. Hou, M. Chen, G. W. Greene, and R. G. Horn, “Mercury Vapor Sorption and Amalgamation with a Thin Gold Film,” ACS Appl. Mater. Interfaces 7(41), 23172–23181 (2015).
[Crossref] [PubMed]

Das, R.

Dorofeenko, A. V.

A. P. Vinogradov, A. V. Dorofeenko, S. G. Erokhin, M. Inoue, A. A. Lisyansky, A. M. Merzlikin, and A. B. Granovsky, “Surface state peculiarities in one-dimensional photonic crystal interfaces,” Phys. Rev. B Condens. Matter Mater. Phys. 74(4), 045128 (2006).
[Crossref]

Egorov, A. Y.

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: First experimental observation,” Superlattices Microstruct. 47(1), 44–49 (2010).
[Crossref]

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: Slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]

Erokhin, S. G.

A. P. Vinogradov, A. V. Dorofeenko, S. G. Erokhin, M. Inoue, A. A. Lisyansky, A. M. Merzlikin, and A. B. Granovsky, “Surface state peculiarities in one-dimensional photonic crystal interfaces,” Phys. Rev. B Condens. Matter Mater. Phys. 74(4), 045128 (2006).
[Crossref]

Fainstein, A.

B. Auguié, M. C. Fuertes, P. C. Angelomé, N. L. Abdala, G. J. A. A. Soler Illia, and A. Fainstein, “Tamm Plasmon Resonance in Mesoporous Multilayers: Toward a Sensing Application,” ACS Photonics 1(9), 775–780 (2014).
[Crossref]

Fedyanin, A. A.

B. I. Afinogenov, V. O. Bessonov, A. A. Nikulin, and A. A. Fedyanin, “Observation of hybrid state of Tamm and surface plasmon-polaritons in one-dimensional photonic crystals,” Appl. Phys. Lett. 103(6), 061112 (2013).
[Crossref]

Fedyanin, D. Y.

Fuertes, M. C.

B. Auguié, M. C. Fuertes, P. C. Angelomé, N. L. Abdala, G. J. A. A. Soler Illia, and A. Fainstein, “Tamm Plasmon Resonance in Mesoporous Multilayers: Toward a Sensing Application,” ACS Photonics 1(9), 775–780 (2014).
[Crossref]

Galdikas, A.

C. Battistoni, E. Bemporad, A. Galdikas, S. Kačiulis, G. Mattogno, S. Mickevičius, and V. Olevano, “Interaction of mercury vapour with thin films of gold,” Appl. Surf. Sci. 103(2), 107–111 (1996).
[Crossref]

George, M. A.

M. A. George and W. S. Glaunsinger, “The electrical and structural properties of gold films and mercury-covered gold films,” Thin Solid Films 245(1-2), 215–224 (1994).
[Crossref]

Glaunsinger, W. S.

M. A. George and W. S. Glaunsinger, “The electrical and structural properties of gold films and mercury-covered gold films,” Thin Solid Films 245(1-2), 215–224 (1994).
[Crossref]

Granovsky, A. B.

A. P. Vinogradov, A. V. Dorofeenko, S. G. Erokhin, M. Inoue, A. A. Lisyansky, A. M. Merzlikin, and A. B. Granovsky, “Surface state peculiarities in one-dimensional photonic crystal interfaces,” Phys. Rev. B Condens. Matter Mater. Phys. 74(4), 045128 (2006).
[Crossref]

Greene, G. W.

T. Hou, M. Chen, G. W. Greene, and R. G. Horn, “Mercury Vapor Sorption and Amalgamation with a Thin Gold Film,” ACS Appl. Mater. Interfaces 7(41), 23172–23181 (2015).
[Crossref] [PubMed]

Greffet, J.-J.

S. Azzini, G. Lheureux, C. Symonds, J.-M. Benoit, P. Senellart, A. Lemaitre, J.-J. Greffet, C. Blanchard, C. Sauvan, and J. Bellessa, “Generation and Spatial Control of Hybrid Tamm Plasmon/Surface Plasmon Modes,” ACS Photonics 3(10), 1776–1781 (2016).
[Crossref]

Grosjean, T.

Hautojärvi, P.

M. Levlin, H. E.-M. Niemi, P. Hautojärvi, E. Ikävalko, and T. Laitinen, “Mercury adsorption on gold surfaces employed in the sampling and determination of vaporous mercury: a scanning tunneling microscopy study,” Anal. Bioanal. Chem. 355(1), 2–9 (1996).
[Crossref] [PubMed]

Häyrinen, M.

