Abstract

Single molecule localization microscopy (SMLM) has been established as an important super-resolution technique for studying subcellular structures with a resolution down to a lateral scale of 10 nm. Usually samples are illuminated with a Gaussian shaped beam and consequently insufficient irradiance on the periphery of the illuminated region leads to artifacts in the reconstructed image which degrades image quality. We present a newly developed patterned illumination SMLM (piSMLM) to overcome the problem of uneven illumination by computer-generated holography. By utilizing a phase-only spatial light modulator (SLM) in combination with a modified Gerchberg-Saxton algorithm, a user-defined pattern with homogeneous and nearly speckle-free illumination is obtained. Our experimental results show that irradiance 1 to 5 kW/cm2 was achieved by using a laser with an output power of 200 mW in a region of 2000 µm2 to 500 µm2, respectively. Higher irradiance of up to 20 kW/cm2 can be reached by simply reducing the size of the region of interest (ROI). To demonstrate the application of the piSMLM, nuclear structures were imaged based on fluctuation binding-activated localization microscopy (fBALM). The super-resolution fBALM images revealed nuclear structures at a nanometer scale.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
High-power homogeneous illumination for super-resolution localization microscopy with large field-of-view

Zeyu Zhao, Bo Xin, Luchang Li, and Zhen-Li Huang
Opt. Express 25(12) 13382-13395 (2017)

Light sheet approaches for improved precision in 3D localization-based super-resolution imaging in mammalian cells [Invited]

Anna-Karin Gustavsson, Petar N. Petrov, and W. E. Moerner
Opt. Express 26(10) 13122-13147 (2018)

Wavelet analysis for single molecule localization microscopy

I. Izeddin, J. Boulanger, V. Racine, C.G. Specht, A. Kechkar, D. Nair, A. Triller, D. Choquet, M. Dahan, and J.B. Sibarita
Opt. Express 20(3) 2081-2095 (2012)

References

  • View by:
  • |
  • |
  • |

  1. K. Lidke, B. Rieger, T. Jovin, and R. Heintzmann, “Superresolution by localization of quantum dots using blinking statistics,” Opt. Express 13(18), 7052–7062 (2005).
    [Crossref] [PubMed]
  2. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
    [Crossref] [PubMed]
  3. M. J. Rust, M. Bates, and X. Zhuang, “Stochastic optical reconstruction microscopy (STORM) provides sub-diffraction-limit image resolution,” Nat. Methods 3(10), 793–795 (2006).
    [Crossref] [PubMed]
  4. P. Lemmer, M. Gunkel, D. Baddeley, R. Kaufmann, A. Urich, Y. Weiland, J. Reymann, P. Müller, M. Hausmann, and C. Cremer, “SPDM: light microscopy with single-molecule resolution at the nanoscale,” Appl. Phys. B 93(1), 1–12 (2008).
    [Crossref]
  5. R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J. 82(5), 2775–2783 (2002).
    [Crossref] [PubMed]
  6. A. Burgert, S. Letschert, S. Doose, and M. Sauer, “Artifacts in single-molecule localization microscopy,” Histochem. Cell Biol. 144(2), 123–131 (2015).
    [Crossref] [PubMed]
  7. K. M. Douglass, C. Sieben, A. Archetti, A. Lambert, and S. Manley, “Super-resolution imaging of multiple cells by optimised flat-field epi-illumination,” Nat. Photonics 10(11), 705–708 (2016).
    [Crossref] [PubMed]
  8. J. Deschamps, A. Rowald, and J. Ries, “Efficient homogeneous illumination and optical sectioning for quantitative single-molecule localization microscopy,” Opt. Express 24(24), 28080–28090 (2016).
    [Crossref] [PubMed]
  9. I. Khaw, B. Croop, J. Tang, A. Möhl, U. Fuchs, and K. Y. Han, “Flat-field illumination for quantitative fluorescence imaging,” Opt. Express 26(12), 15276–15288 (2018).
    [Crossref] [PubMed]
  10. C. J. Rowlands, F. Ströhl, P. P. V. Ramirez, K. M. Scherer, and C. F. Kaminski, “Flat-field super-resolution localization microscopy with a low-cost refractive beam-shaping element,” Sci. Rep. 8(1), 5630 (2018).
    [Crossref] [PubMed]
  11. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35(2), 237–246 (1972).
  12. L. Valiya Peedikakkal, V. Steventon, A. Furley, and A. J. Cadby, “Development of targeted STORM for super resolution imaging of biological samples using digital micro-mirror device,” Opt. Commun. 404, 18–22 (2017).
    [Crossref]
  13. V. Nikolenko, D. S. Peterka, R. Araya, A. Woodruff, and R. Yuste, “Spatial light modulator microscopy,” Cold Spring Harb. Protoc. 2013(12), 1132–1141 (2013).
    [Crossref] [PubMed]
  14. Y. Takaki and M. Yokouchi, “Speckle-free and grayscale hologram reconstruction using time-multiplexing technique,” Opt. Express 19(8), 7567–7579 (2011).
    [Crossref] [PubMed]
  15. W.-F. Hsu and C.-F. Yeh, “Speckle suppression in holographic projection displays using temporal integration of speckle images from diffractive optical elements,” Appl. Opt. 50(34), H50–H55 (2011).
    [Crossref] [PubMed]
  16. J. W. Goodman, “Some fundamental properties of speckle,” J. Opt. Soc. Am. 66(11), 1145–1150 (1976).
    [Crossref]
  17. A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Broadband suppression of the zero diffraction order of an SLM using its extended phase modulation range,” Opt. Express 22(14), 17590–17599 (2014).
    [Crossref] [PubMed]
  18. P. Pozzi, D. Gandolfi, M. Tognolina, G. Chirico, J. Mapelli, and E. D’Angelo, “High-throughput spatial light modulation two-photon microscopy for fast functional imaging,” Neurophotonics 2(1), 015005 (2015).
    [Crossref] [PubMed]
  19. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21(15), 2758–2769 (1982).
    [Crossref] [PubMed]
  20. A. Szczurek, L. Klewes, J. Xing, A. Gourram, U. Birk, H. Knecht, J. W. Dobrucki, S. Mai, and C. Cremer, “Imaging chromatin nanostructure with binding-activated localization microscopy based on DNA structure fluctuations,” Nucleic Acids Res. 45(8), e56 (2017).
    [Crossref] [PubMed]
  21. M. Ovesný, P. Křížek, J. Borkovec, Z. Švindrych, and G. M. Hagen, “ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging,” Bioinformatics 30(16), 2389–2390 (2014).
    [Crossref] [PubMed]
  22. A. Szczurek, U. Birk, H. Knecht, J. Dobrucki, S. Mai, and C. Cremer, “Super-resolution binding activated localization microscopy through reversible change of DNA conformation,” Nucleus 9(1), 182–189 (2018).
    [Crossref] [PubMed]
  23. R. Förster, H.-W. Lu-Walther, A. Jost, M. Kielhorn, K. Wicker, and R. Heintzmann, “Simple structured illumination microscope setup with high acquisition speed by using a spatial light modulator,” Opt. Express 22(17), 20663–20677 (2014).
    [Crossref] [PubMed]
  24. J. Chalfoun, M. Majurski, T. Blattner, K. Bhadriraju, W. Keyrouz, P. Bajcsy, and M. Brady, “MIST: Accurate and Scalable Microscopy Image Stitching Tool with Stage Modeling and Error Minimization,” Sci. Rep. 7(1), 4988 (2017).
    [Crossref] [PubMed]
  25. L. Valon, A. Marín-Llauradó, T. Wyatt, G. Charras, and X. Trepat, “Optogenetic control of cellular forces and mechanotransduction,” Nat. Commun. 8, 14396 (2017).
    [Crossref] [PubMed]
  26. C. Nakada, K. Ritchie, Y. Oba, M. Nakamura, Y. Hotta, R. Iino, R. S. Kasai, K. Yamaguchi, T. Fujiwara, and A. Kusumi, “Accumulation of anchored proteins forms membrane diffusion barriers during neuronal polarization,” Nat. Cell Biol. 5(7), 626–632 (2003).
    [Crossref] [PubMed]

