Abstract

A CMOS-compatible plasmonic TE-pass polarizer capable of working in the O, E, S, C, L, and U bands is numerically analyzed. The device is based on an integrated hybrid plasmonic waveguide (HPW) with a segmented metal design. The segmented metal will avoid the propagation of the TM mode, confined in the slot of the HPW, while the TE fundamental mode will pass. The TE mode is not affected by the metal segmentation since it is confined in the core of the HPW. The concept of the segmented metal can be exploited in a plasmonic circuit with HPWs as the connecting waveguides between parts of the circuit and in a silicon photonics circuit with strip or slab waveguides connecting the different parts of the circuit. Using 3D FDTD simulations, it is shown that for a length of 5.5 μm the polarization extinction ratios are better than 20 dB and the insertion losses are less than 1.7 dB over all the optical communication bands.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
CMOS compatible horizontal nanoplasmonic slot waveguides TE-pass polarizer on silicon-on-insulator platform

Ying Huang, Shiyang Zhu, Huijuan Zhang, Tsung-Yang Liow, and Guo-Qiang Lo
Opt. Express 21(10) 12790-12796 (2013)

CMOS-compatible hybrid bi-metallic TE/TM-pass polarizers based on ITO and ZrN

Ahmed F. Kandeel, Mohamed Farhat O. Hameed, Hamdy AbdElHamid, and S. S. A. Obayya
Appl. Opt. 58(24) 6684-6692 (2019)

Broadband TE-pass slot waveguide polarizer using an asymmetrical directional coupler

Bin Ni and Jinbiao Xiao
Appl. Opt. 57(15) 4032-4038 (2018)

