Abstract

Optical technology applied to on-chip wireless communication is particularly promising to overcome the performance limitations of the state-of-the-art networks on-chip. A key enabling component for such applications is the plasmonic antenna coupled to conventional silicon waveguides, which can guarantee full compatibility with standard optical circuitry. In this paper, we propose an antenna array configuration based on tilted plasmonic Vivaldi antennas coupled to a silicon waveguide. The details of the single antenna and of the array design are reported. The radiation characteristics of the array are suitable for on-chip point-to-point communication, i.e. in-plane maximum gain of 14.70 dB for an array with five antennas. The array exploits a travelling wave feeding scheme and, therefore, is compact in size (about 3.5 µm × 8.7 µm ).

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Integrated Vivaldi plasmonic antenna for wireless on-chip optical communications

Gaetano Bellanca, Giovanna Calò, Ali Emre Kaplan, Paolo Bassi, and Vincenzo Petruzzelli
Opt. Express 25(14) 16214-16227 (2017)

Waveguide-fed optical hybrid plasmonic patch nano-antenna

Leila Yousefi and Amy C. Foster
Opt. Express 20(16) 18326-18335 (2012)

Two-dimensional optical phased array antenna on silicon-on-insulator

Karel Van Acoleyen, Hendrik Rogier, and Roel Baets
Opt. Express 18(13) 13655-13660 (2010)

References

  • View by:
  • |
  • |
  • |

  1. C. García-Meca, S. Lechago, A. Brimont, A. Griol, S. Mas, L. Sánchez, L. Bellieres, N. S. Losilla, and J. Martí, “On-chip wireless silicon photonics: from reconfigurable interconnects to lab-on-chip devices,” Light Sci. Appl. 6, e17053 (2017).
    [Crossref]
  2. Y. Yang, Q. Li, and M. Qiu, “Broadband nanophotonic wireless links and networks using on-chip integrated plasmonic antennas,” Sci. Rep. 6, 19490 (2016).
    [Crossref] [PubMed]
  3. J. M. Merlo, N.T. Nesbitt, Y.M. Calm, A.H. Rose, L. D’Imperio, C. Yang, J.R. Naughton, M.J. Burns, K. Kempa, and M.J. Naughton, “Wireless communication system via nanoscale plasmonic antennas,” Sci. Rep. 6, 31710 (2016).
    [Crossref] [PubMed]
  4. R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE 96(2), 230–247 (2008).
    [Crossref]
  5. A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57(9), 1246–1260 (2008).
    [Crossref]
  6. D. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
    [Crossref]
  7. A. Biberman and K. Bergman, “Optical interconnection networks for high-performance computing systems,” Rep. Prog. Phys. 75(4), 046402 (2012).
    [Crossref] [PubMed]
  8. F. Gambini, S. Faralli, P. Pintus, N. Andriolli, and I. Cerutti, “BER evaluation of a low-crosstalk silicon integrated multi-microring network-on-chip,” Opt. Express 23(13), 17169–17178 (2015).
    [Crossref] [PubMed]
  9. E. Fusella and A. Cilardo, “Crosstalk-aware automated mapping for optical networks-on-chip,” ACM Trans. Embed. Comput. Syst. 16(1), 16 (2016).
    [Crossref]
  10. M. Ortin-Obon, M. Tala, L. Ramini, V. Vinals-Yufera, and D. Bertozzi, “Contrasting laser power requirements of wavelength-routed optical NoC topologies subject to the floorplanning, placement and routing constraints of a 3D-stacked system,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 25(7), 2081-2094 (2017).
    [Crossref]
  11. C. V. Poulton, D. Vermeulen, E. Hosseini, E. Timurdogan, Z. Su, B. Moss, and M. R. Watts, “Lens-Free Chip-to-Chip Free-Space Laser Communication Link with a Silicon Photonics Optical Phased Array,” in Frontiers in Optics 2017, OSA Technical Digest (online) (Optical Society of America, 2017), paper FW5A.3.
    [Crossref]
  12. D. Kwong, A. Hosseini, J. Covey, Y. Zhang, X. Xu, H. Subbaraman, and R. T. Chen, “On-chip silicon optical phased array for two-dimensional beam steering,” Opt. Lett. 39, 941–944 (2014).
    [Crossref] [PubMed]
  13. C. T. Phare, M. C. Shin, J. Sharma, S. Ahasan, H. Krishnaswamy, and M. Lipson, “Silicon Optical Phased Array with Grating Lobe-Free Beam Formation Over 180 Degree Field of View,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2018), paper SM3I.2.
  14. A. Alù and N. Engheta, “Wireless at the nanoscale: optical interconnects using matched nanoantennas,” Phys. Rev. Lett. 104, 213902 (2010).
    [Crossref] [PubMed]
  15. D. M. Solís, J. M. Taboada, F. Obelleiro, and L. Landesa, “Optimization of an optical wireless nanolink using directive nanoantennas,” Opt. Express 21(2), 2369–2377 (2013).
    [Crossref] [PubMed]
  16. A. M. Ghanim, M. Hussein, M. F. O. Hameed, and S. S. A. Obayya, “Design considerations of super-directive nanoantennas for core-shell nanowires,” J. Opt. Soc. Am. B-Opt. Phys. 35(1), 182–188 (2018).
    [Crossref]
  17. G. Magno, A. Ecarnot, C. Pin, V. Yam, P. Gogol, R. Mégy, B. Cluzel, and B. Dagens, “Integrated plasmonic nanotweezers for nanoparticle manipulation,” Opt. Lett 41(16), 3679–3682 (2016).
    [Crossref] [PubMed]
  18. M. Février, P. Gogol, A. Aassime, R.t Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J. Lourtioz, and B. Dagens, “Giant Coupling Effect between Metal Nanoparticle Chain and Optical Waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
    [Crossref] [PubMed]
  19. L. Yousefi and A. C. Foster, “Waveguide-fed optical hybrid plasmonic patch nano-antenna,” Opt. Express 20(16), 18326–18335 (2012).
    [Crossref] [PubMed]
  20. Y. Yang, D. Zhao, H. Gong, Q. Li, and M. Qiu, “Plasmonic sectoral horn nanoantennas,” Opt. Lett. 39(11), 3204–3207 (2014).
    [Crossref] [PubMed]
  21. M. Saad-Bin-Alam, I. Khalil, A. Rahman, and A. M. Chowdhury, “Hybrid plasmonic waveguide fed broadband nanoantenna for nanophotonic applications,” IEEE Photonics Technol. Lett. 27(10), 1092–1095 (2015).
    [Crossref]
  22. G. Bellanca, G. Calò, A. E. Kaplan, P. Bassi, and V. Petruzzelli, “Integrated Vivaldi plasmonic antenna for wireless on-chip optical communications,” Opt. Express 25, 16214–16227 (2017).
    [Crossref] [PubMed]
  23. G. Calò, G. Bellanca, A. E. Kaplan, P. Bassi, and V. Petruzzelli, “Double vivaldi antenna for wireless optical networks on chip,” Opt. Quantum Electron. 50(6), 261 (2018).
    [Crossref]
  24. A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. QE-9 (9), 919–933 (1973).
    [Crossref]
  25. G. Calò, A. D’Orazio, and V. Petruzzelli, “Broadband Mach-Zehnder Switch for Photonic Networks on Chip,” J. Lightw. Technol. 30, 944–952 (2012).
    [Crossref]
  26. COMSOL Multiphysics, http://www.comsol.com/
  27. Lumerical Solutions, Inc. http://www.lumerical.com/tcad-products/fdtd/
  28. E. Palik, Handbook of Optical Constants of Solids (Academic, 1998).
  29. P. B. Johnson and R. W. Christy, “Optical Constants of Noble metals,” Phys. Rev. B 6, 4370 (1972).
    [Crossref]
  30. R. E. Collin, Antennas and radiowave propagation (McGraw-HillBook Company, 1985).