2018 (3)

I. Khaw, B. Croop, J. Tang, A. Möhl, U. Fuchs, and K. Y. Han, “Flat-field illumination for quantitative fluorescence imaging,” Opt. Express 26(12), 15276–15288 (2018).
[Crossref] [PubMed]

C. J. Rowlands, F. Ströhl, P. P. V. Ramirez, K. M. Scherer, and C. F. Kaminski, “Flat-field super-resolution localization microscopy with a low-cost refractive beam-shaping element,” Sci. Rep. 8(1), 5630 (2018).
[Crossref] [PubMed]

A. Szczurek, U. Birk, H. Knecht, J. Dobrucki, S. Mai, and C. Cremer, “Super-resolution binding activated localization microscopy through reversible change of DNA conformation,” Nucleus 9(1), 182–189 (2018).
[Crossref] [PubMed]

2017 (4)

A. Szczurek, L. Klewes, J. Xing, A. Gourram, U. Birk, H. Knecht, J. W. Dobrucki, S. Mai, and C. Cremer, “Imaging chromatin nanostructure with binding-activated localization microscopy based on DNA structure fluctuations,” Nucleic Acids Res. 45(8), e56 (2017).
[Crossref] [PubMed]

J. Chalfoun, M. Majurski, T. Blattner, K. Bhadriraju, W. Keyrouz, P. Bajcsy, and M. Brady, “MIST: Accurate and Scalable Microscopy Image Stitching Tool with Stage Modeling and Error Minimization,” Sci. Rep. 7(1), 4988 (2017).
[Crossref] [PubMed]

L. Valon, A. Marín-Llauradó, T. Wyatt, G. Charras, and X. Trepat, “Optogenetic control of cellular forces and mechanotransduction,” Nat. Commun. 8, 14396 (2017).
[Crossref] [PubMed]

L. Valiya Peedikakkal, V. Steventon, A. Furley, and A. J. Cadby, “Development of targeted STORM for super resolution imaging of biological samples using digital micro-mirror device,” Opt. Commun. 404, 18–22 (2017).
[Crossref]

2016 (2)

K. M. Douglass, C. Sieben, A. Archetti, A. Lambert, and S. Manley, “Super-resolution imaging of multiple cells by optimised flat-field epi-illumination,” Nat. Photonics 10(11), 705–708 (2016).
[Crossref] [PubMed]

J. Deschamps, A. Rowald, and J. Ries, “Efficient homogeneous illumination and optical sectioning for quantitative single-molecule localization microscopy,” Opt. Express 24(24), 28080–28090 (2016).
[Crossref] [PubMed]

2015 (2)

A. Burgert, S. Letschert, S. Doose, and M. Sauer, “Artifacts in single-molecule localization microscopy,” Histochem. Cell Biol. 144(2), 123–131 (2015).
[Crossref] [PubMed]

P. Pozzi, D. Gandolfi, M. Tognolina, G. Chirico, J. Mapelli, and E. D’Angelo, “High-throughput spatial light modulation two-photon microscopy for fast functional imaging,” Neurophotonics 2(1), 015005 (2015).
[Crossref] [PubMed]

2014 (3)

2013 (1)

V. Nikolenko, D. S. Peterka, R. Araya, A. Woodruff, and R. Yuste, “Spatial light modulator microscopy,” Cold Spring Harb. Protoc. 2013(12), 1132–1141 (2013).
[Crossref] [PubMed]

2011 (2)

2008 (1)

P. Lemmer, M. Gunkel, D. Baddeley, R. Kaufmann, A. Urich, Y. Weiland, J. Reymann, P. Müller, M. Hausmann, and C. Cremer, “SPDM: light microscopy with single-molecule resolution at the nanoscale,” Appl. Phys. B 93(1), 1–12 (2008).
[Crossref]

2006 (2)

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Stochastic optical reconstruction microscopy (STORM) provides sub-diffraction-limit image resolution,” Nat. Methods 3(10), 793–795 (2006).
[Crossref] [PubMed]

2005 (1)

2003 (1)

C. Nakada, K. Ritchie, Y. Oba, M. Nakamura, Y. Hotta, R. Iino, R. S. Kasai, K. Yamaguchi, T. Fujiwara, and A. Kusumi, “Accumulation of anchored proteins forms membrane diffusion barriers during neuronal polarization,” Nat. Cell Biol. 5(7), 626–632 (2003).
[Crossref] [PubMed]

2002 (1)

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J. 82(5), 2775–2783 (2002).
[Crossref] [PubMed]

1982 (1)

1976 (1)

1972 (1)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35(2), 237–246 (1972).

