Abstract

Plasmonic structures have long proved their capabilities to concentrate and manipulate light in micro- and nano-scales that facilitate strong light-matter interactions. Besides electromagnetic properties, ultra-small plasmonic structures may lead to novel applications based on their mechanical properties. Here we report efficient coupling between optical absorption and mechanical deformation in nanoscales through plasmonically enhanced fishbone nanowires. Using tailorable absorbers, free-space radiation energy is converted into heat to thermally actuate the suspended nanowires whose deformation is sensed by the evanescent fields from a waveguide. The demonstration at 660 nm wavelength with above 30% absorption shows the potential of the device to detect nW/√Hz power in an uncooled environment.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
More Like This
Graphene-incorporated plasmo-thermomechanical infrared radiation detection

Mohammad Wahiduzzaman Khan, Qiancheng Zhao, Parinaz Sadri-Moshkenani, Md Shafiqul Islam, and Ozdal Boyraz
J. Opt. Soc. Am. B 37(3) 774-783 (2020)

MO detector (MOD): a dual-function optical modulator-detector for on-chip communication

Shuai Sun, Ruoyu Zhang, Jiaxin Peng, Vikram K. Narayana, Hamed Dalir, Tarek El-Ghazawi, and Volker J. Sorger
Opt. Express 26(7) 8252-8259 (2018)

Wide-steering-angle high-resolution optical phased array

Yingzhi Li, Baisong Chen, Quanxin Na, Qijie Xie, Min Tao, Lanxuan Zhang, Zihao Zhi, Yuxuan Li, Xiaobin Liu, Xianshu Luo, Guoqiang Lo, Fengli Gao, Xueyan Li, and Junfeng Song
Photon. Res. 9(12) 2511-2518 (2021)

References

  • View by:

  1. A. Rogalski, “Infrared detectors: status and trends,” Prog. Quantum Electron. 27(2-3), 59–210 (2003).
    [Crossref]
  2. M. A. Kinch, “Fundamental physics of infrared detector materials,” J. Electron. Mater. 29(6), 809–817 (2000).
    [Crossref]
  3. P. Norton, “HgCdTe infrared detectors,” Opto-Electron. Rev. 3, 159–174 (2002).
  4. A. Barve, S. Lee, S. Noh, and S. Krishna, “Review of current progress in quantum dot infrared photodetectors,” Laser Photonics Rev. 4(6), 738–750 (2010).
    [Crossref]
  5. M. S. Jayalakshmy and J. Philip, “Enhancement in pyroelectric detection sensitivity for flexible LiNbO3 PVDF nanocomposite films by inclusion content control,” J. Polym. Res. 22(3), 42 (2015).
    [Crossref]
  6. G. Sebald, D. Guyomar, and A. Agbossou, “On thermoelectric and pyroelectric energy harvesting,” Smart Mater. Struct. 18(12), 125006 (2009).
    [Crossref]
  7. A. Navid, C. S. Lynch, and L. Pilon, “Purified and porous poly(vinylidene fluoride-trifluoroethylene) thin films for pyroelectric infrared sensing and energy harvesting,” Smart Mater. Struct. 19(5), 055006 (2010).
    [Crossref]
  8. Y. Pan, G. Tagliabue, H. Eghlidi, C. Höller, S. Dröscher, G. Hong, and D. Poulikakos, “A Rapid Response Thin-Film Plasmonic-Thermoelectric Light Detector,” Sci. Rep. 6(1), 37564 (2016).
    [Crossref] [PubMed]
  9. W. Zhu, Y. Deng, and L. Cao, “Light-concentrated solar generator and sensor based on flexible thin-film thermoelectric device,” Nano Energy 34, 463–471 (2017).
    [Crossref]
  10. J. P. Carmo, L. M. Goncalves, and J. H. Correia, “Thermoelectric Microconverter for Energy Harvesting Systems,” IEEE Trans. Ind. Electron. 57(3), 861–867 (2010).
    [Crossref]
  11. F. O. Briano, M. Colangelo, C. Errando-Herranz, H. Sohlström, and K. B. Gylfason, “A fast uncooled infrared nanobolometer featuring a hybrid-plasmonic cavity for enhanced optical responsivity,” in 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS) (2017), pp. 932–935.
  12. W. Dai, Q. Yang, F. Gu, and L. Tong, “ZnO subwavelength wires for fast-response mid-infrared detection,” Opt. Express 17(24), 21808–21812 (2009).
    [Crossref] [PubMed]
  13. J. B. Herzog, M. W. Knight, and D. Natelson, “Thermoplasmonics: Quantifying Plasmonic Heating in Single Nanowires,” Nano Lett. 14(2), 499–503 (2014).
    [Crossref] [PubMed]
  14. Z. Qian, S. Kang, V. Rajaram, C. Cassella, N. E. McGruer, and M. Rinaldi, “Zero-power infrared digitizers based on plasmonically enhanced micromechanical photoswitches,” Nat. Nanotechnol. 12(10), 969–973 (2017).
    [Crossref] [PubMed]
  15. Y. Hui, J. S. Gomez-Diaz, Z. Qian, A. Alù, and M. Rinaldi, “Plasmonic piezoelectric nanomechanical resonator for spectrally selective infrared sensing,” Nat. Commun. 7, 11249 (2016).
    [Crossref] [PubMed]
  16. M. R. Watts, M. J. Shaw, and G. N. Nielson, “Microphotonic thermal imaging,” Nat. Photonics 1(11), 632–634 (2007).
    [Crossref]
  17. T. W. Kenny, W. J. Kaiser, S. B. Waltman, and J. K. Reynolds, “Novel infrared detector based on a tunneling displacement transducer,” Appl. Phys. Lett. 59(15), 1820–1822 (1991).
    [Crossref]
  18. F. Zhang, Q. Shen, X. Shi, S. Li, W. Wang, Z. Luo, G. He, P. Zhang, P. Tao, C. Song, W. Zhang, D. Zhang, T. Deng, and W. Shang, “Infrared Detection Based on Localized Modification of Morpho Butterfly Wings,” Adv. Mater. 27(6), 1077–1082 (2015).
    [Crossref] [PubMed]
  19. N. J. Hogan, A. S. Urban, C. Ayala-Orozco, A. Pimpinelli, P. Nordlander, and N. J. Halas, “Nanoparticles Heat through Light Localization,” Nano Lett. 14(8), 4640–4645 (2014).
    [Crossref] [PubMed]
  20. H. Zhu, F. Yi, and E. Cubukcu, “Plasmonic metamaterial absorber for broadband manipulation of mechanical resonances,” Nat. Photonics 10(11), 709–714 (2016).
    [Crossref]
  21. J. R. Barnes, R. J. Stephenson, C. N. Woodburn, S. J. O’Shea, M. E. Welland, T. Rayment, J. K. Gimzewski, and C. Gerber, “A femtojoule calorimeter using micromechanical sensors,” Rev. Sci. Instrum. 65(12), 3793–3798 (1994).
    [Crossref]
  22. J. Lai, T. Perazzo, Z. Shi, and A. Majumdar, “Optimization and performance of high-resolution micro-optomechanical thermal sensors,” Sens. Actuators Phys. 58(2), 113–119 (1997).
    [Crossref]
  23. F. Yi, H. Zhu, J. C. Reed, and E. Cubukcu, “Plasmonically Enhanced Thermomechanical Detection of Infrared Radiation,” Nano Lett. 13(4), 1638–1643 (2013).
    [Crossref] [PubMed]
  24. J. Agustí Batlle and G. Abadal Berini, Nonlinear Micro/Nano-Optomechanical Oscillators for Energy Transduction from IR Sources (Universitat Autònoma de Barcelona, 2015).
  25. L. Ding, C. Baker, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “High Frequency GaAs Nano-Optomechanical Disk Resonator,” Phys. Rev. Lett. 105(26), 263903 (2010).
    [Crossref] [PubMed]
  26. E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nat. Nanotechnol. 7(8), 509–514 (2012).
    [Crossref] [PubMed]
  27. Y.-W. Hu, Y.-F. Xiao, Y.-C. Liu, and Q. Gong, “Optomechanical sensing with on-chip microcavities,” Front. Phys. 8(5), 475–490 (2013).
    [Crossref]
  28. Q. Zhao, C. Guclu, Y. Huang, F. Capolino, and O. Boyraz, “Experimental Demonstration of Directive Si3N4 Optical Leaky Wave Antennas With Semiconductor Perturbations,” J. Lightwave Technol. 34(21), 4864–4871 (2016).
    [Crossref]
  29. L. Chen, C. R. Doerr, L. Buhl, Y. Baeyens, and R. A. Aroca, “Monolithically Integrated 40-Wavelength Demultiplexer and Photodetector Array on Silicon,” IEEE Photonics Technol. Lett. 23(13), 869–871 (2011).
    [Crossref]
  30. Q. Zhao, P. Sadri-Moshkenani, M. W. Khan, R. Torun, and O. Boyraz, “On-Chip Bimetallic Plasmo-Thermomechanical Detectors for Mid-Infrared Radiation,” IEEE Photonics Technol. Lett. 29(17), 1459–1462 (2017).
    [Crossref]
  31. Q. Zhao, M. W. Khan, P. Sadri-Moshkenani, R. Regan, F. Capolino, and O. Boyraz, “Demonstration of a Plasmo-Thermomechanical Radiation Detector with Si3N4 Waveguide Optical Readout Circuit,” in Conference on Lasers and Electro-Optics(2018), Paper JW2A.175 (Optical Society of America, 2018), p. JW2A.175.
  32. P. Eriksson, J. Y. Andersson, and G. Stemme, “Thermal characterization of surface-micromachined silicon nitride membranes for thermal infrared detectors,” J. Microelectromech. Syst. 6(1), 55–61 (1997).
    [Crossref]
  33. “Uncooled Thermal Imaging Arrays, Systems, and Applications | (2001) | Kruse | Publications | Spie,” https://spie.org/publications/book/415351?SSO=1 .
  34. E. Majorana and Y. Ogawa, “Mechanical thermal noise in coupled oscillators,” Phys. Lett. A 233(3), 162–168 (1997).
    [Crossref]

