Abstract

Femtosecond laser induced selective etching (FLISE) of dielectric materials is a promising technique for fabricating various microfluidic devices. Here we experimentally studied the dependence of the selective etching speed in fused silica glass on laser pulse energy, repetition rate, and inscription speed using a 1030 nm femtosecond laser. The evolution of micromorphology of the laser inscribed lines was revealed with optical microscopy, scanning electron microscopy, as well as anisotropic diffraction of the optical gratings formed by these inscribed lines. A single pulse energy threshold is required to initiate the FLISE. Further, a laser repetition rate window between an upper threshold and a lower threshold was observed, which were limited by the thermal-induced disruption of the nanogratings and by the disconnection of successive pulses modified spots respectively. The synergetic influences of the above factors were evaluated by the exposure laser energy density, which shows a common threshold for different inscription conditions and demonstrates itself to be an excellent criterion for choosing appropriate parameters in FLISE. The formation of continuous nanogratings is confirmed to be the major mechanism of FLISE in fused silica. Our observations not only help one to understand the micro mechanism in FLISE of fused silica, but also are of great use for fabricating large-scale microfluidic circuits.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum
Opt. Lett. 30(14) 1867-1869 (2005)

Inscription and characterization of waveguides written into borosilicate glass by a high-repetition-rate femtosecond laser at 800 nm

Thomas Allsop, Mykhaylo Dubov, Vladimir Mezentsev, and Ian Bennion
Appl. Opt. 49(10) 1938-1950 (2010)

Self-organized nanostructures forming under high-repetition rate femtosecond laser bulk-heating of fused silica

Eric Ofosu Kissi and Yves Bellouard
Opt. Express 26(11) 14024-14037 (2018)

References

  • View by:
  • |
  • |
  • |

  1. K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(08), 620–625 (2006).
    [Crossref]
  2. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [Crossref]
  3. K. Sugioka and Y. Cheng, “Ultrafast lasers-reliable tools for advanced materials processing,” Light Sci. Appl. 3(4), e149 (2014).
    [Crossref]
  4. M. Beresna, M. Gecevicius, and P. G. Kazansky, “Ultrafast laser direct writing and nanostructuring in transparent materials,” Adv. Opt. Photonics 6(3), 293–339 (2014).
    [Crossref]
  5. S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process. 77(1), 109–111 (2003).
    [Crossref]
  6. A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57(9), 1246–1260 (2008).
    [Crossref]
  7. G. D. Marshall, A. Politi, J. C. F. Matthews, P. Dekker, M. Ams, M. J. Withford, and J. L. O’Brien, “Laser written waveguide photonic quantum circuits,” Opt. Express 17(15), 12546–12554 (2009).
    [Crossref] [PubMed]
  8. Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12(4), 746–749 (2012).
    [Crossref] [PubMed]
  9. B. B. Xu, Y. L. Zhang, H. Xia, W. F. Dong, H. Ding, and H. B. Sun, “Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing,” Lab Chip 13(9), 1677–1690 (2013).
    [Crossref] [PubMed]
  10. D. Choudhury, W. T. Ramsay, R. Kiss, N. A. Willoughby, L. Paterson, and A. K. Kar, “A 3D mammalian cell separator biochip,” Lab Chip 12(5), 948–953 (2012).
    [Crossref] [PubMed]
  11. R. Osellame, H. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photonics Rev. 5(3), 442–463 (2011).
    [Crossref]
  12. Y. Cheng, “Internal Laser Writing of High-Aspect-Ratio Microfluidic Structures in Silicate Glasses for Lab-on-a-Chip Applications,” Micromachines (Basel) 8(2), 59 (2017).
    [Crossref]
  13. A. Marcinkevičius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett. 26(5), 277–279 (2001).
    [Crossref] [PubMed]
  14. Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching,” Opt. Express 12(10), 2120–2129 (2004).
    [Crossref] [PubMed]
  15. C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 47–61 (2006).
    [Crossref]
  16. F. He, Y. Liao, J. Lin, J. Song, L. Qiao, Y. Cheng, and K. Sugioka, “Femtosecond laser fabrication of monolithically integrated microfluidic sensors in glass,” Sensors (Basel) 14(10), 19402–19440 (2014).
    [Crossref] [PubMed]
  17. Y. Bellouard, A. Said, and P. Bado, “Integrating optics and micro-mechanics in a single substrate: a step toward monolithic integration in fused silica,” Opt. Express 13(17), 6635–6644 (2005).
    [Crossref] [PubMed]
  18. V. Maselli, J. R. Grenier, S. Ho, and P. R. Herman, “Femtosecond laser written optofluidic sensor: Bragg Grating Waveguide evanescent probing of microfluidic channel,” Opt. Express 17(14), 11719–11729 (2009).
    [Crossref] [PubMed]
  19. P. N. Nge, C. I. Rogers, and A. T. Woolley, “Advances in microfluidic materials, functions, integration, and applications,” Chem. Rev. 113(4), 2550–2583 (2013).
    [Crossref] [PubMed]
  20. J. Gottmann, M. Hermans, N. Repiev, and J. Ortmann, “Selective Laser-Induced Etching of 3D Precision Quartz Glass Components for Microfluidic Applications-Up-Scaling of Complexity and Speed,” Micromachines (Basel) 8(4), 110 (2017).
    [Crossref]
  21. M. Hermans, J. Gottmann, and F. Riedel, “Selective, Laser-Induced Etching of Fused Silica at High Scan-Speeds Using KOH,” J. Laser Micro Nanoeng. 9(2), 126–131 (2014).
    [Crossref]
  22. C. A. Ross, D. G. Maclachlan, D. Choudhury, and R. R. Thomson, “Optimisation of ultrafast laser assisted etching in fused silica,” Opt. Express 26(19), 24343–24356 (2018).
    [Crossref]
  23. S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of Etching Agent and Etching Mechanism on Femotosecond Laser Microfabrication of Channels Inside Vitreous Silica Substrates,” J. Phys. Chem. C 113(27), 11560–11566 (2009).
    [Crossref]
  24. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
    [Crossref] [PubMed]
  25. V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
    [Crossref] [PubMed]
  26. S. Richter, M. Heinrich, S. Doring, A. Tunnermann, S. Nolte, and U. Peschel, “Nanogratings in fused silica: Formation, control, and applications,” J. Laser Appl. 24(4), 042008 (2012).
    [Crossref]
  27. M. Lancry, B. Poumellec, J. Canning, K. Cook, J. C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photonics Rev. 7(6), 953–962 (2013).
    [Crossref]
  28. C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica,” Opt. Lett. 30(14), 1867–1869 (2005).
    [Crossref] [PubMed]
  29. X. M. Yu, Y. Liao, F. He, B. Zeng, Y. Cheng, Z. Z. Xu, K. Sugioka, and K. Midorikawa, “Tuning etch selectivity of fused silica irradiated by femtosecond laser pulses by controlling polarization of the writing pulses,” J. Appl. Phys. 109(5), 053114 (2011).
    [Crossref]
  30. C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87(1), 014104 (2005).
    [Crossref]
  31. J. Reif, O. Varlamova, and F. Costache, “Femtosecond laser induced nanostructure formation: self-organization control parameters,” Appl. Phys., A Mater. Sci. Process. 92(4), 1019–1024 (2008).
    [Crossref]
  32. C. Mauclair, M. Zamfirescu, J. P. Colombier, G. Cheng, K. Mishchik, E. Audouard, and R. Stoian, “Control of ultrafast laser-induced bulk nanogratings in fused silica via pulse time envelopes,” Opt. Express 20(12), 12997–13005 (2012).
    [Crossref] [PubMed]
  33. Y. Liao, W. Pan, Y. Cui, L. Qiao, Y. Bellouard, K. Sugioka, and Y. Cheng, “Formation of in-volume nanogratings with sub-100-nm periods in glass by femtosecond laser irradiation,” Opt. Lett. 40(15), 3623–3626 (2015).
    [Crossref] [PubMed]
  34. Y. Dai, A. Patel, J. Song, M. Beresna, and P. G. Kazansky, “Void-nanograting transition by ultrashort laser pulse irradiation in silica glass,” Opt. Express 24(17), 19344–19353 (2016).
    [Crossref] [PubMed]
  35. A. Rudenko, J. P. Colombier, and T. E. Itina, “Nanopore-mediated ultrashort laser-induced formation and erasure of volume nanogratings in glass,” Phys. Chem. Chem. Phys. 20(8), 5887–5899 (2018).
    [Crossref] [PubMed]
  36. E. O. Kissi and Y. Bellouard, “Self-organized nanostructures forming under high-repetition rate femtosecond laser bulk-heating of fused silica,” Opt. Express 26(11), 14024–14037 (2018).
    [Crossref] [PubMed]
  37. Y. Ren, L. Zhang, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “Femtosecond laser irradiation on Nd:YAG crystal: Surface ablation and high-spatial-frequency nanograting,” Appl. Surf. Sci. 441, 372–380 (2018).
    [Crossref]
  38. R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photonics Rev. 2(1-2), 26–46 (2008).
    [Crossref]
  39. M. Beresna, M. Gecevicius, and P. G. Kazansky, “Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass Invited,” Opt. Mater. Express 1(4), 783–795 (2011).
    [Crossref]
  40. A. Cerkauskaite, R. Drevinskas, A. O. Rybaltovskii, and P. G. Kazansky, “Ultrafast laser-induced birefringence in various porosity silica glasses: from fused silica to aerogel,” Opt. Express 25(7), 8011–8021 (2017).
    [Crossref] [PubMed]
  41. J. Canning, M. Lancry, K. Cook, A. Weickman, F. Brisset, and B. Poumellec, “Anatomy of a femtosecond laser processed silica waveguide,” Opt. Mater. Express 1(5), 998–1008 (2011).
    [Crossref]
  42. Y. Bellouard and M. O. Hongler, “Femtosecond-laser generation of self-organized bubble patterns in fused silica,” Opt. Express 19(7), 6807–6821 (2011).
    [Crossref] [PubMed]
  43. S. Richter, M. Heinrich, S. Doring, A. Tunnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys., A Mater. Sci. Process. 104(2), 503–507 (2011).
    [Crossref]