References

  • View by:
  • |
  • |
  • |

  1. N. Abadía, X. Dai, Q. Lu, W.-H. Guo, D. Patel, D. V. Plant, and J. F. Donegan, “Highly fabrication tolerant InP based polarization beam splitter based on p-i-n structure,” Opt. Express 25(9), 10070–10077 (2017).
    [Crossref] [PubMed]
  2. N. Abadia, Xiangyang Dai, Q. Lu, W.-H. Guo, E. El-Fiky, D. V. Plant, and J. F. Donegan, “Novel polarization beam splitter based on p-i-n structure for an indium phosphide platform,” in 2017 19th International Conference on Transparent Optical Networks (ICTON, 2017), paper Tu.A5.1.
    [Crossref]
  3. Y. Huang, S. Zhu, H. Zhang, T.-Y. Liow, and G.-Q. Lo, “CMOS compatible horizontal nanoplasmonic slot waveguides TE-pass polarizer on silicon-on-insulator platform,” Opt. Express 21(10), 12790–12796 (2013).
    [Crossref] [PubMed]
  4. K. Takiguchi, K. Okamoto, S. Suzuki, and Y. Ohmori, “Planar lightwave circuit optical dispersion equalizer,” IEEE Photonics Technol. Lett. 6(1), 86–88 (1994).
    [Crossref]
  5. C. R. Doerr, K. W. Chang, L. W. Stulz, R. Pafchek, Q. Guo, L. Buhl, L. Gomez, M. Cappuzzo, and G. Bogert, “Arrayed waveguide dynamic gain equalization filter with reduced insertion loss and increased dynamic range,” IEEE Photonics Technol. Lett. 13(4), 329–331 (2001).
    [Crossref]
  6. K. Takiguchi, H. Takahashi, and T. Shibata, “Tunable chromatic dispersion and dispersion slope compensator using a planar lightwave circuit lattice-form filter,” Opt. Lett. 33(11), 1243–1245 (2008).
    [Crossref] [PubMed]
  7. K. Takiguchi, K. Jinguji, K. Okamoto, and Y. Ohmori, “Variable Group-Delay Dispersion equalizer using lattice-form programmable optical filter on planar lightwave circuit,” IEEE J. Sel. Top. Quantum Electron. 2(2), 270–276 (1996).
    [Crossref]
  8. J. S. Orcutt, B. Moss, C. Sun, J. Leu, M. Georgas, J. Shainline, E. Zgraggen, H. Li, J. Sun, M. Weaver, S. Urošević, M. Popović, R. J. Ram, and V. Stojanović, “Open foundry platform for high-performance electronic-photonic integration,” Opt. Express 20(11), 12222–12232 (2012).
    [Crossref] [PubMed]
  9. D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
    [Crossref]
  10. N. Abadía, T. Bernadin, P. Chaisakul, S. Olivier, D. Marris-Morini, R. Espiau de Lamaëstre, J. C. Weeber, and L. Vivien, “Low-Power consumption Franz-Keldysh effect plasmonic modulator,” Opt. Express 22(9), 11236–11243 (2014).
    [Crossref] [PubMed]
  11. N. Abadía, S. Olivier, D. Marris-Morini, L. Vivien, T. Bernadin, and J. C. Weeber, “A CMOS-compatible Franz-Keldysh effect plasmonic modulator,” in 2014 11th International Conference on Group IV Photonics (GFP, 2014), pp. 63–64.
    [Crossref]
  12. M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15(20), 12949–12958 (2007).
    [Crossref] [PubMed]
  13. Y. Xiong, D. X. Xu, J. H. Schmid, P. Cheben, and W. N. Ye, “High extinction ratio and broadband silicon TE-pass polarizer using subwavelength grating index engineering,” IEEE Photonics J. 7(5), 7802107 (2015).
    [Crossref]
  14. G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: Beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
    [Crossref] [PubMed]
  15. M. Alam, J. S. Aitchsion, and M. Mojahedi, “Compact hybrid TM-pass polarizer for silicon-on-insulator platform,” Appl. Opt. 50(15), 2294–2298 (2011).
    [Crossref] [PubMed]
  16. Y. Xu and J. Xiao, “A compact TE-pass polarizer for silicon-based slot waveguides,” IEEE Photonics Technol. Lett. 27(19), 2071–2074 (2015).
    [Crossref]
  17. Z. Ying, G. Wang, X. Zhang, Y. Huang, H.-P. Ho, and Y. Zhang, “Ultracompact TE-pass polarizer based on a hybrid plasmonic waveguide,” IEEE Photonics Technol. Lett. 27(2), 201–204 (2015).
    [Crossref]
  18. X. Guan, P. Chen, S. Chen, P. Xu, Y. Shi, and D. Dai, “Low-loss ultracompact transverse-magnetic-pass polarizer with a silicon subwavelength grating waveguide,” Opt. Lett. 39(15), 4514–4517 (2014).
    [Crossref] [PubMed]
  19. X. Sun, M. Z. Alam, S. J. Wagner, J. S. Aitchison, and M. Mojahedi, “Experimental demonstration of a hybrid plasmonic transverse electric pass polarizer for a silicon-on-insulator platform,” Opt. Lett. 37(23), 4814–4816 (2012).
    [Crossref] [PubMed]
  20. M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “Compact and silicon-on-insulator-compatible hybrid plasmonic TE-pass polarizer,” Opt. Lett. 37(1), 55–57 (2012).
    [Crossref] [PubMed]
  21. X. Guan, P. Xu, Y. Shi, and D. Dai, “Ultra-compact broadband TM-pass polarizer using a silicon hybrid plasmonic waveguide grating,” in Asia Communications and Photonics Conference (2013), pp. 11–13.
    [Crossref]
  22. T. Davis, D. Gómez, and A. Roberts, “Plasmonic circuits for manipulating optical information,” Nanophotonics 6, 543–559 (2017).
  23. T. K. Ng, M. Z. M. Khan, A. Al-Jabr, and B. S. Ooi, “Analysis of CMOS compatible Cu-based TM-pass optical polarizer,” IEEE Photonics Technol. Lett. 24(9), 724–726 (2012).
    [Crossref]
  24. S. I. Azzam and S. S. A. Obayya, “Titanium nitride-based CMOS-compatible TE-pass and TM-pass plasmonic polarizers,” IEEE Photonics Technol. Lett. 28(3), 367–370 (2016).
    [Crossref]
  25. Y. Xu and J. Xiao, “Design and numerical study of a compact, broadband and low-loss TE-pass polarizer using transparent conducting oxides,” Opt. Express 24(14), 15373–15382 (2016).
    [Crossref] [PubMed]
  26. T. Huang, “TE-pass polarizer based on epsilon-near-zero material embedded in a slot waveguide,” IEEE Photonics Technol. Lett. 28(20), 2145–2148 (2016).
    [Crossref]
  27. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
    [Crossref]
  28. M. Fukuda, H. Sakai, T. Mano, Y. Kimura, M. Ota, M. Fukuhara, T. Aihara, Y. Ishii, and T. Ishiyama, “Plasmonic and electronic device integrated circuits and their characteristics,” in 2015 45th European Solid State Device Research Conference (ESSDERC, 2015), pp. 105–108.
    [Crossref]
  29. A. Emboras, A. Najar, S. Nambiar, P. Grosse, E. Augendre, C. Leroux, B. de Salvo, and R. E. de Lamaestre, “MNOS stack for reliable, low optical loss, Cu based CMOS plasmonic devices,” Opt. Express 20(13), 13612–13621 (2012).
    [Crossref] [PubMed]
  30. I. Lumerical Solutions, “Lumerical Solutions, Inc. http://www.lumerical.com ,” http://www.lumerical.com .
  31. S. Maier, Plasmonics: Fundamentals and applications (Springer, 2007).
  32. M. G. Saber, N. Abadía, and D. V. Plant, “CMOS compatible all-silicon TM pass polarizer based on highly doped silicon waveguide,” Opt. Express 26(16), 20878–20887 (2018).
    [Crossref] [PubMed]

2018 (1)

2017 (2)

2016 (4)

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

S. I. Azzam and S. S. A. Obayya, “Titanium nitride-based CMOS-compatible TE-pass and TM-pass plasmonic polarizers,” IEEE Photonics Technol. Lett. 28(3), 367–370 (2016).
[Crossref]

T. Huang, “TE-pass polarizer based on epsilon-near-zero material embedded in a slot waveguide,” IEEE Photonics Technol. Lett. 28(20), 2145–2148 (2016).
[Crossref]

