Abstract

Bell state measurement (BSM) plays crucial roles in photonic quantum information processing. The standard linear optical BSM is based on Hong-Ou-Mandel interference where two photons meet and interfere at a beamsplitter (BS). However, a generalized two-photon interference is not based on photon-photon interaction, but interference between two-photon probability amplitudes. Therefore, it might be possible to implement BSM without interfering photons at a BS. Here, we investigate a linear optical BSM scheme which does not require two photon overlapping at a BS. By unleashing the two photon coexistence condition, it can be symmetrically divided into two parties. The symmetrically dividable property suggests an informationally symmetrical BSM between remote parties without a third party. We also present that our BSM scheme can be used for Bell state preparation between remote parties without a third party. Since our BSM scheme can be easily extended to multiple photons, it can be useful for various quantum communication applications.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Experimental quantum teleportation over a high-loss free-space channel

Xiao-song Ma, Sebastian Kropatschek, William Naylor, Thomas Scheidl, Johannes Kofler, Thomas Herbst, Anton Zeilinger, and Rupert Ursin
Opt. Express 20(21) 23126-23137 (2012)

Teleportation of entanglement using a three-particle entangled W state

Xiaoqin Gao, Zaichen Zhang, Yanxiao Gong, Bin Sheng, and Xutao Yu
J. Opt. Soc. Am. B 34(1) 142-147 (2017)

Efficient Bell state analyzer for time-bin qubits with fast-recovery WSi superconducting single photon detectors

R. Valivarthi, I. Lucio-Martinez, A. Rubenok, P. Chan, F. Marsili, V. B. Verma, M. D. Shaw, J. A. Stern, J. A. Slater, D. Oblak, S. W. Nam, and W. Tittel
Opt. Express 22(20) 24497-24506 (2014)

References

  • View by:
  • |
  • |
  • |

  1. P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
    [Crossref]
  2. T. C. Ralph and G. J. Pryde, “Optical quantum computation,” Prog. Opt. 54, 209–270 (2010).
    [Crossref]
  3. P. Kok, “Photonic quantum information processing,” Contemp. Phys. 57, 526–544 (2016).
    [Crossref]
  4. C. H. Bennett, G. Brassard, Claude Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
    [Crossref] [PubMed]
  5. D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
    [Crossref]
  6. S. L. Braunstein and S. Pirandola, “Side-Channel-Free quantum key distribution,” Phys. Rev. Lett. 108, 130502 (2012).
    [Crossref] [PubMed]
  7. H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012).
    [Crossref] [PubMed]
  8. D. Gottesman and I. L. Chuang, “Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations,” Nature 402, 390–393 (1999).
    [Crossref]
  9. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
    [Crossref] [PubMed]
  10. W.-B. Gao, A. M. Goebel, C.-Y. Lu, H.-N. Dai, C. Wagenknecht, Q. Zhang, B. Zhao, C.-Z. Peng, Z.-B. Chen, Y.-A. Chen, and J.-W. Pan, “Teleportation-based realization of an optical quantum two-qubit entangling gate,” Proc. Natl. Acad. Sci. USA 107, 20869–20874 (2010).
    [Crossref] [PubMed]
  11. K. Mattle, H Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656–4659 (1996).
    [Crossref] [PubMed]
  12. X.-S. Ma, S. Zotter, J. Kofler, R. Ursin, T. Jennewein, C. Brukner, and A. Zeilinger, “Experimental delayed-choice entanglement swapping,” Nature Phys. 8, 479–484 (2012).
    [Crossref]
  13. T. F. da Silva, D. Vitoreti, G. B. Xavier, G. C. do Amaral, G. P. Temporão, and J. P. von der Weid,“Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits,” Phys. Rev. A 88, 052303 (2013).
    [Crossref]
  14. Y. Choi, O. Kwon, M. Woo, K. Oh, S.-W. Han, Y.-S. Kim, and S. Moon, “Plug-and-play measurement-device-independent quantum key distribution,” Phys. Rev. A 93, 032319 (2016).
    [Crossref]
  15. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
    [Crossref] [PubMed]
  16. T. B. Pittman, D. V. Strekalov, A. Migdall, M. H. Rubin, A. V. Sergienko, and Y. H. Shih, “Can two-photon interference be considered the interference of two photons?” Phys. Rev. Lett. 77, 1917–1920 (1996).
    [Crossref] [PubMed]
  17. Y.-H. Kim, M. V. Chekhova, S. P. Kulik, and Y. Shih, “Quantum interference by two temporally distinguishable pulses,” Phys. Rev. A 60, R37–R40 (1999).
    [Crossref]
  18. Y.-H. Kim, “Two-photon interference without bunching two photons,” Phys. Lett. A 315, 352–357 (2003).
    [Crossref]
  19. Y.-H. Kim and W. P. Grice, “Quantum interference with distinguishable photons through indistinguishable pathways,” J. Opt. Soc. B 22, 493–498 (2005).
    [Crossref]
  20. Y.-S. Kim, O. Slattery, P. S. Kuo, and X. Tang, “Conditions for two-photon interference with coherent pulses,” Phys. Rev. A 87, 063843 (2013).
    [Crossref]
  21. Y.-S. Kim, O. Slattery, P. S. Kuo, and X. Tang, “Two-photon interference with continuous-wave multi-mode coherent light,” Opt. Express 22, 3611–3620 (2014).
    [Crossref] [PubMed]
  22. B. Yurke and D. Stoler, “Bell’s-inequality experiments using independent-particle sources,” Phys. Rev. A 46, 2229–2234 (1992).
    [Crossref] [PubMed]
  23. B. Yurke and D. Stoler, “Einstein-Podolsky-Rosen effects from independent particle sources,” Phys. Rev. Lett. 68, 1251–1254 (1992).
    [Crossref] [PubMed]
  24. R. Wiegner, C. Thiel, J. von Zanthier, and G. S. Agarwal, “Quantum interference and entanglement of photons that do not overlap in time,” Opt. Lett. 36, 1512–1514 (2011).
    [Crossref] [PubMed]
  25. E. Megidish, A. Halevy, T. Shacham, T. Dvir, L. Dovrat, and H. S. Eisenberg, “Entanglement swapping between photons that have never coexisted,” Phys. Rev. Lett. 110, 210403 (2013).
    [Crossref] [PubMed]
  26. H. Kim, S. M. Lee, and H. S. Moon, “Two-photon interference of temporally separated photons,” Sci. Rep. 6, 34805 (2016).
    [Crossref] [PubMed]
  27. X.-M. Li, M. Yang, N. Paunković, D.-C. Li, and Z.-L. Cao, “Entanglement swapping via three-step quantum walk-like protocol,” Phy. Lett. A 381, 3875–3879 (2017).
    [Crossref]
  28. P. Blasiak and M. Markiewicz, “Entangling three qubits without ever touching,” arXiv:1807.05546 (2018).
  29. W. Mao, Modern Cryptography (Prentice Hall PTR, 2004).
  30. P. Xu, X. Yuan, L.-K. Chen, H. Lu, X.-C. Yao, X. Ma, Y.-A. Chen, and J.-W. Pan, “Implementation of a measurement-device-independent entanglement witness,” Phys. Rev. Lett. 112, 140506 (2014).
    [Crossref] [PubMed]
  31. M. Hillery, V. Bužek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999).
    [Crossref]
  32. R. Cleve, D. Gottesman, and H.-K. Lo, “How to share a quantum secret,” Phys. Rev. Lett. 83, 648–651 (1999).
    [Crossref]
  33. Y. Fu, H.-L. Yin, T.-Y. Chen, and Z.-B. Chen, “Long-Distance Measurement-Device-Independent multiparty quantum communication,” Phys. Rev. Lett. 114, 090501 (2015).
    [Crossref] [PubMed]
  34. A. Shamir, “How to share a secret,” Comm. of the ACM 22, 612–613 (1979).
    [Crossref]
  35. M. Lucamarini, Z. L. Yuan, J. F. Dynes, and A. J. Shields, “Overcoming the rate-distance limit of quantum key distribution without quantum repeaters,” Nature 557, 400–403 (2018).
    [Crossref] [PubMed]
  36. K. Banaszek, G. M. D’Ariano, M. G. A. Paris, and M. F. Sacchi, “Maximum-likelihood estimation of the density matrix,” Phys. Rev. A 61, 010304(R) (1999).
    [Crossref]
  37. D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
    [Crossref]
  38. X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, H. Lu, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117, 210502 (2016).
    [Crossref] [PubMed]
  39. T. Pramanik, Y.-W. Cho, S.-W. Han, S.-Y. Lee, Y.-S. Kim, and S. Moon, “Revealing hidden quantum steerability using local filtering operations,” arXiv:1707.08285 (2017).
  40. Y. Kim, Y.-S. Kim, S.-Y. Lee, S.-W. Han, S. Moon, Y.-H. Kim, and Y.-W Cho, “Direct quantum process tomography via measuring sequential weak values of incompatible observables,” Nature Comm. 9, 192 (2018).
    [Crossref]