2017 (3)

Z. Qian, S. Kang, V. Rajaram, C. Cassella, N. E. McGruer, and M. Rinaldi, “Zero-power infrared digitizers based on plasmonically enhanced micromechanical photoswitches,” Nat. Nanotechnol. 12(10), 969–973 (2017).
[Crossref] [PubMed]

W. Zhu, Y. Deng, and L. Cao, “Light-concentrated solar generator and sensor based on flexible thin-film thermoelectric device,” Nano Energy 34, 463–471 (2017).
[Crossref]

Q. Zhao, P. Sadri-Moshkenani, M. W. Khan, R. Torun, and O. Boyraz, “On-Chip Bimetallic Plasmo-Thermomechanical Detectors for Mid-Infrared Radiation,” IEEE Photonics Technol. Lett. 29(17), 1459–1462 (2017).
[Crossref]

2016 (4)

Q. Zhao, C. Guclu, Y. Huang, F. Capolino, and O. Boyraz, “Experimental Demonstration of Directive Si3N4 Optical Leaky Wave Antennas With Semiconductor Perturbations,” J. Lightwave Technol. 34(21), 4864–4871 (2016).
[Crossref]

H. Zhu, F. Yi, and E. Cubukcu, “Plasmonic metamaterial absorber for broadband manipulation of mechanical resonances,” Nat. Photonics 10(11), 709–714 (2016).
[Crossref]

Y. Hui, J. S. Gomez-Diaz, Z. Qian, A. Alù, and M. Rinaldi, “Plasmonic piezoelectric nanomechanical resonator for spectrally selective infrared sensing,” Nat. Commun. 7, 11249 (2016).
[Crossref] [PubMed]

Y. Pan, G. Tagliabue, H. Eghlidi, C. Höller, S. Dröscher, G. Hong, and D. Poulikakos, “A Rapid Response Thin-Film Plasmonic-Thermoelectric Light Detector,” Sci. Rep. 6(1), 37564 (2016).
[Crossref] [PubMed]

2015 (2)

M. S. Jayalakshmy and J. Philip, “Enhancement in pyroelectric detection sensitivity for flexible LiNbO3 PVDF nanocomposite films by inclusion content control,” J. Polym. Res. 22(3), 42 (2015).
[Crossref]

F. Zhang, Q. Shen, X. Shi, S. Li, W. Wang, Z. Luo, G. He, P. Zhang, P. Tao, C. Song, W. Zhang, D. Zhang, T. Deng, and W. Shang, “Infrared Detection Based on Localized Modification of Morpho Butterfly Wings,” Adv. Mater. 27(6), 1077–1082 (2015).
[Crossref] [PubMed]

2014 (2)

N. J. Hogan, A. S. Urban, C. Ayala-Orozco, A. Pimpinelli, P. Nordlander, and N. J. Halas, “Nanoparticles Heat through Light Localization,” Nano Lett. 14(8), 4640–4645 (2014).
[Crossref] [PubMed]

J. B. Herzog, M. W. Knight, and D. Natelson, “Thermoplasmonics: Quantifying Plasmonic Heating in Single Nanowires,” Nano Lett. 14(2), 499–503 (2014).
[Crossref] [PubMed]

2013 (2)

F. Yi, H. Zhu, J. C. Reed, and E. Cubukcu, “Plasmonically Enhanced Thermomechanical Detection of Infrared Radiation,” Nano Lett. 13(4), 1638–1643 (2013).
[Crossref] [PubMed]

Y.-W. Hu, Y.-F. Xiao, Y.-C. Liu, and Q. Gong, “Optomechanical sensing with on-chip microcavities,” Front. Phys. 8(5), 475–490 (2013).
[Crossref]

2012 (1)

E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nat. Nanotechnol. 7(8), 509–514 (2012).
[Crossref] [PubMed]

2011 (1)

L. Chen, C. R. Doerr, L. Buhl, Y. Baeyens, and R. A. Aroca, “Monolithically Integrated 40-Wavelength Demultiplexer and Photodetector Array on Silicon,” IEEE Photonics Technol. Lett. 23(13), 869–871 (2011).
[Crossref]

2010 (4)

L. Ding, C. Baker, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “High Frequency GaAs Nano-Optomechanical Disk Resonator,” Phys. Rev. Lett. 105(26), 263903 (2010).
[Crossref] [PubMed]

J. P. Carmo, L. M. Goncalves, and J. H. Correia, “Thermoelectric Microconverter for Energy Harvesting Systems,” IEEE Trans. Ind. Electron. 57(3), 861–867 (2010).
[Crossref]

A. Navid, C. S. Lynch, and L. Pilon, “Purified and porous poly(vinylidene fluoride-trifluoroethylene) thin films for pyroelectric infrared sensing and energy harvesting,” Smart Mater. Struct. 19(5), 055006 (2010).
[Crossref]

A. Barve, S. Lee, S. Noh, and S. Krishna, “Review of current progress in quantum dot infrared photodetectors,” Laser Photonics Rev. 4(6), 738–750 (2010).
[Crossref]

2009 (2)

G. Sebald, D. Guyomar, and A. Agbossou, “On thermoelectric and pyroelectric energy harvesting,” Smart Mater. Struct. 18(12), 125006 (2009).
[Crossref]

W. Dai, Q. Yang, F. Gu, and L. Tong, “ZnO subwavelength wires for fast-response mid-infrared detection,” Opt. Express 17(24), 21808–21812 (2009).
[Crossref] [PubMed]

2007 (1)

M. R. Watts, M. J. Shaw, and G. N. Nielson, “Microphotonic thermal imaging,” Nat. Photonics 1(11), 632–634 (2007).
[Crossref]

2003 (1)

A. Rogalski, “Infrared detectors: status and trends,” Prog. Quantum Electron. 27(2-3), 59–210 (2003).
[Crossref]

2002 (1)

P. Norton, “HgCdTe infrared detectors,” Opto-Electron. Rev. 3, 159–174 (2002).

2000 (1)

M. A. Kinch, “Fundamental physics of infrared detector materials,” J. Electron. Mater. 29(6), 809–817 (2000).
[Crossref]

1997 (3)