2018 (4)

C. A. Ross, D. G. Maclachlan, D. Choudhury, and R. R. Thomson, “Optimisation of ultrafast laser assisted etching in fused silica,” Opt. Express 26(19), 24343–24356 (2018).
[Crossref]

A. Rudenko, J. P. Colombier, and T. E. Itina, “Nanopore-mediated ultrashort laser-induced formation and erasure of volume nanogratings in glass,” Phys. Chem. Chem. Phys. 20(8), 5887–5899 (2018).
[Crossref] [PubMed]

E. O. Kissi and Y. Bellouard, “Self-organized nanostructures forming under high-repetition rate femtosecond laser bulk-heating of fused silica,” Opt. Express 26(11), 14024–14037 (2018).
[Crossref] [PubMed]

Y. Ren, L. Zhang, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “Femtosecond laser irradiation on Nd:YAG crystal: Surface ablation and high-spatial-frequency nanograting,” Appl. Surf. Sci. 441, 372–380 (2018).
[Crossref]

2017 (3)

J. Gottmann, M. Hermans, N. Repiev, and J. Ortmann, “Selective Laser-Induced Etching of 3D Precision Quartz Glass Components for Microfluidic Applications-Up-Scaling of Complexity and Speed,” Micromachines (Basel) 8(4), 110 (2017).
[Crossref]

Y. Cheng, “Internal Laser Writing of High-Aspect-Ratio Microfluidic Structures in Silicate Glasses for Lab-on-a-Chip Applications,” Micromachines (Basel) 8(2), 59 (2017).
[Crossref]

A. Cerkauskaite, R. Drevinskas, A. O. Rybaltovskii, and P. G. Kazansky, “Ultrafast laser-induced birefringence in various porosity silica glasses: from fused silica to aerogel,” Opt. Express 25(7), 8011–8021 (2017).
[Crossref] [PubMed]

2016 (1)

2015 (1)

2014 (4)

F. He, Y. Liao, J. Lin, J. Song, L. Qiao, Y. Cheng, and K. Sugioka, “Femtosecond laser fabrication of monolithically integrated microfluidic sensors in glass,” Sensors (Basel) 14(10), 19402–19440 (2014).
[Crossref] [PubMed]

K. Sugioka and Y. Cheng, “Ultrafast lasers-reliable tools for advanced materials processing,” Light Sci. Appl. 3(4), e149 (2014).
[Crossref]

M. Beresna, M. Gecevicius, and P. G. Kazansky, “Ultrafast laser direct writing and nanostructuring in transparent materials,” Adv. Opt. Photonics 6(3), 293–339 (2014).
[Crossref]

M. Hermans, J. Gottmann, and F. Riedel, “Selective, Laser-Induced Etching of Fused Silica at High Scan-Speeds Using KOH,” J. Laser Micro Nanoeng. 9(2), 126–131 (2014).
[Crossref]

2013 (3)

P. N. Nge, C. I. Rogers, and A. T. Woolley, “Advances in microfluidic materials, functions, integration, and applications,” Chem. Rev. 113(4), 2550–2583 (2013).
[Crossref] [PubMed]