Herzinger, C. M.

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83(6), 3323–3336 (1998).
[Crossref]

Hong, C.-S.

Horn, R. G.

T. Hou, M. Chen, G. W. Greene, and R. G. Horn, “Mercury Vapor Sorption and Amalgamation with a Thin Gold Film,” ACS Appl. Mater. Interfaces 7(41), 23172–23181 (2015).
[Crossref] [PubMed]

Hou, T.

T. Hou, M. Chen, G. W. Greene, and R. G. Horn, “Mercury Vapor Sorption and Amalgamation with a Thin Gold Film,” ACS Appl. Mater. Interfaces 7(41), 23172–23181 (2015).
[Crossref] [PubMed]

Huang, F.

Huang, S.-G.

Ikävalko, E.

M. Levlin, H. E.-M. Niemi, P. Hautojärvi, E. Ikävalko, and T. Laitinen, “Mercury adsorption on gold surfaces employed in the sampling and determination of vaporous mercury: a scanning tunneling microscopy study,” Anal. Bioanal. Chem. 355(1), 2–9 (1996).
[Crossref] [PubMed]

Inagaki, T.

T. Inagaki, E. T. Arakawa, and M. W. Williams, “Optical properties of liquid mercury,” Phys. Rev. B Condens. Matter 23(10), 5246–5262 (1981).
[Crossref]

Inoue, M.

A. P. Vinogradov, A. V. Dorofeenko, S. G. Erokhin, M. Inoue, A. A. Lisyansky, A. M. Merzlikin, and A. B. Granovsky, “Surface state peculiarities in one-dimensional photonic crystal interfaces,” Phys. Rev. B Condens. Matter Mater. Phys. 74(4), 045128 (2006).
[Crossref]

Iorsh, I.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
[Crossref]

Iorsh, I. V.

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: First experimental observation,” Superlattices Microstruct. 47(1), 44–49 (2010).
[Crossref]

Jeng, S.-C.

Jha, R.

Jiang, W.

N. A. Joy, M. I. Nandasiri, P. H. Rogers, W. Jiang, T. Varga, S. V. N. T. Kuchibhatla, S. Thevuthasan, and M. A. Carpenter, “Selective plasmonic gas sensing: H2, NO2, and CO spectral discrimination by a single Au-CeO2 nanocomposite film,” Anal. Chem. 84(11), 5025–5034 (2012).
[Crossref] [PubMed]

Jiang, Y.

Johs, B.

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83(6), 3323–3336 (1998).
[Crossref]

Joy, N. A.

N. A. Joy, M. I. Nandasiri, P. H. Rogers, W. Jiang, T. Varga, S. V. N. T. Kuchibhatla, S. Thevuthasan, and M. A. Carpenter, “Selective plasmonic gas sensing: H2, NO2, and CO spectral discrimination by a single Au-CeO2 nanocomposite film,” Anal. Chem. 84(11), 5025–5034 (2012).
[Crossref] [PubMed]

Kaciulis, S.

C. Battistoni, E. Bemporad, A. Galdikas, S. Kačiulis, G. Mattogno, S. Mickevičius, and V. Olevano, “Interaction of mercury vapour with thin films of gold,” Appl. Surf. Sci. 103(2), 107–111 (1996).
[Crossref]

Kaliteevski, M.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
[Crossref]

Kaliteevski, M. A.

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: First experimental observation,” Superlattices Microstruct. 47(1), 44–49 (2010).
[Crossref]

Kalitteevski, M. A.

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: Slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]

Kavokin, A. V.

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: First experimental observation,” Superlattices Microstruct. 47(1), 44–49 (2010).
[Crossref]

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: Slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
[Crossref]

Kim, K.-H.

K. Vikrant and K.-H. Kim, “Nanomaterials for the adsorptive treatment of Hg(II) ions from water,” Chem. Eng. J. 358, 264–282 (2019).
[Crossref]

Kovalevich, T.

Kuchibhatla, S. V. N. T.

N. A. Joy, M. I. Nandasiri, P. H. Rogers, W. Jiang, T. Varga, S. V. N. T. Kuchibhatla, S. Thevuthasan, and M. A. Carpenter, “Selective plasmonic gas sensing: H2, NO2, and CO spectral discrimination by a single Au-CeO2 nanocomposite film,” Anal. Chem. 84(11), 5025–5034 (2012).
[Crossref] [PubMed]

Kuittinen, M.