J. Lai, T. Perazzo, Z. Shi, and A. Majumdar, “Optimization and performance of high-resolution micro-optomechanical thermal sensors,” Sens. Actuators Phys. 58(2), 113–119 (1997).
[Crossref]

P. Eriksson, J. Y. Andersson, and G. Stemme, “Thermal characterization of surface-micromachined silicon nitride membranes for thermal infrared detectors,” J. Microelectromech. Syst. 6(1), 55–61 (1997).
[Crossref]

E. Majorana and Y. Ogawa, “Mechanical thermal noise in coupled oscillators,” Phys. Lett. A 233(3), 162–168 (1997).
[Crossref]

1994 (1)

J. R. Barnes, R. J. Stephenson, C. N. Woodburn, S. J. O’Shea, M. E. Welland, T. Rayment, J. K. Gimzewski, and C. Gerber, “A femtojoule calorimeter using micromechanical sensors,” Rev. Sci. Instrum. 65(12), 3793–3798 (1994).
[Crossref]

1991 (1)

T. W. Kenny, W. J. Kaiser, S. B. Waltman, and J. K. Reynolds, “Novel infrared detector based on a tunneling displacement transducer,” Appl. Phys. Lett. 59(15), 1820–1822 (1991).
[Crossref]

Agbossou, A.

G. Sebald, D. Guyomar, and A. Agbossou, “On thermoelectric and pyroelectric energy harvesting,” Smart Mater. Struct. 18(12), 125006 (2009).
[Crossref]

Alù, A.

Y. Hui, J. S. Gomez-Diaz, Z. Qian, A. Alù, and M. Rinaldi, “Plasmonic piezoelectric nanomechanical resonator for spectrally selective infrared sensing,” Nat. Commun. 7, 11249 (2016).
[Crossref] [PubMed]

Andersson, J. Y.

P. Eriksson, J. Y. Andersson, and G. Stemme, “Thermal characterization of surface-micromachined silicon nitride membranes for thermal infrared detectors,” J. Microelectromech. Syst. 6(1), 55–61 (1997).
[Crossref]

Aroca, R. A.

L. Chen, C. R. Doerr, L. Buhl, Y. Baeyens, and R. A. Aroca, “Monolithically Integrated 40-Wavelength Demultiplexer and Photodetector Array on Silicon,” IEEE Photonics Technol. Lett. 23(13), 869–871 (2011).
[Crossref]

Ayala-Orozco, C.

N. J. Hogan, A. S. Urban, C. Ayala-Orozco, A. Pimpinelli, P. Nordlander, and N. J. Halas, “Nanoparticles Heat through Light Localization,” Nano Lett. 14(8), 4640–4645 (2014).
[Crossref] [PubMed]

Baeyens, Y.

L. Chen, C. R. Doerr, L. Buhl, Y. Baeyens, and R. A. Aroca, “Monolithically Integrated 40-Wavelength Demultiplexer and Photodetector Array on Silicon,” IEEE Photonics Technol. Lett. 23(13), 869–871 (2011).
[Crossref]

Baker, C.

L. Ding, C. Baker, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “High Frequency GaAs Nano-Optomechanical Disk Resonator,” Phys. Rev. Lett. 105(26), 263903 (2010).
[Crossref] [PubMed]

Barnes, J. R.

J. R. Barnes, R. J. Stephenson, C. N. Woodburn, S. J. O’Shea, M. E. Welland, T. Rayment, J. K. Gimzewski, and C. Gerber, “A femtojoule calorimeter using micromechanical sensors,” Rev. Sci. Instrum. 65(12), 3793–3798 (1994).
[Crossref]

Barve, A.

A. Barve, S. Lee, S. Noh, and S. Krishna, “Review of current progress in quantum dot infrared photodetectors,” Laser Photonics Rev. 4(6), 738–750 (2010).
[Crossref]

Boyraz, O.

Q. Zhao, P. Sadri-Moshkenani, M. W. Khan, R. Torun, and O. Boyraz, “On-Chip Bimetallic Plasmo-Thermomechanical Detectors for Mid-Infrared Radiation,” IEEE Photonics Technol. Lett. 29(17), 1459–1462 (2017).
[Crossref]

Q. Zhao, C. Guclu, Y. Huang, F. Capolino, and O. Boyraz, “Experimental Demonstration of Directive Si3N4 Optical Leaky Wave Antennas With Semiconductor Perturbations,” J. Lightwave Technol. 34(21), 4864–4871 (2016).
[Crossref]

Buhl, L.

L. Chen, C. R. Doerr, L. Buhl, Y. Baeyens, and R. A. Aroca, “Monolithically Integrated 40-Wavelength Demultiplexer and Photodetector Array on Silicon,” IEEE Photonics Technol. Lett. 23(13), 869–871 (2011).
[Crossref]

Cao, L.

W. Zhu, Y. Deng, and L. Cao, “Light-concentrated solar generator and sensor based on flexible thin-film thermoelectric device,” Nano Energy 34, 463–471 (2017).
[Crossref]

Capolino, F.

Carmo, J. P.

J. P. Carmo, L. M. Goncalves, and J. H. Correia, “Thermoelectric Microconverter for Energy Harvesting Systems,” IEEE Trans. Ind. Electron. 57(3), 861–867 (2010).
[Crossref]

Cassella, C.

Z. Qian, S. Kang, V. Rajaram, C. Cassella, N. E. McGruer, and M. Rinaldi, “Zero-power infrared digitizers based on plasmonically enhanced micromechanical photoswitches,” Nat. Nanotechnol. 12(10), 969–973 (2017).
[Crossref] [PubMed]

Chen, L.

L. Chen, C. R. Doerr, L. Buhl, Y. Baeyens, and R. A. Aroca, “Monolithically Integrated 40-Wavelength Demultiplexer and Photodetector Array on Silicon,” IEEE Photonics Technol. Lett. 23(13), 869–871 (2011).
[Crossref]

Correia, J. H.

J. P. Carmo, L. M. Goncalves, and J. H. Correia, “Thermoelectric Microconverter for Energy Harvesting Systems,” IEEE Trans. Ind. Electron. 57(3), 861–867 (2010).
[Crossref]

Cubukcu, E.

H. Zhu, F. Yi, and E. Cubukcu, “Plasmonic metamaterial absorber for broadband manipulation of mechanical resonances,” Nat. Photonics 10(11), 709–714 (2016).
[Crossref]

F. Yi, H. Zhu, J. C. Reed, and E. Cubukcu, “Plasmonically Enhanced Thermomechanical Detection of Infrared Radiation,” Nano Lett. 13(4), 1638–1643 (2013).
[Crossref] [PubMed]

Dai, W.

Deng, T.

F. Zhang, Q. Shen, X. Shi, S. Li, W. Wang, Z. Luo, G. He, P. Zhang, P. Tao, C. Song, W. Zhang, D. Zhang, T. Deng, and W. Shang, “Infrared Detection Based on Localized Modification of Morpho Butterfly Wings,” Adv. Mater. 27(6), 1077–1082 (2015).
[Crossref] [PubMed]

Deng, Y.

W. Zhu, Y. Deng, and L. Cao, “Light-concentrated solar generator and sensor based on flexible thin-film thermoelectric device,” Nano Energy 34, 463–471 (2017).
[Crossref]

Ding, L.

L. Ding, C. Baker, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “High Frequency GaAs Nano-Optomechanical Disk Resonator,” Phys. Rev. Lett. 105(26), 263903 (2010).
[Crossref] [PubMed]

Doerr, C. R.

L. Chen, C. R. Doerr, L. Buhl, Y. Baeyens, and R. A. Aroca, “Monolithically Integrated 40-Wavelength Demultiplexer and Photodetector Array on Silicon,” IEEE Photonics Technol. Lett. 23(13), 869–871 (2011).
[Crossref]

Dröscher, S.

Y. Pan, G. Tagliabue, H. Eghlidi, C. Höller, S. Dröscher, G. Hong, and D. Poulikakos, “A Rapid Response Thin-Film Plasmonic-Thermoelectric Light Detector,” Sci. Rep. 6(1), 37564 (2016).
[Crossref] [PubMed]

Ducci, S.