2018 (2)

M. Lucamarini, Z. L. Yuan, J. F. Dynes, and A. J. Shields, “Overcoming the rate-distance limit of quantum key distribution without quantum repeaters,” Nature 557, 400–403 (2018).
[Crossref] [PubMed]

Y. Kim, Y.-S. Kim, S.-Y. Lee, S.-W. Han, S. Moon, Y.-H. Kim, and Y.-W Cho, “Direct quantum process tomography via measuring sequential weak values of incompatible observables,” Nature Comm. 9, 192 (2018).
[Crossref]

2017 (1)

X.-M. Li, M. Yang, N. Paunković, D.-C. Li, and Z.-L. Cao, “Entanglement swapping via three-step quantum walk-like protocol,” Phy. Lett. A 381, 3875–3879 (2017).
[Crossref]

2016 (4)

H. Kim, S. M. Lee, and H. S. Moon, “Two-photon interference of temporally separated photons,” Sci. Rep. 6, 34805 (2016).
[Crossref] [PubMed]

P. Kok, “Photonic quantum information processing,” Contemp. Phys. 57, 526–544 (2016).
[Crossref]

Y. Choi, O. Kwon, M. Woo, K. Oh, S.-W. Han, Y.-S. Kim, and S. Moon, “Plug-and-play measurement-device-independent quantum key distribution,” Phys. Rev. A 93, 032319 (2016).
[Crossref]

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, H. Lu, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117, 210502 (2016).
[Crossref] [PubMed]

2015 (1)

Y. Fu, H.-L. Yin, T.-Y. Chen, and Z.-B. Chen, “Long-Distance Measurement-Device-Independent multiparty quantum communication,” Phys. Rev. Lett. 114, 090501 (2015).
[Crossref] [PubMed]

2014 (2)

P. Xu, X. Yuan, L.-K. Chen, H. Lu, X.-C. Yao, X. Ma, Y.-A. Chen, and J.-W. Pan, “Implementation of a measurement-device-independent entanglement witness,” Phys. Rev. Lett. 112, 140506 (2014).
[Crossref] [PubMed]

Y.-S. Kim, O. Slattery, P. S. Kuo, and X. Tang, “Two-photon interference with continuous-wave multi-mode coherent light,” Opt. Express 22, 3611–3620 (2014).
[Crossref] [PubMed]

2013 (3)

E. Megidish, A. Halevy, T. Shacham, T. Dvir, L. Dovrat, and H. S. Eisenberg, “Entanglement swapping between photons that have never coexisted,” Phys. Rev. Lett. 110, 210403 (2013).
[Crossref] [PubMed]

Y.-S. Kim, O. Slattery, P. S. Kuo, and X. Tang, “Conditions for two-photon interference with coherent pulses,” Phys. Rev. A 87, 063843 (2013).
[Crossref]

T. F. da Silva, D. Vitoreti, G. B. Xavier, G. C. do Amaral, G. P. Temporão, and J. P. von der Weid,“Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits,” Phys. Rev. A 88, 052303 (2013).
[Crossref]

2012 (3)

X.-S. Ma, S. Zotter, J. Kofler, R. Ursin, T. Jennewein, C. Brukner, and A. Zeilinger, “Experimental delayed-choice entanglement swapping,” Nature Phys. 8, 479–484 (2012).
[Crossref]

S. L. Braunstein and S. Pirandola, “Side-Channel-Free quantum key distribution,” Phys. Rev. Lett. 108, 130502 (2012).
[Crossref] [PubMed]

H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (2)

T. C. Ralph and G. J. Pryde, “Optical quantum computation,” Prog. Opt. 54, 209–270 (2010).
[Crossref]

W.-B. Gao, A. M. Goebel, C.-Y. Lu, H.-N. Dai, C. Wagenknecht, Q. Zhang, B. Zhao, C.-Z. Peng, Z.-B. Chen, Y.-A. Chen, and J.-W. Pan, “Teleportation-based realization of an optical quantum two-qubit entangling gate,” Proc. Natl. Acad. Sci. USA 107, 20869–20874 (2010).
[Crossref] [PubMed]

2007 (1)

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[Crossref]

2005 (1)

Y.-H. Kim and W. P. Grice, “Quantum interference with distinguishable photons through indistinguishable pathways,” J. Opt. Soc. B 22, 493–498 (2005).
[Crossref]

2003 (1)

Y.-H. Kim, “Two-photon interference without bunching two photons,” Phys. Lett. A 315, 352–357 (2003).
[Crossref]

2001 (2)

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

1999 (5)

D. Gottesman and I. L. Chuang, “Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations,” Nature 402, 390–393 (1999).
[Crossref]

Y.-H. Kim, M. V. Chekhova, S. P. Kulik, and Y. Shih, “Quantum interference by two temporally distinguishable pulses,” Phys. Rev. A 60, R37–R40 (1999).
[Crossref]

M. Hillery, V. Bužek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999).
[Crossref]

R. Cleve, D. Gottesman, and H.-K. Lo, “How to share a quantum secret,” Phys. Rev. Lett. 83, 648–651 (1999).
[Crossref]

K. Banaszek, G. M. D’Ariano, M. G. A. Paris, and M. F. Sacchi, “Maximum-likelihood estimation of the density matrix,” Phys. Rev. A 61, 010304(R) (1999).
[Crossref]

1997 (1)

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[Crossref]

1996 (2)

T. B. Pittman, D. V. Strekalov, A. Migdall, M. H. Rubin, A. V. Sergienko, and Y. H. Shih, “Can two-photon interference be considered the interference of two photons?” Phys. Rev. Lett. 77, 1917–1920 (1996).
[Crossref] [PubMed]

K. Mattle, H Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656–4659 (1996).
[Crossref] [PubMed]

1993 (1)

C. H. Bennett, G. Brassard, Claude Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref] [PubMed]

1992 (2)

B. Yurke and D. Stoler, “Bell’s-inequality experiments using independent-particle sources,” Phys. Rev. A 46, 2229–2234 (1992).
[Crossref] [PubMed]

B. Yurke and D. Stoler, “Einstein-Podolsky-Rosen effects from independent particle sources,” Phys. Rev. Lett. 68, 1251–1254 (1992).
[Crossref] [PubMed]

1987 (1)

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref] [PubMed]

1979 (1)

A. Shamir, “How to share a secret,” Comm. of the ACM 22, 612–613 (1979).
[Crossref]

Agarwal, G. S.

Banaszek, K.