Araya, R.

V. Nikolenko, D. S. Peterka, R. Araya, A. Woodruff, and R. Yuste, “Spatial light modulator microscopy,” Cold Spring Harb. Protoc. 2013(12), 1132–1141 (2013).
[Crossref] [PubMed]

Archetti, A.

K. M. Douglass, C. Sieben, A. Archetti, A. Lambert, and S. Manley, “Super-resolution imaging of multiple cells by optimised flat-field epi-illumination,” Nat. Photonics 10(11), 705–708 (2016).
[Crossref] [PubMed]

Baddeley, D.

P. Lemmer, M. Gunkel, D. Baddeley, R. Kaufmann, A. Urich, Y. Weiland, J. Reymann, P. Müller, M. Hausmann, and C. Cremer, “SPDM: light microscopy with single-molecule resolution at the nanoscale,” Appl. Phys. B 93(1), 1–12 (2008).
[Crossref]

Bajcsy, P.

J. Chalfoun, M. Majurski, T. Blattner, K. Bhadriraju, W. Keyrouz, P. Bajcsy, and M. Brady, “MIST: Accurate and Scalable Microscopy Image Stitching Tool with Stage Modeling and Error Minimization,” Sci. Rep. 7(1), 4988 (2017).
[Crossref] [PubMed]

Bates, M.

M. J. Rust, M. Bates, and X. Zhuang, “Stochastic optical reconstruction microscopy (STORM) provides sub-diffraction-limit image resolution,” Nat. Methods 3(10), 793–795 (2006).
[Crossref] [PubMed]

Bernet, S.

Betzig, E.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Bhadriraju, K.

J. Chalfoun, M. Majurski, T. Blattner, K. Bhadriraju, W. Keyrouz, P. Bajcsy, and M. Brady, “MIST: Accurate and Scalable Microscopy Image Stitching Tool with Stage Modeling and Error Minimization,” Sci. Rep. 7(1), 4988 (2017).
[Crossref] [PubMed]

Birk, U.

A. Szczurek, U. Birk, H. Knecht, J. Dobrucki, S. Mai, and C. Cremer, “Super-resolution binding activated localization microscopy through reversible change of DNA conformation,” Nucleus 9(1), 182–189 (2018).
[Crossref] [PubMed]

A. Szczurek, L. Klewes, J. Xing, A. Gourram, U. Birk, H. Knecht, J. W. Dobrucki, S. Mai, and C. Cremer, “Imaging chromatin nanostructure with binding-activated localization microscopy based on DNA structure fluctuations,” Nucleic Acids Res. 45(8), e56 (2017).
[Crossref] [PubMed]

Blattner, T.

J. Chalfoun, M. Majurski, T. Blattner, K. Bhadriraju, W. Keyrouz, P. Bajcsy, and M. Brady, “MIST: Accurate and Scalable Microscopy Image Stitching Tool with Stage Modeling and Error Minimization,” Sci. Rep. 7(1), 4988 (2017).
[Crossref] [PubMed]

Bonifacino, J. S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Borkovec, J.

M. Ovesný, P. Křížek, J. Borkovec, Z. Švindrych, and G. M. Hagen, “ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging,” Bioinformatics 30(16), 2389–2390 (2014).
[Crossref] [PubMed]

Brady, M.

J. Chalfoun, M. Majurski, T. Blattner, K. Bhadriraju, W. Keyrouz, P. Bajcsy, and M. Brady, “MIST: Accurate and Scalable Microscopy Image Stitching Tool with Stage Modeling and Error Minimization,” Sci. Rep. 7(1), 4988 (2017).
[Crossref] [PubMed]

Burgert, A.

A. Burgert, S. Letschert, S. Doose, and M. Sauer, “Artifacts in single-molecule localization microscopy,” Histochem. Cell Biol. 144(2), 123–131 (2015).
[Crossref] [PubMed]

Cadby, A. J.

L. Valiya Peedikakkal, V. Steventon, A. Furley, and A. J. Cadby, “Development of targeted STORM for super resolution imaging of biological samples using digital micro-mirror device,” Opt. Commun. 404, 18–22 (2017).
[Crossref]

Chalfoun, J.

J. Chalfoun, M. Majurski, T. Blattner, K. Bhadriraju, W. Keyrouz, P. Bajcsy, and M. Brady, “MIST: Accurate and Scalable Microscopy Image Stitching Tool with Stage Modeling and Error Minimization,” Sci. Rep. 7(1), 4988 (2017).
[Crossref] [PubMed]

Charras, G.

L. Valon, A. Marín-Llauradó, T. Wyatt, G. Charras, and X. Trepat, “Optogenetic control of cellular forces and mechanotransduction,” Nat. Commun. 8, 14396 (2017).
[Crossref] [PubMed]

Chirico, G.

P. Pozzi, D. Gandolfi, M. Tognolina, G. Chirico, J. Mapelli, and E. D’Angelo, “High-throughput spatial light modulation two-photon microscopy for fast functional imaging,” Neurophotonics 2(1), 015005 (2015).
[Crossref] [PubMed]

Cremer, C.

