Abstract

Efficiently controlling the direction of optical radiation at nanoscale dimensions is essential for various nanophotonics applications. All-dielectric nanoparticles can be used to engineer the direction of scattered light via overlapping of electric and magnetic resonance modes. Herein, we propose all-dielectric core-shell SiO2-Ge-SiO2 nanoparticles that can simultaneously achieve broadband zero backward scattering and enhanced forward scattering. Introducing higher-order electric and magnetic resonance modes satisfies the generalized first Kerker condition for breaking through the dipole approximation. Zero backward scattering occurs near the electric and magnetic resonant regions, this directional scattering is therefore efficient. Adjusting the nanoparticles’ geometric parameters can shift the spectral position of the broadband zero backward scattering to the visible and near-infrared regions. The wavelength width of the zero backward scattering could be enlarged as high as 142 and 63 nm in the visible and near-infrared region. Due to these unique optical features the proposed core-shell nanoparticles are promising candidates for the design of high-performance nanoantennas, low-loss metamaterials, and photovoltaic devices.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fano resonant all-dielectric core/shell nanoparticles with ultrahigh scattering directionality in the visible region

Yuta Tsuchimoto, Taka-aki Yano, Tomohiro Hayashi, and Masahiko Hara
Opt. Express 24(13) 14451-14462 (2016)

Multiple unidirectional forward scattering of hybrid metal-dielectric nanoantenna in the near-infrared region

Haiwei Mu, Jingwei Lv, Xiaoming Zhang, Xili Lu, Wei Liu, Qiang Liu, Famei Wang, Lin Yang, Chao Liu, Tao Sun, and Paul K. Chu
Opt. Mater. Express 8(11) 3410-3423 (2018)

Ultra-directional forward scattering by individual core-shell nanoparticles

Wei Liu, Jianfa Zhang, Bing Lei, Haotong Ma, Wenke Xie, and Haojun Hu
Opt. Express 22(13) 16178-16187 (2014)