Laitinen, T.

M. Levlin, H. E.-M. Niemi, P. Hautojärvi, E. Ikävalko, and T. Laitinen, “Mercury adsorption on gold surfaces employed in the sampling and determination of vaporous mercury: a scanning tunneling microscopy study,” Anal. Bioanal. Chem. 355(1), 2–9 (1996).
[Crossref] [PubMed]

Lemaitre, A.

S. Azzini, G. Lheureux, C. Symonds, J.-M. Benoit, P. Senellart, A. Lemaitre, J.-J. Greffet, C. Blanchard, C. Sauvan, and J. Bellessa, “Generation and Spatial Control of Hybrid Tamm Plasmon/Surface Plasmon Modes,” ACS Photonics 3(10), 1776–1781 (2016).
[Crossref]

Levlin, M.

M. Levlin, H. E.-M. Niemi, P. Hautojärvi, E. Ikävalko, and T. Laitinen, “Mercury adsorption on gold surfaces employed in the sampling and determination of vaporous mercury: a scanning tunneling microscopy study,” Anal. Bioanal. Chem. 355(1), 2–9 (1996).
[Crossref] [PubMed]

Lheureux, G.

S. Azzini, G. Lheureux, C. Symonds, J.-M. Benoit, P. Senellart, A. Lemaitre, J.-J. Greffet, C. Blanchard, C. Sauvan, and J. Bellessa, “Generation and Spatial Control of Hybrid Tamm Plasmon/Surface Plasmon Modes,” ACS Photonics 3(10), 1776–1781 (2016).
[Crossref]

Lisyansky, A. A.

A. P. Vinogradov, A. V. Dorofeenko, S. G. Erokhin, M. Inoue, A. A. Lisyansky, A. M. Merzlikin, and A. B. Granovsky, “Surface state peculiarities in one-dimensional photonic crystal interfaces,” Phys. Rev. B Condens. Matter Mater. Phys. 74(4), 045128 (2006).
[Crossref]

Liu, H.

Machekhin, Y. P.

Y. Tsurimaki, J. K. Tong, V. N. Boriskin, A. Semenov, M. I. Ayzatsky, Y. P. Machekhin, G. Chen, and S. V. Boriskina, “Topological Engineering of Interfacial Optical Tamm States for Highly Sensitive Near-Singular-Phase Optical Detection,” ACS Photonics 5(3), 929–938 (2018).
[Crossref]

Makaraviciute, A.

Z. Balevicius, I. Baleviciute, S. Tumenas, L. Tamosaitis, A. Stirke, A. Makaraviciute, A. Ramanaviciene, and A. Ramanavicius, “In situ study of ligand-receptor interaction by total internal reflection ellipsometry,” Thin Solid Films 571, 744–748 (2014).
[Crossref]

I. Baleviciute, Z. Balevicius, A. Makaraviciute, A. Ramanaviciene, and A. Ramanavicius, “Study of antibody/antigen binding kinetics by total internal reflection ellipsometry,” Biosens. Bioelectron. 39(1), 170–176 (2013).
[Crossref] [PubMed]

Z. Balevicius, A. Makaraviciute, G.-J. Babonas, S. Tumenas, V. Bukauskas, A. Ramanaviciene, and A. Ramanavicius, “Study of optical anisotropy in thin molecular layers by total internal reflection ellipsometry,” Sens. Actuators B Chem. 181, 119–124 (2013).
[Crossref]

Mattogno, G.

C. Battistoni, E. Bemporad, A. Galdikas, S. Kačiulis, G. Mattogno, S. Mickevičius, and V. Olevano, “Interaction of mercury vapour with thin films of gold,” Appl. Surf. Sci. 103(2), 107–111 (1996).
[Crossref]

McGahan, W. A.

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83(6), 3323–3336 (1998).
[Crossref]

Merzlikin, A. M.

A. P. Vinogradov, A. V. Dorofeenko, S. G. Erokhin, M. Inoue, A. A. Lisyansky, A. M. Merzlikin, and A. B. Granovsky, “Surface state peculiarities in one-dimensional photonic crystal interfaces,” Phys. Rev. B Condens. Matter Mater. Phys. 74(4), 045128 (2006).
[Crossref]

Mickevicius, S.

C. Battistoni, E. Bemporad, A. Galdikas, S. Kačiulis, G. Mattogno, S. Mickevičius, and V. Olevano, “Interaction of mercury vapour with thin films of gold,” Appl. Surf. Sci. 103(2), 107–111 (1996).
[Crossref]

Mikhrin, V. S.