A. Szczurek, U. Birk, H. Knecht, J. Dobrucki, S. Mai, and C. Cremer, “Super-resolution binding activated localization microscopy through reversible change of DNA conformation,” Nucleus 9(1), 182–189 (2018).
[Crossref] [PubMed]

A. Szczurek, L. Klewes, J. Xing, A. Gourram, U. Birk, H. Knecht, J. W. Dobrucki, S. Mai, and C. Cremer, “Imaging chromatin nanostructure with binding-activated localization microscopy based on DNA structure fluctuations,” Nucleic Acids Res. 45(8), e56 (2017).
[Crossref] [PubMed]

P. Lemmer, M. Gunkel, D. Baddeley, R. Kaufmann, A. Urich, Y. Weiland, J. Reymann, P. Müller, M. Hausmann, and C. Cremer, “SPDM: light microscopy with single-molecule resolution at the nanoscale,” Appl. Phys. B 93(1), 1–12 (2008).
[Crossref]

Croop, B.

D’Angelo, E.

P. Pozzi, D. Gandolfi, M. Tognolina, G. Chirico, J. Mapelli, and E. D’Angelo, “High-throughput spatial light modulation two-photon microscopy for fast functional imaging,” Neurophotonics 2(1), 015005 (2015).
[Crossref] [PubMed]

Davidson, M. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Deschamps, J.

Dobrucki, J.

A. Szczurek, U. Birk, H. Knecht, J. Dobrucki, S. Mai, and C. Cremer, “Super-resolution binding activated localization microscopy through reversible change of DNA conformation,” Nucleus 9(1), 182–189 (2018).
[Crossref] [PubMed]

Dobrucki, J. W.

A. Szczurek, L. Klewes, J. Xing, A. Gourram, U. Birk, H. Knecht, J. W. Dobrucki, S. Mai, and C. Cremer, “Imaging chromatin nanostructure with binding-activated localization microscopy based on DNA structure fluctuations,” Nucleic Acids Res. 45(8), e56 (2017).
[Crossref] [PubMed]

Doose, S.

A. Burgert, S. Letschert, S. Doose, and M. Sauer, “Artifacts in single-molecule localization microscopy,” Histochem. Cell Biol. 144(2), 123–131 (2015).
[Crossref] [PubMed]

Douglass, K. M.

K. M. Douglass, C. Sieben, A. Archetti, A. Lambert, and S. Manley, “Super-resolution imaging of multiple cells by optimised flat-field epi-illumination,” Nat. Photonics 10(11), 705–708 (2016).
[Crossref] [PubMed]

Fienup, J. R.

Förster, R.

Fuchs, U.

Fujiwara, T.

C. Nakada, K. Ritchie, Y. Oba, M. Nakamura, Y. Hotta, R. Iino, R. S. Kasai, K. Yamaguchi, T. Fujiwara, and A. Kusumi, “Accumulation of anchored proteins forms membrane diffusion barriers during neuronal polarization,” Nat. Cell Biol. 5(7), 626–632 (2003).
[Crossref] [PubMed]

Furley, A.

L. Valiya Peedikakkal, V. Steventon, A. Furley, and A. J. Cadby, “Development of targeted STORM for super resolution imaging of biological samples using digital micro-mirror device,” Opt. Commun. 404, 18–22 (2017).
[Crossref]

Gandolfi, D.

P. Pozzi, D. Gandolfi, M. Tognolina, G. Chirico, J. Mapelli, and E. D’Angelo, “High-throughput spatial light modulation two-photon microscopy for fast functional imaging,” Neurophotonics 2(1), 015005 (2015).
[Crossref] [PubMed]

Gerchberg, R. W.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35(2), 237–246 (1972).

Goodman, J. W.

Gourram, A.

A. Szczurek, L. Klewes, J. Xing, A. Gourram, U. Birk, H. Knecht, J. W. Dobrucki, S. Mai, and C. Cremer, “Imaging chromatin nanostructure with binding-activated localization microscopy based on DNA structure fluctuations,” Nucleic Acids Res. 45(8), e56 (2017).
[Crossref] [PubMed]

Gunkel, M.

P. Lemmer, M. Gunkel, D. Baddeley, R. Kaufmann, A. Urich, Y. Weiland, J. Reymann, P. Müller, M. Hausmann, and C. Cremer, “SPDM: light microscopy with single-molecule resolution at the nanoscale,” Appl. Phys. B 93(1), 1–12 (2008).
[Crossref]

Hagen, G. M.

M. Ovesný, P. Křížek, J. Borkovec, Z. Švindrych, and G. M. Hagen, “ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging,” Bioinformatics 30(16), 2389–2390 (2014).
[Crossref] [PubMed]

Han, K. Y.

Hausmann, M.

P. Lemmer, M. Gunkel, D. Baddeley, R. Kaufmann, A. Urich, Y. Weiland, J. Reymann, P. Müller, M. Hausmann, and C. Cremer, “SPDM: light microscopy with single-molecule resolution at the nanoscale,” Appl. Phys. B 93(1), 1–12 (2008).
[Crossref]

Heintzmann, R.

Hess, H. F.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Hotta, Y.

C. Nakada, K. Ritchie, Y. Oba, M. Nakamura, Y. Hotta, R. Iino, R. S. Kasai, K. Yamaguchi, T. Fujiwara, and A. Kusumi, “Accumulation of anchored proteins forms membrane diffusion barriers during neuronal polarization,” Nat. Cell Biol. 5(7), 626–632 (2003).
[Crossref] [PubMed]

Hsu, W.-F.

Iino, R.

C. Nakada, K. Ritchie, Y. Oba, M. Nakamura, Y. Hotta, R. Iino, R. S. Kasai, K. Yamaguchi, T. Fujiwara, and A. Kusumi, “Accumulation of anchored proteins forms membrane diffusion barriers during neuronal polarization,” Nat. Cell Biol. 5(7), 626–632 (2003).
[Crossref] [PubMed]

Jesacher, A.

Jost, A.

Jovin, T.

Kaminski, C. F.