References

  • View by:
  • |
  • |
  • |

  1. C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (Wiley, 1983).
  2. M. Kerker, The scattering of light and other electromagnetic radiation (Academic, 1969).
  3. M. Kerker, D. S. wang, and C. L. Giles, “Electromagnetic scattering by magnetic spheres,” J. Opt. Soc. Am. 73(6), 765–767 (1983).
    [Crossref]
  4. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mater. 9(3), 205–213 (2010).
    [Crossref]
  5. S. R. K. Rodriguez, F. Bernal, T. P. Steinbusch, M. A. Verschuuren, A. F. Koenderink, and J. Gómez Rivas, “Breaking the symmetry of forward-backward light emission with localized and collective magnetoelectric resonances in arrays of pyramid-shaped aluminum nanoparticles,” Phys. Rev. Lett. 113(24), 247401 (2014).
    [Crossref] [PubMed]
  6. M. Kuo, Y. Kim, M. Hsieh, and S. Lin, “Efficient and directed nano-LED emission by a complete elimination of transverse-electric guided modes,” Nano Lett. 11(2), 476–481 (2011).
    [Crossref]
  7. A. Ahmed and R. Gordon, “Single molecule directivity enhanced raman scattering using nanoantennas,” Nano Lett. 12(5), 2625–2630 (2012).
    [Crossref] [PubMed]
  8. D. Wang, W. Zhu, M. D. Best, J. P. Camden, and K. B. Crozier, “Directional raman scattering from single molecules in the feed gaps of optical antennas,” Nano Lett. 13(5), 2194–2198 (2013).
    [Crossref] [PubMed]
  9. M. Panmai, J. Xiang, Z. Sun, Y. Peng, H. Liu, H. Liu, Q. Dai, S. Tie, and S. Lan, “All-silicon-based nano-antennas for wavelength and polarization demultiplexing,” Opt. Express 26(10), 12344–12362 (2018).
    [Crossref] [PubMed]
  10. L. Novotny and B. Hecht, Principles of nano-optics (Cambridge University, 2006).
    [Crossref]
  11. S. Kawata, M. Ohtsu, and M. Irie, Nano-Optics (Springer-Verlag, 2002).
    [Crossref]
  12. J. Munárriz, A. V. Malyshev, V. A. Malyshev, and J. Knoester, “Optical nanoantennas with tunable radiation patterns,” Nano Lett. 13(2), 444–450 (2013).
    [Crossref] [PubMed]
  13. I. S. Maksymov, I. Staude, A. E. Miroshnichenko, and Y. S. Kivshar, “Optical Yagi-Uda nanoantennas,” Nanophotonics 1(1), 65–81 (2012).
    [Crossref]
  14. J. Dorfmüller, D. Dregely, M. Esslinger, W. Khunsin, R. Vogelgesang, K. Kern, and H. Giessen, “Near-field dynamics of optical Yagi-Uda nanoantennas,” Nano Lett. 11(7), 2819–2824 (2011).
    [Crossref] [PubMed]
  15. J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nature Nanotech. 10(1), 2–6 (2015).
    [Crossref]
  16. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257 (2010).
    [Crossref]
  17. Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12(12), 60–69 (2009).
    [Crossref]
  18. C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nature Photon. 5(9), 523–530 (2011).
    [Crossref]
  19. J. M. Sanz, R. A. Osa, A. I. Barreda, J. M. Saiz, F. González, and F. Moreno, “Influence of pollutants in the magneto-dielectric response of silicon nanoparticles,” Opt. Lett. 39(11), 3142–3144 (2014).
    [Crossref] [PubMed]
  20. A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron Silicon particles in the infrared,” Opt. Express 19(6), 4815–4826 (2011).
    [Crossref] [PubMed]
  21. D. Cai, Y. Huang, W. Wang, W. Ji, J. Chen, Z. Chen, and S. Liu, “Fano resonances generated in a single dielectric homogeneous nanoparticle with high structural symmetry,” J. Phys. Chem. C 119(8), 4252–4260 (2015).
    [Crossref]
  22. R. Gomez-Medina, B. Garcia-Camara, I. Suarez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Saenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. of Nanophotonics 5(1), 053512 (2011).
    [Crossref]
  23. C. Ma, J. Yan, Y. Huang, and G. Yang, “Directional scattering in a germanium nanosphere in the visible light region,” Adv. Opt. Mater. 5(24), 1700761 (2017).
    [Crossref]
  24. A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2(7), 492 (2012).
    [Crossref] [PubMed]
  25. W. Liu, “Generalized magnetic mirrors,” Phys. Rev. Lett. 119(12), 123902 (2017).
    [Crossref]
  26. D. Zhang, J. Xiang, H. Liu, F. Deng, H. Liu, M. Ouyang, H. Fan, and Q. Dai, “Magnetic fano resonance of heterodimer nanostructure by azimuthally polarized excitation,” Opt. Express 25(22), 26704–26713 (2017).
    [Crossref] [PubMed]
  27. J. Pan, Z. Chen, Z. Yan, Z. Cao, P. Zhan, N. Ming, and Z. Wang, “Symmetric and anti-symmetric magnetic resonances in double-triangle nanoparticle arrays fabricated via angle-resolved nanosphere lithography,” Aip Adv. 1(4), 2075 (2011).
    [Crossref]
  28. T. Feng, Y. Xu, W. Zhang, and A. E. Miroshnichenko, “Ideal magnetic dipole scattering,” Phys. Rev. Lett. 118(17), 173901 (2017).
    [Crossref] [PubMed]
  29. T. Feng, Y. Xu, Z. Liang, and W. Zhang, “All-dielectric hollow nanodisk for tailoring magnetic dipole emission,” Opt. Lett. 41(21), 5011–5014 (2016).
    [Crossref] [PubMed]
  30. S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13(4), 1806–1809 (2013).
    [Crossref] [PubMed]
  31. I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
    [Crossref] [PubMed]
  32. Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
    [Crossref] [PubMed]
  33. S. Ishii, K. Chen, H. Okuyama, and T. Nagao, “Resonant optical absorption and photothermal process in high refractive index Germanium nanoparticles,” Adv. Opt. Mater. 5(5), 1600902 (2017).
    [Crossref]
  34. G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, and S. A. Maier, “Enhanced third harmonic generation in single Germanium nanodisks excited at the anapole Mode,” Nano Lett. 16(7), 4635 (2016).
    [Crossref] [PubMed]
  35. H. Wang, P. Liu, Y. Ke, Y. Su, L. Zhang, N. Xu, S. Deng, and H. Chen, “Janus magneto-electric nanosphere dimers exhibiting unidirectional visible light scattering and strong electromagnetic field enhancement,” ACS Nano 9(1), 436–448 (2015).
    [Crossref] [PubMed]
  36. P. Yu, Y. Yao, J. Wu, X. Niu, A. L. Rogach, and Z. Wang, “Effects of plasmonic metal core-dielectric shell nanoparticles on the broadband light absorption enhancement in thin film solar cells,” Sci. Rep. 7(1), 7696 (2017).
    [Crossref] [PubMed]
  37. Y. Li, M. Wan, W. Wu, Z. Chen, P. Zhan, and Z. Wang, “Broadband zero-backward and near-zero-forward scattering by metallo-dielectric core-shell nanoparticles,” Sci. Rep. 5, 12491 (2015).
    [Crossref] [PubMed]
  38. W. Liu and Y. S. Kivshar, “Generalized Kerker effects in nanophotonics and meta-optics [Invited],” Opt. Express 26(10), 13085–13105 (2018).
    [Crossref] [PubMed]
  39. W. Wang, X. Zhao, L. Zheng, L. Xiong, Y. Lin, and H. Lin, “Highly-tunable magnetic and electric responses in the perforated Au-SiO2-Si multilayer nanoshells,” Plasmonics. 13(1), 1–6 (2017).
  40. W. Wang, Y. Wang, Y. Shi, and Y. Liu, “Magnetic-based double Fano resonances in Au-SiO2-Si multilayer nanoshells,” Plasmonics. 12(5), 1537–1543 (2017).
    [Crossref]
  41. W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core-shell nanoparticles,” ACS Nano 6(6), 5489–5497 (2012).
    [Crossref] [PubMed]
  42. G. Tao, J. J. Kaufman, S. Shabahang, R. R. Naraghia, S. V. Sukhov, J. D. Joannopoulos, Y. Fink, A. Dogariu, and A. F. Abouraddy, “Digital design of multimaterial photonic particles,” PNAS 113(25), 6839–6844 (2016).
    [Crossref] [PubMed]
  43. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

