Abstract

We experimentally demonstrated DFB lasers containing an active distributed reflector that has the same waveguide core as the active section. Although without current injection, the distributed reflector will be optically pumped to near transparency by the laser itself, and therefore can provide relatively high reflection to the laser. The laser, fabricated with processing steps similar to standard DFB lasers, has achieved 10-mA threshold current, 0.38-mW/mA slope efficiency, above 55-dB side mode suppression ratio, and 24-GHz modulation bandwidth at 60-mA current injection. 28-Gb/s transmission over 10-km single-mode fibers with a power penalty of less-than 0.5 dB has been demonstrated as well.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Design and simulation of two-section DFB lasers with short active-section lengths

Gongyuan Zhao, Junqiang Sun, Yanping Xi, Dingshan Gao, Qiaoyin Lu, and Weihua Guo
Opt. Express 24(10) 10590-10598 (2016)

Bandwidth enhancement of injection-locked distributed reflector lasers with wirelike active regions

SeungHun Lee, Devang Parekh, Takahiko Shindo, Weijian Yang, Peng Guo, Daisuke Takahashi, Nobuhiko Nishiyama, Connie J. Chang-Hasnain, and Shigehisa Arai
Opt. Express 18(16) 16370-16378 (2010)

Twin-mirror membrane distributed-reflector lasers using 20-μm-long active region on Si substrates

Erina Kanno, Koji Takeda, Takuro Fujii, Koichi Hasebe, Hidetaka Nishi, Tsuyoshi Yamamoto, Takaaki Kakitsuka, and Shinji Matsuo
Opt. Express 26(2) 1268-1277 (2018)