2018 (2)

A. M. Ghanim, M. Hussein, M. F. O. Hameed, and S. S. A. Obayya, “Design considerations of super-directive nanoantennas for core-shell nanowires,” J. Opt. Soc. Am. B-Opt. Phys. 35(1), 182–188 (2018).
[Crossref]

G. Calò, G. Bellanca, A. E. Kaplan, P. Bassi, and V. Petruzzelli, “Double vivaldi antenna for wireless optical networks on chip,” Opt. Quantum Electron. 50(6), 261 (2018).
[Crossref]

2017 (3)

G. Bellanca, G. Calò, A. E. Kaplan, P. Bassi, and V. Petruzzelli, “Integrated Vivaldi plasmonic antenna for wireless on-chip optical communications,” Opt. Express 25, 16214–16227 (2017).
[Crossref] [PubMed]

M. Ortin-Obon, M. Tala, L. Ramini, V. Vinals-Yufera, and D. Bertozzi, “Contrasting laser power requirements of wavelength-routed optical NoC topologies subject to the floorplanning, placement and routing constraints of a 3D-stacked system,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 25(7), 2081-2094 (2017).
[Crossref]

C. García-Meca, S. Lechago, A. Brimont, A. Griol, S. Mas, L. Sánchez, L. Bellieres, N. S. Losilla, and J. Martí, “On-chip wireless silicon photonics: from reconfigurable interconnects to lab-on-chip devices,” Light Sci. Appl. 6, e17053 (2017).
[Crossref]

2016 (4)

Y. Yang, Q. Li, and M. Qiu, “Broadband nanophotonic wireless links and networks using on-chip integrated plasmonic antennas,” Sci. Rep. 6, 19490 (2016).
[Crossref] [PubMed]

J. M. Merlo, N.T. Nesbitt, Y.M. Calm, A.H. Rose, L. D’Imperio, C. Yang, J.R. Naughton, M.J. Burns, K. Kempa, and M.J. Naughton, “Wireless communication system via nanoscale plasmonic antennas,” Sci. Rep. 6, 31710 (2016).
[Crossref] [PubMed]

E. Fusella and A. Cilardo, “Crosstalk-aware automated mapping for optical networks-on-chip,” ACM Trans. Embed. Comput. Syst. 16(1), 16 (2016).
[Crossref]

G. Magno, A. Ecarnot, C. Pin, V. Yam, P. Gogol, R. Mégy, B. Cluzel, and B. Dagens, “Integrated plasmonic nanotweezers for nanoparticle manipulation,” Opt. Lett 41(16), 3679–3682 (2016).
[Crossref] [PubMed]

2015 (2)

F. Gambini, S. Faralli, P. Pintus, N. Andriolli, and I. Cerutti, “BER evaluation of a low-crosstalk silicon integrated multi-microring network-on-chip,” Opt. Express 23(13), 17169–17178 (2015).
[Crossref] [PubMed]

M. Saad-Bin-Alam, I. Khalil, A. Rahman, and A. M. Chowdhury, “Hybrid plasmonic waveguide fed broadband nanoantenna for nanophotonic applications,” IEEE Photonics Technol. Lett. 27(10), 1092–1095 (2015).
[Crossref]

2014 (2)

2013 (1)

2012 (4)

M. Février, P. Gogol, A. Aassime, R.t Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J. Lourtioz, and B. Dagens, “Giant Coupling Effect between Metal Nanoparticle Chain and Optical Waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref] [PubMed]

L. Yousefi and A. C. Foster, “Waveguide-fed optical hybrid plasmonic patch nano-antenna,” Opt. Express 20(16), 18326–18335 (2012).
[Crossref] [PubMed]

A. Biberman and K. Bergman, “Optical interconnection networks for high-performance computing systems,” Rep. Prog. Phys. 75(4), 046402 (2012).
[Crossref] [PubMed]

G. Calò, A. D’Orazio, and V. Petruzzelli, “Broadband Mach-Zehnder Switch for Photonic Networks on Chip,” J. Lightw. Technol. 30, 944–952 (2012).
[Crossref]

2010 (1)

A. Alù and N. Engheta, “Wireless at the nanoscale: optical interconnects using matched nanoantennas,” Phys. Rev. Lett. 104, 213902 (2010).
[Crossref] [PubMed]

2009 (1)

D. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[Crossref]

2008 (2)

R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE 96(2), 230–247 (2008).
[Crossref]

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57(9), 1246–1260 (2008).
[Crossref]

1973 (1)

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. QE-9 (9), 919–933 (1973).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical Constants of Noble metals,” Phys. Rev. B 6, 4370 (1972).
[Crossref]

Aassime, A.