C. J. Rowlands, F. Ströhl, P. P. V. Ramirez, K. M. Scherer, and C. F. Kaminski, “Flat-field super-resolution localization microscopy with a low-cost refractive beam-shaping element,” Sci. Rep. 8(1), 5630 (2018).
[Crossref] [PubMed]

Kasai, R. S.

C. Nakada, K. Ritchie, Y. Oba, M. Nakamura, Y. Hotta, R. Iino, R. S. Kasai, K. Yamaguchi, T. Fujiwara, and A. Kusumi, “Accumulation of anchored proteins forms membrane diffusion barriers during neuronal polarization,” Nat. Cell Biol. 5(7), 626–632 (2003).
[Crossref] [PubMed]

Kaufmann, R.

P. Lemmer, M. Gunkel, D. Baddeley, R. Kaufmann, A. Urich, Y. Weiland, J. Reymann, P. Müller, M. Hausmann, and C. Cremer, “SPDM: light microscopy with single-molecule resolution at the nanoscale,” Appl. Phys. B 93(1), 1–12 (2008).
[Crossref]

Keyrouz, W.

J. Chalfoun, M. Majurski, T. Blattner, K. Bhadriraju, W. Keyrouz, P. Bajcsy, and M. Brady, “MIST: Accurate and Scalable Microscopy Image Stitching Tool with Stage Modeling and Error Minimization,” Sci. Rep. 7(1), 4988 (2017).
[Crossref] [PubMed]

Khaw, I.

Kielhorn, M.

Klewes, L.

A. Szczurek, L. Klewes, J. Xing, A. Gourram, U. Birk, H. Knecht, J. W. Dobrucki, S. Mai, and C. Cremer, “Imaging chromatin nanostructure with binding-activated localization microscopy based on DNA structure fluctuations,” Nucleic Acids Res. 45(8), e56 (2017).
[Crossref] [PubMed]

Knecht, H.

A. Szczurek, U. Birk, H. Knecht, J. Dobrucki, S. Mai, and C. Cremer, “Super-resolution binding activated localization microscopy through reversible change of DNA conformation,” Nucleus 9(1), 182–189 (2018).
[Crossref] [PubMed]

A. Szczurek, L. Klewes, J. Xing, A. Gourram, U. Birk, H. Knecht, J. W. Dobrucki, S. Mai, and C. Cremer, “Imaging chromatin nanostructure with binding-activated localization microscopy based on DNA structure fluctuations,” Nucleic Acids Res. 45(8), e56 (2017).
[Crossref] [PubMed]

Krížek, P.

M. Ovesný, P. Křížek, J. Borkovec, Z. Švindrych, and G. M. Hagen, “ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging,” Bioinformatics 30(16), 2389–2390 (2014).
[Crossref] [PubMed]

Kusumi, A.

C. Nakada, K. Ritchie, Y. Oba, M. Nakamura, Y. Hotta, R. Iino, R. S. Kasai, K. Yamaguchi, T. Fujiwara, and A. Kusumi, “Accumulation of anchored proteins forms membrane diffusion barriers during neuronal polarization,” Nat. Cell Biol. 5(7), 626–632 (2003).
[Crossref] [PubMed]

Lambert, A.

K. M. Douglass, C. Sieben, A. Archetti, A. Lambert, and S. Manley, “Super-resolution imaging of multiple cells by optimised flat-field epi-illumination,” Nat. Photonics 10(11), 705–708 (2016).
[Crossref] [PubMed]

Larson, D. R.

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J. 82(5), 2775–2783 (2002).
[Crossref] [PubMed]

Lemmer, P.

P. Lemmer, M. Gunkel, D. Baddeley, R. Kaufmann, A. Urich, Y. Weiland, J. Reymann, P. Müller, M. Hausmann, and C. Cremer, “SPDM: light microscopy with single-molecule resolution at the nanoscale,” Appl. Phys. B 93(1), 1–12 (2008).
[Crossref]

Letschert, S.

A. Burgert, S. Letschert, S. Doose, and M. Sauer, “Artifacts in single-molecule localization microscopy,” Histochem. Cell Biol. 144(2), 123–131 (2015).
[Crossref] [PubMed]

Lidke, K.

Lindwasser, O. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Lippincott-Schwartz, J.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Lu-Walther, H.-W.

Mai, S.

A. Szczurek, U. Birk, H. Knecht, J. Dobrucki, S. Mai, and C. Cremer, “Super-resolution binding activated localization microscopy through reversible change of DNA conformation,” Nucleus 9(1), 182–189 (2018).
[Crossref] [PubMed]

A. Szczurek, L. Klewes, J. Xing, A. Gourram, U. Birk, H. Knecht, J. W. Dobrucki, S. Mai, and C. Cremer, “Imaging chromatin nanostructure with binding-activated localization microscopy based on DNA structure fluctuations,” Nucleic Acids Res. 45(8), e56 (2017).
[Crossref] [PubMed]

Majurski, M.

J. Chalfoun, M. Majurski, T. Blattner, K. Bhadriraju, W. Keyrouz, P. Bajcsy, and M. Brady, “MIST: Accurate and Scalable Microscopy Image Stitching Tool with Stage Modeling and Error Minimization,” Sci. Rep. 7(1), 4988 (2017).
[Crossref] [PubMed]

Manley, S.

K. M. Douglass, C. Sieben, A. Archetti, A. Lambert, and S. Manley, “Super-resolution imaging of multiple cells by optimised flat-field epi-illumination,” Nat. Photonics 10(11), 705–708 (2016).
[Crossref] [PubMed]

Mapelli, J.

P. Pozzi, D. Gandolfi, M. Tognolina, G. Chirico, J. Mapelli, and E. D’Angelo, “High-throughput spatial light modulation two-photon microscopy for fast functional imaging,” Neurophotonics 2(1), 015005 (2015).
[Crossref] [PubMed]

Marín-Llauradó, A.

L. Valon, A. Marín-Llauradó, T. Wyatt, G. Charras, and X. Trepat, “Optogenetic control of cellular forces and mechanotransduction,” Nat. Commun. 8, 14396 (2017).
[Crossref] [PubMed]

Möhl, A.

