Abstract

In an optical filter based VSB-DD transmission system, semiconductor optical amplifier (SOA) is a promising option to enhance system optical power margin. While, in practical system, the low input saturation power makes the SOA-amplified signal susceptible to the pattern effect, which causes a considerable spectral broadening, thereby influencing the design of VSB filter. In this paper, the relationship between SOA-induced pattern effect and the requirements of the VSB filter is systematically investigated. Firstly, qualitative analysis is given and upper sideband (USB) is proved better than lower sideband (LSB) owing to the suppression of SOA-induced pattern effect. Then, 56Gbps IM/DD PAM4 transmission is experimentally conducted. With respective optimal filter configuration, performance of USB signal is superior to LSB signal in all cases. Results show that USB signal has 1dB sensitivity superiority to LSB signal for 56Gb/s PAM4 after 40km transmission. And in 80km case, only by using USB signal, can HD-FEC limit (3.8 × 10−3) be achieved. Also, we study requirements on other filter parameters, including redundant bandwidth and filter steepness.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical filter requirements in an EML-based single-sideband PAM4 intensity-modulation and direct-detection transmission system

Hsing-Yu Chen, Noriaki Kaneda, Jeffrey Lee, Jyehong Chen, and Young-Kai Chen
Opt. Express 25(6) 5852-5860 (2017)

Nonlinear Tomlinson-Harashima precoding for direct-detected double sideband PAM-4 transmission without dispersion compensation

Haiyun Xin, Kuo Zhang, Deming Kong, Qunbi Zhuge, Yan Fu, Shi Jia, Weisheng Hu, and Hao Hu
Opt. Express 27(14) 19156-19167 (2019)

100 Gbit/s PAM4 signal transmission and reception for 2-km interconnect with adaptive notch filter for narrowband interference

Fan Li, Dongdong Zou, Li Ding, Yidan Sun, Jianping Li, Qi Sui, Liangchuan Li, Xingwen Yi, and Zhaohui Li
Opt. Express 26(18) 24066-24074 (2018)