Y. Xu and J. Xiao, “Design and numerical study of a compact, broadband and low-loss TE-pass polarizer using transparent conducting oxides,” Opt. Express 24(14), 15373–15382 (2016).
[Crossref] [PubMed]

2015 (3)

Y. Xiong, D. X. Xu, J. H. Schmid, P. Cheben, and W. N. Ye, “High extinction ratio and broadband silicon TE-pass polarizer using subwavelength grating index engineering,” IEEE Photonics J. 7(5), 7802107 (2015).
[Crossref]

Y. Xu and J. Xiao, “A compact TE-pass polarizer for silicon-based slot waveguides,” IEEE Photonics Technol. Lett. 27(19), 2071–2074 (2015).
[Crossref]

Z. Ying, G. Wang, X. Zhang, Y. Huang, H.-P. Ho, and Y. Zhang, “Ultracompact TE-pass polarizer based on a hybrid plasmonic waveguide,” IEEE Photonics Technol. Lett. 27(2), 201–204 (2015).
[Crossref]

2014 (2)

2013 (2)

2012 (5)

2011 (1)

2008 (2)

K. Takiguchi, H. Takahashi, and T. Shibata, “Tunable chromatic dispersion and dispersion slope compensator using a planar lightwave circuit lattice-form filter,” Opt. Lett. 33(11), 1243–1245 (2008).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

2007 (1)

2001 (1)

C. R. Doerr, K. W. Chang, L. W. Stulz, R. Pafchek, Q. Guo, L. Buhl, L. Gomez, M. Cappuzzo, and G. Bogert, “Arrayed waveguide dynamic gain equalization filter with reduced insertion loss and increased dynamic range,” IEEE Photonics Technol. Lett. 13(4), 329–331 (2001).
[Crossref]

1996 (1)

K. Takiguchi, K. Jinguji, K. Okamoto, and Y. Ohmori, “Variable Group-Delay Dispersion equalizer using lattice-form programmable optical filter on planar lightwave circuit,” IEEE J. Sel. Top. Quantum Electron. 2(2), 270–276 (1996).
[Crossref]

1994 (1)

K. Takiguchi, K. Okamoto, S. Suzuki, and Y. Ohmori, “Planar lightwave circuit optical dispersion equalizer,” IEEE Photonics Technol. Lett. 6(1), 86–88 (1994).
[Crossref]

Abadía, N.

Aitchison, J. S.

Aitchsion, J. S.

Alam, M.

Alam, M. Z.

Al-Jabr, A.

T. K. Ng, M. Z. M. Khan, A. Al-Jabr, and B. S. Ooi, “Analysis of CMOS compatible Cu-based TM-pass optical polarizer,” IEEE Photonics Technol. Lett. 24(9), 724–726 (2012).
[Crossref]

Augendre, E.

Azzam, S. I.

S. I. Azzam and S. S. A. Obayya, “Titanium nitride-based CMOS-compatible TE-pass and TM-pass plasmonic polarizers,” IEEE Photonics Technol. Lett. 28(3), 367–370 (2016).
[Crossref]

Bernadin, T.

Boeuf, F.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Bogert, G.

C. R. Doerr, K. W. Chang, L. W. Stulz, R. Pafchek, Q. Guo, L. Buhl, L. Gomez, M. Cappuzzo, and G. Bogert, “Arrayed waveguide dynamic gain equalization filter with reduced insertion loss and increased dynamic range,” IEEE Photonics Technol. Lett. 13(4), 329–331 (2001).
[Crossref]

Boltasseva, A.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: Beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Bowers, J. E.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Buhl, L.

C. R. Doerr, K. W. Chang, L. W. Stulz, R. Pafchek, Q. Guo, L. Buhl, L. Gomez, M. Cappuzzo, and G. Bogert, “Arrayed waveguide dynamic gain equalization filter with reduced insertion loss and increased dynamic range,” IEEE Photonics Technol. Lett. 13(4), 329–331 (2001).
[Crossref]

Cappuzzo, M.

C. R. Doerr, K. W. Chang, L. W. Stulz, R. Pafchek, Q. Guo, L. Buhl, L. Gomez, M. Cappuzzo, and G. Bogert, “Arrayed waveguide dynamic gain equalization filter with reduced insertion loss and increased dynamic range,” IEEE Photonics Technol. Lett. 13(4), 329–331 (2001).
[Crossref]

Cassan, E.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Chaisakul, P.

Chang, K. W.

C. R. Doerr, K. W. Chang, L. W. Stulz, R. Pafchek, Q. Guo, L. Buhl, L. Gomez, M. Cappuzzo, and G. Bogert, “Arrayed waveguide dynamic gain equalization filter with reduced insertion loss and increased dynamic range,” IEEE Photonics Technol. Lett. 13(4), 329–331 (2001).
[Crossref]

Cheben, P.

Y. Xiong, D. X. Xu, J. H. Schmid, P. Cheben, and W. N. Ye, “High extinction ratio and broadband silicon TE-pass polarizer using subwavelength grating index engineering,” IEEE Photonics J. 7(5), 7802107 (2015).
[Crossref]

Chen, P.