M. Février, P. Gogol, A. Aassime, R.t Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J. Lourtioz, and B. Dagens, “Giant Coupling Effect between Metal Nanoparticle Chain and Optical Waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref] [PubMed]

Ahasan, S.

C. T. Phare, M. C. Shin, J. Sharma, S. Ahasan, H. Krishnaswamy, and M. Lipson, “Silicon Optical Phased Array with Grating Lobe-Free Beam Formation Over 180 Degree Field of View,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2018), paper SM3I.2.

Alù, A.

A. Alù and N. Engheta, “Wireless at the nanoscale: optical interconnects using matched nanoantennas,” Phys. Rev. Lett. 104, 213902 (2010).
[Crossref] [PubMed]

Andriolli, N.

Apuzzo, A.

M. Février, P. Gogol, A. Aassime, R.t Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J. Lourtioz, and B. Dagens, “Giant Coupling Effect between Metal Nanoparticle Chain and Optical Waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref] [PubMed]

Bassi, P.

G. Calò, G. Bellanca, A. E. Kaplan, P. Bassi, and V. Petruzzelli, “Double vivaldi antenna for wireless optical networks on chip,” Opt. Quantum Electron. 50(6), 261 (2018).
[Crossref]

G. Bellanca, G. Calò, A. E. Kaplan, P. Bassi, and V. Petruzzelli, “Integrated Vivaldi plasmonic antenna for wireless on-chip optical communications,” Opt. Express 25, 16214–16227 (2017).
[Crossref] [PubMed]

Beausoleil, R. G.

R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE 96(2), 230–247 (2008).
[Crossref]

Bellanca, G.

G. Calò, G. Bellanca, A. E. Kaplan, P. Bassi, and V. Petruzzelli, “Double vivaldi antenna for wireless optical networks on chip,” Opt. Quantum Electron. 50(6), 261 (2018).
[Crossref]

G. Bellanca, G. Calò, A. E. Kaplan, P. Bassi, and V. Petruzzelli, “Integrated Vivaldi plasmonic antenna for wireless on-chip optical communications,” Opt. Express 25, 16214–16227 (2017).
[Crossref] [PubMed]

Bellieres, L.

C. García-Meca, S. Lechago, A. Brimont, A. Griol, S. Mas, L. Sánchez, L. Bellieres, N. S. Losilla, and J. Martí, “On-chip wireless silicon photonics: from reconfigurable interconnects to lab-on-chip devices,” Light Sci. Appl. 6, e17053 (2017).
[Crossref]

Bergman, K.

A. Biberman and K. Bergman, “Optical interconnection networks for high-performance computing systems,” Rep. Prog. Phys. 75(4), 046402 (2012).
[Crossref] [PubMed]

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57(9), 1246–1260 (2008).
[Crossref]

Bertozzi, D.

M. Ortin-Obon, M. Tala, L. Ramini, V. Vinals-Yufera, and D. Bertozzi, “Contrasting laser power requirements of wavelength-routed optical NoC topologies subject to the floorplanning, placement and routing constraints of a 3D-stacked system,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 25(7), 2081-2094 (2017).
[Crossref]

Biberman, A.

A. Biberman and K. Bergman, “Optical interconnection networks for high-performance computing systems,” Rep. Prog. Phys. 75(4), 046402 (2012).
[Crossref] [PubMed]

Blaize, S.

M. Février, P. Gogol, A. Aassime, R.t Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J. Lourtioz, and B. Dagens, “Giant Coupling Effect between Metal Nanoparticle Chain and Optical Waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref] [PubMed]

Brimont, A.

C. García-Meca, S. Lechago, A. Brimont, A. Griol, S. Mas, L. Sánchez, L. Bellieres, N. S. Losilla, and J. Martí, “On-chip wireless silicon photonics: from reconfigurable interconnects to lab-on-chip devices,” Light Sci. Appl. 6, e17053 (2017).
[Crossref]

Burns, M.J.

J. M. Merlo, N.T. Nesbitt, Y.M. Calm, A.H. Rose, L. D’Imperio, C. Yang, J.R. Naughton, M.J. Burns, K. Kempa, and M.J. Naughton, “Wireless communication system via nanoscale plasmonic antennas,” Sci. Rep. 6, 31710 (2016).
[Crossref] [PubMed]

Calm, Y.M.

J. M. Merlo, N.T. Nesbitt, Y.M. Calm, A.H. Rose, L. D’Imperio, C. Yang, J.R. Naughton, M.J. Burns, K. Kempa, and M.J. Naughton, “Wireless communication system via nanoscale plasmonic antennas,” Sci. Rep. 6, 31710 (2016).
[Crossref] [PubMed]

Calò, G.

G. Calò, G. Bellanca, A. E. Kaplan, P. Bassi, and V. Petruzzelli, “Double vivaldi antenna for wireless optical networks on chip,” Opt. Quantum Electron. 50(6), 261 (2018).
[Crossref]

G. Bellanca, G. Calò, A. E. Kaplan, P. Bassi, and V. Petruzzelli, “Integrated Vivaldi plasmonic antenna for wireless on-chip optical communications,” Opt. Express 25, 16214–16227 (2017).
[Crossref] [PubMed]

G. Calò, A. D’Orazio, and V. Petruzzelli, “Broadband Mach-Zehnder Switch for Photonic Networks on Chip,” J. Lightw. Technol. 30, 944–952 (2012).
[Crossref]

Carloni, L. P.

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57(9), 1246–1260 (2008).
[Crossref]

Cerutti, I.

Chelnokov, A.

M. Février, P. Gogol, A. Aassime, R.t Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J. Lourtioz, and B. Dagens, “Giant Coupling Effect between Metal Nanoparticle Chain and Optical Waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref] [PubMed]

Chen, R. T.

Chowdhury, A. M.