Müller, P.

P. Lemmer, M. Gunkel, D. Baddeley, R. Kaufmann, A. Urich, Y. Weiland, J. Reymann, P. Müller, M. Hausmann, and C. Cremer, “SPDM: light microscopy with single-molecule resolution at the nanoscale,” Appl. Phys. B 93(1), 1–12 (2008).
[Crossref]

Nakada, C.

C. Nakada, K. Ritchie, Y. Oba, M. Nakamura, Y. Hotta, R. Iino, R. S. Kasai, K. Yamaguchi, T. Fujiwara, and A. Kusumi, “Accumulation of anchored proteins forms membrane diffusion barriers during neuronal polarization,” Nat. Cell Biol. 5(7), 626–632 (2003).
[Crossref] [PubMed]

Nakamura, M.

C. Nakada, K. Ritchie, Y. Oba, M. Nakamura, Y. Hotta, R. Iino, R. S. Kasai, K. Yamaguchi, T. Fujiwara, and A. Kusumi, “Accumulation of anchored proteins forms membrane diffusion barriers during neuronal polarization,” Nat. Cell Biol. 5(7), 626–632 (2003).
[Crossref] [PubMed]

Nikolenko, V.

V. Nikolenko, D. S. Peterka, R. Araya, A. Woodruff, and R. Yuste, “Spatial light modulator microscopy,” Cold Spring Harb. Protoc. 2013(12), 1132–1141 (2013).
[Crossref] [PubMed]

Oba, Y.

C. Nakada, K. Ritchie, Y. Oba, M. Nakamura, Y. Hotta, R. Iino, R. S. Kasai, K. Yamaguchi, T. Fujiwara, and A. Kusumi, “Accumulation of anchored proteins forms membrane diffusion barriers during neuronal polarization,” Nat. Cell Biol. 5(7), 626–632 (2003).
[Crossref] [PubMed]

Olenych, S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Ovesný, M.

M. Ovesný, P. Křížek, J. Borkovec, Z. Švindrych, and G. M. Hagen, “ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging,” Bioinformatics 30(16), 2389–2390 (2014).
[Crossref] [PubMed]

Patterson, G. H.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Peterka, D. S.

V. Nikolenko, D. S. Peterka, R. Araya, A. Woodruff, and R. Yuste, “Spatial light modulator microscopy,” Cold Spring Harb. Protoc. 2013(12), 1132–1141 (2013).
[Crossref] [PubMed]

Pozzi, P.

P. Pozzi, D. Gandolfi, M. Tognolina, G. Chirico, J. Mapelli, and E. D’Angelo, “High-throughput spatial light modulation two-photon microscopy for fast functional imaging,” Neurophotonics 2(1), 015005 (2015).
[Crossref] [PubMed]

Ramirez, P. P. V.

C. J. Rowlands, F. Ströhl, P. P. V. Ramirez, K. M. Scherer, and C. F. Kaminski, “Flat-field super-resolution localization microscopy with a low-cost refractive beam-shaping element,” Sci. Rep. 8(1), 5630 (2018).
[Crossref] [PubMed]

Reymann, J.

P. Lemmer, M. Gunkel, D. Baddeley, R. Kaufmann, A. Urich, Y. Weiland, J. Reymann, P. Müller, M. Hausmann, and C. Cremer, “SPDM: light microscopy with single-molecule resolution at the nanoscale,” Appl. Phys. B 93(1), 1–12 (2008).
[Crossref]

Rieger, B.

Ries, J.

Ritchie, K.

C. Nakada, K. Ritchie, Y. Oba, M. Nakamura, Y. Hotta, R. Iino, R. S. Kasai, K. Yamaguchi, T. Fujiwara, and A. Kusumi, “Accumulation of anchored proteins forms membrane diffusion barriers during neuronal polarization,” Nat. Cell Biol. 5(7), 626–632 (2003).
[Crossref] [PubMed]

Ritsch-Marte, M.

Rowald, A.

Rowlands, C. J.

C. J. Rowlands, F. Ströhl, P. P. V. Ramirez, K. M. Scherer, and C. F. Kaminski, “Flat-field super-resolution localization microscopy with a low-cost refractive beam-shaping element,” Sci. Rep. 8(1), 5630 (2018).
[Crossref] [PubMed]

Rust, M. J.

M. J. Rust, M. Bates, and X. Zhuang, “Stochastic optical reconstruction microscopy (STORM) provides sub-diffraction-limit image resolution,” Nat. Methods 3(10), 793–795 (2006).
[Crossref] [PubMed]

Sauer, M.

A. Burgert, S. Letschert, S. Doose, and M. Sauer, “Artifacts in single-molecule localization microscopy,” Histochem. Cell Biol. 144(2), 123–131 (2015).
[Crossref] [PubMed]

Saxton, W. O.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35(2), 237–246 (1972).

Scherer, K. M.

C. J. Rowlands, F. Ströhl, P. P. V. Ramirez, K. M. Scherer, and C. F. Kaminski, “Flat-field super-resolution localization microscopy with a low-cost refractive beam-shaping element,” Sci. Rep. 8(1), 5630 (2018).
[Crossref] [PubMed]

Sieben, C.

K. M. Douglass, C. Sieben, A. Archetti, A. Lambert, and S. Manley, “Super-resolution imaging of multiple cells by optimised flat-field epi-illumination,” Nat. Photonics 10(11), 705–708 (2016).
[Crossref] [PubMed]

Sougrat, R.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Steventon, V.

L. Valiya Peedikakkal, V. Steventon, A. Furley, and A. J. Cadby, “Development of targeted STORM for super resolution imaging of biological samples using digital micro-mirror device,” Opt. Commun. 404, 18–22 (2017).
[Crossref]

Ströhl, F.