M. Lancry, B. Poumellec, J. Canning, K. Cook, J. C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photonics Rev. 7(6), 953–962 (2013).
[Crossref]

B. B. Xu, Y. L. Zhang, H. Xia, W. F. Dong, H. Ding, and H. B. Sun, “Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing,” Lab Chip 13(9), 1677–1690 (2013).
[Crossref] [PubMed]

2012 (4)

D. Choudhury, W. T. Ramsay, R. Kiss, N. A. Willoughby, L. Paterson, and A. K. Kar, “A 3D mammalian cell separator biochip,” Lab Chip 12(5), 948–953 (2012).
[Crossref] [PubMed]

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12(4), 746–749 (2012).
[Crossref] [PubMed]

S. Richter, M. Heinrich, S. Doring, A. Tunnermann, S. Nolte, and U. Peschel, “Nanogratings in fused silica: Formation, control, and applications,” J. Laser Appl. 24(4), 042008 (2012).
[Crossref]

C. Mauclair, M. Zamfirescu, J. P. Colombier, G. Cheng, K. Mishchik, E. Audouard, and R. Stoian, “Control of ultrafast laser-induced bulk nanogratings in fused silica via pulse time envelopes,” Opt. Express 20(12), 12997–13005 (2012).
[Crossref] [PubMed]

2011 (6)

M. Beresna, M. Gecevicius, and P. G. Kazansky, “Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass Invited,” Opt. Mater. Express 1(4), 783–795 (2011).
[Crossref]

J. Canning, M. Lancry, K. Cook, A. Weickman, F. Brisset, and B. Poumellec, “Anatomy of a femtosecond laser processed silica waveguide,” Opt. Mater. Express 1(5), 998–1008 (2011).
[Crossref]

Y. Bellouard and M. O. Hongler, “Femtosecond-laser generation of self-organized bubble patterns in fused silica,” Opt. Express 19(7), 6807–6821 (2011).
[Crossref] [PubMed]

S. Richter, M. Heinrich, S. Doring, A. Tunnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys., A Mater. Sci. Process. 104(2), 503–507 (2011).
[Crossref]

X. M. Yu, Y. Liao, F. He, B. Zeng, Y. Cheng, Z. Z. Xu, K. Sugioka, and K. Midorikawa, “Tuning etch selectivity of fused silica irradiated by femtosecond laser pulses by controlling polarization of the writing pulses,” J. Appl. Phys. 109(5), 053114 (2011).
[Crossref]

R. Osellame, H. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photonics Rev. 5(3), 442–463 (2011).
[Crossref]

2009 (3)

2008 (4)

J. Reif, O. Varlamova, and F. Costache, “Femtosecond laser induced nanostructure formation: self-organization control parameters,” Appl. Phys., A Mater. Sci. Process. 92(4), 1019–1024 (2008).
[Crossref]

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photonics Rev. 2(1-2), 26–46 (2008).
[Crossref]

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57(9), 1246–1260 (2008).
[Crossref]

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

2006 (3)

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(08), 620–625 (2006).
[Crossref]

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 47–61 (2006).
[Crossref]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

2005 (3)

2004 (1)

2003 (2)

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process. 77(1), 109–111 (2003).
[Crossref]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

2001 (1)

Ams, M.

Audouard, E.

Bado, P.

Bellouard, Y.

Beresna, M.

Bergman, K.

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57(9), 1246–1260 (2008).
[Crossref]

Bhardwaj, V. R.

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 47–61 (2006).
[Crossref]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica,” Opt. Lett. 30(14), 1867–1869 (2005).
[Crossref] [PubMed]

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87(1), 014104 (2005).
[Crossref]

Brisset, F.

M. Lancry, B. Poumellec, J. Canning, K. Cook, J. C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photonics Rev. 7(6), 953–962 (2013).
[Crossref]

J. Canning, M. Lancry, K. Cook, A. Weickman, F. Brisset, and B. Poumellec, “Anatomy of a femtosecond laser processed silica waveguide,” Opt. Mater. Express 1(5), 998–1008 (2011).
[Crossref]

Burghoff, J.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process. 77(1), 109–111 (2003).
[Crossref]

Canning, J.

M. Lancry, B. Poumellec, J. Canning, K. Cook, J. C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photonics Rev. 7(6), 953–962 (2013).
[Crossref]

J. Canning, M. Lancry, K. Cook, A. Weickman, F. Brisset, and B. Poumellec, “Anatomy of a femtosecond laser processed silica waveguide,” Opt. Mater. Express 1(5), 998–1008 (2011).
[Crossref]

Carloni, L. P.

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57(9), 1246–1260 (2008).
[Crossref]

Cerkauskaite, A.

Cerullo, G.

R. Osellame, H. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photonics Rev. 5(3), 442–463 (2011).
[Crossref]

Chen, D.

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12(4), 746–749 (2012).
[Crossref] [PubMed]

Chen, F.

Y. Ren, L. Zhang, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “Femtosecond laser irradiation on Nd:YAG crystal: Surface ablation and high-spatial-frequency nanograting,” Appl. Surf. Sci. 441, 372–380 (2018).
[Crossref]

Cheng, G.

Cheng, Y.

Y. Cheng, “Internal Laser Writing of High-Aspect-Ratio Microfluidic Structures in Silicate Glasses for Lab-on-a-Chip Applications,” Micromachines (Basel) 8(2), 59 (2017).
[Crossref]

Y. Liao, W. Pan, Y. Cui, L. Qiao, Y. Bellouard, K. Sugioka, and Y. Cheng, “Formation of in-volume nanogratings with sub-100-nm periods in glass by femtosecond laser irradiation,” Opt. Lett. 40(15), 3623–3626 (2015).
[Crossref] [PubMed]

K. Sugioka and Y. Cheng, “Ultrafast lasers-reliable tools for advanced materials processing,” Light Sci. Appl. 3(4), e149 (2014).
[Crossref]

F. He, Y. Liao, J. Lin, J. Song, L. Qiao, Y. Cheng, and K. Sugioka, “Femtosecond laser fabrication of monolithically integrated microfluidic sensors in glass,” Sensors (Basel) 14(10), 19402–19440 (2014).
[Crossref] [PubMed]

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12(4), 746–749 (2012).
[Crossref] [PubMed]

X. M. Yu, Y. Liao, F. He, B. Zeng, Y. Cheng, Z. Z. Xu, K. Sugioka, and K. Midorikawa, “Tuning etch selectivity of fused silica irradiated by femtosecond laser pulses by controlling polarization of the writing pulses,” J. Appl. Phys. 109(5), 053114 (2011).
[Crossref]

Choudhury, D.