References

  • View by:
  • |
  • |
  • |

  1. IEEE, Standard, 802.3, http://standards.ieee.org/about/get/802/802.3.html .
  2. K. Adachi, K. Shinoda, T. Kitatani, T. Fukamachi, Y. Matsuoka, T. Sugawara, and S. Tsuji, “25-Gb/s multichannel 1.3-μm surface-emitting lens-integrated DFB laser arrays,” J. Lightwave Technol. 29(19), 2899–2905 (2011).
    [Crossref]
  3. S. Kanazawa, W. Kobayashi, Y. Ueda, T. Fujisawa, K. Takahata, T. Ohno, T. Yoshimatsu, H. Ishii, and H. Sanjoh, “30-km error-free transmission of directly modulated DFB laser array transmitter optical sub-assembly for 100-Gbit/s application,” J. Lightwave Technol. 34(15), 3646–3652 (2016).
    [Crossref]
  4. M. Matsuda, A. Uetake, T. Simoyama, S. Okumura, K. Takabayashi, M. Ekawa, and T. Yamamoto, “1.3-μm wavelength AlGaInAs multiple-quantum-well semi-insulating buried-hetero structure distributed-reflector laser arrays on semi-insulating InP substrate,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1–7 (2015).
    [Crossref]
  5. K. Nakahara, T. Tsuchiya, T. Kitatani, K. Shinoda, T. Taniguchi, T. Kikawa, M. Aoki, and M. Mukaikubo, “40-Gb/s direct modulation with high extinction ratio operation of 1.3-μm InGaAlAs multi quantum well ridge waveguide distributed feedback lasers,” IEEE Photonics Technol. Lett. 19(19), 1436–1438 (2007).
    [Crossref]
  6. T. Tadokoro, W. Kobayashi, T. Fujisawa, T. Yamanaka, and F. Kano, “43 Gb/s 1.3 μm DFB laser for 40 km transmission,” J. Lightwave Technol. 30(15), 2520–2524 (2012).
    [Crossref]
  7. K. Nakahara, Y. Wakayama, T. Kitatani, T. Taniguchi, T. Fukamachi, Y. Sakuma, and S. Tanaka, “56-Gb/s direct modulation in InGaAlAs BH-DFB lasers at 55 °C,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper Th3A.1.
  8. Y. Matsui, T. Pham, T. Sudo, G. Carey, B. Young, J. Xu, C. Cole, and C. Roxlo, “28-Gbaud PAM4 and 56-Gb/s NRZ performance comparison using 1310-nm Al-BH DFB laser,” J. Lightwave Technol. 34(11), 2677–2683 (2016).
    [Crossref]
  9. W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjoh, “50-Gb/s direct modulation of a 1.3-μm InGaAlAs-based DFB laser with a ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
    [Crossref]
  10. T. Yamamoto, “High-Speed Directly Modulated Lasers,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2012), paper OTh3F.5.
    [Crossref]
  11. G. Zhao, J. Sun, Y. Xi, D. Gao, Q. Lu, and W. Guo, “Design and simulation of two-section DFB lasers with short active-section lengths,” Opt. Express 24(10), 10590–10598 (2016).
    [Crossref] [PubMed]
  12. G. Liu, G. Zhao, Q. Lu, and W. Guo, “Demonstration of a novel two-section DFB laser,” in CLEO: Applications & Technology (2018), paper JTu2A.22.
  13. W. H. Guo, D. C. Byrne, Q. Lu, B. Corbett, and J. F. Donegan, “Fabry–Pérot laser characterization based on the amplified spontaneous emission spectrum and the Fourier series expansion method,” IEEE J. Sel. Top. Quantum Electron. 5(17), 1356–1363 (2011).
    [Crossref]
  14. M. Razeghi, R. Blondeau, M. Krakowski, J. C. Bouley, M. Papuchon, B. Cremoux, and J. Duchemin, “Low-threshold distributed feedback lasers fabricated on material grown completely by LP-MOCVD,” IEEE J. Quantum Electron. 6(6), 507–511 (1985).
    [Crossref]
  15. N. Matuschek, F. X. Kartner, and U. Keller, “Exact coupled-mode theories for multilayer interference coatings with arbitrary strong index modulations,” IEEE J. Quantum Electron. 33(3), 295–302 (1997).
    [Crossref]
  16. R. Olshansky, P. Hill, V. Lanzisera, and W. Powazinik, “Frequency response of 1.3 μm InGaAsP high speed semiconductor laser,” IEEE J. Quantum Electron. 23(9), 1410–1418 (1987).
    [Crossref]
  17. U. Feiste, “Optimization of modulation bandwidth in DBR lasers with detuned Bragg reflectors,” IEEE J. Quantum Electron. 34(12), 2371–2379 (1998).
    [Crossref]
  18. M. Chacinski and R. Schatz, “Impact of losses in the Bragg section on the dynamics of detuned loaded DBR lasers,” IEEE J. Quantum Electron. 46(9), 1360–1367 (2010).
    [Crossref]
  19. Y. Matsui, R. Schatz, T. Pham, W. A. Ling, G. Carey, H. M. Daghighian, D. Adams, T. Sudo, and C. Roxlo, “55 GHz bandwidth distributed reflector laser,” J. Lightwave Technol. 35(3), 397–403 (2017).
    [Crossref]

2017 (1)

2016 (3)

2015 (1)

M. Matsuda, A. Uetake, T. Simoyama, S. Okumura, K. Takabayashi, M. Ekawa, and T. Yamamoto, “1.3-μm wavelength AlGaInAs multiple-quantum-well semi-insulating buried-hetero structure distributed-reflector laser arrays on semi-insulating InP substrate,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1–7 (2015).
[Crossref]

2013 (1)

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjoh, “50-Gb/s direct modulation of a 1.3-μm InGaAlAs-based DFB laser with a ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
[Crossref]

2012 (1)

2011 (2)

K. Adachi, K. Shinoda, T. Kitatani, T. Fukamachi, Y. Matsuoka, T. Sugawara, and S. Tsuji, “25-Gb/s multichannel 1.3-μm surface-emitting lens-integrated DFB laser arrays,” J. Lightwave Technol. 29(19), 2899–2905 (2011).
[Crossref]

W. H. Guo, D. C. Byrne, Q. Lu, B. Corbett, and J. F. Donegan, “Fabry–Pérot laser characterization based on the amplified spontaneous emission spectrum and the Fourier series expansion method,” IEEE J. Sel. Top. Quantum Electron. 5(17), 1356–1363 (2011).
[Crossref]

2010 (1)

M. Chacinski and R. Schatz, “Impact of losses in the Bragg section on the dynamics of detuned loaded DBR lasers,” IEEE J. Quantum Electron. 46(9), 1360–1367 (2010).
[Crossref]