L. Ding, C. Baker, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “High Frequency GaAs Nano-Optomechanical Disk Resonator,” Phys. Rev. Lett. 105(26), 263903 (2010).
[Crossref] [PubMed]

Eghlidi, H.

Y. Pan, G. Tagliabue, H. Eghlidi, C. Höller, S. Dröscher, G. Hong, and D. Poulikakos, “A Rapid Response Thin-Film Plasmonic-Thermoelectric Light Detector,” Sci. Rep. 6(1), 37564 (2016).
[Crossref] [PubMed]

Eriksson, P.

P. Eriksson, J. Y. Andersson, and G. Stemme, “Thermal characterization of surface-micromachined silicon nitride membranes for thermal infrared detectors,” J. Microelectromech. Syst. 6(1), 55–61 (1997).
[Crossref]

Favero, I.

L. Ding, C. Baker, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “High Frequency GaAs Nano-Optomechanical Disk Resonator,” Phys. Rev. Lett. 105(26), 263903 (2010).
[Crossref] [PubMed]

Gavartin, E.

E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nat. Nanotechnol. 7(8), 509–514 (2012).
[Crossref] [PubMed]

Gerber, C.

J. R. Barnes, R. J. Stephenson, C. N. Woodburn, S. J. O’Shea, M. E. Welland, T. Rayment, J. K. Gimzewski, and C. Gerber, “A femtojoule calorimeter using micromechanical sensors,” Rev. Sci. Instrum. 65(12), 3793–3798 (1994).
[Crossref]

Gimzewski, J. K.

J. R. Barnes, R. J. Stephenson, C. N. Woodburn, S. J. O’Shea, M. E. Welland, T. Rayment, J. K. Gimzewski, and C. Gerber, “A femtojoule calorimeter using micromechanical sensors,” Rev. Sci. Instrum. 65(12), 3793–3798 (1994).
[Crossref]

Gomez-Diaz, J. S.

Y. Hui, J. S. Gomez-Diaz, Z. Qian, A. Alù, and M. Rinaldi, “Plasmonic piezoelectric nanomechanical resonator for spectrally selective infrared sensing,” Nat. Commun. 7, 11249 (2016).
[Crossref] [PubMed]

Goncalves, L. M.

J. P. Carmo, L. M. Goncalves, and J. H. Correia, “Thermoelectric Microconverter for Energy Harvesting Systems,” IEEE Trans. Ind. Electron. 57(3), 861–867 (2010).
[Crossref]

Gong, Q.

Y.-W. Hu, Y.-F. Xiao, Y.-C. Liu, and Q. Gong, “Optomechanical sensing with on-chip microcavities,” Front. Phys. 8(5), 475–490 (2013).
[Crossref]

Gu, F.

Guclu, C.

Guyomar, D.

G. Sebald, D. Guyomar, and A. Agbossou, “On thermoelectric and pyroelectric energy harvesting,” Smart Mater. Struct. 18(12), 125006 (2009).
[Crossref]

Halas, N. J.

N. J. Hogan, A. S. Urban, C. Ayala-Orozco, A. Pimpinelli, P. Nordlander, and N. J. Halas, “Nanoparticles Heat through Light Localization,” Nano Lett. 14(8), 4640–4645 (2014).
[Crossref] [PubMed]

He, G.

F. Zhang, Q. Shen, X. Shi, S. Li, W. Wang, Z. Luo, G. He, P. Zhang, P. Tao, C. Song, W. Zhang, D. Zhang, T. Deng, and W. Shang, “Infrared Detection Based on Localized Modification of Morpho Butterfly Wings,” Adv. Mater. 27(6), 1077–1082 (2015).
[Crossref] [PubMed]

Herzog, J. B.

J. B. Herzog, M. W. Knight, and D. Natelson, “Thermoplasmonics: Quantifying Plasmonic Heating in Single Nanowires,” Nano Lett. 14(2), 499–503 (2014).
[Crossref] [PubMed]

Hogan, N. J.

N. J. Hogan, A. S. Urban, C. Ayala-Orozco, A. Pimpinelli, P. Nordlander, and N. J. Halas, “Nanoparticles Heat through Light Localization,” Nano Lett. 14(8), 4640–4645 (2014).
[Crossref] [PubMed]

Höller, C.

Y. Pan, G. Tagliabue, H. Eghlidi, C. Höller, S. Dröscher, G. Hong, and D. Poulikakos, “A Rapid Response Thin-Film Plasmonic-Thermoelectric Light Detector,” Sci. Rep. 6(1), 37564 (2016).
[Crossref] [PubMed]

Hong, G.

Y. Pan, G. Tagliabue, H. Eghlidi, C. Höller, S. Dröscher, G. Hong, and D. Poulikakos, “A Rapid Response Thin-Film Plasmonic-Thermoelectric Light Detector,” Sci. Rep. 6(1), 37564 (2016).
[Crossref] [PubMed]

Hu, Y.-W.

Y.-W. Hu, Y.-F. Xiao, Y.-C. Liu, and Q. Gong, “Optomechanical sensing with on-chip microcavities,” Front. Phys. 8(5), 475–490 (2013).
[Crossref]

Huang, Y.

Hui, Y.

Y. Hui, J. S. Gomez-Diaz, Z. Qian, A. Alù, and M. Rinaldi, “Plasmonic piezoelectric nanomechanical resonator for spectrally selective infrared sensing,” Nat. Commun. 7, 11249 (2016).
[Crossref] [PubMed]

Jayalakshmy, M. S.

M. S. Jayalakshmy and J. Philip, “Enhancement in pyroelectric detection sensitivity for flexible LiNbO3 PVDF nanocomposite films by inclusion content control,” J. Polym. Res. 22(3), 42 (2015).
[Crossref]

Kaiser, W. J.

T. W. Kenny, W. J. Kaiser, S. B. Waltman, and J. K. Reynolds, “Novel infrared detector based on a tunneling displacement transducer,” Appl. Phys. Lett. 59(15), 1820–1822 (1991).
[Crossref]

Kang, S.

Z. Qian, S. Kang, V. Rajaram, C. Cassella, N. E. McGruer, and M. Rinaldi, “Zero-power infrared digitizers based on plasmonically enhanced micromechanical photoswitches,” Nat. Nanotechnol. 12(10), 969–973 (2017).
[Crossref] [PubMed]

Kenny, T. W.

T. W. Kenny, W. J. Kaiser, S. B. Waltman, and J. K. Reynolds, “Novel infrared detector based on a tunneling displacement transducer,” Appl. Phys. Lett. 59(15), 1820–1822 (1991).
[Crossref]

Khan, M. W.

Q. Zhao, P. Sadri-Moshkenani, M. W. Khan, R. Torun, and O. Boyraz, “On-Chip Bimetallic Plasmo-Thermomechanical Detectors for Mid-Infrared Radiation,” IEEE Photonics Technol. Lett. 29(17), 1459–1462 (2017).
[Crossref]

Kinch, M. A.

M. A. Kinch, “Fundamental physics of infrared detector materials,” J. Electron. Mater. 29(6), 809–817 (2000).
[Crossref]

Kippenberg, T. J.

E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nat. Nanotechnol. 7(8), 509–514 (2012).
[Crossref] [PubMed]

Knight, M. W.

J. B. Herzog, M. W. Knight, and D. Natelson, “Thermoplasmonics: Quantifying Plasmonic Heating in Single Nanowires,” Nano Lett. 14(2), 499–503 (2014).
[Crossref] [PubMed]

Krishna, S.

A. Barve, S. Lee, S. Noh, and S. Krishna, “Review of current progress in quantum dot infrared photodetectors,” Laser Photonics Rev. 4(6), 738–750 (2010).
[Crossref]

Lai, J.

J. Lai, T. Perazzo, Z. Shi, and A. Majumdar, “Optimization and performance of high-resolution micro-optomechanical thermal sensors,” Sens. Actuators Phys. 58(2), 113–119 (1997).
[Crossref]

Lee, S.