2018 (2)

2017 (8)

W. Wang, X. Zhao, L. Zheng, L. Xiong, Y. Lin, and H. Lin, “Highly-tunable magnetic and electric responses in the perforated Au-SiO2-Si multilayer nanoshells,” Plasmonics. 13(1), 1–6 (2017).

W. Wang, Y. Wang, Y. Shi, and Y. Liu, “Magnetic-based double Fano resonances in Au-SiO2-Si multilayer nanoshells,” Plasmonics. 12(5), 1537–1543 (2017).
[Crossref]

S. Ishii, K. Chen, H. Okuyama, and T. Nagao, “Resonant optical absorption and photothermal process in high refractive index Germanium nanoparticles,” Adv. Opt. Mater. 5(5), 1600902 (2017).
[Crossref]

P. Yu, Y. Yao, J. Wu, X. Niu, A. L. Rogach, and Z. Wang, “Effects of plasmonic metal core-dielectric shell nanoparticles on the broadband light absorption enhancement in thin film solar cells,” Sci. Rep. 7(1), 7696 (2017).
[Crossref] [PubMed]

C. Ma, J. Yan, Y. Huang, and G. Yang, “Directional scattering in a germanium nanosphere in the visible light region,” Adv. Opt. Mater. 5(24), 1700761 (2017).
[Crossref]

W. Liu, “Generalized magnetic mirrors,” Phys. Rev. Lett. 119(12), 123902 (2017).
[Crossref]

D. Zhang, J. Xiang, H. Liu, F. Deng, H. Liu, M. Ouyang, H. Fan, and Q. Dai, “Magnetic fano resonance of heterodimer nanostructure by azimuthally polarized excitation,” Opt. Express 25(22), 26704–26713 (2017).
[Crossref] [PubMed]