References

  • View by:
  • |
  • |
  • |

  1. P. Miguelez, “What applications are driving higher capacity in access,” in Optical Fiber communications conference (OFC) (2018), paper M2B.1.
  2. K. Zhang, Q. Zhuge, H. Xin, Z. Xing, M. Xiang, S. Fan, L. Yi, W. Hu, and D. Plant, “Demonstration of 50Gb/s/λ symmetric PAM4 TDM-PON with 10G-class optics and DSP-free ONUs in the O-band,” in Optical Fiber communications conference (OFC) (2018), paper M1B.5.
  3. K. Zhang, Q. Zhuge, H. Xin, M. Morsy-Osman, E. El-Fiky, L. Yi, W. Hu, and D. V. Plant, “Intensity directed equalizer for the mitigation of DML chirp induced distortion in dispersion-unmanaged C-band PAM transmission,” Opt. Express 25(23), 28123–28135 (2017).
    [Crossref]
  4. C. Kottke, C. Caspar, V. Jungnickel, R. Freund, M. Agustin, J. R. Kropp, and N. Ledentsov, “High-speed DMT and VSCEL-based MMF transmission using pre-distortion,” J. Lightwave Technol. 36(2), 168–174 (2018).
  5. K. Zhong, X. Zhou, T. Gui, L. Tao, Y. Gao, W. Chen, J. Man, L. Zeng, A. P. T. Lau, and C. Lu, “Experimental study of PAM-4, CAP-16, and DMT for 100 Gb/s short reach optical transmission systems,” Opt. Express 23(2), 1176–1189 (2015).
    [Crossref] [PubMed]
  6. J. Shi, J. Zhang, X. Li, N. Chi, G. Chang, and J. Yu, “112 Gb/s/lamda CAP signals transmission over 480km in IM-DD system,” in Optical Fiber communications conference (OFC) (2018), paper W1J.5.
  7. M. Zhu, J. Zhang, H. Ying, X. Li, M. Luo, Y. Song, F. Li, X. Huang, X. Yi, and K. Qiu, 56-Gb/s optical SSB PAM-4 transmission over 800-km SSMF using DDMZM transmitter and simplified direct detection Kramers-Kronig receiver,” in Optical Fiber communications conference (OFC) (2018), paper M2C.5.
  8. Z. Xu, M. O’Sullivan, and R. Hui, “Spectral-efficient OOFDM system using compatible SSB modulation with a simple dual-electrode MZM,” in Optical Fiber communications conference (OFC) (2010), paper OMR2.
  9. S. Fan, Q. Zhuge, Z. Xing, K. Zhang, T. M. Hoang, M. Morsy-Osman, M. Y. Sowailem, Y. Li, J. Wu, and D. V. Plant, “264 Gb/s twin-SSB-KK direct detection transmission enabled by MIMO processing,” in Optical Fiber communications conference (OFC) (2018), paper W4E.5.
  10. H. Y. Chen, N. Kaneda, J. Lee, J. Chen, and Y. K. Chen, “Optical filter requirements in an EML-based single-sideband PAM4 intensity-modulation and direct-detection transmission system,” Opt. Express 25(6), 5852–5860 (2017).
    [Crossref] [PubMed]
  11. J. Lee, N. Kaneda, and Y. Chen, “112-Gbit/s intensity-modulation direct-detection vestigial-sideband PAM4 transmission over an 80-km SSMF link,” in Proceedings of European conference on optical communications (ECOC) (2016), paper M.2.D.3.
  12. M. Presi, G. Cossu, G. Contestabile, E. Ciaramella, C. Antonelli, A. Mecozzi, and M. Shtaif, “Transmission in 125-km SMF with 3.9 bit/s/Hz spectral efficiency using a single-drive MZM and a direct-detection Kramers-Kronig receiver without optical CD compensation,” in Optical Fiber communications conference (OFC) (2018), paper Tu2D.3.
  13. Z. Xing, D. Patel, T. Hoang, M. Qiu, R. Li, E. Fiky, M. Xiang, and D. Plant, “100Gb/s 16-QAM Transmission over 80 km SSMF using a silicon photonic modulator enabled VSB-IM/DD system,” in Optical Fiber communications conference (OFC) (2018), paper M2C.7.
  14. N. Diamantopoulos, W. Kobayashi, H. Nishi, K. Takeda, T. Kakitsuka, and S. Matsuo, “56-Gb/s VSB-PAM-4 over 80-km using 1550-nm EA-DFB laser and reduced-complexity nonlinear equalization,” in Proceedings of European conference on optical communications (ECOC) (2017), paper W.4.P2.SC5.5.
    [Crossref]
  15. R. Bonk, “SOA for future PONs,” in Optical Fiber communications conference (OFC) (2018), paper Tu2B.4.
  16. S. P. Duill, P. Landais, and L. P. Barry, “Estimation of the performance improvement of pre-amplified PAM4 systems when using multi-section semiconductor optical amplifiers,” Appl. Sci. (Basel) 7(9), 908 (2017).
    [Crossref]
  17. J. Zhang, J. Wey, and J. Yu, “Experimental demonstration of unequally spaced PAM-4 signal to improve receiver sensitivity to 50-gbps PON with power-dependent noise distribution,” in Optical Fiber communications conference (OFC) (2018), paper M2B.3.
  18. Z. V. Rizou, K. E. Zoiros, and M. J. Connelly, “Semiconductor optical amplifier pattern effect suppression using optical notch filtering,” J. Eng. Sci. Tech. Rev. 9(4), 198–201 (2016).
  19. G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25(11), 2297–2306 (1989).
    [Crossref]

2018 (1)

2017 (3)

2016 (1)

Z. V. Rizou, K. E. Zoiros, and M. J. Connelly, “Semiconductor optical amplifier pattern effect suppression using optical notch filtering,” J. Eng. Sci. Tech. Rev. 9(4), 198–201 (2016).

2015 (1)

1989 (1)

G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25(11), 2297–2306 (1989).
[Crossref]

Agrawal, G. P.

G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25(11), 2297–2306 (1989).
[Crossref]

Agustin, M.