M. Saad-Bin-Alam, I. Khalil, A. Rahman, and A. M. Chowdhury, “Hybrid plasmonic waveguide fed broadband nanoantenna for nanophotonic applications,” IEEE Photonics Technol. Lett. 27(10), 1092–1095 (2015).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical Constants of Noble metals,” Phys. Rev. B 6, 4370 (1972).
[Crossref]

Cilardo, A.

E. Fusella and A. Cilardo, “Crosstalk-aware automated mapping for optical networks-on-chip,” ACM Trans. Embed. Comput. Syst. 16(1), 16 (2016).
[Crossref]

Cluzel, B.

G. Magno, A. Ecarnot, C. Pin, V. Yam, P. Gogol, R. Mégy, B. Cluzel, and B. Dagens, “Integrated plasmonic nanotweezers for nanoparticle manipulation,” Opt. Lett 41(16), 3679–3682 (2016).
[Crossref] [PubMed]

Collin, R. E.

R. E. Collin, Antennas and radiowave propagation (McGraw-HillBook Company, 1985).

Covey, J.

D’Imperio, L.

J. M. Merlo, N.T. Nesbitt, Y.M. Calm, A.H. Rose, L. D’Imperio, C. Yang, J.R. Naughton, M.J. Burns, K. Kempa, and M.J. Naughton, “Wireless communication system via nanoscale plasmonic antennas,” Sci. Rep. 6, 31710 (2016).
[Crossref] [PubMed]

D’Orazio, A.

G. Calò, A. D’Orazio, and V. Petruzzelli, “Broadband Mach-Zehnder Switch for Photonic Networks on Chip,” J. Lightw. Technol. 30, 944–952 (2012).
[Crossref]

Dagens, B.

G. Magno, A. Ecarnot, C. Pin, V. Yam, P. Gogol, R. Mégy, B. Cluzel, and B. Dagens, “Integrated plasmonic nanotweezers for nanoparticle manipulation,” Opt. Lett 41(16), 3679–3682 (2016).
[Crossref] [PubMed]

M. Février, P. Gogol, A. Aassime, R.t Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J. Lourtioz, and B. Dagens, “Giant Coupling Effect between Metal Nanoparticle Chain and Optical Waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref] [PubMed]

Delacour, C.

M. Février, P. Gogol, A. Aassime, R.t Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J. Lourtioz, and B. Dagens, “Giant Coupling Effect between Metal Nanoparticle Chain and Optical Waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref] [PubMed]

Ecarnot, A.

G. Magno, A. Ecarnot, C. Pin, V. Yam, P. Gogol, R. Mégy, B. Cluzel, and B. Dagens, “Integrated plasmonic nanotweezers for nanoparticle manipulation,” Opt. Lett 41(16), 3679–3682 (2016).
[Crossref] [PubMed]

Engheta, N.

A. Alù and N. Engheta, “Wireless at the nanoscale: optical interconnects using matched nanoantennas,” Phys. Rev. Lett. 104, 213902 (2010).
[Crossref] [PubMed]

Faralli, S.

Février, M.

M. Février, P. Gogol, A. Aassime, R.t Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J. Lourtioz, and B. Dagens, “Giant Coupling Effect between Metal Nanoparticle Chain and Optical Waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref] [PubMed]

Foster, A. C.

Fusella, E.

E. Fusella and A. Cilardo, “Crosstalk-aware automated mapping for optical networks-on-chip,” ACM Trans. Embed. Comput. Syst. 16(1), 16 (2016).
[Crossref]

Gambini, F.

García-Meca, C.

C. García-Meca, S. Lechago, A. Brimont, A. Griol, S. Mas, L. Sánchez, L. Bellieres, N. S. Losilla, and J. Martí, “On-chip wireless silicon photonics: from reconfigurable interconnects to lab-on-chip devices,” Light Sci. Appl. 6, e17053 (2017).
[Crossref]

Ghanim, A. M.

A. M. Ghanim, M. Hussein, M. F. O. Hameed, and S. S. A. Obayya, “Design considerations of super-directive nanoantennas for core-shell nanowires,” J. Opt. Soc. Am. B-Opt. Phys. 35(1), 182–188 (2018).
[Crossref]

Gogol, P.

G. Magno, A. Ecarnot, C. Pin, V. Yam, P. Gogol, R. Mégy, B. Cluzel, and B. Dagens, “Integrated plasmonic nanotweezers for nanoparticle manipulation,” Opt. Lett 41(16), 3679–3682 (2016).
[Crossref] [PubMed]

M. Février, P. Gogol, A. Aassime, R.t Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J. Lourtioz, and B. Dagens, “Giant Coupling Effect between Metal Nanoparticle Chain and Optical Waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref] [PubMed]

Gong, H.

Griol, A.

C. García-Meca, S. Lechago, A. Brimont, A. Griol, S. Mas, L. Sánchez, L. Bellieres, N. S. Losilla, and J. Martí, “On-chip wireless silicon photonics: from reconfigurable interconnects to lab-on-chip devices,” Light Sci. Appl. 6, e17053 (2017).
[Crossref]

Hameed, M. F. O.

A. M. Ghanim, M. Hussein, M. F. O. Hameed, and S. S. A. Obayya, “Design considerations of super-directive nanoantennas for core-shell nanowires,” J. Opt. Soc. Am. B-Opt. Phys. 35(1), 182–188 (2018).
[Crossref]

Hosseini, A.

Hosseini, E.

C. V. Poulton, D. Vermeulen, E. Hosseini, E. Timurdogan, Z. Su, B. Moss, and M. R. Watts, “Lens-Free Chip-to-Chip Free-Space Laser Communication Link with a Silicon Photonics Optical Phased Array,” in Frontiers in Optics 2017, OSA Technical Digest (online) (Optical Society of America, 2017), paper FW5A.3.
[Crossref]

Hussein, M.

A. M. Ghanim, M. Hussein, M. F. O. Hameed, and S. S. A. Obayya, “Design considerations of super-directive nanoantennas for core-shell nanowires,” J. Opt. Soc. Am. B-Opt. Phys. 35(1), 182–188 (2018).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical Constants of Noble metals,” Phys. Rev. B 6, 4370 (1972).
[Crossref]

Kaplan, A. E.