C. A. Ross, D. G. Maclachlan, D. Choudhury, and R. R. Thomson, “Optimisation of ultrafast laser assisted etching in fused silica,” Opt. Express 26(19), 24343–24356 (2018).
[Crossref]

D. Choudhury, W. T. Ramsay, R. Kiss, N. A. Willoughby, L. Paterson, and A. K. Kar, “A 3D mammalian cell separator biochip,” Lab Chip 12(5), 948–953 (2012).
[Crossref] [PubMed]

Colombier, J. P.

A. Rudenko, J. P. Colombier, and T. E. Itina, “Nanopore-mediated ultrashort laser-induced formation and erasure of volume nanogratings in glass,” Phys. Chem. Chem. Phys. 20(8), 5887–5899 (2018).
[Crossref] [PubMed]

C. Mauclair, M. Zamfirescu, J. P. Colombier, G. Cheng, K. Mishchik, E. Audouard, and R. Stoian, “Control of ultrafast laser-induced bulk nanogratings in fused silica via pulse time envelopes,” Opt. Express 20(12), 12997–13005 (2012).
[Crossref] [PubMed]

Cook, K.

M. Lancry, B. Poumellec, J. Canning, K. Cook, J. C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photonics Rev. 7(6), 953–962 (2013).
[Crossref]

J. Canning, M. Lancry, K. Cook, A. Weickman, F. Brisset, and B. Poumellec, “Anatomy of a femtosecond laser processed silica waveguide,” Opt. Mater. Express 1(5), 998–1008 (2011).
[Crossref]

Corkum, P. B.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 47–61 (2006).
[Crossref]

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica,” Opt. Lett. 30(14), 1867–1869 (2005).
[Crossref] [PubMed]

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87(1), 014104 (2005).
[Crossref]

Costache, F.

J. Reif, O. Varlamova, and F. Costache, “Femtosecond laser induced nanostructure formation: self-organization control parameters,” Appl. Phys., A Mater. Sci. Process. 92(4), 1019–1024 (2008).
[Crossref]

Cui, Y.

Dai, Y.

Dekker, P.

Ding, H.

B. B. Xu, Y. L. Zhang, H. Xia, W. F. Dong, H. Ding, and H. B. Sun, “Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing,” Lab Chip 13(9), 1677–1690 (2013).
[Crossref] [PubMed]

Dong, W. F.

B. B. Xu, Y. L. Zhang, H. Xia, W. F. Dong, H. Ding, and H. B. Sun, “Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing,” Lab Chip 13(9), 1677–1690 (2013).
[Crossref] [PubMed]

Doring, S.

S. Richter, M. Heinrich, S. Doring, A. Tunnermann, S. Nolte, and U. Peschel, “Nanogratings in fused silica: Formation, control, and applications,” J. Laser Appl. 24(4), 042008 (2012).
[Crossref]

S. Richter, M. Heinrich, S. Doring, A. Tunnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys., A Mater. Sci. Process. 104(2), 503–507 (2011).
[Crossref]

Drevinskas, R.

Dugan, M.

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Gecevicius, M.

M. Beresna, M. Gecevicius, and P. G. Kazansky, “Ultrafast laser direct writing and nanostructuring in transparent materials,” Adv. Opt. Photonics 6(3), 293–339 (2014).
[Crossref]

M. Beresna, M. Gecevicius, and P. G. Kazansky, “Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass Invited,” Opt. Mater. Express 1(4), 783–795 (2011).
[Crossref]

Gottmann, J.

J. Gottmann, M. Hermans, N. Repiev, and J. Ortmann, “Selective Laser-Induced Etching of 3D Precision Quartz Glass Components for Microfluidic Applications-Up-Scaling of Complexity and Speed,” Micromachines (Basel) 8(4), 110 (2017).
[Crossref]

M. Hermans, J. Gottmann, and F. Riedel, “Selective, Laser-Induced Etching of Fused Silica at High Scan-Speeds Using KOH,” J. Laser Micro Nanoeng. 9(2), 126–131 (2014).
[Crossref]

Grenier, J. R.

Hashimoto, S.

S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of Etching Agent and Etching Mechanism on Femotosecond Laser Microfabrication of Channels Inside Vitreous Silica Substrates,” J. Phys. Chem. C 113(27), 11560–11566 (2009).
[Crossref]

He, F.

F. He, Y. Liao, J. Lin, J. Song, L. Qiao, Y. Cheng, and K. Sugioka, “Femtosecond laser fabrication of monolithically integrated microfluidic sensors in glass,” Sensors (Basel) 14(10), 19402–19440 (2014).
[Crossref] [PubMed]

X. M. Yu, Y. Liao, F. He, B. Zeng, Y. Cheng, Z. Z. Xu, K. Sugioka, and K. Midorikawa, “Tuning etch selectivity of fused silica irradiated by femtosecond laser pulses by controlling polarization of the writing pulses,” J. Appl. Phys. 109(5), 053114 (2011).
[Crossref]

Heinrich, M.

S. Richter, M. Heinrich, S. Doring, A. Tunnermann, S. Nolte, and U. Peschel, “Nanogratings in fused silica: Formation, control, and applications,” J. Laser Appl. 24(4), 042008 (2012).
[Crossref]

S. Richter, M. Heinrich, S. Doring, A. Tunnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys., A Mater. Sci. Process. 104(2), 503–507 (2011).
[Crossref]

Herman, P. R.

Hermans, M.

J. Gottmann, M. Hermans, N. Repiev, and J. Ortmann, “Selective Laser-Induced Etching of 3D Precision Quartz Glass Components for Microfluidic Applications-Up-Scaling of Complexity and Speed,” Micromachines (Basel) 8(4), 110 (2017).
[Crossref]

M. Hermans, J. Gottmann, and F. Riedel, “Selective, Laser-Induced Etching of Fused Silica at High Scan-Speeds Using KOH,” J. Laser Micro Nanoeng. 9(2), 126–131 (2014).
[Crossref]

Hirao, K.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Hnatovsky, C.

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photonics Rev. 2(1-2), 26–46 (2008).
[Crossref]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 47–61 (2006).
[Crossref]

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica,” Opt. Lett. 30(14), 1867–1869 (2005).
[Crossref] [PubMed]

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87(1), 014104 (2005).
[Crossref]

Ho, S.

Hoekstra, H.

R. Osellame, H. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photonics Rev. 5(3), 442–463 (2011).
[Crossref]

Hongler, M. O.

Itina, T. E.