C. J. Rowlands, F. Ströhl, P. P. V. Ramirez, K. M. Scherer, and C. F. Kaminski, “Flat-field super-resolution localization microscopy with a low-cost refractive beam-shaping element,” Sci. Rep. 8(1), 5630 (2018).
[Crossref] [PubMed]

Švindrych, Z.

M. Ovesný, P. Křížek, J. Borkovec, Z. Švindrych, and G. M. Hagen, “ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging,” Bioinformatics 30(16), 2389–2390 (2014).
[Crossref] [PubMed]

Szczurek, A.

A. Szczurek, U. Birk, H. Knecht, J. Dobrucki, S. Mai, and C. Cremer, “Super-resolution binding activated localization microscopy through reversible change of DNA conformation,” Nucleus 9(1), 182–189 (2018).
[Crossref] [PubMed]

A. Szczurek, L. Klewes, J. Xing, A. Gourram, U. Birk, H. Knecht, J. W. Dobrucki, S. Mai, and C. Cremer, “Imaging chromatin nanostructure with binding-activated localization microscopy based on DNA structure fluctuations,” Nucleic Acids Res. 45(8), e56 (2017).
[Crossref] [PubMed]

Takaki, Y.

Tang, J.

Thompson, R. E.

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J. 82(5), 2775–2783 (2002).
[Crossref] [PubMed]

Tognolina, M.

P. Pozzi, D. Gandolfi, M. Tognolina, G. Chirico, J. Mapelli, and E. D’Angelo, “High-throughput spatial light modulation two-photon microscopy for fast functional imaging,” Neurophotonics 2(1), 015005 (2015).
[Crossref] [PubMed]

Trepat, X.

L. Valon, A. Marín-Llauradó, T. Wyatt, G. Charras, and X. Trepat, “Optogenetic control of cellular forces and mechanotransduction,” Nat. Commun. 8, 14396 (2017).
[Crossref] [PubMed]

Urich, A.

P. Lemmer, M. Gunkel, D. Baddeley, R. Kaufmann, A. Urich, Y. Weiland, J. Reymann, P. Müller, M. Hausmann, and C. Cremer, “SPDM: light microscopy with single-molecule resolution at the nanoscale,” Appl. Phys. B 93(1), 1–12 (2008).
[Crossref]

Valiya Peedikakkal, L.

L. Valiya Peedikakkal, V. Steventon, A. Furley, and A. J. Cadby, “Development of targeted STORM for super resolution imaging of biological samples using digital micro-mirror device,” Opt. Commun. 404, 18–22 (2017).
[Crossref]

Valon, L.

L. Valon, A. Marín-Llauradó, T. Wyatt, G. Charras, and X. Trepat, “Optogenetic control of cellular forces and mechanotransduction,” Nat. Commun. 8, 14396 (2017).
[Crossref] [PubMed]

Webb, W. W.

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J. 82(5), 2775–2783 (2002).
[Crossref] [PubMed]

Weiland, Y.

P. Lemmer, M. Gunkel, D. Baddeley, R. Kaufmann, A. Urich, Y. Weiland, J. Reymann, P. Müller, M. Hausmann, and C. Cremer, “SPDM: light microscopy with single-molecule resolution at the nanoscale,” Appl. Phys. B 93(1), 1–12 (2008).
[Crossref]

Wicker, K.

Woodruff, A.

V. Nikolenko, D. S. Peterka, R. Araya, A. Woodruff, and R. Yuste, “Spatial light modulator microscopy,” Cold Spring Harb. Protoc. 2013(12), 1132–1141 (2013).
[Crossref] [PubMed]

Wyatt, T.

L. Valon, A. Marín-Llauradó, T. Wyatt, G. Charras, and X. Trepat, “Optogenetic control of cellular forces and mechanotransduction,” Nat. Commun. 8, 14396 (2017).
[Crossref] [PubMed]

Xing, J.

A. Szczurek, L. Klewes, J. Xing, A. Gourram, U. Birk, H. Knecht, J. W. Dobrucki, S. Mai, and C. Cremer, “Imaging chromatin nanostructure with binding-activated localization microscopy based on DNA structure fluctuations,” Nucleic Acids Res. 45(8), e56 (2017).
[Crossref] [PubMed]

Yamaguchi, K.

C. Nakada, K. Ritchie, Y. Oba, M. Nakamura, Y. Hotta, R. Iino, R. S. Kasai, K. Yamaguchi, T. Fujiwara, and A. Kusumi, “Accumulation of anchored proteins forms membrane diffusion barriers during neuronal polarization,” Nat. Cell Biol. 5(7), 626–632 (2003).
[Crossref] [PubMed]

Yeh, C.-F.

Yokouchi, M.

Yuste, R.

V. Nikolenko, D. S. Peterka, R. Araya, A. Woodruff, and R. Yuste, “Spatial light modulator microscopy,” Cold Spring Harb. Protoc. 2013(12), 1132–1141 (2013).
[Crossref] [PubMed]

Zhuang, X.

M. J. Rust, M. Bates, and X. Zhuang, “Stochastic optical reconstruction microscopy (STORM) provides sub-diffraction-limit image resolution,” Nat. Methods 3(10), 793–795 (2006).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. B (1)

P. Lemmer, M. Gunkel, D. Baddeley, R. Kaufmann, A. Urich, Y. Weiland, J. Reymann, P. Müller, M. Hausmann, and C. Cremer, “SPDM: light microscopy with single-molecule resolution at the nanoscale,” Appl. Phys. B 93(1), 1–12 (2008).
[Crossref]

Bioinformatics (1)

M. Ovesný, P. Křížek, J. Borkovec, Z. Švindrych, and G. M. Hagen, “ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging,” Bioinformatics 30(16), 2389–2390 (2014).
[Crossref] [PubMed]

Biophys. J. (1)

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J. 82(5), 2775–2783 (2002).
[Crossref] [PubMed]

Cold Spring Harb. Protoc. (1)

V. Nikolenko, D. S. Peterka, R. Araya, A. Woodruff, and R. Yuste, “Spatial light modulator microscopy,” Cold Spring Harb. Protoc. 2013(12), 1132–1141 (2013).
[Crossref] [PubMed]