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: First experimental observation,” Superlattices Microstruct. 47(1), 44–49 (2010).
[Crossref]

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: Slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]

Morris, T.

T. Morris and G. Szulczewski, “A Spectroscopic Ellipsometry, Surface Plasmon Resonance, and X-ray Photoelectron Spectroscopy Study of Hg Adsorption on Gold Surfaces,” Langmuir 18(6), 2260–2264 (2002).
[Crossref]

Nandasiri, M. I.

N. A. Joy, M. I. Nandasiri, P. H. Rogers, W. Jiang, T. Varga, S. V. N. T. Kuchibhatla, S. Thevuthasan, and M. A. Carpenter, “Selective plasmonic gas sensing: H2, NO2, and CO spectral discrimination by a single Au-CeO2 nanocomposite film,” Anal. Chem. 84(11), 5025–5034 (2012).
[Crossref] [PubMed]

Ndao, A.

Niemi, H. E.-M.

M. Levlin, H. E.-M. Niemi, P. Hautojärvi, E. Ikävalko, and T. Laitinen, “Mercury adsorption on gold surfaces employed in the sampling and determination of vaporous mercury: a scanning tunneling microscopy study,” Anal. Bioanal. Chem. 355(1), 2–9 (1996).
[Crossref] [PubMed]

Nikulin, A. A.

B. I. Afinogenov, V. O. Bessonov, A. A. Nikulin, and A. A. Fedyanin, “Observation of hybrid state of Tamm and surface plasmon-polaritons in one-dimensional photonic crystals,” Appl. Phys. Lett. 103(6), 061112 (2013).
[Crossref]

Olevano, V.

C. Battistoni, E. Bemporad, A. Galdikas, S. Kačiulis, G. Mattogno, S. Mickevičius, and V. Olevano, “Interaction of mercury vapour with thin films of gold,” Appl. Surf. Sci. 103(2), 107–111 (1996).
[Crossref]

Paulauskas, A.

A. Paulauskas, A. Selskis, V. Bukauskas, V. Vaicikauskas, A. Ramanavicius, and Z. Balevicius, “Real time study of amalgam formation and mercury adsorption on thin gold film by total internal reflection ellipsometry,” Appl. Surf. Sci. 427, 298–303 (2018).
[Crossref]

Paulson, W.

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83(6), 3323–3336 (1998).
[Crossref]

Pei, Y.

Ramanaviciene, A.

Z. Balevicius, I. Baleviciute, S. Tumenas, L. Tamosaitis, A. Stirke, A. Makaraviciute, A. Ramanaviciene, and A. Ramanavicius, “In situ study of ligand-receptor interaction by total internal reflection ellipsometry,” Thin Solid Films 571, 744–748 (2014).
[Crossref]

I. Baleviciute, Z. Balevicius, A. Makaraviciute, A. Ramanaviciene, and A. Ramanavicius, “Study of antibody/antigen binding kinetics by total internal reflection ellipsometry,” Biosens. Bioelectron. 39(1), 170–176 (2013).
[Crossref] [PubMed]

Z. Balevicius, A. Makaraviciute, G.-J. Babonas, S. Tumenas, V. Bukauskas, A. Ramanaviciene, and A. Ramanavicius, “Study of optical anisotropy in thin molecular layers by total internal reflection ellipsometry,” Sens. Actuators B Chem. 181, 119–124 (2013).
[Crossref]

Ramanavicius, A.

A. Paulauskas, A. Selskis, V. Bukauskas, V. Vaicikauskas, A. Ramanavicius, and Z. Balevicius, “Real time study of amalgam formation and mercury adsorption on thin gold film by total internal reflection ellipsometry,” Appl. Surf. Sci. 427, 298–303 (2018).
[Crossref]

T. Kovalevich, A. Ndao, M. Suarez, S. Tumenas, Z. Balevicius, A. Ramanavicius, I. Baleviciute, M. Häyrinen, M. Roussey, M. Kuittinen, T. Grosjean, and M.-P. Bernal, “Tunable Bloch surface waves in anisotropic photonic crystals based on lithium niobate thin films,” Opt. Lett. 41(23), 5616–5619 (2016).
[Crossref] [PubMed]

Z. Balevicius, I. Baleviciute, S. Tumenas, L. Tamosaitis, A. Stirke, A. Makaraviciute, A. Ramanaviciene, and A. Ramanavicius, “In situ study of ligand-receptor interaction by total internal reflection ellipsometry,” Thin Solid Films 571, 744–748 (2014).
[Crossref]