A. Rudenko, J. P. Colombier, and T. E. Itina, “Nanopore-mediated ultrashort laser-induced formation and erasure of volume nanogratings in glass,” Phys. Chem. Chem. Phys. 20(8), 5887–5899 (2018).
[Crossref] [PubMed]

Itoh, K.

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(08), 620–625 (2006).
[Crossref]

Juodkazis, S.

Kar, A. K.

D. Choudhury, W. T. Ramsay, R. Kiss, N. A. Willoughby, L. Paterson, and A. K. Kar, “A 3D mammalian cell separator biochip,” Lab Chip 12(5), 948–953 (2012).
[Crossref] [PubMed]

Kazansky, P. G.

Kiss, R.

D. Choudhury, W. T. Ramsay, R. Kiss, N. A. Willoughby, L. Paterson, and A. K. Kar, “A 3D mammalian cell separator biochip,” Lab Chip 12(5), 948–953 (2012).
[Crossref] [PubMed]

Kissi, E. O.

Kiyama, S.

S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of Etching Agent and Etching Mechanism on Femotosecond Laser Microfabrication of Channels Inside Vitreous Silica Substrates,” J. Phys. Chem. C 113(27), 11560–11566 (2009).
[Crossref]

Lancry, M.

M. Lancry, B. Poumellec, J. Canning, K. Cook, J. C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photonics Rev. 7(6), 953–962 (2013).
[Crossref]

J. Canning, M. Lancry, K. Cook, A. Weickman, F. Brisset, and B. Poumellec, “Anatomy of a femtosecond laser processed silica waveguide,” Opt. Mater. Express 1(5), 998–1008 (2011).
[Crossref]

Li, E.

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12(4), 746–749 (2012).
[Crossref] [PubMed]

Liao, Y.

Y. Liao, W. Pan, Y. Cui, L. Qiao, Y. Bellouard, K. Sugioka, and Y. Cheng, “Formation of in-volume nanogratings with sub-100-nm periods in glass by femtosecond laser irradiation,” Opt. Lett. 40(15), 3623–3626 (2015).
[Crossref] [PubMed]

F. He, Y. Liao, J. Lin, J. Song, L. Qiao, Y. Cheng, and K. Sugioka, “Femtosecond laser fabrication of monolithically integrated microfluidic sensors in glass,” Sensors (Basel) 14(10), 19402–19440 (2014).
[Crossref] [PubMed]

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12(4), 746–749 (2012).
[Crossref] [PubMed]

X. M. Yu, Y. Liao, F. He, B. Zeng, Y. Cheng, Z. Z. Xu, K. Sugioka, and K. Midorikawa, “Tuning etch selectivity of fused silica irradiated by femtosecond laser pulses by controlling polarization of the writing pulses,” J. Appl. Phys. 109(5), 053114 (2011).
[Crossref]

Lin, J.

F. He, Y. Liao, J. Lin, J. Song, L. Qiao, Y. Cheng, and K. Sugioka, “Femtosecond laser fabrication of monolithically integrated microfluidic sensors in glass,” Sensors (Basel) 14(10), 19402–19440 (2014).
[Crossref] [PubMed]

Luo, Y.

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12(4), 746–749 (2012).
[Crossref] [PubMed]

Maclachlan, D. G.

Marcinkevicius, A.

Marshall, G. D.

Maselli, V.

Matsuo, S.

S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of Etching Agent and Etching Mechanism on Femotosecond Laser Microfabrication of Channels Inside Vitreous Silica Substrates,” J. Phys. Chem. C 113(27), 11560–11566 (2009).
[Crossref]

A. Marcinkevičius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett. 26(5), 277–279 (2001).
[Crossref] [PubMed]

Matthews, J. C. F.

Mauclair, C.

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Midorikawa, K.

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12(4), 746–749 (2012).
[Crossref] [PubMed]

X. M. Yu, Y. Liao, F. He, B. Zeng, Y. Cheng, Z. Z. Xu, K. Sugioka, and K. Midorikawa, “Tuning etch selectivity of fused silica irradiated by femtosecond laser pulses by controlling polarization of the writing pulses,” J. Appl. Phys. 109(5), 053114 (2011).
[Crossref]

Misawa, H.

Mishchik, K.

Miwa, M.

Morihira, Y.

S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of Etching Agent and Etching Mechanism on Femotosecond Laser Microfabrication of Channels Inside Vitreous Silica Substrates,” J. Phys. Chem. C 113(27), 11560–11566 (2009).
[Crossref]

Nge, P. N.

P. N. Nge, C. I. Rogers, and A. T. Woolley, “Advances in microfluidic materials, functions, integration, and applications,” Chem. Rev. 113(4), 2550–2583 (2013).
[Crossref] [PubMed]

Nishii, J.

Nolte, S.

S. Richter, M. Heinrich, S. Doring, A. Tunnermann, S. Nolte, and U. Peschel, “Nanogratings in fused silica: Formation, control, and applications,” J. Laser Appl. 24(4), 042008 (2012).
[Crossref]

S. Richter, M. Heinrich, S. Doring, A. Tunnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys., A Mater. Sci. Process. 104(2), 503–507 (2011).
[Crossref]

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(08), 620–625 (2006).
[Crossref]

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process. 77(1), 109–111 (2003).
[Crossref]

O’Brien, J. L.

Ortmann, J.

J. Gottmann, M. Hermans, N. Repiev, and J. Ortmann, “Selective Laser-Induced Etching of 3D Precision Quartz Glass Components for Microfluidic Applications-Up-Scaling of Complexity and Speed,” Micromachines (Basel) 8(4), 110 (2017).
[Crossref]

Osellame, R.

R. Osellame, H. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photonics Rev. 5(3), 442–463 (2011).
[Crossref]

Pan, W.

Patel, A.

Paterson, L.

D. Choudhury, W. T. Ramsay, R. Kiss, N. A. Willoughby, L. Paterson, and A. K. Kar, “A 3D mammalian cell separator biochip,” Lab Chip 12(5), 948–953 (2012).
[Crossref] [PubMed]

Peschel, U.

S. Richter, M. Heinrich, S. Doring, A. Tunnermann, S. Nolte, and U. Peschel, “Nanogratings in fused silica: Formation, control, and applications,” J. Laser Appl. 24(4), 042008 (2012).
[Crossref]

Politi, A.

Pollnau, M.

R. Osellame, H. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photonics Rev. 5(3), 442–463 (2011).
[Crossref]

Poulin, J. C.

M. Lancry, B. Poumellec, J. Canning, K. Cook, J. C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photonics Rev. 7(6), 953–962 (2013).
[Crossref]

Poumellec, B.