2007 (1)

K. Nakahara, T. Tsuchiya, T. Kitatani, K. Shinoda, T. Taniguchi, T. Kikawa, M. Aoki, and M. Mukaikubo, “40-Gb/s direct modulation with high extinction ratio operation of 1.3-μm InGaAlAs multi quantum well ridge waveguide distributed feedback lasers,” IEEE Photonics Technol. Lett. 19(19), 1436–1438 (2007).
[Crossref]

1998 (1)

U. Feiste, “Optimization of modulation bandwidth in DBR lasers with detuned Bragg reflectors,” IEEE J. Quantum Electron. 34(12), 2371–2379 (1998).
[Crossref]

1997 (1)

N. Matuschek, F. X. Kartner, and U. Keller, “Exact coupled-mode theories for multilayer interference coatings with arbitrary strong index modulations,” IEEE J. Quantum Electron. 33(3), 295–302 (1997).
[Crossref]

1987 (1)

R. Olshansky, P. Hill, V. Lanzisera, and W. Powazinik, “Frequency response of 1.3 μm InGaAsP high speed semiconductor laser,” IEEE J. Quantum Electron. 23(9), 1410–1418 (1987).
[Crossref]

1985 (1)

M. Razeghi, R. Blondeau, M. Krakowski, J. C. Bouley, M. Papuchon, B. Cremoux, and J. Duchemin, “Low-threshold distributed feedback lasers fabricated on material grown completely by LP-MOCVD,” IEEE J. Quantum Electron. 6(6), 507–511 (1985).
[Crossref]

Adachi, K.

Adams, D.

Aoki, M.

K. Nakahara, T. Tsuchiya, T. Kitatani, K. Shinoda, T. Taniguchi, T. Kikawa, M. Aoki, and M. Mukaikubo, “40-Gb/s direct modulation with high extinction ratio operation of 1.3-μm InGaAlAs multi quantum well ridge waveguide distributed feedback lasers,” IEEE Photonics Technol. Lett. 19(19), 1436–1438 (2007).
[Crossref]

Blondeau, R.

M. Razeghi, R. Blondeau, M. Krakowski, J. C. Bouley, M. Papuchon, B. Cremoux, and J. Duchemin, “Low-threshold distributed feedback lasers fabricated on material grown completely by LP-MOCVD,” IEEE J. Quantum Electron. 6(6), 507–511 (1985).
[Crossref]

Bouley, J. C.

M. Razeghi, R. Blondeau, M. Krakowski, J. C. Bouley, M. Papuchon, B. Cremoux, and J. Duchemin, “Low-threshold distributed feedback lasers fabricated on material grown completely by LP-MOCVD,” IEEE J. Quantum Electron. 6(6), 507–511 (1985).
[Crossref]

Byrne, D. C.

W. H. Guo, D. C. Byrne, Q. Lu, B. Corbett, and J. F. Donegan, “Fabry–Pérot laser characterization based on the amplified spontaneous emission spectrum and the Fourier series expansion method,” IEEE J. Sel. Top. Quantum Electron. 5(17), 1356–1363 (2011).
[Crossref]

Carey, G.

Chacinski, M.

M. Chacinski and R. Schatz, “Impact of losses in the Bragg section on the dynamics of detuned loaded DBR lasers,” IEEE J. Quantum Electron. 46(9), 1360–1367 (2010).
[Crossref]

Cole, C.

Corbett, B.

W. H. Guo, D. C. Byrne, Q. Lu, B. Corbett, and J. F. Donegan, “Fabry–Pérot laser characterization based on the amplified spontaneous emission spectrum and the Fourier series expansion method,” IEEE J. Sel. Top. Quantum Electron. 5(17), 1356–1363 (2011).
[Crossref]

Cremoux, B.

M. Razeghi, R. Blondeau, M. Krakowski, J. C. Bouley, M. Papuchon, B. Cremoux, and J. Duchemin, “Low-threshold distributed feedback lasers fabricated on material grown completely by LP-MOCVD,” IEEE J. Quantum Electron. 6(6), 507–511 (1985).
[Crossref]

Daghighian, H. M.

Donegan, J. F.