T. Feng, Y. Xu, W. Zhang, and A. E. Miroshnichenko, “Ideal magnetic dipole scattering,” Phys. Rev. Lett. 118(17), 173901 (2017).
[Crossref] [PubMed]

2016 (3)

T. Feng, Y. Xu, Z. Liang, and W. Zhang, “All-dielectric hollow nanodisk for tailoring magnetic dipole emission,” Opt. Lett. 41(21), 5011–5014 (2016).
[Crossref] [PubMed]

G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, and S. A. Maier, “Enhanced third harmonic generation in single Germanium nanodisks excited at the anapole Mode,” Nano Lett. 16(7), 4635 (2016).
[Crossref] [PubMed]

G. Tao, J. J. Kaufman, S. Shabahang, R. R. Naraghia, S. V. Sukhov, J. D. Joannopoulos, Y. Fink, A. Dogariu, and A. F. Abouraddy, “Digital design of multimaterial photonic particles,” PNAS 113(25), 6839–6844 (2016).
[Crossref] [PubMed]

2015 (4)

H. Wang, P. Liu, Y. Ke, Y. Su, L. Zhang, N. Xu, S. Deng, and H. Chen, “Janus magneto-electric nanosphere dimers exhibiting unidirectional visible light scattering and strong electromagnetic field enhancement,” ACS Nano 9(1), 436–448 (2015).
[Crossref] [PubMed]

Y. Li, M. Wan, W. Wu, Z. Chen, P. Zhan, and Z. Wang, “Broadband zero-backward and near-zero-forward scattering by metallo-dielectric core-shell nanoparticles,” Sci. Rep. 5, 12491 (2015).
[Crossref] [PubMed]

J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nature Nanotech. 10(1), 2–6 (2015).
[Crossref]

D. Cai, Y. Huang, W. Wang, W. Ji, J. Chen, Z. Chen, and S. Liu, “Fano resonances generated in a single dielectric homogeneous nanoparticle with high structural symmetry,” J. Phys. Chem. C 119(8), 4252–4260 (2015).
[Crossref]

2014 (2)

J. M. Sanz, R. A. Osa, A. I. Barreda, J. M. Saiz, F. González, and F. Moreno, “Influence of pollutants in the magneto-dielectric response of silicon nanoparticles,” Opt. Lett. 39(11), 3142–3144 (2014).
[Crossref] [PubMed]

S. R. K. Rodriguez, F. Bernal, T. P. Steinbusch, M. A. Verschuuren, A. F. Koenderink, and J. Gómez Rivas, “Breaking the symmetry of forward-backward light emission with localized and collective magnetoelectric resonances in arrays of pyramid-shaped aluminum nanoparticles,” Phys. Rev. Lett. 113(24), 247401 (2014).
[Crossref] [PubMed]

2013 (5)

J. Munárriz, A. V. Malyshev, V. A. Malyshev, and J. Knoester, “Optical nanoantennas with tunable radiation patterns,” Nano Lett. 13(2), 444–450 (2013).
[Crossref] [PubMed]

D. Wang, W. Zhu, M. D. Best, J. P. Camden, and K. B. Crozier, “Directional raman scattering from single molecules in the feed gaps of optical antennas,” Nano Lett. 13(5), 2194–2198 (2013).
[Crossref] [PubMed]

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13(4), 1806–1809 (2013).
[Crossref] [PubMed]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

2012 (4)

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2(7), 492 (2012).
[Crossref] [PubMed]

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core-shell nanoparticles,” ACS Nano 6(6), 5489–5497 (2012).
[Crossref] [PubMed]

A. Ahmed and R. Gordon, “Single molecule directivity enhanced raman scattering using nanoantennas,” Nano Lett. 12(5), 2625–2630 (2012).
[Crossref] [PubMed]