Chen, S.

Dai, D.

X. Guan, P. Chen, S. Chen, P. Xu, Y. Shi, and D. Dai, “Low-loss ultracompact transverse-magnetic-pass polarizer with a silicon subwavelength grating waveguide,” Opt. Lett. 39(15), 4514–4517 (2014).
[Crossref] [PubMed]

X. Guan, P. Xu, Y. Shi, and D. Dai, “Ultra-compact broadband TM-pass polarizer using a silicon hybrid plasmonic waveguide grating,” in Asia Communications and Photonics Conference (2013), pp. 11–13.
[Crossref]

Dai, X.

Davis, T.

T. Davis, D. Gómez, and A. Roberts, “Plasmonic circuits for manipulating optical information,” Nanophotonics 6, 543–559 (2017).

de Lamaestre, R. E.

de Salvo, B.

Doerr, C. R.

C. R. Doerr, K. W. Chang, L. W. Stulz, R. Pafchek, Q. Guo, L. Buhl, L. Gomez, M. Cappuzzo, and G. Bogert, “Arrayed waveguide dynamic gain equalization filter with reduced insertion loss and increased dynamic range,” IEEE Photonics Technol. Lett. 13(4), 329–331 (2001).
[Crossref]

Donegan, J. F.

Emboras, A.

Espiau de Lamaëstre, R.

Fédéli, J.-M.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Foster, M. A.

Gaeta, A. L.

Genov, D. A.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Georgas, M.

Gomez, L.

C. R. Doerr, K. W. Chang, L. W. Stulz, R. Pafchek, Q. Guo, L. Buhl, L. Gomez, M. Cappuzzo, and G. Bogert, “Arrayed waveguide dynamic gain equalization filter with reduced insertion loss and increased dynamic range,” IEEE Photonics Technol. Lett. 13(4), 329–331 (2001).
[Crossref]

Gómez, D.

T. Davis, D. Gómez, and A. Roberts, “Plasmonic circuits for manipulating optical information,” Nanophotonics 6, 543–559 (2017).

Grosse, P.

Guan, X.

X. Guan, P. Chen, S. Chen, P. Xu, Y. Shi, and D. Dai, “Low-loss ultracompact transverse-magnetic-pass polarizer with a silicon subwavelength grating waveguide,” Opt. Lett. 39(15), 4514–4517 (2014).
[Crossref] [PubMed]

X. Guan, P. Xu, Y. Shi, and D. Dai, “Ultra-compact broadband TM-pass polarizer using a silicon hybrid plasmonic waveguide grating,” in Asia Communications and Photonics Conference (2013), pp. 11–13.
[Crossref]

Guo, Q.

C. R. Doerr, K. W. Chang, L. W. Stulz, R. Pafchek, Q. Guo, L. Buhl, L. Gomez, M. Cappuzzo, and G. Bogert, “Arrayed waveguide dynamic gain equalization filter with reduced insertion loss and increased dynamic range,” IEEE Photonics Technol. Lett. 13(4), 329–331 (2001).
[Crossref]

Guo, W.-H.

Hartmann, J.-M.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Ho, H.-P.

Z. Ying, G. Wang, X. Zhang, Y. Huang, H.-P. Ho, and Y. Zhang, “Ultracompact TE-pass polarizer based on a hybrid plasmonic waveguide,” IEEE Photonics Technol. Lett. 27(2), 201–204 (2015).
[Crossref]

Huang, T.

T. Huang, “TE-pass polarizer based on epsilon-near-zero material embedded in a slot waveguide,” IEEE Photonics Technol. Lett. 28(20), 2145–2148 (2016).
[Crossref]

Huang, Y.

Z. Ying, G. Wang, X. Zhang, Y. Huang, H.-P. Ho, and Y. Zhang, “Ultracompact TE-pass polarizer based on a hybrid plasmonic waveguide,” IEEE Photonics Technol. Lett. 27(2), 201–204 (2015).
[Crossref]

Y. Huang, S. Zhu, H. Zhang, T.-Y. Liow, and G.-Q. Lo, “CMOS compatible horizontal nanoplasmonic slot waveguides TE-pass polarizer on silicon-on-insulator platform,” Opt. Express 21(10), 12790–12796 (2013).
[Crossref] [PubMed]

Jinguji, K.

K. Takiguchi, K. Jinguji, K. Okamoto, and Y. Ohmori, “Variable Group-Delay Dispersion equalizer using lattice-form programmable optical filter on planar lightwave circuit,” IEEE J. Sel. Top. Quantum Electron. 2(2), 270–276 (1996).
[Crossref]

Khan, M. Z. M.

T. K. Ng, M. Z. M. Khan, A. Al-Jabr, and B. S. Ooi, “Analysis of CMOS compatible Cu-based TM-pass optical polarizer,” IEEE Photonics Technol. Lett. 24(9), 724–726 (2012).
[Crossref]

Komljenovic, T.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Leroux, C.

Leu, J.

Li, H.

Liow, T.-Y.

Lipson, M.

Lo, G.-Q.

Lu, Q.