W. H. Guo, D. C. Byrne, Q. Lu, B. Corbett, and J. F. Donegan, “Fabry–Pérot laser characterization based on the amplified spontaneous emission spectrum and the Fourier series expansion method,” IEEE J. Sel. Top. Quantum Electron. 5(17), 1356–1363 (2011).
[Crossref]

Duchemin, J.

M. Razeghi, R. Blondeau, M. Krakowski, J. C. Bouley, M. Papuchon, B. Cremoux, and J. Duchemin, “Low-threshold distributed feedback lasers fabricated on material grown completely by LP-MOCVD,” IEEE J. Quantum Electron. 6(6), 507–511 (1985).
[Crossref]

Ekawa, M.

M. Matsuda, A. Uetake, T. Simoyama, S. Okumura, K. Takabayashi, M. Ekawa, and T. Yamamoto, “1.3-μm wavelength AlGaInAs multiple-quantum-well semi-insulating buried-hetero structure distributed-reflector laser arrays on semi-insulating InP substrate,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1–7 (2015).
[Crossref]

Feiste, U.

U. Feiste, “Optimization of modulation bandwidth in DBR lasers with detuned Bragg reflectors,” IEEE J. Quantum Electron. 34(12), 2371–2379 (1998).
[Crossref]

Fujisawa, T.

Fukamachi, T.

Gao, D.

Guo, W.

G. Zhao, J. Sun, Y. Xi, D. Gao, Q. Lu, and W. Guo, “Design and simulation of two-section DFB lasers with short active-section lengths,” Opt. Express 24(10), 10590–10598 (2016).
[Crossref] [PubMed]

G. Liu, G. Zhao, Q. Lu, and W. Guo, “Demonstration of a novel two-section DFB laser,” in CLEO: Applications & Technology (2018), paper JTu2A.22.

Guo, W. H.

W. H. Guo, D. C. Byrne, Q. Lu, B. Corbett, and J. F. Donegan, “Fabry–Pérot laser characterization based on the amplified spontaneous emission spectrum and the Fourier series expansion method,” IEEE J. Sel. Top. Quantum Electron. 5(17), 1356–1363 (2011).
[Crossref]

Hill, P.

R. Olshansky, P. Hill, V. Lanzisera, and W. Powazinik, “Frequency response of 1.3 μm InGaAsP high speed semiconductor laser,” IEEE J. Quantum Electron. 23(9), 1410–1418 (1987).
[Crossref]

Ishii, H.

Ito, T.

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjoh, “50-Gb/s direct modulation of a 1.3-μm InGaAlAs-based DFB laser with a ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
[Crossref]

Kanazawa, S.

Kano, F.

Kartner, F. X.

N. Matuschek, F. X. Kartner, and U. Keller, “Exact coupled-mode theories for multilayer interference coatings with arbitrary strong index modulations,” IEEE J. Quantum Electron. 33(3), 295–302 (1997).
[Crossref]

Keller, U.

N. Matuschek, F. X. Kartner, and U. Keller, “Exact coupled-mode theories for multilayer interference coatings with arbitrary strong index modulations,” IEEE J. Quantum Electron. 33(3), 295–302 (1997).
[Crossref]

Kikawa, T.

K. Nakahara, T. Tsuchiya, T. Kitatani, K. Shinoda, T. Taniguchi, T. Kikawa, M. Aoki, and M. Mukaikubo, “40-Gb/s direct modulation with high extinction ratio operation of 1.3-μm InGaAlAs multi quantum well ridge waveguide distributed feedback lasers,” IEEE Photonics Technol. Lett. 19(19), 1436–1438 (2007).
[Crossref]

Kitatani, T.

K. Adachi, K. Shinoda, T. Kitatani, T. Fukamachi, Y. Matsuoka, T. Sugawara, and S. Tsuji, “25-Gb/s multichannel 1.3-μm surface-emitting lens-integrated DFB laser arrays,” J. Lightwave Technol. 29(19), 2899–2905 (2011).
[Crossref]

K. Nakahara, T. Tsuchiya, T. Kitatani, K. Shinoda, T. Taniguchi, T. Kikawa, M. Aoki, and M. Mukaikubo, “40-Gb/s direct modulation with high extinction ratio operation of 1.3-μm InGaAlAs multi quantum well ridge waveguide distributed feedback lasers,” IEEE Photonics Technol. Lett. 19(19), 1436–1438 (2007).
[Crossref]

Kobayashi, W.