A. Barve, S. Lee, S. Noh, and S. Krishna, “Review of current progress in quantum dot infrared photodetectors,” Laser Photonics Rev. 4(6), 738–750 (2010).
[Crossref]

Lemaitre, A.

L. Ding, C. Baker, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “High Frequency GaAs Nano-Optomechanical Disk Resonator,” Phys. Rev. Lett. 105(26), 263903 (2010).
[Crossref] [PubMed]

Leo, G.

L. Ding, C. Baker, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “High Frequency GaAs Nano-Optomechanical Disk Resonator,” Phys. Rev. Lett. 105(26), 263903 (2010).
[Crossref] [PubMed]

Li, S.

F. Zhang, Q. Shen, X. Shi, S. Li, W. Wang, Z. Luo, G. He, P. Zhang, P. Tao, C. Song, W. Zhang, D. Zhang, T. Deng, and W. Shang, “Infrared Detection Based on Localized Modification of Morpho Butterfly Wings,” Adv. Mater. 27(6), 1077–1082 (2015).
[Crossref] [PubMed]

Liu, Y.-C.

Y.-W. Hu, Y.-F. Xiao, Y.-C. Liu, and Q. Gong, “Optomechanical sensing with on-chip microcavities,” Front. Phys. 8(5), 475–490 (2013).
[Crossref]

Luo, Z.

F. Zhang, Q. Shen, X. Shi, S. Li, W. Wang, Z. Luo, G. He, P. Zhang, P. Tao, C. Song, W. Zhang, D. Zhang, T. Deng, and W. Shang, “Infrared Detection Based on Localized Modification of Morpho Butterfly Wings,” Adv. Mater. 27(6), 1077–1082 (2015).
[Crossref] [PubMed]

Lynch, C. S.

A. Navid, C. S. Lynch, and L. Pilon, “Purified and porous poly(vinylidene fluoride-trifluoroethylene) thin films for pyroelectric infrared sensing and energy harvesting,” Smart Mater. Struct. 19(5), 055006 (2010).
[Crossref]

Majorana, E.

E. Majorana and Y. Ogawa, “Mechanical thermal noise in coupled oscillators,” Phys. Lett. A 233(3), 162–168 (1997).
[Crossref]

Majumdar, A.

J. Lai, T. Perazzo, Z. Shi, and A. Majumdar, “Optimization and performance of high-resolution micro-optomechanical thermal sensors,” Sens. Actuators Phys. 58(2), 113–119 (1997).
[Crossref]

McGruer, N. E.

Z. Qian, S. Kang, V. Rajaram, C. Cassella, N. E. McGruer, and M. Rinaldi, “Zero-power infrared digitizers based on plasmonically enhanced micromechanical photoswitches,” Nat. Nanotechnol. 12(10), 969–973 (2017).
[Crossref] [PubMed]

Natelson, D.

J. B. Herzog, M. W. Knight, and D. Natelson, “Thermoplasmonics: Quantifying Plasmonic Heating in Single Nanowires,” Nano Lett. 14(2), 499–503 (2014).
[Crossref] [PubMed]

Navid, A.

A. Navid, C. S. Lynch, and L. Pilon, “Purified and porous poly(vinylidene fluoride-trifluoroethylene) thin films for pyroelectric infrared sensing and energy harvesting,” Smart Mater. Struct. 19(5), 055006 (2010).
[Crossref]

Nielson, G. N.

M. R. Watts, M. J. Shaw, and G. N. Nielson, “Microphotonic thermal imaging,” Nat. Photonics 1(11), 632–634 (2007).
[Crossref]

Noh, S.

A. Barve, S. Lee, S. Noh, and S. Krishna, “Review of current progress in quantum dot infrared photodetectors,” Laser Photonics Rev. 4(6), 738–750 (2010).
[Crossref]

Nordlander, P.

N. J. Hogan, A. S. Urban, C. Ayala-Orozco, A. Pimpinelli, P. Nordlander, and N. J. Halas, “Nanoparticles Heat through Light Localization,” Nano Lett. 14(8), 4640–4645 (2014).
[Crossref] [PubMed]

Norton, P.

P. Norton, “HgCdTe infrared detectors,” Opto-Electron. Rev. 3, 159–174 (2002).

O’Shea, S. J.

J. R. Barnes, R. J. Stephenson, C. N. Woodburn, S. J. O’Shea, M. E. Welland, T. Rayment, J. K. Gimzewski, and C. Gerber, “A femtojoule calorimeter using micromechanical sensors,” Rev. Sci. Instrum. 65(12), 3793–3798 (1994).
[Crossref]

Ogawa, Y.

E. Majorana and Y. Ogawa, “Mechanical thermal noise in coupled oscillators,” Phys. Lett. A 233(3), 162–168 (1997).
[Crossref]

Pan, Y.

Y. Pan, G. Tagliabue, H. Eghlidi, C. Höller, S. Dröscher, G. Hong, and D. Poulikakos, “A Rapid Response Thin-Film Plasmonic-Thermoelectric Light Detector,” Sci. Rep. 6(1), 37564 (2016).
[Crossref] [PubMed]

Perazzo, T.

J. Lai, T. Perazzo, Z. Shi, and A. Majumdar, “Optimization and performance of high-resolution micro-optomechanical thermal sensors,” Sens. Actuators Phys. 58(2), 113–119 (1997).
[Crossref]

Philip, J.

M. S. Jayalakshmy and J. Philip, “Enhancement in pyroelectric detection sensitivity for flexible LiNbO3 PVDF nanocomposite films by inclusion content control,” J. Polym. Res. 22(3), 42 (2015).
[Crossref]

Pilon, L.

A. Navid, C. S. Lynch, and L. Pilon, “Purified and porous poly(vinylidene fluoride-trifluoroethylene) thin films for pyroelectric infrared sensing and energy harvesting,” Smart Mater. Struct. 19(5), 055006 (2010).
[Crossref]

Pimpinelli, A.

N. J. Hogan, A. S. Urban, C. Ayala-Orozco, A. Pimpinelli, P. Nordlander, and N. J. Halas, “Nanoparticles Heat through Light Localization,” Nano Lett. 14(8), 4640–4645 (2014).
[Crossref] [PubMed]

Poulikakos, D.

Y. Pan, G. Tagliabue, H. Eghlidi, C. Höller, S. Dröscher, G. Hong, and D. Poulikakos, “A Rapid Response Thin-Film Plasmonic-Thermoelectric Light Detector,” Sci. Rep. 6(1), 37564 (2016).
[Crossref] [PubMed]

Qian, Z.

Z. Qian, S. Kang, V. Rajaram, C. Cassella, N. E. McGruer, and M. Rinaldi, “Zero-power infrared digitizers based on plasmonically enhanced micromechanical photoswitches,” Nat. Nanotechnol. 12(10), 969–973 (2017).
[Crossref] [PubMed]

Y. Hui, J. S. Gomez-Diaz, Z. Qian, A. Alù, and M. Rinaldi, “Plasmonic piezoelectric nanomechanical resonator for spectrally selective infrared sensing,” Nat. Commun. 7, 11249 (2016).
[Crossref] [PubMed]

Rajaram, V.

Z. Qian, S. Kang, V. Rajaram, C. Cassella, N. E. McGruer, and M. Rinaldi, “Zero-power infrared digitizers based on plasmonically enhanced micromechanical photoswitches,” Nat. Nanotechnol. 12(10), 969–973 (2017).
[Crossref] [PubMed]

Rayment, T.

J. R. Barnes, R. J. Stephenson, C. N. Woodburn, S. J. O’Shea, M. E. Welland, T. Rayment, J. K. Gimzewski, and C. Gerber, “A femtojoule calorimeter using micromechanical sensors,” Rev. Sci. Instrum. 65(12), 3793–3798 (1994).
[Crossref]

Reed, J. C.

F. Yi, H. Zhu, J. C. Reed, and E. Cubukcu, “Plasmonically Enhanced Thermomechanical Detection of Infrared Radiation,” Nano Lett. 13(4), 1638–1643 (2013).
[Crossref] [PubMed]

Reynolds, J. K.