Marris-Morini, D.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

N. Abadía, T. Bernadin, P. Chaisakul, S. Olivier, D. Marris-Morini, R. Espiau de Lamaëstre, J. C. Weeber, and L. Vivien, “Low-Power consumption Franz-Keldysh effect plasmonic modulator,” Opt. Express 22(9), 11236–11243 (2014).
[Crossref] [PubMed]

Mashanovich, G. Z.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Mojahedi, M.

Moss, B.

Naik, G. V.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: Beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Najar, A.

Nambiar, S.

Nedeljkovic, M.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Ng, T. K.

T. K. Ng, M. Z. M. Khan, A. Al-Jabr, and B. S. Ooi, “Analysis of CMOS compatible Cu-based TM-pass optical polarizer,” IEEE Photonics Technol. Lett. 24(9), 724–726 (2012).
[Crossref]

O’Brien, P.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Obayya, S. S. A.

S. I. Azzam and S. S. A. Obayya, “Titanium nitride-based CMOS-compatible TE-pass and TM-pass plasmonic polarizers,” IEEE Photonics Technol. Lett. 28(3), 367–370 (2016).
[Crossref]

Ohmori, Y.

K. Takiguchi, K. Jinguji, K. Okamoto, and Y. Ohmori, “Variable Group-Delay Dispersion equalizer using lattice-form programmable optical filter on planar lightwave circuit,” IEEE J. Sel. Top. Quantum Electron. 2(2), 270–276 (1996).
[Crossref]

K. Takiguchi, K. Okamoto, S. Suzuki, and Y. Ohmori, “Planar lightwave circuit optical dispersion equalizer,” IEEE Photonics Technol. Lett. 6(1), 86–88 (1994).
[Crossref]

Okamoto, K.

K. Takiguchi, K. Jinguji, K. Okamoto, and Y. Ohmori, “Variable Group-Delay Dispersion equalizer using lattice-form programmable optical filter on planar lightwave circuit,” IEEE J. Sel. Top. Quantum Electron. 2(2), 270–276 (1996).
[Crossref]

K. Takiguchi, K. Okamoto, S. Suzuki, and Y. Ohmori, “Planar lightwave circuit optical dispersion equalizer,” IEEE Photonics Technol. Lett. 6(1), 86–88 (1994).
[Crossref]

Olivier, S.

Ooi, B. S.

T. K. Ng, M. Z. M. Khan, A. Al-Jabr, and B. S. Ooi, “Analysis of CMOS compatible Cu-based TM-pass optical polarizer,” IEEE Photonics Technol. Lett. 24(9), 724–726 (2012).
[Crossref]

Orcutt, J. S.

Oulton, R. F.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Pafchek, R.

C. R. Doerr, K. W. Chang, L. W. Stulz, R. Pafchek, Q. Guo, L. Buhl, L. Gomez, M. Cappuzzo, and G. Bogert, “Arrayed waveguide dynamic gain equalization filter with reduced insertion loss and increased dynamic range,” IEEE Photonics Technol. Lett. 13(4), 329–331 (2001).
[Crossref]

Patel, D.

Pile, D. F. P.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Plant, D. V.

Popovic, M.

Ram, R. J.

Reed, G. T.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Roberts, A.

T. Davis, D. Gómez, and A. Roberts, “Plasmonic circuits for manipulating optical information,” Nanophotonics 6, 543–559 (2017).

Saber, M. G.

Salem, R.

Schmid, J. H.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Y. Xiong, D. X. Xu, J. H. Schmid, P. Cheben, and W. N. Ye, “High extinction ratio and broadband silicon TE-pass polarizer using subwavelength grating index engineering,” IEEE Photonics J. 7(5), 7802107 (2015).
[Crossref]

Shainline, J.

Shalaev, V. M.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: Beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Shi, Y.

X. Guan, P. Chen, S. Chen, P. Xu, Y. Shi, and D. Dai, “Low-loss ultracompact transverse-magnetic-pass polarizer with a silicon subwavelength grating waveguide,” Opt. Lett. 39(15), 4514–4517 (2014).
[Crossref] [PubMed]

X. Guan, P. Xu, Y. Shi, and D. Dai, “Ultra-compact broadband TM-pass polarizer using a silicon hybrid plasmonic waveguide grating,” in Asia Communications and Photonics Conference (2013), pp. 11–13.
[Crossref]

Shibata, T.

Sorger, V. J.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Stojanovic, V.

Stulz, L. W.

C. R. Doerr, K. W. Chang, L. W. Stulz, R. Pafchek, Q. Guo, L. Buhl, L. Gomez, M. Cappuzzo, and G. Bogert, “Arrayed waveguide dynamic gain equalization filter with reduced insertion loss and increased dynamic range,” IEEE Photonics Technol. Lett. 13(4), 329–331 (2001).
[Crossref]

Sun, C.

Sun, J.

Sun, X.

Suzuki, S.

K. Takiguchi, K. Okamoto, S. Suzuki, and Y. Ohmori, “Planar lightwave circuit optical dispersion equalizer,” IEEE Photonics Technol. Lett. 6(1), 86–88 (1994).
[Crossref]

Takahashi, H.