I. S. Maksymov, I. Staude, A. E. Miroshnichenko, and Y. S. Kivshar, “Optical Yagi-Uda nanoantennas,” Nanophotonics 1(1), 65–81 (2012).
[Crossref]

2011 (6)

J. Dorfmüller, D. Dregely, M. Esslinger, W. Khunsin, R. Vogelgesang, K. Kern, and H. Giessen, “Near-field dynamics of optical Yagi-Uda nanoantennas,” Nano Lett. 11(7), 2819–2824 (2011).
[Crossref] [PubMed]

M. Kuo, Y. Kim, M. Hsieh, and S. Lin, “Efficient and directed nano-LED emission by a complete elimination of transverse-electric guided modes,” Nano Lett. 11(2), 476–481 (2011).
[Crossref]

A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron Silicon particles in the infrared,” Opt. Express 19(6), 4815–4826 (2011).
[Crossref] [PubMed]

R. Gomez-Medina, B. Garcia-Camara, I. Suarez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Saenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. of Nanophotonics 5(1), 053512 (2011).
[Crossref]

J. Pan, Z. Chen, Z. Yan, Z. Cao, P. Zhan, N. Ming, and Z. Wang, “Symmetric and anti-symmetric magnetic resonances in double-triangle nanoparticle arrays fabricated via angle-resolved nanosphere lithography,” Aip Adv. 1(4), 2075 (2011).
[Crossref]

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nature Photon. 5(9), 523–530 (2011).
[Crossref]

2010 (2)

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257 (2010).
[Crossref]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mater. 9(3), 205–213 (2010).
[Crossref]

2009 (1)

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12(12), 60–69 (2009).
[Crossref]

1983 (1)

Abouraddy, A. F.

G. Tao, J. J. Kaufman, S. Shabahang, R. R. Naraghia, S. V. Sukhov, J. D. Joannopoulos, Y. Fink, A. Dogariu, and A. F. Abouraddy, “Digital design of multimaterial photonic particles,” PNAS 113(25), 6839–6844 (2016).
[Crossref] [PubMed]

Ahmed, A.

A. Ahmed and R. Gordon, “Single molecule directivity enhanced raman scattering using nanoantennas,” Nano Lett. 12(5), 2625–2630 (2012).
[Crossref] [PubMed]

Aizpurua, J.

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mater. 9(3), 205–213 (2010).
[Crossref]

Barreda, A. I.

Bernal, F.

S. R. K. Rodriguez, F. Bernal, T. P. Steinbusch, M. A. Verschuuren, A. F. Koenderink, and J. Gómez Rivas, “Breaking the symmetry of forward-backward light emission with localized and collective magnetoelectric resonances in arrays of pyramid-shaped aluminum nanoparticles,” Phys. Rev. Lett. 113(24), 247401 (2014).
[Crossref] [PubMed]

Best, M. D.

D. Wang, W. Zhu, M. D. Best, J. P. Camden, and K. B. Crozier, “Directional raman scattering from single molecules in the feed gaps of optical antennas,” Nano Lett. 13(5), 2194–2198 (2013).
[Crossref] [PubMed]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (Wiley, 1983).

Brener, I.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

Cai, D.

D. Cai, Y. Huang, W. Wang, W. Ji, J. Chen, Z. Chen, and S. Liu, “Fano resonances generated in a single dielectric homogeneous nanoparticle with high structural symmetry,” J. Phys. Chem. C 119(8), 4252–4260 (2015).
[Crossref]

Camden, J. P.

D. Wang, W. Zhu, M. D. Best, J. P. Camden, and K. B. Crozier, “Directional raman scattering from single molecules in the feed gaps of optical antennas,” Nano Lett. 13(5), 2194–2198 (2013).
[Crossref] [PubMed]

Cao, Z.

J. Pan, Z. Chen, Z. Yan, Z. Cao, P. Zhan, N. Ming, and Z. Wang, “Symmetric and anti-symmetric magnetic resonances in double-triangle nanoparticle arrays fabricated via angle-resolved nanosphere lithography,” Aip Adv. 1(4), 2075 (2011).
[Crossref]

Chantada, L.

Chen, H.