Kohtoku, M.

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjoh, “50-Gb/s direct modulation of a 1.3-μm InGaAlAs-based DFB laser with a ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
[Crossref]

Krakowski, M.

M. Razeghi, R. Blondeau, M. Krakowski, J. C. Bouley, M. Papuchon, B. Cremoux, and J. Duchemin, “Low-threshold distributed feedback lasers fabricated on material grown completely by LP-MOCVD,” IEEE J. Quantum Electron. 6(6), 507–511 (1985).
[Crossref]

Kurosaki, T.

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjoh, “50-Gb/s direct modulation of a 1.3-μm InGaAlAs-based DFB laser with a ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
[Crossref]

Lanzisera, V.

R. Olshansky, P. Hill, V. Lanzisera, and W. Powazinik, “Frequency response of 1.3 μm InGaAsP high speed semiconductor laser,” IEEE J. Quantum Electron. 23(9), 1410–1418 (1987).
[Crossref]

Ling, W. A.

Liu, G.

G. Liu, G. Zhao, Q. Lu, and W. Guo, “Demonstration of a novel two-section DFB laser,” in CLEO: Applications & Technology (2018), paper JTu2A.22.

Lu, Q.

G. Zhao, J. Sun, Y. Xi, D. Gao, Q. Lu, and W. Guo, “Design and simulation of two-section DFB lasers with short active-section lengths,” Opt. Express 24(10), 10590–10598 (2016).
[Crossref] [PubMed]

W. H. Guo, D. C. Byrne, Q. Lu, B. Corbett, and J. F. Donegan, “Fabry–Pérot laser characterization based on the amplified spontaneous emission spectrum and the Fourier series expansion method,” IEEE J. Sel. Top. Quantum Electron. 5(17), 1356–1363 (2011).
[Crossref]

G. Liu, G. Zhao, Q. Lu, and W. Guo, “Demonstration of a novel two-section DFB laser,” in CLEO: Applications & Technology (2018), paper JTu2A.22.

Matsuda, M.

M. Matsuda, A. Uetake, T. Simoyama, S. Okumura, K. Takabayashi, M. Ekawa, and T. Yamamoto, “1.3-μm wavelength AlGaInAs multiple-quantum-well semi-insulating buried-hetero structure distributed-reflector laser arrays on semi-insulating InP substrate,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1–7 (2015).
[Crossref]

Matsui, Y.

Matsuoka, Y.

Matuschek, N.

N. Matuschek, F. X. Kartner, and U. Keller, “Exact coupled-mode theories for multilayer interference coatings with arbitrary strong index modulations,” IEEE J. Quantum Electron. 33(3), 295–302 (1997).
[Crossref]

Mukaikubo, M.

K. Nakahara, T. Tsuchiya, T. Kitatani, K. Shinoda, T. Taniguchi, T. Kikawa, M. Aoki, and M. Mukaikubo, “40-Gb/s direct modulation with high extinction ratio operation of 1.3-μm InGaAlAs multi quantum well ridge waveguide distributed feedback lasers,” IEEE Photonics Technol. Lett. 19(19), 1436–1438 (2007).
[Crossref]

Nakahara, K.

K. Nakahara, T. Tsuchiya, T. Kitatani, K. Shinoda, T. Taniguchi, T. Kikawa, M. Aoki, and M. Mukaikubo, “40-Gb/s direct modulation with high extinction ratio operation of 1.3-μm InGaAlAs multi quantum well ridge waveguide distributed feedback lasers,” IEEE Photonics Technol. Lett. 19(19), 1436–1438 (2007).
[Crossref]

Ohno, T.

Okumura, S.

M. Matsuda, A. Uetake, T. Simoyama, S. Okumura, K. Takabayashi, M. Ekawa, and T. Yamamoto, “1.3-μm wavelength AlGaInAs multiple-quantum-well semi-insulating buried-hetero structure distributed-reflector laser arrays on semi-insulating InP substrate,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1–7 (2015).
[Crossref]

Olshansky, R.