M. Lancry, B. Poumellec, J. Canning, K. Cook, J. C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photonics Rev. 7(6), 953–962 (2013).
[Crossref]

J. Canning, M. Lancry, K. Cook, A. Weickman, F. Brisset, and B. Poumellec, “Anatomy of a femtosecond laser processed silica waveguide,” Opt. Mater. Express 1(5), 998–1008 (2011).
[Crossref]

Qiao, L.

Y. Liao, W. Pan, Y. Cui, L. Qiao, Y. Bellouard, K. Sugioka, and Y. Cheng, “Formation of in-volume nanogratings with sub-100-nm periods in glass by femtosecond laser irradiation,” Opt. Lett. 40(15), 3623–3626 (2015).
[Crossref] [PubMed]

F. He, Y. Liao, J. Lin, J. Song, L. Qiao, Y. Cheng, and K. Sugioka, “Femtosecond laser fabrication of monolithically integrated microfluidic sensors in glass,” Sensors (Basel) 14(10), 19402–19440 (2014).
[Crossref] [PubMed]

Qiu, J.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Rajeev, P. P.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 47–61 (2006).
[Crossref]

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87(1), 014104 (2005).
[Crossref]

Ramsay, W. T.

D. Choudhury, W. T. Ramsay, R. Kiss, N. A. Willoughby, L. Paterson, and A. K. Kar, “A 3D mammalian cell separator biochip,” Lab Chip 12(5), 948–953 (2012).
[Crossref] [PubMed]

Rayner, D. M.

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 47–61 (2006).
[Crossref]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica,” Opt. Lett. 30(14), 1867–1869 (2005).
[Crossref] [PubMed]

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87(1), 014104 (2005).
[Crossref]

Reif, J.

J. Reif, O. Varlamova, and F. Costache, “Femtosecond laser induced nanostructure formation: self-organization control parameters,” Appl. Phys., A Mater. Sci. Process. 92(4), 1019–1024 (2008).
[Crossref]

Ren, Y.

Y. Ren, L. Zhang, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “Femtosecond laser irradiation on Nd:YAG crystal: Surface ablation and high-spatial-frequency nanograting,” Appl. Surf. Sci. 441, 372–380 (2018).
[Crossref]

Repiev, N.

J. Gottmann, M. Hermans, N. Repiev, and J. Ortmann, “Selective Laser-Induced Etching of 3D Precision Quartz Glass Components for Microfluidic Applications-Up-Scaling of Complexity and Speed,” Micromachines (Basel) 8(4), 110 (2017).
[Crossref]

Richter, S.

S. Richter, M. Heinrich, S. Doring, A. Tunnermann, S. Nolte, and U. Peschel, “Nanogratings in fused silica: Formation, control, and applications,” J. Laser Appl. 24(4), 042008 (2012).
[Crossref]

S. Richter, M. Heinrich, S. Doring, A. Tunnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys., A Mater. Sci. Process. 104(2), 503–507 (2011).
[Crossref]

Riedel, F.

M. Hermans, J. Gottmann, and F. Riedel, “Selective, Laser-Induced Etching of Fused Silica at High Scan-Speeds Using KOH,” J. Laser Micro Nanoeng. 9(2), 126–131 (2014).
[Crossref]

Rogers, C. I.

P. N. Nge, C. I. Rogers, and A. T. Woolley, “Advances in microfluidic materials, functions, integration, and applications,” Chem. Rev. 113(4), 2550–2583 (2013).
[Crossref] [PubMed]

Romero, C.

Y. Ren, L. Zhang, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “Femtosecond laser irradiation on Nd:YAG crystal: Surface ablation and high-spatial-frequency nanograting,” Appl. Surf. Sci. 441, 372–380 (2018).
[Crossref]

Ross, C. A.

Rudenko, A.

A. Rudenko, J. P. Colombier, and T. E. Itina, “Nanopore-mediated ultrashort laser-induced formation and erasure of volume nanogratings in glass,” Phys. Chem. Chem. Phys. 20(8), 5887–5899 (2018).
[Crossref] [PubMed]

Rybaltovskii, A. O.

Said, A.

Schaffer, C. B.

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(08), 620–625 (2006).
[Crossref]

Shacham, A.

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57(9), 1246–1260 (2008).
[Crossref]

Shen, Y.

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12(4), 746–749 (2012).
[Crossref] [PubMed]

Shimotsuma, Y.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Simova, E.

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photonics Rev. 2(1-2), 26–46 (2008).
[Crossref]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 47–61 (2006).
[Crossref]

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica,” Opt. Lett. 30(14), 1867–1869 (2005).
[Crossref] [PubMed]

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87(1), 014104 (2005).
[Crossref]

Song, J.

Y. Dai, A. Patel, J. Song, M. Beresna, and P. G. Kazansky, “Void-nanograting transition by ultrashort laser pulse irradiation in silica glass,” Opt. Express 24(17), 19344–19353 (2016).
[Crossref] [PubMed]

F. He, Y. Liao, J. Lin, J. Song, L. Qiao, Y. Cheng, and K. Sugioka, “Femtosecond laser fabrication of monolithically integrated microfluidic sensors in glass,” Sensors (Basel) 14(10), 19402–19440 (2014).
[Crossref] [PubMed]

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12(4), 746–749 (2012).
[Crossref] [PubMed]

Stoian, R.

Sugioka, K.

Y. Liao, W. Pan, Y. Cui, L. Qiao, Y. Bellouard, K. Sugioka, and Y. Cheng, “Formation of in-volume nanogratings with sub-100-nm periods in glass by femtosecond laser irradiation,” Opt. Lett. 40(15), 3623–3626 (2015).
[Crossref] [PubMed]

K. Sugioka and Y. Cheng, “Ultrafast lasers-reliable tools for advanced materials processing,” Light Sci. Appl. 3(4), e149 (2014).
[Crossref]

F. He, Y. Liao, J. Lin, J. Song, L. Qiao, Y. Cheng, and K. Sugioka, “Femtosecond laser fabrication of monolithically integrated microfluidic sensors in glass,” Sensors (Basel) 14(10), 19402–19440 (2014).
[Crossref] [PubMed]

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12(4), 746–749 (2012).
[Crossref] [PubMed]

X. M. Yu, Y. Liao, F. He, B. Zeng, Y. Cheng, Z. Z. Xu, K. Sugioka, and K. Midorikawa, “Tuning etch selectivity of fused silica irradiated by femtosecond laser pulses by controlling polarization of the writing pulses,” J. Appl. Phys. 109(5), 053114 (2011).
[Crossref]

Sun, H. B.

B. B. Xu, Y. L. Zhang, H. Xia, W. F. Dong, H. Ding, and H. B. Sun, “Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing,” Lab Chip 13(9), 1677–1690 (2013).
[Crossref] [PubMed]

Taylor, R.