H. Wang, P. Liu, Y. Ke, Y. Su, L. Zhang, N. Xu, S. Deng, and H. Chen, “Janus magneto-electric nanosphere dimers exhibiting unidirectional visible light scattering and strong electromagnetic field enhancement,” ACS Nano 9(1), 436–448 (2015).
[Crossref] [PubMed]

Chen, J.

D. Cai, Y. Huang, W. Wang, W. Ji, J. Chen, Z. Chen, and S. Liu, “Fano resonances generated in a single dielectric homogeneous nanoparticle with high structural symmetry,” J. Phys. Chem. C 119(8), 4252–4260 (2015).
[Crossref]

Chen, K.

S. Ishii, K. Chen, H. Okuyama, and T. Nagao, “Resonant optical absorption and photothermal process in high refractive index Germanium nanoparticles,” Adv. Opt. Mater. 5(5), 1600902 (2017).
[Crossref]

Chen, Z.

Y. Li, M. Wan, W. Wu, Z. Chen, P. Zhan, and Z. Wang, “Broadband zero-backward and near-zero-forward scattering by metallo-dielectric core-shell nanoparticles,” Sci. Rep. 5, 12491 (2015).
[Crossref] [PubMed]

D. Cai, Y. Huang, W. Wang, W. Ji, J. Chen, Z. Chen, and S. Liu, “Fano resonances generated in a single dielectric homogeneous nanoparticle with high structural symmetry,” J. Phys. Chem. C 119(8), 4252–4260 (2015).
[Crossref]

J. Pan, Z. Chen, Z. Yan, Z. Cao, P. Zhan, N. Ming, and Z. Wang, “Symmetric and anti-symmetric magnetic resonances in double-triangle nanoparticle arrays fabricated via angle-resolved nanosphere lithography,” Aip Adv. 1(4), 2075 (2011).
[Crossref]

Crozier, K. B.

D. Wang, W. Zhu, M. D. Best, J. P. Camden, and K. B. Crozier, “Directional raman scattering from single molecules in the feed gaps of optical antennas,” Nano Lett. 13(5), 2194–2198 (2013).
[Crossref] [PubMed]

Dai, Q.

Decker, M.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

Deng, F.

Deng, S.

H. Wang, P. Liu, Y. Ke, Y. Su, L. Zhang, N. Xu, S. Deng, and H. Chen, “Janus magneto-electric nanosphere dimers exhibiting unidirectional visible light scattering and strong electromagnetic field enhancement,” ACS Nano 9(1), 436–448 (2015).
[Crossref] [PubMed]

Dogariu, A.

G. Tao, J. J. Kaufman, S. Shabahang, R. R. Naraghia, S. V. Sukhov, J. D. Joannopoulos, Y. Fink, A. Dogariu, and A. F. Abouraddy, “Digital design of multimaterial photonic particles,” PNAS 113(25), 6839–6844 (2016).
[Crossref] [PubMed]

Dominguez, J.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

Dorfmüller, J.

J. Dorfmüller, D. Dregely, M. Esslinger, W. Khunsin, R. Vogelgesang, K. Kern, and H. Giessen, “Near-field dynamics of optical Yagi-Uda nanoantennas,” Nano Lett. 11(7), 2819–2824 (2011).
[Crossref] [PubMed]

Dregely, D.

J. Dorfmüller, D. Dregely, M. Esslinger, W. Khunsin, R. Vogelgesang, K. Kern, and H. Giessen, “Near-field dynamics of optical Yagi-Uda nanoantennas,” Nano Lett. 11(7), 2819–2824 (2011).
[Crossref] [PubMed]

Esslinger, M.

J. Dorfmüller, D. Dregely, M. Esslinger, W. Khunsin, R. Vogelgesang, K. Kern, and H. Giessen, “Near-field dynamics of optical Yagi-Uda nanoantennas,” Nano Lett. 11(7), 2819–2824 (2011).
[Crossref] [PubMed]

Fan, H.

Feng, T.