T. W. Kenny, W. J. Kaiser, S. B. Waltman, and J. K. Reynolds, “Novel infrared detector based on a tunneling displacement transducer,” Appl. Phys. Lett. 59(15), 1820–1822 (1991).
[Crossref]

Rinaldi, M.

Z. Qian, S. Kang, V. Rajaram, C. Cassella, N. E. McGruer, and M. Rinaldi, “Zero-power infrared digitizers based on plasmonically enhanced micromechanical photoswitches,” Nat. Nanotechnol. 12(10), 969–973 (2017).
[Crossref] [PubMed]

Y. Hui, J. S. Gomez-Diaz, Z. Qian, A. Alù, and M. Rinaldi, “Plasmonic piezoelectric nanomechanical resonator for spectrally selective infrared sensing,” Nat. Commun. 7, 11249 (2016).
[Crossref] [PubMed]

Rogalski, A.

A. Rogalski, “Infrared detectors: status and trends,” Prog. Quantum Electron. 27(2-3), 59–210 (2003).
[Crossref]

Sadri-Moshkenani, P.

Q. Zhao, P. Sadri-Moshkenani, M. W. Khan, R. Torun, and O. Boyraz, “On-Chip Bimetallic Plasmo-Thermomechanical Detectors for Mid-Infrared Radiation,” IEEE Photonics Technol. Lett. 29(17), 1459–1462 (2017).
[Crossref]

Sebald, G.

G. Sebald, D. Guyomar, and A. Agbossou, “On thermoelectric and pyroelectric energy harvesting,” Smart Mater. Struct. 18(12), 125006 (2009).
[Crossref]

Senellart, P.

L. Ding, C. Baker, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “High Frequency GaAs Nano-Optomechanical Disk Resonator,” Phys. Rev. Lett. 105(26), 263903 (2010).
[Crossref] [PubMed]

Shang, W.

F. Zhang, Q. Shen, X. Shi, S. Li, W. Wang, Z. Luo, G. He, P. Zhang, P. Tao, C. Song, W. Zhang, D. Zhang, T. Deng, and W. Shang, “Infrared Detection Based on Localized Modification of Morpho Butterfly Wings,” Adv. Mater. 27(6), 1077–1082 (2015).
[Crossref] [PubMed]

Shaw, M. J.

M. R. Watts, M. J. Shaw, and G. N. Nielson, “Microphotonic thermal imaging,” Nat. Photonics 1(11), 632–634 (2007).
[Crossref]

Shen, Q.

F. Zhang, Q. Shen, X. Shi, S. Li, W. Wang, Z. Luo, G. He, P. Zhang, P. Tao, C. Song, W. Zhang, D. Zhang, T. Deng, and W. Shang, “Infrared Detection Based on Localized Modification of Morpho Butterfly Wings,” Adv. Mater. 27(6), 1077–1082 (2015).
[Crossref] [PubMed]

Shi, X.

F. Zhang, Q. Shen, X. Shi, S. Li, W. Wang, Z. Luo, G. He, P. Zhang, P. Tao, C. Song, W. Zhang, D. Zhang, T. Deng, and W. Shang, “Infrared Detection Based on Localized Modification of Morpho Butterfly Wings,” Adv. Mater. 27(6), 1077–1082 (2015).
[Crossref] [PubMed]

Shi, Z.

J. Lai, T. Perazzo, Z. Shi, and A. Majumdar, “Optimization and performance of high-resolution micro-optomechanical thermal sensors,” Sens. Actuators Phys. 58(2), 113–119 (1997).
[Crossref]

Song, C.

F. Zhang, Q. Shen, X. Shi, S. Li, W. Wang, Z. Luo, G. He, P. Zhang, P. Tao, C. Song, W. Zhang, D. Zhang, T. Deng, and W. Shang, “Infrared Detection Based on Localized Modification of Morpho Butterfly Wings,” Adv. Mater. 27(6), 1077–1082 (2015).
[Crossref] [PubMed]

Stemme, G.

P. Eriksson, J. Y. Andersson, and G. Stemme, “Thermal characterization of surface-micromachined silicon nitride membranes for thermal infrared detectors,” J. Microelectromech. Syst. 6(1), 55–61 (1997).
[Crossref]

Stephenson, R. J.

J. R. Barnes, R. J. Stephenson, C. N. Woodburn, S. J. O’Shea, M. E. Welland, T. Rayment, J. K. Gimzewski, and C. Gerber, “A femtojoule calorimeter using micromechanical sensors,” Rev. Sci. Instrum. 65(12), 3793–3798 (1994).
[Crossref]

Tagliabue, G.

Y. Pan, G. Tagliabue, H. Eghlidi, C. Höller, S. Dröscher, G. Hong, and D. Poulikakos, “A Rapid Response Thin-Film Plasmonic-Thermoelectric Light Detector,” Sci. Rep. 6(1), 37564 (2016).
[Crossref] [PubMed]

Tao, P.

F. Zhang, Q. Shen, X. Shi, S. Li, W. Wang, Z. Luo, G. He, P. Zhang, P. Tao, C. Song, W. Zhang, D. Zhang, T. Deng, and W. Shang, “Infrared Detection Based on Localized Modification of Morpho Butterfly Wings,” Adv. Mater. 27(6), 1077–1082 (2015).
[Crossref] [PubMed]

Tong, L.

Torun, R.

Q. Zhao, P. Sadri-Moshkenani, M. W. Khan, R. Torun, and O. Boyraz, “On-Chip Bimetallic Plasmo-Thermomechanical Detectors for Mid-Infrared Radiation,” IEEE Photonics Technol. Lett. 29(17), 1459–1462 (2017).
[Crossref]

Urban, A. S.

N. J. Hogan, A. S. Urban, C. Ayala-Orozco, A. Pimpinelli, P. Nordlander, and N. J. Halas, “Nanoparticles Heat through Light Localization,” Nano Lett. 14(8), 4640–4645 (2014).
[Crossref] [PubMed]

Verlot, P.

E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nat. Nanotechnol. 7(8), 509–514 (2012).
[Crossref] [PubMed]

Waltman, S. B.

T. W. Kenny, W. J. Kaiser, S. B. Waltman, and J. K. Reynolds, “Novel infrared detector based on a tunneling displacement transducer,” Appl. Phys. Lett. 59(15), 1820–1822 (1991).
[Crossref]

Wang, W.

F. Zhang, Q. Shen, X. Shi, S. Li, W. Wang, Z. Luo, G. He, P. Zhang, P. Tao, C. Song, W. Zhang, D. Zhang, T. Deng, and W. Shang, “Infrared Detection Based on Localized Modification of Morpho Butterfly Wings,” Adv. Mater. 27(6), 1077–1082 (2015).
[Crossref] [PubMed]

Watts, M. R.

M. R. Watts, M. J. Shaw, and G. N. Nielson, “Microphotonic thermal imaging,” Nat. Photonics 1(11), 632–634 (2007).
[Crossref]

Welland, M. E.

J. R. Barnes, R. J. Stephenson, C. N. Woodburn, S. J. O’Shea, M. E. Welland, T. Rayment, J. K. Gimzewski, and C. Gerber, “A femtojoule calorimeter using micromechanical sensors,” Rev. Sci. Instrum. 65(12), 3793–3798 (1994).
[Crossref]

Woodburn, C. N.

J. R. Barnes, R. J. Stephenson, C. N. Woodburn, S. J. O’Shea, M. E. Welland, T. Rayment, J. K. Gimzewski, and C. Gerber, “A femtojoule calorimeter using micromechanical sensors,” Rev. Sci. Instrum. 65(12), 3793–3798 (1994).
[Crossref]

Xiao, Y.-F.

Y.-W. Hu, Y.-F. Xiao, Y.-C. Liu, and Q. Gong, “Optomechanical sensing with on-chip microcavities,” Front. Phys. 8(5), 475–490 (2013).
[Crossref]

Yang, Q.

Yi, F.