K. Banaszek, G. M. D’Ariano, M. G. A. Paris, and M. F. Sacchi, “Maximum-likelihood estimation of the density matrix,” Phys. Rev. A 61, 010304(R) (1999).
[Crossref]

Bennett, C. H.

C. H. Bennett, G. Brassard, Claude Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref] [PubMed]

Berthiaume, A.

M. Hillery, V. Bužek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999).
[Crossref]

Blasiak, P.

P. Blasiak and M. Markiewicz, “Entangling three qubits without ever touching,” arXiv:1807.05546 (2018).

Bouwmeester, D.

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[Crossref]

Brassard, G.

C. H. Bennett, G. Brassard, Claude Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref] [PubMed]

Braunstein, S. L.

S. L. Braunstein and S. Pirandola, “Side-Channel-Free quantum key distribution,” Phys. Rev. Lett. 108, 130502 (2012).
[Crossref] [PubMed]

Brukner, C.

X.-S. Ma, S. Zotter, J. Kofler, R. Ursin, T. Jennewein, C. Brukner, and A. Zeilinger, “Experimental delayed-choice entanglement swapping,” Nature Phys. 8, 479–484 (2012).
[Crossref]

Bužek, V.

M. Hillery, V. Bužek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999).
[Crossref]

Cao, Z.-L.

X.-M. Li, M. Yang, N. Paunković, D.-C. Li, and Z.-L. Cao, “Entanglement swapping via three-step quantum walk-like protocol,” Phy. Lett. A 381, 3875–3879 (2017).
[Crossref]

Chekhova, M. V.

Y.-H. Kim, M. V. Chekhova, S. P. Kulik, and Y. Shih, “Quantum interference by two temporally distinguishable pulses,” Phys. Rev. A 60, R37–R40 (1999).
[Crossref]

Chen, C.

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, H. Lu, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117, 210502 (2016).
[Crossref] [PubMed]

Chen, L.-K.

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, H. Lu, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117, 210502 (2016).
[Crossref] [PubMed]

P. Xu, X. Yuan, L.-K. Chen, H. Lu, X.-C. Yao, X. Ma, Y.-A. Chen, and J.-W. Pan, “Implementation of a measurement-device-independent entanglement witness,” Phys. Rev. Lett. 112, 140506 (2014).
[Crossref] [PubMed]

Chen, T.-Y.

Y. Fu, H.-L. Yin, T.-Y. Chen, and Z.-B. Chen, “Long-Distance Measurement-Device-Independent multiparty quantum communication,” Phys. Rev. Lett. 114, 090501 (2015).
[Crossref] [PubMed]

Chen, Y.-A.

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, H. Lu, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117, 210502 (2016).
[Crossref] [PubMed]

P. Xu, X. Yuan, L.-K. Chen, H. Lu, X.-C. Yao, X. Ma, Y.-A. Chen, and J.-W. Pan, “Implementation of a measurement-device-independent entanglement witness,” Phys. Rev. Lett. 112, 140506 (2014).
[Crossref] [PubMed]

W.-B. Gao, A. M. Goebel, C.-Y. Lu, H.-N. Dai, C. Wagenknecht, Q. Zhang, B. Zhao, C.-Z. Peng, Z.-B. Chen, Y.-A. Chen, and J.-W. Pan, “Teleportation-based realization of an optical quantum two-qubit entangling gate,” Proc. Natl. Acad. Sci. USA 107, 20869–20874 (2010).
[Crossref] [PubMed]

Chen, Z.-B.

Y. Fu, H.-L. Yin, T.-Y. Chen, and Z.-B. Chen, “Long-Distance Measurement-Device-Independent multiparty quantum communication,” Phys. Rev. Lett. 114, 090501 (2015).
[Crossref] [PubMed]

W.-B. Gao, A. M. Goebel, C.-Y. Lu, H.-N. Dai, C. Wagenknecht, Q. Zhang, B. Zhao, C.-Z. Peng, Z.-B. Chen, Y.-A. Chen, and J.-W. Pan, “Teleportation-based realization of an optical quantum two-qubit entangling gate,” Proc. Natl. Acad. Sci. USA 107, 20869–20874 (2010).
[Crossref] [PubMed]

Cho, Y.-W

Y. Kim, Y.-S. Kim, S.-Y. Lee, S.-W. Han, S. Moon, Y.-H. Kim, and Y.-W Cho, “Direct quantum process tomography via measuring sequential weak values of incompatible observables,” Nature Comm. 9, 192 (2018).
[Crossref]

Cho, Y.-W.

T. Pramanik, Y.-W. Cho, S.-W. Han, S.-Y. Lee, Y.-S. Kim, and S. Moon, “Revealing hidden quantum steerability using local filtering operations,” arXiv:1707.08285 (2017).

Choi, Y.

Y. Choi, O. Kwon, M. Woo, K. Oh, S.-W. Han, Y.-S. Kim, and S. Moon, “Plug-and-play measurement-device-independent quantum key distribution,” Phys. Rev. A 93, 032319 (2016).
[Crossref]

Chuang, I. L.

D. Gottesman and I. L. Chuang, “Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations,” Nature 402, 390–393 (1999).
[Crossref]

Cleve, R.

R. Cleve, D. Gottesman, and H.-K. Lo, “How to share a quantum secret,” Phys. Rev. Lett. 83, 648–651 (1999).
[Crossref]

Crépeau, Claude

C. H. Bennett, G. Brassard, Claude Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref] [PubMed]

Curty, M.

H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012).
[Crossref] [PubMed]

D’Ariano, G. M.

K. Banaszek, G. M. D’Ariano, M. G. A. Paris, and M. F. Sacchi, “Maximum-likelihood estimation of the density matrix,” Phys. Rev. A 61, 010304(R) (1999).
[Crossref]

da Silva, T. F.

T. F. da Silva, D. Vitoreti, G. B. Xavier, G. C. do Amaral, G. P. Temporão, and J. P. von der Weid,“Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits,” Phys. Rev. A 88, 052303 (2013).
[Crossref]

Dai, H.-N.

W.-B. Gao, A. M. Goebel, C.-Y. Lu, H.-N. Dai, C. Wagenknecht, Q. Zhang, B. Zhao, C.-Z. Peng, Z.-B. Chen, Y.-A. Chen, and J.-W. Pan, “Teleportation-based realization of an optical quantum two-qubit entangling gate,” Proc. Natl. Acad. Sci. USA 107, 20869–20874 (2010).
[Crossref] [PubMed]

do Amaral, G. C.

T. F. da Silva, D. Vitoreti, G. B. Xavier, G. C. do Amaral, G. P. Temporão, and J. P. von der Weid,“Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits,” Phys. Rev. A 88, 052303 (2013).
[Crossref]

Dovrat, L.

E. Megidish, A. Halevy, T. Shacham, T. Dvir, L. Dovrat, and H. S. Eisenberg, “Entanglement swapping between photons that have never coexisted,” Phys. Rev. Lett. 110, 210403 (2013).
[Crossref] [PubMed]

Dowling, J. P.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[Crossref]

Dvir, T.

E. Megidish, A. Halevy, T. Shacham, T. Dvir, L. Dovrat, and H. S. Eisenberg, “Entanglement swapping between photons that have never coexisted,” Phys. Rev. Lett. 110, 210403 (2013).
[Crossref] [PubMed]

Dynes, J. F.

M. Lucamarini, Z. L. Yuan, J. F. Dynes, and A. J. Shields, “Overcoming the rate-distance limit of quantum key distribution without quantum repeaters,” Nature 557, 400–403 (2018).
[Crossref] [PubMed]

Eibl, M.

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[Crossref]

Eisenberg, H. S.

E. Megidish, A. Halevy, T. Shacham, T. Dvir, L. Dovrat, and H. S. Eisenberg, “Entanglement swapping between photons that have never coexisted,” Phys. Rev. Lett. 110, 210403 (2013).
[Crossref] [PubMed]

Fu, Y.