R. Olshansky, P. Hill, V. Lanzisera, and W. Powazinik, “Frequency response of 1.3 μm InGaAsP high speed semiconductor laser,” IEEE J. Quantum Electron. 23(9), 1410–1418 (1987).
[Crossref]

Papuchon, M.

M. Razeghi, R. Blondeau, M. Krakowski, J. C. Bouley, M. Papuchon, B. Cremoux, and J. Duchemin, “Low-threshold distributed feedback lasers fabricated on material grown completely by LP-MOCVD,” IEEE J. Quantum Electron. 6(6), 507–511 (1985).
[Crossref]

Pham, T.

Powazinik, W.

R. Olshansky, P. Hill, V. Lanzisera, and W. Powazinik, “Frequency response of 1.3 μm InGaAsP high speed semiconductor laser,” IEEE J. Quantum Electron. 23(9), 1410–1418 (1987).
[Crossref]

Razeghi, M.

M. Razeghi, R. Blondeau, M. Krakowski, J. C. Bouley, M. Papuchon, B. Cremoux, and J. Duchemin, “Low-threshold distributed feedback lasers fabricated on material grown completely by LP-MOCVD,” IEEE J. Quantum Electron. 6(6), 507–511 (1985).
[Crossref]

Roxlo, C.

Sanjoh, H.

S. Kanazawa, W. Kobayashi, Y. Ueda, T. Fujisawa, K. Takahata, T. Ohno, T. Yoshimatsu, H. Ishii, and H. Sanjoh, “30-km error-free transmission of directly modulated DFB laser array transmitter optical sub-assembly for 100-Gbit/s application,” J. Lightwave Technol. 34(15), 3646–3652 (2016).
[Crossref]

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjoh, “50-Gb/s direct modulation of a 1.3-μm InGaAlAs-based DFB laser with a ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
[Crossref]

Schatz, R.

Y. Matsui, R. Schatz, T. Pham, W. A. Ling, G. Carey, H. M. Daghighian, D. Adams, T. Sudo, and C. Roxlo, “55 GHz bandwidth distributed reflector laser,” J. Lightwave Technol. 35(3), 397–403 (2017).
[Crossref]

M. Chacinski and R. Schatz, “Impact of losses in the Bragg section on the dynamics of detuned loaded DBR lasers,” IEEE J. Quantum Electron. 46(9), 1360–1367 (2010).
[Crossref]

Shibata, Y.

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjoh, “50-Gb/s direct modulation of a 1.3-μm InGaAlAs-based DFB laser with a ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
[Crossref]

Shinoda, K.

K. Adachi, K. Shinoda, T. Kitatani, T. Fukamachi, Y. Matsuoka, T. Sugawara, and S. Tsuji, “25-Gb/s multichannel 1.3-μm surface-emitting lens-integrated DFB laser arrays,” J. Lightwave Technol. 29(19), 2899–2905 (2011).
[Crossref]

K. Nakahara, T. Tsuchiya, T. Kitatani, K. Shinoda, T. Taniguchi, T. Kikawa, M. Aoki, and M. Mukaikubo, “40-Gb/s direct modulation with high extinction ratio operation of 1.3-μm InGaAlAs multi quantum well ridge waveguide distributed feedback lasers,” IEEE Photonics Technol. Lett. 19(19), 1436–1438 (2007).
[Crossref]

Simoyama, T.

M. Matsuda, A. Uetake, T. Simoyama, S. Okumura, K. Takabayashi, M. Ekawa, and T. Yamamoto, “1.3-μm wavelength AlGaInAs multiple-quantum-well semi-insulating buried-hetero structure distributed-reflector laser arrays on semi-insulating InP substrate,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1–7 (2015).
[Crossref]

Sudo, T.

Sugawara, T.

Sun, J.

Tadokoro, T.

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjoh, “50-Gb/s direct modulation of a 1.3-μm InGaAlAs-based DFB laser with a ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
[Crossref]

T. Tadokoro, W. Kobayashi, T. Fujisawa, T. Yamanaka, and F. Kano, “43 Gb/s 1.3 μm DFB laser for 40 km transmission,” J. Lightwave Technol. 30(15), 2520–2524 (2012).
[Crossref]

Takabayashi, K.