Takiguchi, K.

K. Takiguchi, H. Takahashi, and T. Shibata, “Tunable chromatic dispersion and dispersion slope compensator using a planar lightwave circuit lattice-form filter,” Opt. Lett. 33(11), 1243–1245 (2008).
[Crossref] [PubMed]

K. Takiguchi, K. Jinguji, K. Okamoto, and Y. Ohmori, “Variable Group-Delay Dispersion equalizer using lattice-form programmable optical filter on planar lightwave circuit,” IEEE J. Sel. Top. Quantum Electron. 2(2), 270–276 (1996).
[Crossref]

K. Takiguchi, K. Okamoto, S. Suzuki, and Y. Ohmori, “Planar lightwave circuit optical dispersion equalizer,” IEEE Photonics Technol. Lett. 6(1), 86–88 (1994).
[Crossref]

Thomson, D.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Turner, A. C.

Uroševic, S.

Virot, L.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Vivien, L.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

N. Abadía, T. Bernadin, P. Chaisakul, S. Olivier, D. Marris-Morini, R. Espiau de Lamaëstre, J. C. Weeber, and L. Vivien, “Low-Power consumption Franz-Keldysh effect plasmonic modulator,” Opt. Express 22(9), 11236–11243 (2014).
[Crossref] [PubMed]

Wagner, S. J.

Wang, G.

Z. Ying, G. Wang, X. Zhang, Y. Huang, H.-P. Ho, and Y. Zhang, “Ultracompact TE-pass polarizer based on a hybrid plasmonic waveguide,” IEEE Photonics Technol. Lett. 27(2), 201–204 (2015).
[Crossref]

Weaver, M.

Weeber, J. C.

Xiao, J.

Y. Xu and J. Xiao, “Design and numerical study of a compact, broadband and low-loss TE-pass polarizer using transparent conducting oxides,” Opt. Express 24(14), 15373–15382 (2016).
[Crossref] [PubMed]

Y. Xu and J. Xiao, “A compact TE-pass polarizer for silicon-based slot waveguides,” IEEE Photonics Technol. Lett. 27(19), 2071–2074 (2015).
[Crossref]

Xiong, Y.

Y. Xiong, D. X. Xu, J. H. Schmid, P. Cheben, and W. N. Ye, “High extinction ratio and broadband silicon TE-pass polarizer using subwavelength grating index engineering,” IEEE Photonics J. 7(5), 7802107 (2015).
[Crossref]

Xu, D. X.

Y. Xiong, D. X. Xu, J. H. Schmid, P. Cheben, and W. N. Ye, “High extinction ratio and broadband silicon TE-pass polarizer using subwavelength grating index engineering,” IEEE Photonics J. 7(5), 7802107 (2015).
[Crossref]

Xu, D.-X.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Xu, P.

X. Guan, P. Chen, S. Chen, P. Xu, Y. Shi, and D. Dai, “Low-loss ultracompact transverse-magnetic-pass polarizer with a silicon subwavelength grating waveguide,” Opt. Lett. 39(15), 4514–4517 (2014).
[Crossref] [PubMed]

X. Guan, P. Xu, Y. Shi, and D. Dai, “Ultra-compact broadband TM-pass polarizer using a silicon hybrid plasmonic waveguide grating,” in Asia Communications and Photonics Conference (2013), pp. 11–13.
[Crossref]

Xu, Y.

Y. Xu and J. Xiao, “Design and numerical study of a compact, broadband and low-loss TE-pass polarizer using transparent conducting oxides,” Opt. Express 24(14), 15373–15382 (2016).
[Crossref] [PubMed]

Y. Xu and J. Xiao, “A compact TE-pass polarizer for silicon-based slot waveguides,” IEEE Photonics Technol. Lett. 27(19), 2071–2074 (2015).
[Crossref]

Ye, W. N.

Y. Xiong, D. X. Xu, J. H. Schmid, P. Cheben, and W. N. Ye, “High extinction ratio and broadband silicon TE-pass polarizer using subwavelength grating index engineering,” IEEE Photonics J. 7(5), 7802107 (2015).
[Crossref]

Ying, Z.

Z. Ying, G. Wang, X. Zhang, Y. Huang, H.-P. Ho, and Y. Zhang, “Ultracompact TE-pass polarizer based on a hybrid plasmonic waveguide,” IEEE Photonics Technol. Lett. 27(2), 201–204 (2015).
[Crossref]

Zgraggen, E.

Zhang, H.

Zhang, X.

Z. Ying, G. Wang, X. Zhang, Y. Huang, H.-P. Ho, and Y. Zhang, “Ultracompact TE-pass polarizer based on a hybrid plasmonic waveguide,” IEEE Photonics Technol. Lett. 27(2), 201–204 (2015).
[Crossref]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Zhang, Y.

Z. Ying, G. Wang, X. Zhang, Y. Huang, H.-P. Ho, and Y. Zhang, “Ultracompact TE-pass polarizer based on a hybrid plasmonic waveguide,” IEEE Photonics Technol. Lett. 27(2), 201–204 (2015).
[Crossref]

Zhu, S.