Y. Fu, H.-L. Yin, T.-Y. Chen, and Z.-B. Chen, “Long-Distance Measurement-Device-Independent multiparty quantum communication,” Phys. Rev. Lett. 114, 090501 (2015).
[Crossref] [PubMed]

Gao, W.-B.

W.-B. Gao, A. M. Goebel, C.-Y. Lu, H.-N. Dai, C. Wagenknecht, Q. Zhang, B. Zhao, C.-Z. Peng, Z.-B. Chen, Y.-A. Chen, and J.-W. Pan, “Teleportation-based realization of an optical quantum two-qubit entangling gate,” Proc. Natl. Acad. Sci. USA 107, 20869–20874 (2010).
[Crossref] [PubMed]

Goebel, A. M.

W.-B. Gao, A. M. Goebel, C.-Y. Lu, H.-N. Dai, C. Wagenknecht, Q. Zhang, B. Zhao, C.-Z. Peng, Z.-B. Chen, Y.-A. Chen, and J.-W. Pan, “Teleportation-based realization of an optical quantum two-qubit entangling gate,” Proc. Natl. Acad. Sci. USA 107, 20869–20874 (2010).
[Crossref] [PubMed]

Gottesman, D.

D. Gottesman and I. L. Chuang, “Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations,” Nature 402, 390–393 (1999).
[Crossref]

R. Cleve, D. Gottesman, and H.-K. Lo, “How to share a quantum secret,” Phys. Rev. Lett. 83, 648–651 (1999).
[Crossref]

Grice, W. P.

Y.-H. Kim and W. P. Grice, “Quantum interference with distinguishable photons through indistinguishable pathways,” J. Opt. Soc. B 22, 493–498 (2005).
[Crossref]

Halevy, A.

E. Megidish, A. Halevy, T. Shacham, T. Dvir, L. Dovrat, and H. S. Eisenberg, “Entanglement swapping between photons that have never coexisted,” Phys. Rev. Lett. 110, 210403 (2013).
[Crossref] [PubMed]

Han, S.-W.

Y. Kim, Y.-S. Kim, S.-Y. Lee, S.-W. Han, S. Moon, Y.-H. Kim, and Y.-W Cho, “Direct quantum process tomography via measuring sequential weak values of incompatible observables,” Nature Comm. 9, 192 (2018).
[Crossref]

Y. Choi, O. Kwon, M. Woo, K. Oh, S.-W. Han, Y.-S. Kim, and S. Moon, “Plug-and-play measurement-device-independent quantum key distribution,” Phys. Rev. A 93, 032319 (2016).
[Crossref]

T. Pramanik, Y.-W. Cho, S.-W. Han, S.-Y. Lee, Y.-S. Kim, and S. Moon, “Revealing hidden quantum steerability using local filtering operations,” arXiv:1707.08285 (2017).

Hillery, M.

M. Hillery, V. Bužek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999).
[Crossref]

Hong, C. K.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref] [PubMed]

Hu, Y.

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, H. Lu, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117, 210502 (2016).
[Crossref] [PubMed]

Huang, H.-L.

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, H. Lu, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117, 210502 (2016).
[Crossref] [PubMed]

James, D. F. V.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

Jennewein, T.

X.-S. Ma, S. Zotter, J. Kofler, R. Ursin, T. Jennewein, C. Brukner, and A. Zeilinger, “Experimental delayed-choice entanglement swapping,” Nature Phys. 8, 479–484 (2012).
[Crossref]

Jiang, X.

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, H. Lu, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117, 210502 (2016).
[Crossref] [PubMed]

Jozsa, R.

C. H. Bennett, G. Brassard, Claude Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref] [PubMed]

Kim, H.

H. Kim, S. M. Lee, and H. S. Moon, “Two-photon interference of temporally separated photons,” Sci. Rep. 6, 34805 (2016).
[Crossref] [PubMed]

Kim, Y.

Y. Kim, Y.-S. Kim, S.-Y. Lee, S.-W. Han, S. Moon, Y.-H. Kim, and Y.-W Cho, “Direct quantum process tomography via measuring sequential weak values of incompatible observables,” Nature Comm. 9, 192 (2018).
[Crossref]

Kim, Y.-H.

Y. Kim, Y.-S. Kim, S.-Y. Lee, S.-W. Han, S. Moon, Y.-H. Kim, and Y.-W Cho, “Direct quantum process tomography via measuring sequential weak values of incompatible observables,” Nature Comm. 9, 192 (2018).
[Crossref]

Y.-H. Kim and W. P. Grice, “Quantum interference with distinguishable photons through indistinguishable pathways,” J. Opt. Soc. B 22, 493–498 (2005).
[Crossref]

Y.-H. Kim, “Two-photon interference without bunching two photons,” Phys. Lett. A 315, 352–357 (2003).
[Crossref]

Y.-H. Kim, M. V. Chekhova, S. P. Kulik, and Y. Shih, “Quantum interference by two temporally distinguishable pulses,” Phys. Rev. A 60, R37–R40 (1999).
[Crossref]

Kim, Y.-S.

Y. Kim, Y.-S. Kim, S.-Y. Lee, S.-W. Han, S. Moon, Y.-H. Kim, and Y.-W Cho, “Direct quantum process tomography via measuring sequential weak values of incompatible observables,” Nature Comm. 9, 192 (2018).
[Crossref]

Y. Choi, O. Kwon, M. Woo, K. Oh, S.-W. Han, Y.-S. Kim, and S. Moon, “Plug-and-play measurement-device-independent quantum key distribution,” Phys. Rev. A 93, 032319 (2016).
[Crossref]

Y.-S. Kim, O. Slattery, P. S. Kuo, and X. Tang, “Two-photon interference with continuous-wave multi-mode coherent light,” Opt. Express 22, 3611–3620 (2014).
[Crossref] [PubMed]

Y.-S. Kim, O. Slattery, P. S. Kuo, and X. Tang, “Conditions for two-photon interference with coherent pulses,” Phys. Rev. A 87, 063843 (2013).
[Crossref]

T. Pramanik, Y.-W. Cho, S.-W. Han, S.-Y. Lee, Y.-S. Kim, and S. Moon, “Revealing hidden quantum steerability using local filtering operations,” arXiv:1707.08285 (2017).

Knill, E.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

Kofler, J.

X.-S. Ma, S. Zotter, J. Kofler, R. Ursin, T. Jennewein, C. Brukner, and A. Zeilinger, “Experimental delayed-choice entanglement swapping,” Nature Phys. 8, 479–484 (2012).
[Crossref]

Kok, P.

P. Kok, “Photonic quantum information processing,” Contemp. Phys. 57, 526–544 (2016).
[Crossref]

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[Crossref]

Kulik, S. P.

Y.-H. Kim, M. V. Chekhova, S. P. Kulik, and Y. Shih, “Quantum interference by two temporally distinguishable pulses,” Phys. Rev. A 60, R37–R40 (1999).
[Crossref]

Kuo, P. S.

Y.-S. Kim, O. Slattery, P. S. Kuo, and X. Tang, “Two-photon interference with continuous-wave multi-mode coherent light,” Opt. Express 22, 3611–3620 (2014).
[Crossref] [PubMed]

Y.-S. Kim, O. Slattery, P. S. Kuo, and X. Tang, “Conditions for two-photon interference with coherent pulses,” Phys. Rev. A 87, 063843 (2013).
[Crossref]

Kwiat, P. G.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

K. Mattle, H Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656–4659 (1996).
[Crossref] [PubMed]

Kwon, O.

Y. Choi, O. Kwon, M. Woo, K. Oh, S.-W. Han, Y.-S. Kim, and S. Moon, “Plug-and-play measurement-device-independent quantum key distribution,” Phys. Rev. A 93, 032319 (2016).
[Crossref]

Laflamme, R.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

Lee, S. M.