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photonics Rev. 2(1-2), 26–46 (2008).
[Crossref]

Taylor, R. S.

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 47–61 (2006).
[Crossref]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica,” Opt. Lett. 30(14), 1867–1869 (2005).
[Crossref] [PubMed]

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87(1), 014104 (2005).
[Crossref]

Thomson, R. R.

Tuennermann, A.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process. 77(1), 109–111 (2003).
[Crossref]

Tunnermann, A.

S. Richter, M. Heinrich, S. Doring, A. Tunnermann, S. Nolte, and U. Peschel, “Nanogratings in fused silica: Formation, control, and applications,” J. Laser Appl. 24(4), 042008 (2012).
[Crossref]

S. Richter, M. Heinrich, S. Doring, A. Tunnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys., A Mater. Sci. Process. 104(2), 503–507 (2011).
[Crossref]

Varlamova, O.

J. Reif, O. Varlamova, and F. Costache, “Femtosecond laser induced nanostructure formation: self-organization control parameters,” Appl. Phys., A Mater. Sci. Process. 92(4), 1019–1024 (2008).
[Crossref]

Vázquez de Aldana, J. R.

Y. Ren, L. Zhang, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “Femtosecond laser irradiation on Nd:YAG crystal: Surface ablation and high-spatial-frequency nanograting,” Appl. Surf. Sci. 441, 372–380 (2018).
[Crossref]

Watanabe, M.

Watanabe, W.

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(08), 620–625 (2006).
[Crossref]

Weickman, A.

Will, M.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process. 77(1), 109–111 (2003).
[Crossref]

Willoughby, N. A.

D. Choudhury, W. T. Ramsay, R. Kiss, N. A. Willoughby, L. Paterson, and A. K. Kar, “A 3D mammalian cell separator biochip,” Lab Chip 12(5), 948–953 (2012).
[Crossref] [PubMed]

Withford, M. J.

Woolley, A. T.

P. N. Nge, C. I. Rogers, and A. T. Woolley, “Advances in microfluidic materials, functions, integration, and applications,” Chem. Rev. 113(4), 2550–2583 (2013).
[Crossref] [PubMed]

Xia, H.

B. B. Xu, Y. L. Zhang, H. Xia, W. F. Dong, H. Ding, and H. B. Sun, “Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing,” Lab Chip 13(9), 1677–1690 (2013).
[Crossref] [PubMed]

Xu, B. B.

B. B. Xu, Y. L. Zhang, H. Xia, W. F. Dong, H. Ding, and H. B. Sun, “Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing,” Lab Chip 13(9), 1677–1690 (2013).
[Crossref] [PubMed]

Xu, Z.

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12(4), 746–749 (2012).
[Crossref] [PubMed]

Xu, Z. Z.

X. M. Yu, Y. Liao, F. He, B. Zeng, Y. Cheng, Z. Z. Xu, K. Sugioka, and K. Midorikawa, “Tuning etch selectivity of fused silica irradiated by femtosecond laser pulses by controlling polarization of the writing pulses,” J. Appl. Phys. 109(5), 053114 (2011).
[Crossref]

Yu, X. M.

X. M. Yu, Y. Liao, F. He, B. Zeng, Y. Cheng, Z. Z. Xu, K. Sugioka, and K. Midorikawa, “Tuning etch selectivity of fused silica irradiated by femtosecond laser pulses by controlling polarization of the writing pulses,” J. Appl. Phys. 109(5), 053114 (2011).
[Crossref]

Zamfirescu, M.

Zeng, B.

X. M. Yu, Y. Liao, F. He, B. Zeng, Y. Cheng, Z. Z. Xu, K. Sugioka, and K. Midorikawa, “Tuning etch selectivity of fused silica irradiated by femtosecond laser pulses by controlling polarization of the writing pulses,” J. Appl. Phys. 109(5), 053114 (2011).
[Crossref]

Zhang, L.

Y. Ren, L. Zhang, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “Femtosecond laser irradiation on Nd:YAG crystal: Surface ablation and high-spatial-frequency nanograting,” Appl. Surf. Sci. 441, 372–380 (2018).
[Crossref]

Zhang, Y. L.

B. B. Xu, Y. L. Zhang, H. Xia, W. F. Dong, H. Ding, and H. B. Sun, “Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing,” Lab Chip 13(9), 1677–1690 (2013).
[Crossref] [PubMed]

Adv. Opt. Photonics (1)

M. Beresna, M. Gecevicius, and P. G. Kazansky, “Ultrafast laser direct writing and nanostructuring in transparent materials,” Adv. Opt. Photonics 6(3), 293–339 (2014).
[Crossref]

Appl. Phys. Lett. (1)

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87(1), 014104 (2005).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (4)

J. Reif, O. Varlamova, and F. Costache, “Femtosecond laser induced nanostructure formation: self-organization control parameters,” Appl. Phys., A Mater. Sci. Process. 92(4), 1019–1024 (2008).
[Crossref]

S. Richter, M. Heinrich, S. Doring, A. Tunnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys., A Mater. Sci. Process. 104(2), 503–507 (2011).
[Crossref]

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process. 77(1), 109–111 (2003).
[Crossref]

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 47–61 (2006).
[Crossref]

Appl. Surf. Sci. (1)

Y. Ren, L. Zhang, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “Femtosecond laser irradiation on Nd:YAG crystal: Surface ablation and high-spatial-frequency nanograting,” Appl. Surf. Sci. 441, 372–380 (2018).
[Crossref]

Chem. Rev. (1)

P. N. Nge, C. I. Rogers, and A. T. Woolley, “Advances in microfluidic materials, functions, integration, and applications,” Chem. Rev. 113(4), 2550–2583 (2013).
[Crossref] [PubMed]

IEEE Trans. Comput. (1)

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57(9), 1246–1260 (2008).
[Crossref]

J. Appl. Phys. (1)

X. M. Yu, Y. Liao, F. He, B. Zeng, Y. Cheng, Z. Z. Xu, K. Sugioka, and K. Midorikawa, “Tuning etch selectivity of fused silica irradiated by femtosecond laser pulses by controlling polarization of the writing pulses,” J. Appl. Phys. 109(5), 053114 (2011).
[Crossref]

J. Laser Appl. (1)

S. Richter, M. Heinrich, S. Doring, A. Tunnermann, S. Nolte, and U. Peschel, “Nanogratings in fused silica: Formation, control, and applications,” J. Laser Appl. 24(4), 042008 (2012).
[Crossref]