Z. Balevicius, A. Makaraviciute, G.-J. Babonas, S. Tumenas, V. Bukauskas, A. Ramanaviciene, and A. Ramanavicius, “Study of optical anisotropy in thin molecular layers by total internal reflection ellipsometry,” Sens. Actuators B Chem. 181, 119–124 (2013).
[Crossref]

I. Baleviciute, Z. Balevicius, A. Makaraviciute, A. Ramanaviciene, and A. Ramanavicius, “Study of antibody/antigen binding kinetics by total internal reflection ellipsometry,” Biosens. Bioelectron. 39(1), 170–176 (2013).
[Crossref] [PubMed]

Rao, Y. J.

Rogers, P. H.

N. A. Joy, M. I. Nandasiri, P. H. Rogers, W. Jiang, T. Varga, S. V. N. T. Kuchibhatla, S. Thevuthasan, and M. A. Carpenter, “Selective plasmonic gas sensing: H2, NO2, and CO spectral discrimination by a single Au-CeO2 nanocomposite film,” Anal. Chem. 84(11), 5025–5034 (2012).
[Crossref] [PubMed]

Roussey, M.

Sasin, M. E.

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: First experimental observation,” Superlattices Microstruct. 47(1), 44–49 (2010).
[Crossref]

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: Slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]

Sauvan, C.

S. Azzini, G. Lheureux, C. Symonds, J.-M. Benoit, P. Senellart, A. Lemaitre, J.-J. Greffet, C. Blanchard, C. Sauvan, and J. Bellessa, “Generation and Spatial Control of Hybrid Tamm Plasmon/Surface Plasmon Modes,” ACS Photonics 3(10), 1776–1781 (2016).
[Crossref]

Seisyan, R. P.

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: First experimental observation,” Superlattices Microstruct. 47(1), 44–49 (2010).
[Crossref]

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: Slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]

Selskis, A.

A. Paulauskas, A. Selskis, V. Bukauskas, V. Vaicikauskas, A. Ramanavicius, and Z. Balevicius, “Real time study of amalgam formation and mercury adsorption on thin gold film by total internal reflection ellipsometry,” Appl. Surf. Sci. 427, 298–303 (2018).
[Crossref]

Semenov, A.

Y. Tsurimaki, J. K. Tong, V. N. Boriskin, A. Semenov, M. I. Ayzatsky, Y. P. Machekhin, G. Chen, and S. V. Boriskina, “Topological Engineering of Interfacial Optical Tamm States for Highly Sensitive Near-Singular-Phase Optical Detection,” ACS Photonics 5(3), 929–938 (2018).
[Crossref]

Senellart, P.

S. Azzini, G. Lheureux, C. Symonds, J.-M. Benoit, P. Senellart, A. Lemaitre, J.-J. Greffet, C. Blanchard, C. Sauvan, and J. Bellessa, “Generation and Spatial Control of Hybrid Tamm Plasmon/Surface Plasmon Modes,” ACS Photonics 3(10), 1776–1781 (2016).
[Crossref]

Shelykh, I. A.

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: First experimental observation,” Superlattices Microstruct. 47(1), 44–49 (2010).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
[Crossref]

Soler Illia, G. J. A. A.

B. Auguié, M. C. Fuertes, P. C. Angelomé, N. L. Abdala, G. J. A. A. Soler Illia, and A. Fainstein, “Tamm Plasmon Resonance in Mesoporous Multilayers: Toward a Sensing Application,” ACS Photonics 1(9), 775–780 (2014).
[Crossref]

Srivastava, T.

Stebunov, Y. V.

Stirke, A.

Z. Balevicius, I. Baleviciute, S. Tumenas, L. Tamosaitis, A. Stirke, A. Makaraviciute, A. Ramanaviciene, and A. Ramanavicius, “In situ study of ligand-receptor interaction by total internal reflection ellipsometry,” Thin Solid Films 571, 744–748 (2014).
[Crossref]

Suarez, M.

Sun, X.

Symonds, C.

S. Azzini, G. Lheureux, C. Symonds, J.-M. Benoit, P. Senellart, A. Lemaitre, J.-J. Greffet, C. Blanchard, C. Sauvan, and J. Bellessa, “Generation and Spatial Control of Hybrid Tamm Plasmon/Surface Plasmon Modes,” ACS Photonics 3(10), 1776–1781 (2016).
[Crossref]

Szulczewski, G.