H. Kim, S. M. Lee, and H. S. Moon, “Two-photon interference of temporally separated photons,” Sci. Rep. 6, 34805 (2016).
[Crossref] [PubMed]

Lee, S.-Y.

Y. Kim, Y.-S. Kim, S.-Y. Lee, S.-W. Han, S. Moon, Y.-H. Kim, and Y.-W Cho, “Direct quantum process tomography via measuring sequential weak values of incompatible observables,” Nature Comm. 9, 192 (2018).
[Crossref]

T. Pramanik, Y.-W. Cho, S.-W. Han, S.-Y. Lee, Y.-S. Kim, and S. Moon, “Revealing hidden quantum steerability using local filtering operations,” arXiv:1707.08285 (2017).

Li, D.-C.

X.-M. Li, M. Yang, N. Paunković, D.-C. Li, and Z.-L. Cao, “Entanglement swapping via three-step quantum walk-like protocol,” Phy. Lett. A 381, 3875–3879 (2017).
[Crossref]

Li, L.

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, H. Lu, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117, 210502 (2016).
[Crossref] [PubMed]

Li, W.

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, H. Lu, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117, 210502 (2016).
[Crossref] [PubMed]

Li, X.-M.

X.-M. Li, M. Yang, N. Paunković, D.-C. Li, and Z.-L. Cao, “Entanglement swapping via three-step quantum walk-like protocol,” Phy. Lett. A 381, 3875–3879 (2017).
[Crossref]

Li, Z.-D.

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, H. Lu, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117, 210502 (2016).
[Crossref] [PubMed]

Liu, C.

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, H. Lu, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117, 210502 (2016).
[Crossref] [PubMed]

Liu, N.-L.

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, H. Lu, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117, 210502 (2016).
[Crossref] [PubMed]

Lo, H.-K.

H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012).
[Crossref] [PubMed]

R. Cleve, D. Gottesman, and H.-K. Lo, “How to share a quantum secret,” Phys. Rev. Lett. 83, 648–651 (1999).
[Crossref]

Lu, C.-Y.

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, H. Lu, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117, 210502 (2016).
[Crossref] [PubMed]

W.-B. Gao, A. M. Goebel, C.-Y. Lu, H.-N. Dai, C. Wagenknecht, Q. Zhang, B. Zhao, C.-Z. Peng, Z.-B. Chen, Y.-A. Chen, and J.-W. Pan, “Teleportation-based realization of an optical quantum two-qubit entangling gate,” Proc. Natl. Acad. Sci. USA 107, 20869–20874 (2010).
[Crossref] [PubMed]

Lu, H.

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, H. Lu, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117, 210502 (2016).
[Crossref] [PubMed]

P. Xu, X. Yuan, L.-K. Chen, H. Lu, X.-C. Yao, X. Ma, Y.-A. Chen, and J.-W. Pan, “Implementation of a measurement-device-independent entanglement witness,” Phys. Rev. Lett. 112, 140506 (2014).
[Crossref] [PubMed]

Lucamarini, M.

M. Lucamarini, Z. L. Yuan, J. F. Dynes, and A. J. Shields, “Overcoming the rate-distance limit of quantum key distribution without quantum repeaters,” Nature 557, 400–403 (2018).
[Crossref] [PubMed]

Luo, Y.-H.

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, H. Lu, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117, 210502 (2016).
[Crossref] [PubMed]

Ma, X.

P. Xu, X. Yuan, L.-K. Chen, H. Lu, X.-C. Yao, X. Ma, Y.-A. Chen, and J.-W. Pan, “Implementation of a measurement-device-independent entanglement witness,” Phys. Rev. Lett. 112, 140506 (2014).
[Crossref] [PubMed]

Ma, X.-S.

X.-S. Ma, S. Zotter, J. Kofler, R. Ursin, T. Jennewein, C. Brukner, and A. Zeilinger, “Experimental delayed-choice entanglement swapping,” Nature Phys. 8, 479–484 (2012).
[Crossref]

Mandel, L.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref] [PubMed]

Mao, W.

W. Mao, Modern Cryptography (Prentice Hall PTR, 2004).

Markiewicz, M.

P. Blasiak and M. Markiewicz, “Entangling three qubits without ever touching,” arXiv:1807.05546 (2018).

Mattle, K.

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[Crossref]

K. Mattle, H Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656–4659 (1996).
[Crossref] [PubMed]

Megidish, E.

E. Megidish, A. Halevy, T. Shacham, T. Dvir, L. Dovrat, and H. S. Eisenberg, “Entanglement swapping between photons that have never coexisted,” Phys. Rev. Lett. 110, 210403 (2013).
[Crossref] [PubMed]

Migdall, A.

T. B. Pittman, D. V. Strekalov, A. Migdall, M. H. Rubin, A. V. Sergienko, and Y. H. Shih, “Can two-photon interference be considered the interference of two photons?” Phys. Rev. Lett. 77, 1917–1920 (1996).
[Crossref] [PubMed]

Milburn, G. J.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[Crossref]

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

Moon, H. S.

H. Kim, S. M. Lee, and H. S. Moon, “Two-photon interference of temporally separated photons,” Sci. Rep. 6, 34805 (2016).
[Crossref] [PubMed]

Moon, S.

Y. Kim, Y.-S. Kim, S.-Y. Lee, S.-W. Han, S. Moon, Y.-H. Kim, and Y.-W Cho, “Direct quantum process tomography via measuring sequential weak values of incompatible observables,” Nature Comm. 9, 192 (2018).
[Crossref]

Y. Choi, O. Kwon, M. Woo, K. Oh, S.-W. Han, Y.-S. Kim, and S. Moon, “Plug-and-play measurement-device-independent quantum key distribution,” Phys. Rev. A 93, 032319 (2016).
[Crossref]

T. Pramanik, Y.-W. Cho, S.-W. Han, S.-Y. Lee, Y.-S. Kim, and S. Moon, “Revealing hidden quantum steerability using local filtering operations,” arXiv:1707.08285 (2017).

Munro, W. J.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[Crossref]

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

Nemoto, K.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[Crossref]

Oh, K.

Y. Choi, O. Kwon, M. Woo, K. Oh, S.-W. Han, Y.-S. Kim, and S. Moon, “Plug-and-play measurement-device-independent quantum key distribution,” Phys. Rev. A 93, 032319 (2016).
[Crossref]

Ou, Z. Y.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref] [PubMed]

Pan, J.-W.

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, H. Lu, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117, 210502 (2016).
[Crossref] [PubMed]

P. Xu, X. Yuan, L.-K. Chen, H. Lu, X.-C. Yao, X. Ma, Y.-A. Chen, and J.-W. Pan, “Implementation of a measurement-device-independent entanglement witness,” Phys. Rev. Lett. 112, 140506 (2014).
[Crossref] [PubMed]

W.-B. Gao, A. M. Goebel, C.-Y. Lu, H.-N. Dai, C. Wagenknecht, Q. Zhang, B. Zhao, C.-Z. Peng, Z.-B. Chen, Y.-A. Chen, and J.-W. Pan, “Teleportation-based realization of an optical quantum two-qubit entangling gate,” Proc. Natl. Acad. Sci. USA 107, 20869–20874 (2010).
[Crossref] [PubMed]

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[Crossref]

Paris, M. G. A.

K. Banaszek, G. M. D’Ariano, M. G. A. Paris, and M. F. Sacchi, “Maximum-likelihood estimation of the density matrix,” Phys. Rev. A 61, 010304(R) (1999).
[Crossref]

Paunkovic, N.

X.-M. Li, M. Yang, N. Paunković, D.-C. Li, and Z.-L. Cao, “Entanglement swapping via three-step quantum walk-like protocol,” Phy. Lett. A 381, 3875–3879 (2017).
[Crossref]

Peng, C.-Z.