Zilkie, A.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Adv. Mater. (1)

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: Beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Appl. Opt. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

K. Takiguchi, K. Jinguji, K. Okamoto, and Y. Ohmori, “Variable Group-Delay Dispersion equalizer using lattice-form programmable optical filter on planar lightwave circuit,” IEEE J. Sel. Top. Quantum Electron. 2(2), 270–276 (1996).
[Crossref]

IEEE Photonics J. (1)

Y. Xiong, D. X. Xu, J. H. Schmid, P. Cheben, and W. N. Ye, “High extinction ratio and broadband silicon TE-pass polarizer using subwavelength grating index engineering,” IEEE Photonics J. 7(5), 7802107 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (7)

T. K. Ng, M. Z. M. Khan, A. Al-Jabr, and B. S. Ooi, “Analysis of CMOS compatible Cu-based TM-pass optical polarizer,” IEEE Photonics Technol. Lett. 24(9), 724–726 (2012).
[Crossref]

S. I. Azzam and S. S. A. Obayya, “Titanium nitride-based CMOS-compatible TE-pass and TM-pass plasmonic polarizers,” IEEE Photonics Technol. Lett. 28(3), 367–370 (2016).
[Crossref]

T. Huang, “TE-pass polarizer based on epsilon-near-zero material embedded in a slot waveguide,” IEEE Photonics Technol. Lett. 28(20), 2145–2148 (2016).
[Crossref]

K. Takiguchi, K. Okamoto, S. Suzuki, and Y. Ohmori, “Planar lightwave circuit optical dispersion equalizer,” IEEE Photonics Technol. Lett. 6(1), 86–88 (1994).
[Crossref]

C. R. Doerr, K. W. Chang, L. W. Stulz, R. Pafchek, Q. Guo, L. Buhl, L. Gomez, M. Cappuzzo, and G. Bogert, “Arrayed waveguide dynamic gain equalization filter with reduced insertion loss and increased dynamic range,” IEEE Photonics Technol. Lett. 13(4), 329–331 (2001).
[Crossref]

Y. Xu and J. Xiao, “A compact TE-pass polarizer for silicon-based slot waveguides,” IEEE Photonics Technol. Lett. 27(19), 2071–2074 (2015).
[Crossref]

Z. Ying, G. Wang, X. Zhang, Y. Huang, H.-P. Ho, and Y. Zhang, “Ultracompact TE-pass polarizer based on a hybrid plasmonic waveguide,” IEEE Photonics Technol. Lett. 27(2), 201–204 (2015).
[Crossref]

J. Opt. (1)

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Nanophotonics (1)

T. Davis, D. Gómez, and A. Roberts, “Plasmonic circuits for manipulating optical information,” Nanophotonics 6, 543–559 (2017).

Nat. Photonics (1)

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Opt. Express (8)

Y. Xu and J. Xiao, “Design and numerical study of a compact, broadband and low-loss TE-pass polarizer using transparent conducting oxides,” Opt. Express 24(14), 15373–15382 (2016).
[Crossref] [PubMed]

Y. Huang, S. Zhu, H. Zhang, T.-Y. Liow, and G.-Q. Lo, “CMOS compatible horizontal nanoplasmonic slot waveguides TE-pass polarizer on silicon-on-insulator platform,” Opt. Express 21(10), 12790–12796 (2013).
[Crossref] [PubMed]

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15(20), 12949–12958 (2007).
[Crossref] [PubMed]

A. Emboras, A. Najar, S. Nambiar, P. Grosse, E. Augendre, C. Leroux, B. de Salvo, and R. E. de Lamaestre, “MNOS stack for reliable, low optical loss, Cu based CMOS plasmonic devices,” Opt. Express 20(13), 13612–13621 (2012).
[Crossref] [PubMed]

M. G. Saber, N. Abadía, and D. V. Plant, “CMOS compatible all-silicon TM pass polarizer based on highly doped silicon waveguide,” Opt. Express 26(16), 20878–20887 (2018).
[Crossref] [PubMed]

N. Abadía, T. Bernadin, P. Chaisakul, S. Olivier, D. Marris-Morini, R. Espiau de Lamaëstre, J. C. Weeber, and L. Vivien, “Low-Power consumption Franz-Keldysh effect plasmonic modulator,” Opt. Express 22(9), 11236–11243 (2014).
[Crossref] [PubMed]

J. S. Orcutt, B. Moss, C. Sun, J. Leu, M. Georgas, J. Shainline, E. Zgraggen, H. Li, J. Sun, M. Weaver, S. Urošević, M. Popović, R. J. Ram, and V. Stojanović, “Open foundry platform for high-performance electronic-photonic integration,” Opt. Express 20(11), 12222–12232 (2012).
[Crossref] [PubMed]

N. Abadía, X. Dai, Q. Lu, W.-H. Guo, D. Patel, D. V. Plant, and J. F. Donegan, “Highly fabrication tolerant InP based polarization beam splitter based on p-i-n structure,” Opt. Express 25(9), 10070–10077 (2017).
[Crossref] [PubMed]

Opt. Lett. (4)

Other (6)