Histochem. Cell Biol. (1)

A. Burgert, S. Letschert, S. Doose, and M. Sauer, “Artifacts in single-molecule localization microscopy,” Histochem. Cell Biol. 144(2), 123–131 (2015).
[Crossref] [PubMed]

J. Opt. Soc. Am. (1)

Nat. Cell Biol. (1)

C. Nakada, K. Ritchie, Y. Oba, M. Nakamura, Y. Hotta, R. Iino, R. S. Kasai, K. Yamaguchi, T. Fujiwara, and A. Kusumi, “Accumulation of anchored proteins forms membrane diffusion barriers during neuronal polarization,” Nat. Cell Biol. 5(7), 626–632 (2003).
[Crossref] [PubMed]

Nat. Commun. (1)

L. Valon, A. Marín-Llauradó, T. Wyatt, G. Charras, and X. Trepat, “Optogenetic control of cellular forces and mechanotransduction,” Nat. Commun. 8, 14396 (2017).
[Crossref] [PubMed]

Nat. Methods (1)

M. J. Rust, M. Bates, and X. Zhuang, “Stochastic optical reconstruction microscopy (STORM) provides sub-diffraction-limit image resolution,” Nat. Methods 3(10), 793–795 (2006).
[Crossref] [PubMed]

Nat. Photonics (1)

K. M. Douglass, C. Sieben, A. Archetti, A. Lambert, and S. Manley, “Super-resolution imaging of multiple cells by optimised flat-field epi-illumination,” Nat. Photonics 10(11), 705–708 (2016).
[Crossref] [PubMed]

Neurophotonics (1)

P. Pozzi, D. Gandolfi, M. Tognolina, G. Chirico, J. Mapelli, and E. D’Angelo, “High-throughput spatial light modulation two-photon microscopy for fast functional imaging,” Neurophotonics 2(1), 015005 (2015).
[Crossref] [PubMed]

Nucleic Acids Res. (1)

A. Szczurek, L. Klewes, J. Xing, A. Gourram, U. Birk, H. Knecht, J. W. Dobrucki, S. Mai, and C. Cremer, “Imaging chromatin nanostructure with binding-activated localization microscopy based on DNA structure fluctuations,” Nucleic Acids Res. 45(8), e56 (2017).
[Crossref] [PubMed]

Nucleus (1)

A. Szczurek, U. Birk, H. Knecht, J. Dobrucki, S. Mai, and C. Cremer, “Super-resolution binding activated localization microscopy through reversible change of DNA conformation,” Nucleus 9(1), 182–189 (2018).
[Crossref] [PubMed]

Opt. Commun. (1)

L. Valiya Peedikakkal, V. Steventon, A. Furley, and A. J. Cadby, “Development of targeted STORM for super resolution imaging of biological samples using digital micro-mirror device,” Opt. Commun. 404, 18–22 (2017).
[Crossref]

Opt. Express (6)

Optik (Stuttg.) (1)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35(2), 237–246 (1972).

Sci. Rep. (2)

C. J. Rowlands, F. Ströhl, P. P. V. Ramirez, K. M. Scherer, and C. F. Kaminski, “Flat-field super-resolution localization microscopy with a low-cost refractive beam-shaping element,” Sci. Rep. 8(1), 5630 (2018).
[Crossref] [PubMed]

J. Chalfoun, M. Majurski, T. Blattner, K. Bhadriraju, W. Keyrouz, P. Bajcsy, and M. Brady, “MIST: Accurate and Scalable Microscopy Image Stitching Tool with Stage Modeling and Error Minimization,” Sci. Rep. 7(1), 4988 (2017).
[Crossref] [PubMed]

Science (1)

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Patterned illumination single molecule localization microscopy (piSMLM) setup. The inset shows the ray paths of diffracted and non-diffracted light at the SLM, which demonstrates an optimal separation between the desired pattern and the zeroth order originating from the non-diffracted light.
Fig. 2
Fig. 2 Flow chart of the modified Gerchberg-Saxton algorithm with wave function ψ, amplitude A and phase φ. The target intensity is weighted by a measured calibration image as a new input intensity to achieve flat-top illumination (blue). Multiple phase masks are generated to remove speckles by the time-averaging method (red).
Fig. 3
Fig. 3 Calibration image for the full field of view. Pixel size, 65 nm.
Fig. 4
Fig. 4 The averaged intensity of 40 images calculated (a) by the standard GS algorithm and (b) by the modified GS algorithm. The region for the evaluation of the speckle contrast is indicated by the red dashed rectangle. (c) The intensity profiles along the yellow lines are indicated in (a) and (b). Pixel size, 65 nm.
Fig. 5
Fig. 5 Experimental results of speckle reduction by the time-averaging method.
Fig. 6
Fig. 6 Imaging of a HeLa cell nucleus by (a) Gaussian illumination and (b) flat-top illumination. (c) The normalized intensity profiles through the cell nucleus in two perpendicular directions (red: Gaussian illumination profiles, blue: flat-top illumination profiles). Scale bar, 5 μm.
Fig. 7
Fig. 7 HeLa cell nucleus images by illuminating (a) the whole cell nucleus and (b) the half of the nucleus. The illumination ROI is indicated by a green rectangle. (c) Normalized fluorescence intensity profiles through the center of the image of (a) and (b) indicated by a blue line (Fig. 7a) and a red line (Fig. 7b), respectively.
Fig. 8
Fig. 8 Plot of laser power versus ROI area and the corresponding irradiance.
Fig. 9
Fig. 9 HeLa cell nuclei images from piSMLM: (a) Conventional wide-field image of two nuclei. The yellow contour line indicates the ROI for light exposure. (b) Super-resolution image of the selected nucleus (right). For a quantitative estimate, the normalized intensity profiles of the conventional wide-field image (c, red) and of the super-resolution fBALM image (d, blue) through the center of the field of view are shown.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

SC= σ s / I ,

Metrics