H. Zhu, F. Yi, and E. Cubukcu, “Plasmonic metamaterial absorber for broadband manipulation of mechanical resonances,” Nat. Photonics 10(11), 709–714 (2016).
[Crossref]

F. Yi, H. Zhu, J. C. Reed, and E. Cubukcu, “Plasmonically Enhanced Thermomechanical Detection of Infrared Radiation,” Nano Lett. 13(4), 1638–1643 (2013).
[Crossref] [PubMed]

Zhang, D.

F. Zhang, Q. Shen, X. Shi, S. Li, W. Wang, Z. Luo, G. He, P. Zhang, P. Tao, C. Song, W. Zhang, D. Zhang, T. Deng, and W. Shang, “Infrared Detection Based on Localized Modification of Morpho Butterfly Wings,” Adv. Mater. 27(6), 1077–1082 (2015).
[Crossref] [PubMed]

Zhang, F.

F. Zhang, Q. Shen, X. Shi, S. Li, W. Wang, Z. Luo, G. He, P. Zhang, P. Tao, C. Song, W. Zhang, D. Zhang, T. Deng, and W. Shang, “Infrared Detection Based on Localized Modification of Morpho Butterfly Wings,” Adv. Mater. 27(6), 1077–1082 (2015).
[Crossref] [PubMed]

Zhang, P.

F. Zhang, Q. Shen, X. Shi, S. Li, W. Wang, Z. Luo, G. He, P. Zhang, P. Tao, C. Song, W. Zhang, D. Zhang, T. Deng, and W. Shang, “Infrared Detection Based on Localized Modification of Morpho Butterfly Wings,” Adv. Mater. 27(6), 1077–1082 (2015).
[Crossref] [PubMed]

Zhang, W.

F. Zhang, Q. Shen, X. Shi, S. Li, W. Wang, Z. Luo, G. He, P. Zhang, P. Tao, C. Song, W. Zhang, D. Zhang, T. Deng, and W. Shang, “Infrared Detection Based on Localized Modification of Morpho Butterfly Wings,” Adv. Mater. 27(6), 1077–1082 (2015).
[Crossref] [PubMed]

Zhao, Q.

Q. Zhao, P. Sadri-Moshkenani, M. W. Khan, R. Torun, and O. Boyraz, “On-Chip Bimetallic Plasmo-Thermomechanical Detectors for Mid-Infrared Radiation,” IEEE Photonics Technol. Lett. 29(17), 1459–1462 (2017).
[Crossref]

Q. Zhao, C. Guclu, Y. Huang, F. Capolino, and O. Boyraz, “Experimental Demonstration of Directive Si3N4 Optical Leaky Wave Antennas With Semiconductor Perturbations,” J. Lightwave Technol. 34(21), 4864–4871 (2016).
[Crossref]

Zhu, H.

H. Zhu, F. Yi, and E. Cubukcu, “Plasmonic metamaterial absorber for broadband manipulation of mechanical resonances,” Nat. Photonics 10(11), 709–714 (2016).
[Crossref]

F. Yi, H. Zhu, J. C. Reed, and E. Cubukcu, “Plasmonically Enhanced Thermomechanical Detection of Infrared Radiation,” Nano Lett. 13(4), 1638–1643 (2013).
[Crossref] [PubMed]

Zhu, W.

W. Zhu, Y. Deng, and L. Cao, “Light-concentrated solar generator and sensor based on flexible thin-film thermoelectric device,” Nano Energy 34, 463–471 (2017).
[Crossref]

Adv. Mater. (1)

F. Zhang, Q. Shen, X. Shi, S. Li, W. Wang, Z. Luo, G. He, P. Zhang, P. Tao, C. Song, W. Zhang, D. Zhang, T. Deng, and W. Shang, “Infrared Detection Based on Localized Modification of Morpho Butterfly Wings,” Adv. Mater. 27(6), 1077–1082 (2015).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

T. W. Kenny, W. J. Kaiser, S. B. Waltman, and J. K. Reynolds, “Novel infrared detector based on a tunneling displacement transducer,” Appl. Phys. Lett. 59(15), 1820–1822 (1991).
[Crossref]

Front. Phys. (1)

Y.-W. Hu, Y.-F. Xiao, Y.-C. Liu, and Q. Gong, “Optomechanical sensing with on-chip microcavities,” Front. Phys. 8(5), 475–490 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (2)

L. Chen, C. R. Doerr, L. Buhl, Y. Baeyens, and R. A. Aroca, “Monolithically Integrated 40-Wavelength Demultiplexer and Photodetector Array on Silicon,” IEEE Photonics Technol. Lett. 23(13), 869–871 (2011).
[Crossref]

Q. Zhao, P. Sadri-Moshkenani, M. W. Khan, R. Torun, and O. Boyraz, “On-Chip Bimetallic Plasmo-Thermomechanical Detectors for Mid-Infrared Radiation,” IEEE Photonics Technol. Lett. 29(17), 1459–1462 (2017).
[Crossref]

IEEE Trans. Ind. Electron. (1)

J. P. Carmo, L. M. Goncalves, and J. H. Correia, “Thermoelectric Microconverter for Energy Harvesting Systems,” IEEE Trans. Ind. Electron. 57(3), 861–867 (2010).
[Crossref]

J. Electron. Mater. (1)

M. A. Kinch, “Fundamental physics of infrared detector materials,” J. Electron. Mater. 29(6), 809–817 (2000).
[Crossref]

J. Lightwave Technol. (1)

J. Microelectromech. Syst. (1)

P. Eriksson, J. Y. Andersson, and G. Stemme, “Thermal characterization of surface-micromachined silicon nitride membranes for thermal infrared detectors,” J. Microelectromech. Syst. 6(1), 55–61 (1997).
[Crossref]

J. Polym. Res. (1)

M. S. Jayalakshmy and J. Philip, “Enhancement in pyroelectric detection sensitivity for flexible LiNbO3 PVDF nanocomposite films by inclusion content control,” J. Polym. Res. 22(3), 42 (2015).
[Crossref]

Laser Photonics Rev. (1)

A. Barve, S. Lee, S. Noh, and S. Krishna, “Review of current progress in quantum dot infrared photodetectors,” Laser Photonics Rev. 4(6), 738–750 (2010).
[Crossref]

Nano Energy (1)

W. Zhu, Y. Deng, and L. Cao, “Light-concentrated solar generator and sensor based on flexible thin-film thermoelectric device,” Nano Energy 34, 463–471 (2017).
[Crossref]

Nano Lett. (3)

J. B. Herzog, M. W. Knight, and D. Natelson, “Thermoplasmonics: Quantifying Plasmonic Heating in Single Nanowires,” Nano Lett. 14(2), 499–503 (2014).
[Crossref] [PubMed]

N. J. Hogan, A. S. Urban, C. Ayala-Orozco, A. Pimpinelli, P. Nordlander, and N. J. Halas, “Nanoparticles Heat through Light Localization,” Nano Lett. 14(8), 4640–4645 (2014).
[Crossref] [PubMed]

F. Yi, H. Zhu, J. C. Reed, and E. Cubukcu, “Plasmonically Enhanced Thermomechanical Detection of Infrared Radiation,” Nano Lett. 13(4), 1638–1643 (2013).
[Crossref] [PubMed]

Nat. Commun. (1)

Y. Hui, J. S. Gomez-Diaz, Z. Qian, A. Alù, and M. Rinaldi, “Plasmonic piezoelectric nanomechanical resonator for spectrally selective infrared sensing,” Nat. Commun. 7, 11249 (2016).
[Crossref] [PubMed]

Nat. Nanotechnol. (2)

Z. Qian, S. Kang, V. Rajaram, C. Cassella, N. E. McGruer, and M. Rinaldi, “Zero-power infrared digitizers based on plasmonically enhanced micromechanical photoswitches,” Nat. Nanotechnol. 12(10), 969–973 (2017).
[Crossref] [PubMed]

E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nat. Nanotechnol. 7(8), 509–514 (2012).
[Crossref] [PubMed]

Nat. Photonics (2)

H. Zhu, F. Yi, and E. Cubukcu, “Plasmonic metamaterial absorber for broadband manipulation of mechanical resonances,” Nat. Photonics 10(11), 709–714 (2016).
[Crossref]

M. R. Watts, M. J. Shaw, and G. N. Nielson, “Microphotonic thermal imaging,” Nat. Photonics 1(11), 632–634 (2007).
[Crossref]