G. Calò, G. Bellanca, A. E. Kaplan, P. Bassi, and V. Petruzzelli, “Double vivaldi antenna for wireless optical networks on chip,” Opt. Quantum Electron. 50(6), 261 (2018).
[Crossref]

G. Bellanca, G. Calò, A. E. Kaplan, P. Bassi, and V. Petruzzelli, “Integrated Vivaldi plasmonic antenna for wireless on-chip optical communications,” Opt. Express 25, 16214–16227 (2017).
[Crossref] [PubMed]

Kempa, K.

J. M. Merlo, N.T. Nesbitt, Y.M. Calm, A.H. Rose, L. D’Imperio, C. Yang, J.R. Naughton, M.J. Burns, K. Kempa, and M.J. Naughton, “Wireless communication system via nanoscale plasmonic antennas,” Sci. Rep. 6, 31710 (2016).
[Crossref] [PubMed]

Khalil, I.

M. Saad-Bin-Alam, I. Khalil, A. Rahman, and A. M. Chowdhury, “Hybrid plasmonic waveguide fed broadband nanoantenna for nanophotonic applications,” IEEE Photonics Technol. Lett. 27(10), 1092–1095 (2015).
[Crossref]

Krishnaswamy, H.

C. T. Phare, M. C. Shin, J. Sharma, S. Ahasan, H. Krishnaswamy, and M. Lipson, “Silicon Optical Phased Array with Grating Lobe-Free Beam Formation Over 180 Degree Field of View,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2018), paper SM3I.2.

Kuekes, P. J.

R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE 96(2), 230–247 (2008).
[Crossref]

Kwong, D.

Landesa, L.

Lechago, S.

C. García-Meca, S. Lechago, A. Brimont, A. Griol, S. Mas, L. Sánchez, L. Bellieres, N. S. Losilla, and J. Martí, “On-chip wireless silicon photonics: from reconfigurable interconnects to lab-on-chip devices,” Light Sci. Appl. 6, e17053 (2017).
[Crossref]

Li, Q.

Y. Yang, Q. Li, and M. Qiu, “Broadband nanophotonic wireless links and networks using on-chip integrated plasmonic antennas,” Sci. Rep. 6, 19490 (2016).
[Crossref] [PubMed]

Y. Yang, D. Zhao, H. Gong, Q. Li, and M. Qiu, “Plasmonic sectoral horn nanoantennas,” Opt. Lett. 39(11), 3204–3207 (2014).
[Crossref] [PubMed]

Lipson, M.

C. T. Phare, M. C. Shin, J. Sharma, S. Ahasan, H. Krishnaswamy, and M. Lipson, “Silicon Optical Phased Array with Grating Lobe-Free Beam Formation Over 180 Degree Field of View,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2018), paper SM3I.2.

Losilla, N. S.

C. García-Meca, S. Lechago, A. Brimont, A. Griol, S. Mas, L. Sánchez, L. Bellieres, N. S. Losilla, and J. Martí, “On-chip wireless silicon photonics: from reconfigurable interconnects to lab-on-chip devices,” Light Sci. Appl. 6, e17053 (2017).
[Crossref]

Lourtioz, J.

M. Février, P. Gogol, A. Aassime, R.t Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J. Lourtioz, and B. Dagens, “Giant Coupling Effect between Metal Nanoparticle Chain and Optical Waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref] [PubMed]

Magno, G.

G. Magno, A. Ecarnot, C. Pin, V. Yam, P. Gogol, R. Mégy, B. Cluzel, and B. Dagens, “Integrated plasmonic nanotweezers for nanoparticle manipulation,” Opt. Lett 41(16), 3679–3682 (2016).
[Crossref] [PubMed]

Martí, J.

C. García-Meca, S. Lechago, A. Brimont, A. Griol, S. Mas, L. Sánchez, L. Bellieres, N. S. Losilla, and J. Martí, “On-chip wireless silicon photonics: from reconfigurable interconnects to lab-on-chip devices,” Light Sci. Appl. 6, e17053 (2017).
[Crossref]

Mas, S.

C. García-Meca, S. Lechago, A. Brimont, A. Griol, S. Mas, L. Sánchez, L. Bellieres, N. S. Losilla, and J. Martí, “On-chip wireless silicon photonics: from reconfigurable interconnects to lab-on-chip devices,” Light Sci. Appl. 6, e17053 (2017).
[Crossref]

Mégy, R.

G. Magno, A. Ecarnot, C. Pin, V. Yam, P. Gogol, R. Mégy, B. Cluzel, and B. Dagens, “Integrated plasmonic nanotweezers for nanoparticle manipulation,” Opt. Lett 41(16), 3679–3682 (2016).
[Crossref] [PubMed]

Mégy, R.t

M. Février, P. Gogol, A. Aassime, R.t Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J. Lourtioz, and B. Dagens, “Giant Coupling Effect between Metal Nanoparticle Chain and Optical Waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref] [PubMed]

Merlo, J. M.

J. M. Merlo, N.T. Nesbitt, Y.M. Calm, A.H. Rose, L. D’Imperio, C. Yang, J.R. Naughton, M.J. Burns, K. Kempa, and M.J. Naughton, “Wireless communication system via nanoscale plasmonic antennas,” Sci. Rep. 6, 31710 (2016).
[Crossref] [PubMed]

Miller, D. B.

D. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[Crossref]

Moss, B.

C. V. Poulton, D. Vermeulen, E. Hosseini, E. Timurdogan, Z. Su, B. Moss, and M. R. Watts, “Lens-Free Chip-to-Chip Free-Space Laser Communication Link with a Silicon Photonics Optical Phased Array,” in Frontiers in Optics 2017, OSA Technical Digest (online) (Optical Society of America, 2017), paper FW5A.3.
[Crossref]

Naughton, J.R.