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, H. Lu, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117, 210502 (2016).
[Crossref] [PubMed]

W.-B. Gao, A. M. Goebel, C.-Y. Lu, H.-N. Dai, C. Wagenknecht, Q. Zhang, B. Zhao, C.-Z. Peng, Z.-B. Chen, Y.-A. Chen, and J.-W. Pan, “Teleportation-based realization of an optical quantum two-qubit entangling gate,” Proc. Natl. Acad. Sci. USA 107, 20869–20874 (2010).
[Crossref] [PubMed]

Peres, A.

C. H. Bennett, G. Brassard, Claude Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref] [PubMed]

Pirandola, S.

S. L. Braunstein and S. Pirandola, “Side-Channel-Free quantum key distribution,” Phys. Rev. Lett. 108, 130502 (2012).
[Crossref] [PubMed]

Pittman, T. B.

T. B. Pittman, D. V. Strekalov, A. Migdall, M. H. Rubin, A. V. Sergienko, and Y. H. Shih, “Can two-photon interference be considered the interference of two photons?” Phys. Rev. Lett. 77, 1917–1920 (1996).
[Crossref] [PubMed]

Pramanik, T.

T. Pramanik, Y.-W. Cho, S.-W. Han, S.-Y. Lee, Y.-S. Kim, and S. Moon, “Revealing hidden quantum steerability using local filtering operations,” arXiv:1707.08285 (2017).

Pryde, G. J.

T. C. Ralph and G. J. Pryde, “Optical quantum computation,” Prog. Opt. 54, 209–270 (2010).
[Crossref]

Qi, B.

H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012).
[Crossref] [PubMed]

Ralph, T. C.

T. C. Ralph and G. J. Pryde, “Optical quantum computation,” Prog. Opt. 54, 209–270 (2010).
[Crossref]

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[Crossref]

Rubin, M. H.

T. B. Pittman, D. V. Strekalov, A. Migdall, M. H. Rubin, A. V. Sergienko, and Y. H. Shih, “Can two-photon interference be considered the interference of two photons?” Phys. Rev. Lett. 77, 1917–1920 (1996).
[Crossref] [PubMed]

Sacchi, M. F.

K. Banaszek, G. M. D’Ariano, M. G. A. Paris, and M. F. Sacchi, “Maximum-likelihood estimation of the density matrix,” Phys. Rev. A 61, 010304(R) (1999).
[Crossref]

Sergienko, A. V.

T. B. Pittman, D. V. Strekalov, A. Migdall, M. H. Rubin, A. V. Sergienko, and Y. H. Shih, “Can two-photon interference be considered the interference of two photons?” Phys. Rev. Lett. 77, 1917–1920 (1996).
[Crossref] [PubMed]

Shacham, T.

E. Megidish, A. Halevy, T. Shacham, T. Dvir, L. Dovrat, and H. S. Eisenberg, “Entanglement swapping between photons that have never coexisted,” Phys. Rev. Lett. 110, 210403 (2013).
[Crossref] [PubMed]

Shamir, A.

A. Shamir, “How to share a secret,” Comm. of the ACM 22, 612–613 (1979).
[Crossref]

Shields, A. J.

M. Lucamarini, Z. L. Yuan, J. F. Dynes, and A. J. Shields, “Overcoming the rate-distance limit of quantum key distribution without quantum repeaters,” Nature 557, 400–403 (2018).
[Crossref] [PubMed]

Shih, Y.

Y.-H. Kim, M. V. Chekhova, S. P. Kulik, and Y. Shih, “Quantum interference by two temporally distinguishable pulses,” Phys. Rev. A 60, R37–R40 (1999).
[Crossref]

Shih, Y. H.

T. B. Pittman, D. V. Strekalov, A. Migdall, M. H. Rubin, A. V. Sergienko, and Y. H. Shih, “Can two-photon interference be considered the interference of two photons?” Phys. Rev. Lett. 77, 1917–1920 (1996).
[Crossref] [PubMed]

Slattery, O.

Y.-S. Kim, O. Slattery, P. S. Kuo, and X. Tang, “Two-photon interference with continuous-wave multi-mode coherent light,” Opt. Express 22, 3611–3620 (2014).
[Crossref] [PubMed]

Y.-S. Kim, O. Slattery, P. S. Kuo, and X. Tang, “Conditions for two-photon interference with coherent pulses,” Phys. Rev. A 87, 063843 (2013).
[Crossref]

Stoler, D.

B. Yurke and D. Stoler, “Bell’s-inequality experiments using independent-particle sources,” Phys. Rev. A 46, 2229–2234 (1992).
[Crossref] [PubMed]

B. Yurke and D. Stoler, “Einstein-Podolsky-Rosen effects from independent particle sources,” Phys. Rev. Lett. 68, 1251–1254 (1992).
[Crossref] [PubMed]

Strekalov, D. V.

T. B. Pittman, D. V. Strekalov, A. Migdall, M. H. Rubin, A. V. Sergienko, and Y. H. Shih, “Can two-photon interference be considered the interference of two photons?” Phys. Rev. Lett. 77, 1917–1920 (1996).
[Crossref] [PubMed]

Su, Z.-E.

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, H. Lu, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117, 210502 (2016).
[Crossref] [PubMed]

Tang, X.

Y.-S. Kim, O. Slattery, P. S. Kuo, and X. Tang, “Two-photon interference with continuous-wave multi-mode coherent light,” Opt. Express 22, 3611–3620 (2014).
[Crossref] [PubMed]

Y.-S. Kim, O. Slattery, P. S. Kuo, and X. Tang, “Conditions for two-photon interference with coherent pulses,” Phys. Rev. A 87, 063843 (2013).
[Crossref]

Temporão, G. P.

T. F. da Silva, D. Vitoreti, G. B. Xavier, G. C. do Amaral, G. P. Temporão, and J. P. von der Weid,“Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits,” Phys. Rev. A 88, 052303 (2013).
[Crossref]

Thiel, C.

Ursin, R.

X.-S. Ma, S. Zotter, J. Kofler, R. Ursin, T. Jennewein, C. Brukner, and A. Zeilinger, “Experimental delayed-choice entanglement swapping,” Nature Phys. 8, 479–484 (2012).
[Crossref]

Vitoreti, D.

T. F. da Silva, D. Vitoreti, G. B. Xavier, G. C. do Amaral, G. P. Temporão, and J. P. von der Weid,“Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits,” Phys. Rev. A 88, 052303 (2013).
[Crossref]

von der Weid, J. P.

T. F. da Silva, D. Vitoreti, G. B. Xavier, G. C. do Amaral, G. P. Temporão, and J. P. von der Weid,“Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits,” Phys. Rev. A 88, 052303 (2013).
[Crossref]

von Zanthier, J.

Wagenknecht, C.

W.-B. Gao, A. M. Goebel, C.-Y. Lu, H.-N. Dai, C. Wagenknecht, Q. Zhang, B. Zhao, C.-Z. Peng, Z.-B. Chen, Y.-A. Chen, and J.-W. Pan, “Teleportation-based realization of an optical quantum two-qubit entangling gate,” Proc. Natl. Acad. Sci. USA 107, 20869–20874 (2010).
[Crossref] [PubMed]

Wang, X.-L.

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, H. Lu, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117, 210502 (2016).
[Crossref] [PubMed]

Weinfurter, H

K. Mattle, H Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656–4659 (1996).
[Crossref] [PubMed]

Weinfurter, H.

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[Crossref]

White, A. G.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

Wiegner, R.

Woo, M.

Y. Choi, O. Kwon, M. Woo, K. Oh, S.-W. Han, Y.-S. Kim, and S. Moon, “Plug-and-play measurement-device-independent quantum key distribution,” Phys. Rev. A 93, 032319 (2016).
[Crossref]

Wootters, W. K.