T. Morris and G. Szulczewski, “A Spectroscopic Ellipsometry, Surface Plasmon Resonance, and X-ray Photoelectron Spectroscopy Study of Hg Adsorption on Gold Surfaces,” Langmuir 18(6), 2260–2264 (2002).
[Crossref]

Tamm, I.

I. Tamm, “Über eine mögliche Art der Elektronenbindung an Kristalloberflächen,” Z. Phys. 76(11-12), 849–850 (1932).
[Crossref]

Tamosaitis, L.

Z. Balevicius, I. Baleviciute, S. Tumenas, L. Tamosaitis, A. Stirke, A. Makaraviciute, A. Ramanaviciene, and A. Ramanavicius, “In situ study of ligand-receptor interaction by total internal reflection ellipsometry,” Thin Solid Films 571, 744–748 (2014).
[Crossref]

Thevuthasan, S.

N. A. Joy, M. I. Nandasiri, P. H. Rogers, W. Jiang, T. Varga, S. V. N. T. Kuchibhatla, S. Thevuthasan, and M. A. Carpenter, “Selective plasmonic gas sensing: H2, NO2, and CO spectral discrimination by a single Au-CeO2 nanocomposite film,” Anal. Chem. 84(11), 5025–5034 (2012).
[Crossref] [PubMed]

Tong, J. K.

Y. Tsurimaki, J. K. Tong, V. N. Boriskin, A. Semenov, M. I. Ayzatsky, Y. P. Machekhin, G. Chen, and S. V. Boriskina, “Topological Engineering of Interfacial Optical Tamm States for Highly Sensitive Near-Singular-Phase Optical Detection,” ACS Photonics 5(3), 929–938 (2018).
[Crossref]

Tsurimaki, Y.

Y. Tsurimaki, J. K. Tong, V. N. Boriskin, A. Semenov, M. I. Ayzatsky, Y. P. Machekhin, G. Chen, and S. V. Boriskina, “Topological Engineering of Interfacial Optical Tamm States for Highly Sensitive Near-Singular-Phase Optical Detection,” ACS Photonics 5(3), 929–938 (2018).
[Crossref]

Tumenas, S.

T. Kovalevich, A. Ndao, M. Suarez, S. Tumenas, Z. Balevicius, A. Ramanavicius, I. Baleviciute, M. Häyrinen, M. Roussey, M. Kuittinen, T. Grosjean, and M.-P. Bernal, “Tunable Bloch surface waves in anisotropic photonic crystals based on lithium niobate thin films,” Opt. Lett. 41(23), 5616–5619 (2016).
[Crossref] [PubMed]

Z. Balevicius, I. Baleviciute, S. Tumenas, L. Tamosaitis, A. Stirke, A. Makaraviciute, A. Ramanaviciene, and A. Ramanavicius, “In situ study of ligand-receptor interaction by total internal reflection ellipsometry,” Thin Solid Films 571, 744–748 (2014).
[Crossref]

Z. Balevicius, A. Makaraviciute, G.-J. Babonas, S. Tumenas, V. Bukauskas, A. Ramanaviciene, and A. Ramanavicius, “Study of optical anisotropy in thin molecular layers by total internal reflection ellipsometry,” Sens. Actuators B Chem. 181, 119–124 (2013).
[Crossref]

Vaicikauskas, V.

A. Paulauskas, A. Selskis, V. Bukauskas, V. Vaicikauskas, A. Ramanavicius, and Z. Balevicius, “Real time study of amalgam formation and mercury adsorption on thin gold film by total internal reflection ellipsometry,” Appl. Surf. Sci. 427, 298–303 (2018).
[Crossref]

Varga, T.

N. A. Joy, M. I. Nandasiri, P. H. Rogers, W. Jiang, T. Varga, S. V. N. T. Kuchibhatla, S. Thevuthasan, and M. A. Carpenter, “Selective plasmonic gas sensing: H2, NO2, and CO spectral discrimination by a single Au-CeO2 nanocomposite film,” Anal. Chem. 84(11), 5025–5034 (2012).
[Crossref] [PubMed]

Vasil’ev, A. P.

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: First experimental observation,” Superlattices Microstruct. 47(1), 44–49 (2010).
[Crossref]

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: Slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]

Vikrant, K.

K. Vikrant and K.-H. Kim, “Nanomaterials for the adsorptive treatment of Hg(II) ions from water,” Chem. Eng. J. 358, 264–282 (2019).
[Crossref]

Vinogradov, A. P.