J. M. Merlo, N.T. Nesbitt, Y.M. Calm, A.H. Rose, L. D’Imperio, C. Yang, J.R. Naughton, M.J. Burns, K. Kempa, and M.J. Naughton, “Wireless communication system via nanoscale plasmonic antennas,” Sci. Rep. 6, 31710 (2016).
[Crossref] [PubMed]

Naughton, M.J.

J. M. Merlo, N.T. Nesbitt, Y.M. Calm, A.H. Rose, L. D’Imperio, C. Yang, J.R. Naughton, M.J. Burns, K. Kempa, and M.J. Naughton, “Wireless communication system via nanoscale plasmonic antennas,” Sci. Rep. 6, 31710 (2016).
[Crossref] [PubMed]

Nesbitt, N.T.

J. M. Merlo, N.T. Nesbitt, Y.M. Calm, A.H. Rose, L. D’Imperio, C. Yang, J.R. Naughton, M.J. Burns, K. Kempa, and M.J. Naughton, “Wireless communication system via nanoscale plasmonic antennas,” Sci. Rep. 6, 31710 (2016).
[Crossref] [PubMed]

Obayya, S. S. A.

A. M. Ghanim, M. Hussein, M. F. O. Hameed, and S. S. A. Obayya, “Design considerations of super-directive nanoantennas for core-shell nanowires,” J. Opt. Soc. Am. B-Opt. Phys. 35(1), 182–188 (2018).
[Crossref]

Obelleiro, F.

Ortin-Obon, M.

M. Ortin-Obon, M. Tala, L. Ramini, V. Vinals-Yufera, and D. Bertozzi, “Contrasting laser power requirements of wavelength-routed optical NoC topologies subject to the floorplanning, placement and routing constraints of a 3D-stacked system,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 25(7), 2081-2094 (2017).
[Crossref]

Palik, E.

E. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

Petruzzelli, V.

G. Calò, G. Bellanca, A. E. Kaplan, P. Bassi, and V. Petruzzelli, “Double vivaldi antenna for wireless optical networks on chip,” Opt. Quantum Electron. 50(6), 261 (2018).
[Crossref]

G. Bellanca, G. Calò, A. E. Kaplan, P. Bassi, and V. Petruzzelli, “Integrated Vivaldi plasmonic antenna for wireless on-chip optical communications,” Opt. Express 25, 16214–16227 (2017).
[Crossref] [PubMed]

G. Calò, A. D’Orazio, and V. Petruzzelli, “Broadband Mach-Zehnder Switch for Photonic Networks on Chip,” J. Lightw. Technol. 30, 944–952 (2012).
[Crossref]

Phare, C. T.

C. T. Phare, M. C. Shin, J. Sharma, S. Ahasan, H. Krishnaswamy, and M. Lipson, “Silicon Optical Phased Array with Grating Lobe-Free Beam Formation Over 180 Degree Field of View,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2018), paper SM3I.2.

Pin, C.

G. Magno, A. Ecarnot, C. Pin, V. Yam, P. Gogol, R. Mégy, B. Cluzel, and B. Dagens, “Integrated plasmonic nanotweezers for nanoparticle manipulation,” Opt. Lett 41(16), 3679–3682 (2016).
[Crossref] [PubMed]

Pintus, P.

Poulton, C. V.

C. V. Poulton, D. Vermeulen, E. Hosseini, E. Timurdogan, Z. Su, B. Moss, and M. R. Watts, “Lens-Free Chip-to-Chip Free-Space Laser Communication Link with a Silicon Photonics Optical Phased Array,” in Frontiers in Optics 2017, OSA Technical Digest (online) (Optical Society of America, 2017), paper FW5A.3.
[Crossref]

Qiu, M.

Y. Yang, Q. Li, and M. Qiu, “Broadband nanophotonic wireless links and networks using on-chip integrated plasmonic antennas,” Sci. Rep. 6, 19490 (2016).
[Crossref] [PubMed]

Y. Yang, D. Zhao, H. Gong, Q. Li, and M. Qiu, “Plasmonic sectoral horn nanoantennas,” Opt. Lett. 39(11), 3204–3207 (2014).
[Crossref] [PubMed]

Rahman, A.

M. Saad-Bin-Alam, I. Khalil, A. Rahman, and A. M. Chowdhury, “Hybrid plasmonic waveguide fed broadband nanoantenna for nanophotonic applications,” IEEE Photonics Technol. Lett. 27(10), 1092–1095 (2015).
[Crossref]

Ramini, L.

M. Ortin-Obon, M. Tala, L. Ramini, V. Vinals-Yufera, and D. Bertozzi, “Contrasting laser power requirements of wavelength-routed optical NoC topologies subject to the floorplanning, placement and routing constraints of a 3D-stacked system,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 25(7), 2081-2094 (2017).
[Crossref]

Rose, A.H.

J. M. Merlo, N.T. Nesbitt, Y.M. Calm, A.H. Rose, L. D’Imperio, C. Yang, J.R. Naughton, M.J. Burns, K. Kempa, and M.J. Naughton, “Wireless communication system via nanoscale plasmonic antennas,” Sci. Rep. 6, 31710 (2016).
[Crossref] [PubMed]

Saad-Bin-Alam, M.

M. Saad-Bin-Alam, I. Khalil, A. Rahman, and A. M. Chowdhury, “Hybrid plasmonic waveguide fed broadband nanoantenna for nanophotonic applications,” IEEE Photonics Technol. Lett. 27(10), 1092–1095 (2015).
[Crossref]

Sánchez, L.

C. García-Meca, S. Lechago, A. Brimont, A. Griol, S. Mas, L. Sánchez, L. Bellieres, N. S. Losilla, and J. Martí, “On-chip wireless silicon photonics: from reconfigurable interconnects to lab-on-chip devices,” Light Sci. Appl. 6, e17053 (2017).
[Crossref]

Shacham, A.

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57(9), 1246–1260 (2008).
[Crossref]

Sharma, J.

C. T. Phare, M. C. Shin, J. Sharma, S. Ahasan, H. Krishnaswamy, and M. Lipson, “Silicon Optical Phased Array with Grating Lobe-Free Beam Formation Over 180 Degree Field of View,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2018), paper SM3I.2.

Shin, M. C.