C. H. Bennett, G. Brassard, Claude Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref] [PubMed]

Wu, D.

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, H. Lu, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117, 210502 (2016).
[Crossref] [PubMed]

Xavier, G. B.

T. F. da Silva, D. Vitoreti, G. B. Xavier, G. C. do Amaral, G. P. Temporão, and J. P. von der Weid,“Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits,” Phys. Rev. A 88, 052303 (2013).
[Crossref]

Xu, P.

P. Xu, X. Yuan, L.-K. Chen, H. Lu, X.-C. Yao, X. Ma, Y.-A. Chen, and J.-W. Pan, “Implementation of a measurement-device-independent entanglement witness,” Phys. Rev. Lett. 112, 140506 (2014).
[Crossref] [PubMed]

Yang, M.

X.-M. Li, M. Yang, N. Paunković, D.-C. Li, and Z.-L. Cao, “Entanglement swapping via three-step quantum walk-like protocol,” Phy. Lett. A 381, 3875–3879 (2017).
[Crossref]

Yao, X.-C.

P. Xu, X. Yuan, L.-K. Chen, H. Lu, X.-C. Yao, X. Ma, Y.-A. Chen, and J.-W. Pan, “Implementation of a measurement-device-independent entanglement witness,” Phys. Rev. Lett. 112, 140506 (2014).
[Crossref] [PubMed]

Yin, H.-L.

Y. Fu, H.-L. Yin, T.-Y. Chen, and Z.-B. Chen, “Long-Distance Measurement-Device-Independent multiparty quantum communication,” Phys. Rev. Lett. 114, 090501 (2015).
[Crossref] [PubMed]

Yuan, X.

P. Xu, X. Yuan, L.-K. Chen, H. Lu, X.-C. Yao, X. Ma, Y.-A. Chen, and J.-W. Pan, “Implementation of a measurement-device-independent entanglement witness,” Phys. Rev. Lett. 112, 140506 (2014).
[Crossref] [PubMed]

Yuan, Z. L.

M. Lucamarini, Z. L. Yuan, J. F. Dynes, and A. J. Shields, “Overcoming the rate-distance limit of quantum key distribution without quantum repeaters,” Nature 557, 400–403 (2018).
[Crossref] [PubMed]

Yurke, B.

B. Yurke and D. Stoler, “Bell’s-inequality experiments using independent-particle sources,” Phys. Rev. A 46, 2229–2234 (1992).
[Crossref] [PubMed]

B. Yurke and D. Stoler, “Einstein-Podolsky-Rosen effects from independent particle sources,” Phys. Rev. Lett. 68, 1251–1254 (1992).
[Crossref] [PubMed]

Zeilinger, A.

X.-S. Ma, S. Zotter, J. Kofler, R. Ursin, T. Jennewein, C. Brukner, and A. Zeilinger, “Experimental delayed-choice entanglement swapping,” Nature Phys. 8, 479–484 (2012).
[Crossref]

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[Crossref]

K. Mattle, H Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656–4659 (1996).
[Crossref] [PubMed]

Zhang, Q.

W.-B. Gao, A. M. Goebel, C.-Y. Lu, H.-N. Dai, C. Wagenknecht, Q. Zhang, B. Zhao, C.-Z. Peng, Z.-B. Chen, Y.-A. Chen, and J.-W. Pan, “Teleportation-based realization of an optical quantum two-qubit entangling gate,” Proc. Natl. Acad. Sci. USA 107, 20869–20874 (2010).
[Crossref] [PubMed]

Zhao, B.

W.-B. Gao, A. M. Goebel, C.-Y. Lu, H.-N. Dai, C. Wagenknecht, Q. Zhang, B. Zhao, C.-Z. Peng, Z.-B. Chen, Y.-A. Chen, and J.-W. Pan, “Teleportation-based realization of an optical quantum two-qubit entangling gate,” Proc. Natl. Acad. Sci. USA 107, 20869–20874 (2010).
[Crossref] [PubMed]

Zotter, S.

X.-S. Ma, S. Zotter, J. Kofler, R. Ursin, T. Jennewein, C. Brukner, and A. Zeilinger, “Experimental delayed-choice entanglement swapping,” Nature Phys. 8, 479–484 (2012).
[Crossref]

Comm. of the ACM (1)

A. Shamir, “How to share a secret,” Comm. of the ACM 22, 612–613 (1979).
[Crossref]

Contemp. Phys. (1)

P. Kok, “Photonic quantum information processing,” Contemp. Phys. 57, 526–544 (2016).
[Crossref]

J. Opt. Soc. B (1)

Y.-H. Kim and W. P. Grice, “Quantum interference with distinguishable photons through indistinguishable pathways,” J. Opt. Soc. B 22, 493–498 (2005).
[Crossref]

Nature (4)

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[Crossref]

D. Gottesman and I. L. Chuang, “Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations,” Nature 402, 390–393 (1999).
[Crossref]

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

M. Lucamarini, Z. L. Yuan, J. F. Dynes, and A. J. Shields, “Overcoming the rate-distance limit of quantum key distribution without quantum repeaters,” Nature 557, 400–403 (2018).
[Crossref] [PubMed]

Nature Comm. (1)

Y. Kim, Y.-S. Kim, S.-Y. Lee, S.-W. Han, S. Moon, Y.-H. Kim, and Y.-W Cho, “Direct quantum process tomography via measuring sequential weak values of incompatible observables,” Nature Comm. 9, 192 (2018).
[Crossref]

Nature Phys. (1)

X.-S. Ma, S. Zotter, J. Kofler, R. Ursin, T. Jennewein, C. Brukner, and A. Zeilinger, “Experimental delayed-choice entanglement swapping,” Nature Phys. 8, 479–484 (2012).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phy. Lett. A (1)

X.-M. Li, M. Yang, N. Paunković, D.-C. Li, and Z.-L. Cao, “Entanglement swapping via three-step quantum walk-like protocol,” Phy. Lett. A 381, 3875–3879 (2017).
[Crossref]

Phys. Lett. A (1)

Y.-H. Kim, “Two-photon interference without bunching two photons,” Phys. Lett. A 315, 352–357 (2003).
[Crossref]

Phys. Rev. A (8)

B. Yurke and D. Stoler, “Bell’s-inequality experiments using independent-particle sources,” Phys. Rev. A 46, 2229–2234 (1992).
[Crossref] [PubMed]

M. Hillery, V. Bužek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999).
[Crossref]

K. Banaszek, G. M. D’Ariano, M. G. A. Paris, and M. F. Sacchi, “Maximum-likelihood estimation of the density matrix,” Phys. Rev. A 61, 010304(R) (1999).
[Crossref]

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

T. F. da Silva, D. Vitoreti, G. B. Xavier, G. C. do Amaral, G. P. Temporão, and J. P. von der Weid,“Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits,” Phys. Rev. A 88, 052303 (2013).
[Crossref]

Y. Choi, O. Kwon, M. Woo, K. Oh, S.-W. Han, Y.-S. Kim, and S. Moon, “Plug-and-play measurement-device-independent quantum key distribution,” Phys. Rev. A 93, 032319 (2016).
[Crossref]

Y.-S. Kim, O. Slattery, P. S. Kuo, and X. Tang, “Conditions for two-photon interference with coherent pulses,” Phys. Rev. A 87, 063843 (2013).
[Crossref]

Y.-H. Kim, M. V. Chekhova, S. P. Kulik, and Y. Shih, “Quantum interference by two temporally distinguishable pulses,” Phys. Rev. A 60, R37–R40 (1999).
[Crossref]

Phys. Rev. Lett. (12)

K. Mattle, H Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656–4659 (1996).
[Crossref] [PubMed]

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref] [PubMed]