M. Matsuda, A. Uetake, T. Simoyama, S. Okumura, K. Takabayashi, M. Ekawa, and T. Yamamoto, “1.3-μm wavelength AlGaInAs multiple-quantum-well semi-insulating buried-hetero structure distributed-reflector laser arrays on semi-insulating InP substrate,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1–7 (2015).
[Crossref]

Takahata, K.

Taniguchi, T.

K. Nakahara, T. Tsuchiya, T. Kitatani, K. Shinoda, T. Taniguchi, T. Kikawa, M. Aoki, and M. Mukaikubo, “40-Gb/s direct modulation with high extinction ratio operation of 1.3-μm InGaAlAs multi quantum well ridge waveguide distributed feedback lasers,” IEEE Photonics Technol. Lett. 19(19), 1436–1438 (2007).
[Crossref]

Tsuchiya, T.

K. Nakahara, T. Tsuchiya, T. Kitatani, K. Shinoda, T. Taniguchi, T. Kikawa, M. Aoki, and M. Mukaikubo, “40-Gb/s direct modulation with high extinction ratio operation of 1.3-μm InGaAlAs multi quantum well ridge waveguide distributed feedback lasers,” IEEE Photonics Technol. Lett. 19(19), 1436–1438 (2007).
[Crossref]

Tsuji, S.

Ueda, Y.

Uetake, A.

M. Matsuda, A. Uetake, T. Simoyama, S. Okumura, K. Takabayashi, M. Ekawa, and T. Yamamoto, “1.3-μm wavelength AlGaInAs multiple-quantum-well semi-insulating buried-hetero structure distributed-reflector laser arrays on semi-insulating InP substrate,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1–7 (2015).
[Crossref]

Xi, Y.

Xu, J.

Yamamoto, T.

M. Matsuda, A. Uetake, T. Simoyama, S. Okumura, K. Takabayashi, M. Ekawa, and T. Yamamoto, “1.3-μm wavelength AlGaInAs multiple-quantum-well semi-insulating buried-hetero structure distributed-reflector laser arrays on semi-insulating InP substrate,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1–7 (2015).
[Crossref]

Yamanaka, T.

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjoh, “50-Gb/s direct modulation of a 1.3-μm InGaAlAs-based DFB laser with a ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
[Crossref]

T. Tadokoro, W. Kobayashi, T. Fujisawa, T. Yamanaka, and F. Kano, “43 Gb/s 1.3 μm DFB laser for 40 km transmission,” J. Lightwave Technol. 30(15), 2520–2524 (2012).
[Crossref]

Yoshimatsu, T.

Young, B.

Zhao, G.

G. Zhao, J. Sun, Y. Xi, D. Gao, Q. Lu, and W. Guo, “Design and simulation of two-section DFB lasers with short active-section lengths,” Opt. Express 24(10), 10590–10598 (2016).
[Crossref] [PubMed]

G. Liu, G. Zhao, Q. Lu, and W. Guo, “Demonstration of a novel two-section DFB laser,” in CLEO: Applications & Technology (2018), paper JTu2A.22.

IEEE J. Quantum Electron. (5)

M. Razeghi, R. Blondeau, M. Krakowski, J. C. Bouley, M. Papuchon, B. Cremoux, and J. Duchemin, “Low-threshold distributed feedback lasers fabricated on material grown completely by LP-MOCVD,” IEEE J. Quantum Electron. 6(6), 507–511 (1985).
[Crossref]

N. Matuschek, F. X. Kartner, and U. Keller, “Exact coupled-mode theories for multilayer interference coatings with arbitrary strong index modulations,” IEEE J. Quantum Electron. 33(3), 295–302 (1997).
[Crossref]

R. Olshansky, P. Hill, V. Lanzisera, and W. Powazinik, “Frequency response of 1.3 μm InGaAsP high speed semiconductor laser,” IEEE J. Quantum Electron. 23(9), 1410–1418 (1987).
[Crossref]

U. Feiste, “Optimization of modulation bandwidth in DBR lasers with detuned Bragg reflectors,” IEEE J. Quantum Electron. 34(12), 2371–2379 (1998).
[Crossref]