X. Guan, P. Xu, Y. Shi, and D. Dai, “Ultra-compact broadband TM-pass polarizer using a silicon hybrid plasmonic waveguide grating,” in Asia Communications and Photonics Conference (2013), pp. 11–13.
[Crossref]

N. Abadia, Xiangyang Dai, Q. Lu, W.-H. Guo, E. El-Fiky, D. V. Plant, and J. F. Donegan, “Novel polarization beam splitter based on p-i-n structure for an indium phosphide platform,” in 2017 19th International Conference on Transparent Optical Networks (ICTON, 2017), paper Tu.A5.1.
[Crossref]

N. Abadía, S. Olivier, D. Marris-Morini, L. Vivien, T. Bernadin, and J. C. Weeber, “A CMOS-compatible Franz-Keldysh effect plasmonic modulator,” in 2014 11th International Conference on Group IV Photonics (GFP, 2014), pp. 63–64.
[Crossref]

I. Lumerical Solutions, “Lumerical Solutions, Inc. http://www.lumerical.com ,” http://www.lumerical.com .

S. Maier, Plasmonics: Fundamentals and applications (Springer, 2007).

M. Fukuda, H. Sakai, T. Mano, Y. Kimura, M. Ota, M. Fukuhara, T. Aihara, Y. Ishii, and T. Ishiyama, “Plasmonic and electronic device integrated circuits and their characteristics,” in 2015 45th European Solid State Device Research Conference (ESSDERC, 2015), pp. 105–108.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Example of an electric field of the TE0 (a) and TM0 mode (b) in an HPW. The slot is made of SiO2. The TE0 mode is concentrated in the Si core while the TM0 mode is concentrated in the slot and the interface between the metal and the slot. The wavelength is 1550 nm.
Fig. 2
Fig. 2 Structure of the TE-pass polarizer. In (a) excited by a plasmonic waveguide. In (b) excited by a photonic waveguide.
Fig. 3
Fig. 3 The electric field of the TE0 mode passing through the TE-pass polarizer (a) in a plasmonic circuit. In (b), the electric field of the TM0 mode being filtered by the TE-pass polarizer. In (c), there is the electric field of the TE0 mode passing the TE-pass polarizer while in (d) the TM0 mode is filtered. The wavelength is 1550 nm.
Fig. 4
Fig. 4 Study of the FoM = Δαeffeff.TE for the different parameters of the HPW w, h and hgap with a SiO2 (a), Si3N4 (b), Ta (c) and Ti (d). Typical parameters for w, h and hgap are used.
Fig. 5
Fig. 5 Estimated polarization extinction ratio and insertion loss of a TE-pass polarizer with continues metal which consists of an HPW of length L. The dimensions of the HPW are w = 450 nm, h = 400 nm and hgap = 5 nm (SiO2). The wavelength is 1550 nm.
Fig. 6
Fig. 6 Estimation of the FoM = PER/IL of the TE-pass polarizer with a segmented metal of Tmetal (a) The wavelength is fixed to 1550 nm and the HPW have the optimized values. In (b) the spectrum of the TE-pass polarizer with L = 5.5 μm and Tmetal = 0.5 μm.
Fig. 7
Fig. 7 Filtering of TM1 (a) and TM2 (b) for the optimized TE-pass polarizer with w = 450 nm, h = 400 nm, hgap = 5 nm (SiO2), Tmetal = 0.5 μm, and L = 5.5 μm for 1550 nm.
Fig. 8
Fig. 8 Scanning w and h in 3D FDTD for hgap = 5 nm (SiO2), Tmetal = 0.5 μm, and L = 5.5 μm at 1550 nm. This scan is performed to know if the results are like the results in 2D represented in Fig. 4(a).
Fig. 9
Fig. 9 Modes supported by a Si strip waveguide of w = 450 nm and h = 400 nm. In (a) the electric field of TE0, in (b) the TM0 mode. TM1 in (c) and TM2 in (d).
Fig. 10
Fig. 10 Bandwidth of the TE-pass polarizer with segmented metal with the optimized values (a) and the same TE-pass polarizer with an HPW of continuous metal (b).
Fig. 11
Fig. 11 Optimized TE-pass polarizer with segmented metal for a photonic circuit for TM1 (a) and TM2 (b) at 1550 nm.
Fig. 12
Fig. 12 Scanning the period T of the optimized plasmonic TE-pass polarizer. In (a) the transmission of the TE and TM modes and in (b) the FoM = Δαeffeff,TE. The dots in Fig. 12(a) are the points selected to study the grating behavior.

Tables (5)

Tables Icon

Table 1 Summary of the optimized parameters of the TE-pass polarizer with the HPW.

Tables Icon

Table 2 Performance of the TE-pass polarizer in a plasmonic circuit.

Tables Icon

Table 3 Performance of the TE-pass polarizer in the different optical bands.

Tables Icon

Table 4 Estimation of the period T of the grating.

Tables Icon

Table 5 Comparison with the state-of-the-art of CMOS compatible TE-pass polarizers at 1.55μm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T estimated = m λ valley 2 n eff ( λ valley )

Metrics