A. P. Vinogradov, A. V. Dorofeenko, S. G. Erokhin, M. Inoue, A. A. Lisyansky, A. M. Merzlikin, and A. B. Granovsky, “Surface state peculiarities in one-dimensional photonic crystal interfaces,” Phys. Rev. B Condens. Matter Mater. Phys. 74(4), 045128 (2006).
[Crossref]

Volkov, V. S.

Wang, F.

Williams, M. W.

T. Inagaki, E. T. Arakawa, and M. W. Williams, “Optical properties of liquid mercury,” Phys. Rev. B Condens. Matter 23(10), 5246–5262 (1981).
[Crossref]

Woollam, J. A.

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83(6), 3323–3336 (1998).
[Crossref]

J. A. Woollam, “CompleteEASE”

Yakubovsky, D. I.

Yao, F.

Yariv, A.

Yeh, P.

Yuan, H.

Zhang, W. L.

ACS Appl. Mater. Interfaces (1)

T. Hou, M. Chen, G. W. Greene, and R. G. Horn, “Mercury Vapor Sorption and Amalgamation with a Thin Gold Film,” ACS Appl. Mater. Interfaces 7(41), 23172–23181 (2015).
[Crossref] [PubMed]

ACS Photonics (3)

Y. Tsurimaki, J. K. Tong, V. N. Boriskin, A. Semenov, M. I. Ayzatsky, Y. P. Machekhin, G. Chen, and S. V. Boriskina, “Topological Engineering of Interfacial Optical Tamm States for Highly Sensitive Near-Singular-Phase Optical Detection,” ACS Photonics 5(3), 929–938 (2018).
[Crossref]

B. Auguié, M. C. Fuertes, P. C. Angelomé, N. L. Abdala, G. J. A. A. Soler Illia, and A. Fainstein, “Tamm Plasmon Resonance in Mesoporous Multilayers: Toward a Sensing Application,” ACS Photonics 1(9), 775–780 (2014).
[Crossref]

S. Azzini, G. Lheureux, C. Symonds, J.-M. Benoit, P. Senellart, A. Lemaitre, J.-J. Greffet, C. Blanchard, C. Sauvan, and J. Bellessa, “Generation and Spatial Control of Hybrid Tamm Plasmon/Surface Plasmon Modes,” ACS Photonics 3(10), 1776–1781 (2016).
[Crossref]

Anal. Bioanal. Chem. (1)

M. Levlin, H. E.-M. Niemi, P. Hautojärvi, E. Ikävalko, and T. Laitinen, “Mercury adsorption on gold surfaces employed in the sampling and determination of vaporous mercury: a scanning tunneling microscopy study,” Anal. Bioanal. Chem. 355(1), 2–9 (1996).
[Crossref] [PubMed]

Anal. Chem. (1)

N. A. Joy, M. I. Nandasiri, P. H. Rogers, W. Jiang, T. Varga, S. V. N. T. Kuchibhatla, S. Thevuthasan, and M. A. Carpenter, “Selective plasmonic gas sensing: H2, NO2, and CO spectral discrimination by a single Au-CeO2 nanocomposite film,” Anal. Chem. 84(11), 5025–5034 (2012).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: Slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]

B. I. Afinogenov, V. O. Bessonov, A. A. Nikulin, and A. A. Fedyanin, “Observation of hybrid state of Tamm and surface plasmon-polaritons in one-dimensional photonic crystals,” Appl. Phys. Lett. 103(6), 061112 (2013).
[Crossref]

Appl. Surf. Sci. (2)

A. Paulauskas, A. Selskis, V. Bukauskas, V. Vaicikauskas, A. Ramanavicius, and Z. Balevicius, “Real time study of amalgam formation and mercury adsorption on thin gold film by total internal reflection ellipsometry,” Appl. Surf. Sci. 427, 298–303 (2018).
[Crossref]

C. Battistoni, E. Bemporad, A. Galdikas, S. Kačiulis, G. Mattogno, S. Mickevičius, and V. Olevano, “Interaction of mercury vapour with thin films of gold,” Appl. Surf. Sci. 103(2), 107–111 (1996).
[Crossref]

Biosens. Bioelectron. (1)

I. Baleviciute, Z. Balevicius, A. Makaraviciute, A. Ramanaviciene, and A. Ramanavicius, “Study of antibody/antigen binding kinetics by total internal reflection ellipsometry,” Biosens. Bioelectron. 39(1), 170–176 (2013).
[Crossref] [PubMed]