C. T. Phare, M. C. Shin, J. Sharma, S. Ahasan, H. Krishnaswamy, and M. Lipson, “Silicon Optical Phased Array with Grating Lobe-Free Beam Formation Over 180 Degree Field of View,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2018), paper SM3I.2.

Snider, G. S.

R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE 96(2), 230–247 (2008).
[Crossref]

Solís, D. M.

Su, Z.

C. V. Poulton, D. Vermeulen, E. Hosseini, E. Timurdogan, Z. Su, B. Moss, and M. R. Watts, “Lens-Free Chip-to-Chip Free-Space Laser Communication Link with a Silicon Photonics Optical Phased Array,” in Frontiers in Optics 2017, OSA Technical Digest (online) (Optical Society of America, 2017), paper FW5A.3.
[Crossref]

Subbaraman, H.

Taboada, J. M.

Tala, M.

M. Ortin-Obon, M. Tala, L. Ramini, V. Vinals-Yufera, and D. Bertozzi, “Contrasting laser power requirements of wavelength-routed optical NoC topologies subject to the floorplanning, placement and routing constraints of a 3D-stacked system,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 25(7), 2081-2094 (2017).
[Crossref]

Timurdogan, E.

C. V. Poulton, D. Vermeulen, E. Hosseini, E. Timurdogan, Z. Su, B. Moss, and M. R. Watts, “Lens-Free Chip-to-Chip Free-Space Laser Communication Link with a Silicon Photonics Optical Phased Array,” in Frontiers in Optics 2017, OSA Technical Digest (online) (Optical Society of America, 2017), paper FW5A.3.
[Crossref]

Vermeulen, D.

C. V. Poulton, D. Vermeulen, E. Hosseini, E. Timurdogan, Z. Su, B. Moss, and M. R. Watts, “Lens-Free Chip-to-Chip Free-Space Laser Communication Link with a Silicon Photonics Optical Phased Array,” in Frontiers in Optics 2017, OSA Technical Digest (online) (Optical Society of America, 2017), paper FW5A.3.
[Crossref]

Vinals-Yufera, V.

M. Ortin-Obon, M. Tala, L. Ramini, V. Vinals-Yufera, and D. Bertozzi, “Contrasting laser power requirements of wavelength-routed optical NoC topologies subject to the floorplanning, placement and routing constraints of a 3D-stacked system,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 25(7), 2081-2094 (2017).
[Crossref]

Wang, S.

R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE 96(2), 230–247 (2008).
[Crossref]

Watts, M. R.

C. V. Poulton, D. Vermeulen, E. Hosseini, E. Timurdogan, Z. Su, B. Moss, and M. R. Watts, “Lens-Free Chip-to-Chip Free-Space Laser Communication Link with a Silicon Photonics Optical Phased Array,” in Frontiers in Optics 2017, OSA Technical Digest (online) (Optical Society of America, 2017), paper FW5A.3.
[Crossref]

Williams, R. S.

R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE 96(2), 230–247 (2008).
[Crossref]

Xu, X.

Yam, V.

G. Magno, A. Ecarnot, C. Pin, V. Yam, P. Gogol, R. Mégy, B. Cluzel, and B. Dagens, “Integrated plasmonic nanotweezers for nanoparticle manipulation,” Opt. Lett 41(16), 3679–3682 (2016).
[Crossref] [PubMed]

Yang, C.

J. M. Merlo, N.T. Nesbitt, Y.M. Calm, A.H. Rose, L. D’Imperio, C. Yang, J.R. Naughton, M.J. Burns, K. Kempa, and M.J. Naughton, “Wireless communication system via nanoscale plasmonic antennas,” Sci. Rep. 6, 31710 (2016).
[Crossref] [PubMed]

Yang, Y.

Y. Yang, Q. Li, and M. Qiu, “Broadband nanophotonic wireless links and networks using on-chip integrated plasmonic antennas,” Sci. Rep. 6, 19490 (2016).
[Crossref] [PubMed]

Y. Yang, D. Zhao, H. Gong, Q. Li, and M. Qiu, “Plasmonic sectoral horn nanoantennas,” Opt. Lett. 39(11), 3204–3207 (2014).
[Crossref] [PubMed]

Yariv, A.

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. QE-9 (9), 919–933 (1973).
[Crossref]

Yousefi, L.

Zhang, Y.

Zhao, D.

ACM Trans. Embed. Comput. Syst. (1)

E. Fusella and A. Cilardo, “Crosstalk-aware automated mapping for optical networks-on-chip,” ACM Trans. Embed. Comput. Syst. 16(1), 16 (2016).
[Crossref]

IEEE J. Quantum Electron. (1)

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. QE-9 (9), 919–933 (1973).
[Crossref]

IEEE Photonics Technol. Lett. (1)

M. Saad-Bin-Alam, I. Khalil, A. Rahman, and A. M. Chowdhury, “Hybrid plasmonic waveguide fed broadband nanoantenna for nanophotonic applications,” IEEE Photonics Technol. Lett. 27(10), 1092–1095 (2015).
[Crossref]

IEEE Trans. Comput. (1)

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57(9), 1246–1260 (2008).
[Crossref]

IEEE Trans. Very Large Scale Integr. (VLSI) Syst. (1)

M. Ortin-Obon, M. Tala, L. Ramini, V. Vinals-Yufera, and D. Bertozzi, “Contrasting laser power requirements of wavelength-routed optical NoC topologies subject to the floorplanning, placement and routing constraints of a 3D-stacked system,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 25(7), 2081-2094 (2017).
[Crossref]

J. Lightw. Technol. (1)

G. Calò, A. D’Orazio, and V. Petruzzelli, “Broadband Mach-Zehnder Switch for Photonic Networks on Chip,” J. Lightw. Technol. 30, 944–952 (2012).
[Crossref]

J. Opt. Soc. Am. B-Opt. Phys. (1)

A. M. Ghanim, M. Hussein, M. F. O. Hameed, and S. S. A. Obayya, “Design considerations of super-directive nanoantennas for core-shell nanowires,” J. Opt. Soc. Am. B-Opt. Phys. 35(1), 182–188 (2018).
[Crossref]

Light Sci. Appl. (1)