M. Chacinski and R. Schatz, “Impact of losses in the Bragg section on the dynamics of detuned loaded DBR lasers,” IEEE J. Quantum Electron. 46(9), 1360–1367 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjoh, “50-Gb/s direct modulation of a 1.3-μm InGaAlAs-based DFB laser with a ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
[Crossref]

M. Matsuda, A. Uetake, T. Simoyama, S. Okumura, K. Takabayashi, M. Ekawa, and T. Yamamoto, “1.3-μm wavelength AlGaInAs multiple-quantum-well semi-insulating buried-hetero structure distributed-reflector laser arrays on semi-insulating InP substrate,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1–7 (2015).
[Crossref]

W. H. Guo, D. C. Byrne, Q. Lu, B. Corbett, and J. F. Donegan, “Fabry–Pérot laser characterization based on the amplified spontaneous emission spectrum and the Fourier series expansion method,” IEEE J. Sel. Top. Quantum Electron. 5(17), 1356–1363 (2011).
[Crossref]

IEEE Photonics Technol. Lett. (1)

K. Nakahara, T. Tsuchiya, T. Kitatani, K. Shinoda, T. Taniguchi, T. Kikawa, M. Aoki, and M. Mukaikubo, “40-Gb/s direct modulation with high extinction ratio operation of 1.3-μm InGaAlAs multi quantum well ridge waveguide distributed feedback lasers,” IEEE Photonics Technol. Lett. 19(19), 1436–1438 (2007).
[Crossref]

J. Lightwave Technol. (5)

Opt. Express (1)

Other (4)

G. Liu, G. Zhao, Q. Lu, and W. Guo, “Demonstration of a novel two-section DFB laser,” in CLEO: Applications & Technology (2018), paper JTu2A.22.

T. Yamamoto, “High-Speed Directly Modulated Lasers,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2012), paper OTh3F.5.
[Crossref]

IEEE, Standard, 802.3, http://standards.ieee.org/about/get/802/802.3.html .

K. Nakahara, Y. Wakayama, T. Kitatani, T. Taniguchi, T. Fukamachi, Y. Sakuma, and S. Tanaka, “56-Gb/s direct modulation in InGaAlAs BH-DFB lasers at 55 °C,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper Th3A.1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Schematic diagram of the ADR-DFB laser.
Fig. 2
Fig. 2 (a) Structure of the ADR-DFB laser; (b) microscope image of the fabricated ADR-DFB laser.
Fig. 3
Fig. 3 (a) Morphology of the grating structure, (b) waveguide of the fabricated ADR-DFB laser.
Fig. 4
Fig. 4 (a) The measured below-threshold ASE spectra of the FP laser; (b) the net modal gain spectrum and the internal loss; (c) the extracted gain parameters N0 and g0 varying with wavelength; (d) the ASE spectrum of the DFB laser with uniform grating at threshold.
Fig. 5
Fig. 5 (a) VI curve of the DFB laser; (b) the measured optical spectrum of the ADR-DFB laser.
Fig. 6
Fig. 6 Light-current characteristics of the ADR-DFB laser under different bias status of the reflection section; the simulation results of the AR/AR coated, AR/HR coated standard DFB laser and the ADR-DFB laser.
Fig. 7
Fig. 7 Measured optical spectra of ten adjacent ADR-DFB lasers.
Fig. 8
Fig. 8 E/O frequency response of the ADR-DFB laser under different current injections.
Fig. 9
Fig. 9 (a) RIN spectra of the ADR-DFB laser; (b) relaxation oscillation frequency fr versus (I - Ith)0.5.
Fig. 10
Fig. 10 28-Gb/s eye diagrams for (a) BTB configuration; (b) after 10-km SMFs transmission.
Fig. 11
Fig. 11 BER characteristics for BTB configuration and 10-km transmission.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

| R( f ) |=  f r 2 ( ( ( f 2 f r 2 ) ) 2 + f 2 γ 2 / 2 π 2 ) 1 2   1 ( 1+ ( 2πfCR ) 2 ) 1 2
f r ( Γ dg/dn L W  N W   L W  ( I I th ) ) 1/2  
g n = Γ g m   α in
g m =  g 0 ln N N 0
Iη LW d act =AN+B N 2 +C N 3
κ= ( π n g λ s λ B 2 ) 2 ( π L g ) 2

Metrics