Chem. Eng. J. (1)

K. Vikrant and K.-H. Kim, “Nanomaterials for the adsorptive treatment of Hg(II) ions from water,” Chem. Eng. J. 358, 264–282 (2019).
[Crossref]

J. Appl. Phys. (1)

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83(6), 3323–3336 (1998).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

W. L. Barnes, “Surface plasmon–polariton length scales: a route to sub-wavelength optics,” J. Opt. A, Pure Appl. Opt. 8(4), S87–S93 (2006).
[Crossref]

J. Opt. Soc. Am. (1)

Langmuir (1)

T. Morris and G. Szulczewski, “A Spectroscopic Ellipsometry, Surface Plasmon Resonance, and X-ray Photoelectron Spectroscopy Study of Hg Adsorption on Gold Surfaces,” Langmuir 18(6), 2260–2264 (2002).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Opt. Mater. Express (1)

Phys. Rev. B Condens. Matter (1)

T. Inagaki, E. T. Arakawa, and M. W. Williams, “Optical properties of liquid mercury,” Phys. Rev. B Condens. Matter 23(10), 5246–5262 (1981).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (2)

A. P. Vinogradov, A. V. Dorofeenko, S. G. Erokhin, M. Inoue, A. A. Lisyansky, A. M. Merzlikin, and A. B. Granovsky, “Surface state peculiarities in one-dimensional photonic crystal interfaces,” Phys. Rev. B Condens. Matter Mater. Phys. 74(4), 045128 (2006).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
[Crossref]

Sens. Actuators B Chem. (1)

Z. Balevicius, A. Makaraviciute, G.-J. Babonas, S. Tumenas, V. Bukauskas, A. Ramanaviciene, and A. Ramanavicius, “Study of optical anisotropy in thin molecular layers by total internal reflection ellipsometry,” Sens. Actuators B Chem. 181, 119–124 (2013).
[Crossref]

Superlattices Microstruct. (1)

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: First experimental observation,” Superlattices Microstruct. 47(1), 44–49 (2010).
[Crossref]

Thin Solid Films (2)

Z. Balevicius, I. Baleviciute, S. Tumenas, L. Tamosaitis, A. Stirke, A. Makaraviciute, A. Ramanaviciene, and A. Ramanavicius, “In situ study of ligand-receptor interaction by total internal reflection ellipsometry,” Thin Solid Films 571, 744–748 (2014).
[Crossref]

M. A. George and W. S. Glaunsinger, “The electrical and structural properties of gold films and mercury-covered gold films,” Thin Solid Films 245(1-2), 215–224 (1994).
[Crossref]

Z. Phys. (1)

I. Tamm, “Über eine mögliche Art der Elektronenbindung an Kristalloberflächen,” Z. Phys. 76(11-12), 849–850 (1932).
[Crossref]

Other (3)

H. Arwin, “TIRE and SPR-Enhanced SE for Adsorption Processes,” in Ellipsometry of Functional Organic Surfaces and Films (2014), pp. 249–264.

J. A. Woollam, “CompleteEASE”

“SCHOTT Zemax catalog,” https://www.schott.com/d/advanced_optics/ac85c64c-60a0-4113-a9df-23ee1be20428/1.4/schott-optical-glass-collection-datasheets-english-17012017.pdf .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 SEM micrograph of 1D photonic crystal SiO2/TiO2 structure and thin (40 nm) gold layer.
Fig. 2
Fig. 2 Experimental (dots) and calculated (solid curves) spectra of a single TPP sample before (red curves) and after (green curves) exposure to saturated mercury vapors. Inset represents the sample structure and the measurement configuration.
Fig. 3
Fig. 3 Experimental (dots) and calculated (solid curves) spectra of a single SPP sample before (red curves) and after (green curves) exposure to saturated mercury vapors. The inset represents the sample structure and measurement configuration.
Fig. 4
Fig. 4 Experimental (dots) and calculated (solid curves) spectra of the hybrid TPP-SPP sample before (red curves) and after (green curves) exposure to saturated mercury vapors. The inset represents the sample structure and the measurement configuration.
Fig. 5
Fig. 5 a) Thickness variation of the amalgam evaluated from regression analysis of the hybrid TPP-SPP mode. The inset shows the depth-profile of the gold and mercury at t = 90 min. Green dots correspond to real part of conductivity of Au/Hg layer at 700 nm wavelength. 5 b) The experimental Ψ (λ) dip position dependence on the exposure time of the gold surface in the saturated mercury vapor.

Metrics