Barry, L. P.

S. P. Duill, P. Landais, and L. P. Barry, “Estimation of the performance improvement of pre-amplified PAM4 systems when using multi-section semiconductor optical amplifiers,” Appl. Sci. (Basel) 7(9), 908 (2017).
[Crossref]

Caspar, C.

Chen, H. Y.

Chen, J.

Chen, W.

Chen, Y. K.

Connelly, M. J.

Z. V. Rizou, K. E. Zoiros, and M. J. Connelly, “Semiconductor optical amplifier pattern effect suppression using optical notch filtering,” J. Eng. Sci. Tech. Rev. 9(4), 198–201 (2016).

Duill, S. P.

S. P. Duill, P. Landais, and L. P. Barry, “Estimation of the performance improvement of pre-amplified PAM4 systems when using multi-section semiconductor optical amplifiers,” Appl. Sci. (Basel) 7(9), 908 (2017).
[Crossref]

El-Fiky, E.

Freund, R.

Gao, Y.

Gui, T.

Hu, W.

Jungnickel, V.

Kaneda, N.

Kottke, C.

Kropp, J. R.

Landais, P.

S. P. Duill, P. Landais, and L. P. Barry, “Estimation of the performance improvement of pre-amplified PAM4 systems when using multi-section semiconductor optical amplifiers,” Appl. Sci. (Basel) 7(9), 908 (2017).
[Crossref]

Lau, A. P. T.

Ledentsov, N.

Lee, J.

Lu, C.

Man, J.

Morsy-Osman, M.

Olsson, N. A.

G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25(11), 2297–2306 (1989).
[Crossref]

Plant, D. V.

Rizou, Z. V.

Z. V. Rizou, K. E. Zoiros, and M. J. Connelly, “Semiconductor optical amplifier pattern effect suppression using optical notch filtering,” J. Eng. Sci. Tech. Rev. 9(4), 198–201 (2016).

Tao, L.

Xin, H.

Yi, L.

Zeng, L.

Zhang, K.

Zhong, K.

Zhou, X.

Zhuge, Q.

Zoiros, K. E.

Z. V. Rizou, K. E. Zoiros, and M. J. Connelly, “Semiconductor optical amplifier pattern effect suppression using optical notch filtering,” J. Eng. Sci. Tech. Rev. 9(4), 198–201 (2016).

Appl. Sci. (Basel) (1)

S. P. Duill, P. Landais, and L. P. Barry, “Estimation of the performance improvement of pre-amplified PAM4 systems when using multi-section semiconductor optical amplifiers,” Appl. Sci. (Basel) 7(9), 908 (2017).
[Crossref]

IEEE J. Quantum Electron. (1)

G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25(11), 2297–2306 (1989).
[Crossref]

J. Eng. Sci. Tech. Rev. (1)

Z. V. Rizou, K. E. Zoiros, and M. J. Connelly, “Semiconductor optical amplifier pattern effect suppression using optical notch filtering,” J. Eng. Sci. Tech. Rev. 9(4), 198–201 (2016).

J. Lightwave Technol. (1)

Opt. Express (3)

Other (12)

J. Zhang, J. Wey, and J. Yu, “Experimental demonstration of unequally spaced PAM-4 signal to improve receiver sensitivity to 50-gbps PON with power-dependent noise distribution,” in Optical Fiber communications conference (OFC) (2018), paper M2B.3.

P. Miguelez, “What applications are driving higher capacity in access,” in Optical Fiber communications conference (OFC) (2018), paper M2B.1.

K. Zhang, Q. Zhuge, H. Xin, Z. Xing, M. Xiang, S. Fan, L. Yi, W. Hu, and D. Plant, “Demonstration of 50Gb/s/λ symmetric PAM4 TDM-PON with 10G-class optics and DSP-free ONUs in the O-band,” in Optical Fiber communications conference (OFC) (2018), paper M1B.5.

J. Shi, J. Zhang, X. Li, N. Chi, G. Chang, and J. Yu, “112 Gb/s/lamda CAP signals transmission over 480km in IM-DD system,” in Optical Fiber communications conference (OFC) (2018), paper W1J.5.