J. Laser Micro Nanoeng. (1)

M. Hermans, J. Gottmann, and F. Riedel, “Selective, Laser-Induced Etching of Fused Silica at High Scan-Speeds Using KOH,” J. Laser Micro Nanoeng. 9(2), 126–131 (2014).
[Crossref]

J. Phys. Chem. C (1)

S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of Etching Agent and Etching Mechanism on Femotosecond Laser Microfabrication of Channels Inside Vitreous Silica Substrates,” J. Phys. Chem. C 113(27), 11560–11566 (2009).
[Crossref]

Lab Chip (3)

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12(4), 746–749 (2012).
[Crossref] [PubMed]

B. B. Xu, Y. L. Zhang, H. Xia, W. F. Dong, H. Ding, and H. B. Sun, “Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing,” Lab Chip 13(9), 1677–1690 (2013).
[Crossref] [PubMed]

D. Choudhury, W. T. Ramsay, R. Kiss, N. A. Willoughby, L. Paterson, and A. K. Kar, “A 3D mammalian cell separator biochip,” Lab Chip 12(5), 948–953 (2012).
[Crossref] [PubMed]

Laser Photonics Rev. (3)

R. Osellame, H. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photonics Rev. 5(3), 442–463 (2011).
[Crossref]

M. Lancry, B. Poumellec, J. Canning, K. Cook, J. C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photonics Rev. 7(6), 953–962 (2013).
[Crossref]

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photonics Rev. 2(1-2), 26–46 (2008).
[Crossref]

Light Sci. Appl. (1)

K. Sugioka and Y. Cheng, “Ultrafast lasers-reliable tools for advanced materials processing,” Light Sci. Appl. 3(4), e149 (2014).
[Crossref]

Micromachines (Basel) (2)

J. Gottmann, M. Hermans, N. Repiev, and J. Ortmann, “Selective Laser-Induced Etching of 3D Precision Quartz Glass Components for Microfluidic Applications-Up-Scaling of Complexity and Speed,” Micromachines (Basel) 8(4), 110 (2017).
[Crossref]

Y. Cheng, “Internal Laser Writing of High-Aspect-Ratio Microfluidic Structures in Silicate Glasses for Lab-on-a-Chip Applications,” Micromachines (Basel) 8(2), 59 (2017).
[Crossref]

MRS Bull. (1)

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(08), 620–625 (2006).
[Crossref]

Nat. Photonics (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Opt. Express (10)

Y. Bellouard, A. Said, and P. Bado, “Integrating optics and micro-mechanics in a single substrate: a step toward monolithic integration in fused silica,” Opt. Express 13(17), 6635–6644 (2005).
[Crossref] [PubMed]

V. Maselli, J. R. Grenier, S. Ho, and P. R. Herman, “Femtosecond laser written optofluidic sensor: Bragg Grating Waveguide evanescent probing of microfluidic channel,” Opt. Express 17(14), 11719–11729 (2009).
[Crossref] [PubMed]

G. D. Marshall, A. Politi, J. C. F. Matthews, P. Dekker, M. Ams, M. J. Withford, and J. L. O’Brien, “Laser written waveguide photonic quantum circuits,” Opt. Express 17(15), 12546–12554 (2009).
[Crossref] [PubMed]

Y. Bellouard and M. O. Hongler, “Femtosecond-laser generation of self-organized bubble patterns in fused silica,” Opt. Express 19(7), 6807–6821 (2011).
[Crossref] [PubMed]

Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching,” Opt. Express 12(10), 2120–2129 (2004).
[Crossref] [PubMed]

C. Mauclair, M. Zamfirescu, J. P. Colombier, G. Cheng, K. Mishchik, E. Audouard, and R. Stoian, “Control of ultrafast laser-induced bulk nanogratings in fused silica via pulse time envelopes,” Opt. Express 20(12), 12997–13005 (2012).
[Crossref] [PubMed]

Y. Dai, A. Patel, J. Song, M. Beresna, and P. G. Kazansky, “Void-nanograting transition by ultrashort laser pulse irradiation in silica glass,” Opt. Express 24(17), 19344–19353 (2016).
[Crossref] [PubMed]

A. Cerkauskaite, R. Drevinskas, A. O. Rybaltovskii, and P. G. Kazansky, “Ultrafast laser-induced birefringence in various porosity silica glasses: from fused silica to aerogel,” Opt. Express 25(7), 8011–8021 (2017).
[Crossref] [PubMed]

E. O. Kissi and Y. Bellouard, “Self-organized nanostructures forming under high-repetition rate femtosecond laser bulk-heating of fused silica,” Opt. Express 26(11), 14024–14037 (2018).
[Crossref] [PubMed]

C. A. Ross, D. G. Maclachlan, D. Choudhury, and R. R. Thomson, “Optimisation of ultrafast laser assisted etching in fused silica,” Opt. Express 26(19), 24343–24356 (2018).
[Crossref]

Opt. Lett. (3)

Opt. Mater. Express (2)

Phys. Chem. Chem. Phys. (1)

A. Rudenko, J. P. Colombier, and T. E. Itina, “Nanopore-mediated ultrashort laser-induced formation and erasure of volume nanogratings in glass,” Phys. Chem. Chem. Phys. 20(8), 5887–5899 (2018).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

Sensors (Basel) (1)

F. He, Y. Liao, J. Lin, J. Song, L. Qiao, Y. Cheng, and K. Sugioka, “Femtosecond laser fabrication of monolithically integrated microfluidic sensors in glass,” Sensors (Basel) 14(10), 19402–19440 (2014).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Experiment setup of 3D femtosecond laser modification system. VNDF: Variable neutral density filer.
Fig. 2
Fig. 2 Transmission optical micrograph of selectively etched microchannels and the non-etched lines inscribed by femtosecond laser with different pulse interval (laser repetition rate) at a pulse energy of 2.0 μJ and an inscription speed of 1 mm/s.
Fig. 3
Fig. 3 Left: Dependence of the selective etching speed on the laser repetition rate (or pulse interval) with different pulse energy (Ep) and inscription speed (vc). Right: Replot of the FLISE speed in the left data as the function of the exposure laser energy density Eden
Fig. 4
Fig. 4 SEM images of the femtosecond laser modified lines’ micromorphology inscribed with different pulse repetition rate using fixed pulse energy of 2.0 μJ and inscription speed of 1 mm/s.
Fig. 5
Fig. 5 (a) 1st order Raman-Nath diffractive efficiencies of the optical gratings inscribed by femtosecond laser with different repetition rate and probed with p and s polarized light respectively. Inset: Illustration of the readout configuration and the Raman-Nath diffraction of the optical grating. (b) Anisotropy of the optical grating comparing with the selective etching speed of FLISE tubes prepared with the same inscription conditions.

Metrics