C. García-Meca, S. Lechago, A. Brimont, A. Griol, S. Mas, L. Sánchez, L. Bellieres, N. S. Losilla, and J. Martí, “On-chip wireless silicon photonics: from reconfigurable interconnects to lab-on-chip devices,” Light Sci. Appl. 6, e17053 (2017).
[Crossref]

Nano Lett. (1)

M. Février, P. Gogol, A. Aassime, R.t Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J. Lourtioz, and B. Dagens, “Giant Coupling Effect between Metal Nanoparticle Chain and Optical Waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett (1)

G. Magno, A. Ecarnot, C. Pin, V. Yam, P. Gogol, R. Mégy, B. Cluzel, and B. Dagens, “Integrated plasmonic nanotweezers for nanoparticle manipulation,” Opt. Lett 41(16), 3679–3682 (2016).
[Crossref] [PubMed]

Opt. Lett. (2)

Opt. Quantum Electron. (1)

G. Calò, G. Bellanca, A. E. Kaplan, P. Bassi, and V. Petruzzelli, “Double vivaldi antenna for wireless optical networks on chip,” Opt. Quantum Electron. 50(6), 261 (2018).
[Crossref]

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical Constants of Noble metals,” Phys. Rev. B 6, 4370 (1972).
[Crossref]

Phys. Rev. Lett. (1)

A. Alù and N. Engheta, “Wireless at the nanoscale: optical interconnects using matched nanoantennas,” Phys. Rev. Lett. 104, 213902 (2010).
[Crossref] [PubMed]

Proc. IEEE (2)

R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE 96(2), 230–247 (2008).
[Crossref]

D. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[Crossref]

Rep. Prog. Phys. (1)

A. Biberman and K. Bergman, “Optical interconnection networks for high-performance computing systems,” Rep. Prog. Phys. 75(4), 046402 (2012).
[Crossref] [PubMed]

Sci. Rep. (2)

Y. Yang, Q. Li, and M. Qiu, “Broadband nanophotonic wireless links and networks using on-chip integrated plasmonic antennas,” Sci. Rep. 6, 19490 (2016).
[Crossref] [PubMed]

J. M. Merlo, N.T. Nesbitt, Y.M. Calm, A.H. Rose, L. D’Imperio, C. Yang, J.R. Naughton, M.J. Burns, K. Kempa, and M.J. Naughton, “Wireless communication system via nanoscale plasmonic antennas,” Sci. Rep. 6, 31710 (2016).
[Crossref] [PubMed]

Other (6)

C. V. Poulton, D. Vermeulen, E. Hosseini, E. Timurdogan, Z. Su, B. Moss, and M. R. Watts, “Lens-Free Chip-to-Chip Free-Space Laser Communication Link with a Silicon Photonics Optical Phased Array,” in Frontiers in Optics 2017, OSA Technical Digest (online) (Optical Society of America, 2017), paper FW5A.3.
[Crossref]

C. T. Phare, M. C. Shin, J. Sharma, S. Ahasan, H. Krishnaswamy, and M. Lipson, “Silicon Optical Phased Array with Grating Lobe-Free Beam Formation Over 180 Degree Field of View,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2018), paper SM3I.2.

R. E. Collin, Antennas and radiowave propagation (McGraw-HillBook Company, 1985).

COMSOL Multiphysics, http://www.comsol.com/

Lumerical Solutions, Inc. http://www.lumerical.com/tcad-products/fdtd/

E. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Scheme of the tilted Vivaldi antenna array coupled to the Si waveguide.
Fig. 2
Fig. 2 Patterns of the electric field modulus of the Si (a) and the Ag (b) isolated waveguides.
Fig. 3
Fig. 3 Width p of the plasmonic slot waveguide, which guarantees the synchronism condition, as a function on the corresponding Si waveguide width w. For some of the calculation points (blue dots), the coupling length Lc is also reported. The values of the gap and of the slot width are g = 80 nm and s = 60 nm, respectively.
Fig. 4
Fig. 4 (a) Maximum directivity (red curve) and gain (blue curve) of the single antenna coupled to the Si waveguide as a function of Lin; (b) normalized transmitted power Pt/Pin at the waveguide output port (dotted curve), normalized radiated power Pr/Pin (dashed curve), and normalized power lost in the metal Ploss/Pin (solid curve) as a function of the length Lin of the straight plasmonic waveguide in input to the antenna; (c) Three-dimensional plot of the antenna directivity (in natural units) for different values of the length Lin. The width and the length of the antenna are pa = 700 nm and La = 1500 nm, respectively.
Fig. 5
Fig. 5 (a) Maximum directivity (red curve) and gain (blue curve) of the single antenna coupled to the Si waveguide as a function of the antenna width pa. The antenna length is La = 1500 nm ; (b) Maximum directivity (red curve) and gain (blue curve) of the single antenna coupled to the Si waveguide as a function of the antenna length La for pa = 700 nm.
Fig. 6
Fig. 6 Maximum directivity D (red curves) and gain G (blue curves) as a function of the distance d for a two- and three-element array (dashed and solid curves, respectively). The wavelength is λ = 1.55 µm and the length and the width of the antenna are La = 2000 nm and pa = 700 nm.
Fig. 7
Fig. 7 (a) Three-dimensional diagram of the directivity D for an array with pa = 700 nm, d = 1790 nm, and N = 3. The antenna array is also schematized to highlight the beam orientation Φ in the xy plane with respect to the array. (b) Tilt angle Φ of the main radiation lobe as a function of the antenna distance d for the same antenna array.
Fig. 8
Fig. 8 (a) Maximum directivity D and gain G as a function of the number of antennas N. (b) Maximum directivity D and gain G, and (c) tilt angle Φ of the main radiation lobe as a function of wavelength for an antenna array of N = 5 elements with pa = 700 nm, La = 2000 nm, and d = 1790 nm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

L c = λ 2 ( n c 1 n c 2 )
D ( θ , ϕ ) = 4 π I ( θ , ϕ ) P r , G ( θ , ϕ ) = 4 π I ( θ , ϕ ) P i n
P i n = P t + P r + P l o s s

Metrics