M. Zhu, J. Zhang, H. Ying, X. Li, M. Luo, Y. Song, F. Li, X. Huang, X. Yi, and K. Qiu, 56-Gb/s optical SSB PAM-4 transmission over 800-km SSMF using DDMZM transmitter and simplified direct detection Kramers-Kronig receiver,” in Optical Fiber communications conference (OFC) (2018), paper M2C.5.

Z. Xu, M. O’Sullivan, and R. Hui, “Spectral-efficient OOFDM system using compatible SSB modulation with a simple dual-electrode MZM,” in Optical Fiber communications conference (OFC) (2010), paper OMR2.

S. Fan, Q. Zhuge, Z. Xing, K. Zhang, T. M. Hoang, M. Morsy-Osman, M. Y. Sowailem, Y. Li, J. Wu, and D. V. Plant, “264 Gb/s twin-SSB-KK direct detection transmission enabled by MIMO processing,” in Optical Fiber communications conference (OFC) (2018), paper W4E.5.

J. Lee, N. Kaneda, and Y. Chen, “112-Gbit/s intensity-modulation direct-detection vestigial-sideband PAM4 transmission over an 80-km SSMF link,” in Proceedings of European conference on optical communications (ECOC) (2016), paper M.2.D.3.

M. Presi, G. Cossu, G. Contestabile, E. Ciaramella, C. Antonelli, A. Mecozzi, and M. Shtaif, “Transmission in 125-km SMF with 3.9 bit/s/Hz spectral efficiency using a single-drive MZM and a direct-detection Kramers-Kronig receiver without optical CD compensation,” in Optical Fiber communications conference (OFC) (2018), paper Tu2D.3.

Z. Xing, D. Patel, T. Hoang, M. Qiu, R. Li, E. Fiky, M. Xiang, and D. Plant, “100Gb/s 16-QAM Transmission over 80 km SSMF using a silicon photonic modulator enabled VSB-IM/DD system,” in Optical Fiber communications conference (OFC) (2018), paper M2C.7.

N. Diamantopoulos, W. Kobayashi, H. Nishi, K. Takeda, T. Kakitsuka, and S. Matsuo, “56-Gb/s VSB-PAM-4 over 80-km using 1550-nm EA-DFB laser and reduced-complexity nonlinear equalization,” in Proceedings of European conference on optical communications (ECOC) (2017), paper W.4.P2.SC5.5.
[Crossref]

R. Bonk, “SOA for future PONs,” in Optical Fiber communications conference (OFC) (2018), paper Tu2B.4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Experimental setup of a SOA-based VSB-DD transmission.
Fig. 2
Fig. 2 SOA gain as a function of input power.
Fig. 3
Fig. 3 Comparison of linear region and non-linear region: (a) Optical spectrum, (b) PAM4 pulse shape and (c) PAM4 eye diagram.
Fig. 4
Fig. 4 (a) The optical spectra of USB and LSB;(b) Histograms of received PAM4 signal after equalization of USB and LSB.
Fig. 5
Fig. 5 (a) Eyediagrams of BtB (@ROP = −6dBm), 40km (@ROP = −6dBm) and 80km (@ROP = −1.9dBm). (b)~(d): BER curves of USB and LSB under BtB, 40km and 80km cases.
Fig. 6
Fig. 6 (a) The BER performance with FFE or Volterra equalizer and (b) the BER curves of USB versus redundant bandwidth at BtB, 40km and 80km.
Fig. 7
Fig. 7 (a) The optical spectrum of filters with different roll-off factors, (b) the BER curves under differetn roll-off factors at USB and LSB BtB case, and (c) the BER curves under different roll-off at BtB, 40km and 80km cases.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ υ out (τ)= β( G 0 1) P out (τ) 4π G 0 E sat .exp( U in (τ) E sat ).
G(τ)= G 0 G 0 ( G 0 1)exp( u in (τ)/ E sat ) .
G 1 =G(-)= G 0 .
G 2 =G()= G 0 G 0 ( G 0 1)exp( E in / E sat ) .

Metrics