Opt. Express (1)

Opto-Electron. Rev. (1)

P. Norton, “HgCdTe infrared detectors,” Opto-Electron. Rev. 3, 159–174 (2002).

Phys. Lett. A (1)

E. Majorana and Y. Ogawa, “Mechanical thermal noise in coupled oscillators,” Phys. Lett. A 233(3), 162–168 (1997).
[Crossref]

Phys. Rev. Lett. (1)

L. Ding, C. Baker, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “High Frequency GaAs Nano-Optomechanical Disk Resonator,” Phys. Rev. Lett. 105(26), 263903 (2010).
[Crossref] [PubMed]

Prog. Quantum Electron. (1)

A. Rogalski, “Infrared detectors: status and trends,” Prog. Quantum Electron. 27(2-3), 59–210 (2003).
[Crossref]

Rev. Sci. Instrum. (1)

J. R. Barnes, R. J. Stephenson, C. N. Woodburn, S. J. O’Shea, M. E. Welland, T. Rayment, J. K. Gimzewski, and C. Gerber, “A femtojoule calorimeter using micromechanical sensors,” Rev. Sci. Instrum. 65(12), 3793–3798 (1994).
[Crossref]

Sci. Rep. (1)

Y. Pan, G. Tagliabue, H. Eghlidi, C. Höller, S. Dröscher, G. Hong, and D. Poulikakos, “A Rapid Response Thin-Film Plasmonic-Thermoelectric Light Detector,” Sci. Rep. 6(1), 37564 (2016).
[Crossref] [PubMed]

Sens. Actuators Phys. (1)

J. Lai, T. Perazzo, Z. Shi, and A. Majumdar, “Optimization and performance of high-resolution micro-optomechanical thermal sensors,” Sens. Actuators Phys. 58(2), 113–119 (1997).
[Crossref]

Smart Mater. Struct. (2)

G. Sebald, D. Guyomar, and A. Agbossou, “On thermoelectric and pyroelectric energy harvesting,” Smart Mater. Struct. 18(12), 125006 (2009).
[Crossref]

A. Navid, C. S. Lynch, and L. Pilon, “Purified and porous poly(vinylidene fluoride-trifluoroethylene) thin films for pyroelectric infrared sensing and energy harvesting,” Smart Mater. Struct. 19(5), 055006 (2010).
[Crossref]

Other (4)

F. O. Briano, M. Colangelo, C. Errando-Herranz, H. Sohlström, and K. B. Gylfason, “A fast uncooled infrared nanobolometer featuring a hybrid-plasmonic cavity for enhanced optical responsivity,” in 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS) (2017), pp. 932–935.

J. Agustí Batlle and G. Abadal Berini, Nonlinear Micro/Nano-Optomechanical Oscillators for Energy Transduction from IR Sources (Universitat Autònoma de Barcelona, 2015).

“Uncooled Thermal Imaging Arrays, Systems, and Applications | (2001) | Kruse | Publications | Spie,” https://spie.org/publications/book/415351?SSO=1 .

Q. Zhao, M. W. Khan, P. Sadri-Moshkenani, R. Regan, F. Capolino, and O. Boyraz, “Demonstration of a Plasmo-Thermomechanical Radiation Detector with Si3N4 Waveguide Optical Readout Circuit,” in Conference on Lasers and Electro-Optics(2018), Paper JW2A.175 (Optical Society of America, 2018), p. JW2A.175.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic view: an array of bimetallic fishbone nanowires is suspended above a Si3N4 waveguide. The incident radiation is selectively absorbed by the plasmonic structure whose unit cell is shown in the inset. (b) The absorbed energy is converted into heat and thermally actuates the nanowires, changing the gap between the nanowire and the waveguide top surface.
Fig. 2
Fig. 2 (a) The absorption coefficient as a function of the strip length Ls and strip width Ws for a given period of Px = Pz = 660 nm. The width of the nanobeam Wb is fixed to be 100 nm. (b) The absorption coefficient as a function of the period for a given strip length Ls = 350 nm and strip width Ws = 100 nm. The inset in (b) shows the antenna unit cell in top view. (c) The normalized electric near fields at the top surface of the antenna in the unit cell with the optimized parameters adopted from (a) and (b). The fields are enhanced at the tips of the nanostrip antenna. (d) The normalized ohmic loss distribution at the antenna top surface in the unit cell. Most of the power is dissipated along the edges of the cross.
Fig. 3
Fig. 3 (a) The absorption coefficient as a function of the gap between the nanowire and the substrate. The antenna unit cell has Ls = 350 nm, Ws = 100 nm, and Px = Py = 660 nm. (b) Electric field distribution in the y-z plane in the unit cell. Interference patterns can be observed in the region between the surface current source (at the boundary between air and air PML blocks, PML: perfect matched layer) and the antenna top surface. The field distribution beneath the antenna no longer resembles a plane wave due to the disturbance of the antenna. (c) The absorption coefficient with and without the strip antenna are compared. The absorption coefficient is boosted over 30 times. (d) The waveguide mode electric field distribution in the x-y plane. Only half of the structure is simulated to relax computing constrains. Evanescent field interaction with the suspended nanowire (black lines above the waveguide) can be observed clearly.
Fig. 4
Fig. 4 (a) Top view of the scanning electron microscopy (SEM) images of the fabricated detector and its supporting anchors. There is about 800 nm misalignment between the nanowire center and the waveguide center. (b) The 30° tilted view of the SEM image of the fabricated device. The wires are straight without any breaking, indicating successful suspension. The roughness of the SiO2 substrate is caused by the hydrofluoric acid vapor etching. The etching process does not deteriorate the surface roughness of the Si3N4 waveguide, therefore has negligible impact on the waveguide propagation loss.
Fig. 5
Fig. 5 Schmatic of the experiment setup. 1550 nm: CW laser at 1550 nm wavelength; FPC: fiber polarization controller; TLF: tapered lensed fiber; DUT: device under test; PD: photodiode; M: mirror; 20X: objective lens with 20X magnification; LDM: laser diode mount; TEC: temperature controller; LDC: laser diode controller; RF Gen: function generator. The dashed circle encloses the setups that are protected by the air chamber.
Fig. 6
Fig. 6 (a) The normalized output voltage as a function of the modulation frequency. The voltage readout is displayed on a lock-in amplifier that is connected to the analog output of the power meter which measures the waveguide output power. (b) The waveforms of the waveguide output power Pwg,out as a function of time and the radiation power PR. Time traces of Pwg,out at different biases have similar average power but are offset along the y axis for clarity. The ticks in the right y axis label the radiation power. Tick 0 represents non-illumination case. (c) The modulation index as a function of the peak intensity. The inset shows the definition of the modulation index. Only positive frequency is used in calculation.
Fig. 7
Fig. 7 (a) The normalized noise power spectrum is used to quantify NEP. The NEP is calculated based on the average noise power at 4 Hz within 1 Hz bandwidth. The noise trend line is denoted in orange. The 1/f noise can be clearly observed. (b) The normalized power spectrum from a bare waveguide without suspended nanowire array. Its profile and magnitude are similar to the one in (a), indicating that the device noise is negligible compared to the system noise. (c) The normalized power spectrum from the 1550 nm laser. Its magnitude is one order smaller than that in (b), implying that most of the system noise comes from the waveguide coupling, not from the laser or the power meter.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

P D ¯ = ( P th ¯ C absp ) 2 + ( P rad ¯ C absp ) 2 + ( P vib ¯ ) 2 .
NEP= 9.5× 10 5 R d A D,
P th ¯ = 4 k B T 0 2 G,
1 h bottom = 1 h air + 1 h SiO2 ,
P rad ¯ = 16 A D FFεσ k B T 5 ,
y vib ¯ = 4 k B T mQ ω 0 ( ω 2 ω 0 2 ) 2 + ( ω ω 0 /Q ) 2 ,
y vib ¯ = 4 k B T k ω 0 Q ,
k= π 4 6 Ew t 3 . l 3
P vib ¯ = y vib ¯ η DT η TI A D.

Metrics