T. B. Pittman, D. V. Strekalov, A. Migdall, M. H. Rubin, A. V. Sergienko, and Y. H. Shih, “Can two-photon interference be considered the interference of two photons?” Phys. Rev. Lett. 77, 1917–1920 (1996).
[Crossref] [PubMed]

S. L. Braunstein and S. Pirandola, “Side-Channel-Free quantum key distribution,” Phys. Rev. Lett. 108, 130502 (2012).
[Crossref] [PubMed]

H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012).
[Crossref] [PubMed]

C. H. Bennett, G. Brassard, Claude Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref] [PubMed]

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, H. Lu, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117, 210502 (2016).
[Crossref] [PubMed]

R. Cleve, D. Gottesman, and H.-K. Lo, “How to share a quantum secret,” Phys. Rev. Lett. 83, 648–651 (1999).
[Crossref]

Y. Fu, H.-L. Yin, T.-Y. Chen, and Z.-B. Chen, “Long-Distance Measurement-Device-Independent multiparty quantum communication,” Phys. Rev. Lett. 114, 090501 (2015).
[Crossref] [PubMed]

B. Yurke and D. Stoler, “Einstein-Podolsky-Rosen effects from independent particle sources,” Phys. Rev. Lett. 68, 1251–1254 (1992).
[Crossref] [PubMed]

E. Megidish, A. Halevy, T. Shacham, T. Dvir, L. Dovrat, and H. S. Eisenberg, “Entanglement swapping between photons that have never coexisted,” Phys. Rev. Lett. 110, 210403 (2013).
[Crossref] [PubMed]

P. Xu, X. Yuan, L.-K. Chen, H. Lu, X.-C. Yao, X. Ma, Y.-A. Chen, and J.-W. Pan, “Implementation of a measurement-device-independent entanglement witness,” Phys. Rev. Lett. 112, 140506 (2014).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

W.-B. Gao, A. M. Goebel, C.-Y. Lu, H.-N. Dai, C. Wagenknecht, Q. Zhang, B. Zhao, C.-Z. Peng, Z.-B. Chen, Y.-A. Chen, and J.-W. Pan, “Teleportation-based realization of an optical quantum two-qubit entangling gate,” Proc. Natl. Acad. Sci. USA 107, 20869–20874 (2010).
[Crossref] [PubMed]

Prog. Opt. (1)

T. C. Ralph and G. J. Pryde, “Optical quantum computation,” Prog. Opt. 54, 209–270 (2010).
[Crossref]

Rev. Mod. Phys. (1)

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[Crossref]

Sci. Rep. (1)

H. Kim, S. M. Lee, and H. S. Moon, “Two-photon interference of temporally separated photons,” Sci. Rep. 6, 34805 (2016).
[Crossref] [PubMed]

Other (3)

P. Blasiak and M. Markiewicz, “Entangling three qubits without ever touching,” arXiv:1807.05546 (2018).

W. Mao, Modern Cryptography (Prentice Hall PTR, 2004).

T. Pramanik, Y.-W. Cho, S.-W. Han, S.-Y. Lee, Y.-S. Kim, and S. Moon, “Revealing hidden quantum steerability using local filtering operations,” arXiv:1707.08285 (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) The standard linear optical Bell state measurement scheme. Two photons from Alice and Bob meet at a BS. The state |ψ+〉 is registered by the coincidences of D12 or D34, while |ψ〉 corresponds to the coincidences of D14 or D23. (b) Bell state measurement scheme without interfering particles. Alice and Bob exchange the probability amplitudes of vertical photons as d V e V . The state of |ϕ+〉 is registered by the coincidences of D13 or D24, while |ϕ〉 corresponds to D14 or D23. |ψ±〉 cannot be distinguished by this scheme.
Fig. 2
Fig. 2 Various coincidence counts with respect to scanning the optical delay l for the input states of (a) |ϕ〉, and (b) |ψ〉, repectively. When the input state is |ϕ〉, one can observe a HOM dip or peak depending on the configurations of the coincidences. The visibility of HOM dip and peak is measured as V = 0.88 ± 0.02 and 0.87 ± 0.02, respectively. For the input state of |ψ〉, the coincidence of D11 provides a HOM peak with the visibility of V = 0.94 ± 0.02, while D24 shows null outcome.
Fig. 3
Fig. 3 Bell state measurement outcomes with respect to various input Bell states. The erroneous detection probability for input |ϕ〉 and |ϕ+〉 states are Q = 5.3 ± 0.7% and 5.9 ±1.1%, respectively. |ψ±〉 input states do not provide coincidence counts between D1−D4, but give two-photon outputs at D1 as presented as D11. Error bars are experimentally obtained standard deviations.
Fig. 4
Fig. 4 Experimentally obtained two-photon states at modes g and h for the separable input states of (a) |Da ⊗ |Db, and (b) |Da ⊗ |Ab, respectively. The left and right figures denote the real and imaginary parts of the density matrix, respectively. (a) The fidelity from the theoretical Bell state of |ϕ+〉, and concurrence are F = 0.91 ± 0.01, C = 0.85 ± 0.03, respectively. (b) The fidelity from the theoretical Bell state of |ϕ〉, and concurrence are F = 0.91 ± 0:02, C = 0:87 ± 0:01, respectively.
Fig. 5
Fig. 5 The scheme for analyzing multiple photon GHZ states without photon-photon interaction at a beamsplitter.
Fig. 6
Fig. 6 The experimental setups for (a) polarization entangled photon pairs via spontaneous parametric down conversion, and (b) proof-of-principle experiment of linear optical Bell state measurement without photon-photon interaction at a BS. IF : Interference filter, SMF : Single mode fiber, WPs : Waveplates, BD : Beam displacer, H1 and H2 : Half waveplate at 45° and 22.5°.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

| ϕ ± = 1 2 ( a H b H ± a V b V ) | 0 .
| ϕ ± 1 2 ( c H f H d V e V ) | 0 .
| ϕ ± 1 2 ( g V h V ± g H h H ) | 0 .
| ϕ + 1 2 ( g H h H + g V h V ) | 0 , | ϕ 1 2 ( g H h V + g V h H ) | 0 .
| ψ ± 1 2 2 [ ( g H 2 g V 2 ) ± ( h H 2 h V 2 ) ] | 0 .
a D b D | 0 1 2 ( g H h H + g H g V + h H h V + g V h V ) | 0 .
a D b D | 0 1 2 ( g H h H + g V h V ) | 0 .
| GHZ N ± = | H N ± | V N 2 .
| GHZ 4 + 1 2 2 ( d 1 H d 2 H d 3 H d 4 H + d 1 V d 2 V d 3 V d 4 V + d 1 H d 2 H d 3 V d 4 V + d 1 V d 2 V d 3 H d 4 H + d 1 H d 2 V d 3 H d 4 V + d 1 V d 2 H d 3 V d 4 H + d 1 H d 2 V d 3 V d 4 H + d 1 V d 2 H d 3 H d 4 V ) | 0 | GHZ 4 1 2 2 ( d 1 V d 2 H d 3 H d 4 H + d 1 H d 2 V d 3 H d 4 H + d 1 H d 2 H d 3 V d 4 H + d 1 H d 2 H d 3 H d 4 V + d 1 H d 2 V d 3 H d 4 V + d 1 V d 2 H d 3 H d 4 V + d 1 V d 2 V d 3 H d 4 V + d 1 V d 2 V d 3 V d 4 H ) | 0
| GHZ N = 2 n + all possible combinations of 2 p D H and 2 ( n p ) D V | GHZ N = 2 n all possible combinations of q D H and 2 ( n q ) D V ,
| GHZ N = 2 n + 1 + all D H or all possible combinations of p D H and ( 2 n + 1 p ) D V | GHZ N = 2 n + 1 all D V or all possible combinations of p D V and ( 2 n + 1 p ) D H

Metrics