T. Feng, Y. Xu, W. Zhang, and A. E. Miroshnichenko, “Ideal magnetic dipole scattering,” Phys. Rev. Lett. 118(17), 173901 (2017).
[Crossref] [PubMed]

T. Feng, Y. Xu, Z. Liang, and W. Zhang, “All-dielectric hollow nanodisk for tailoring magnetic dipole emission,” Opt. Lett. 41(21), 5011–5014 (2016).
[Crossref] [PubMed]

Fink, Y.

G. Tao, J. J. Kaufman, S. Shabahang, R. R. Naraghia, S. V. Sukhov, J. D. Joannopoulos, Y. Fink, A. Dogariu, and A. F. Abouraddy, “Digital design of multimaterial photonic particles,” PNAS 113(25), 6839–6844 (2016).
[Crossref] [PubMed]

Flach, S.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257 (2010).
[Crossref]

Fofang, N. T.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

Froufe-Pérez, L. S.

Fu, Y. H.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2(7), 492 (2012).
[Crossref] [PubMed]

Garcia-Camara, B.

R. Gomez-Medina, B. Garcia-Camara, I. Suarez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Saenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. of Nanophotonics 5(1), 053512 (2011).
[Crossref]

García-Etxarri, A.

Giessen, H.

J. Dorfmüller, D. Dregely, M. Esslinger, W. Khunsin, R. Vogelgesang, K. Kern, and H. Giessen, “Near-field dynamics of optical Yagi-Uda nanoantennas,” Nano Lett. 11(7), 2819–2824 (2011).
[Crossref] [PubMed]

Giles, C. L.

Gómez Rivas, J.

S. R. K. Rodriguez, F. Bernal, T. P. Steinbusch, M. A. Verschuuren, A. F. Koenderink, and J. Gómez Rivas, “Breaking the symmetry of forward-backward light emission with localized and collective magnetoelectric resonances in arrays of pyramid-shaped aluminum nanoparticles,” Phys. Rev. Lett. 113(24), 247401 (2014).
[Crossref] [PubMed]

Gomez-Medina, R.

R. Gomez-Medina, B. Garcia-Camara, I. Suarez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Saenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. of Nanophotonics 5(1), 053512 (2011).
[Crossref]

Gómez-Medina, R.

Gonzales, E.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

González, F.

J. M. Sanz, R. A. Osa, A. I. Barreda, J. M. Saiz, F. González, and F. Moreno, “Influence of pollutants in the magneto-dielectric response of silicon nanoparticles,” Opt. Lett. 39(11), 3142–3144 (2014).
[Crossref] [PubMed]

R. Gomez-Medina, B. Garcia-Camara, I. Suarez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Saenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. of Nanophotonics 5(1), 053512 (2011).
[Crossref]

Gordon, R.

A. Ahmed and R. Gordon, “Single molecule directivity enhanced raman scattering using nanoantennas,” Nano Lett. 12(5), 2625–2630 (2012).
[Crossref] [PubMed]

Grinblat, G.

G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, and S. A. Maier, “Enhanced third harmonic generation in single Germanium nanodisks excited at the anapole Mode,” Nano Lett. 16(7), 4635 (2016).
[Crossref] [PubMed]

Hecht, B.

L. Novotny and B. Hecht, Principles of nano-optics (Cambridge University, 2006).
[Crossref]

Hsieh, M.

M. Kuo, Y. Kim, M. Hsieh, and S. Lin, “Efficient and directed nano-LED emission by a complete elimination of transverse-electric guided modes,” Nano Lett. 11(2), 476–481 (2011).
[Crossref]

Huang, Y.

C. Ma, J. Yan, Y. Huang, and G. Yang, “Directional scattering in a germanium nanosphere in the visible light region,” Adv. Opt. Mater. 5(24), 1700761 (2017).
[Crossref]

D. Cai, Y. Huang, W. Wang, W. Ji, J. Chen, Z. Chen, and S. Liu, “Fano resonances generated in a single dielectric homogeneous nanoparticle with high structural symmetry,” J. Phys. Chem. C 119(8), 4252–4260 (2015).
[Crossref]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (Wiley, 1983).

Irie, M.

S. Kawata, M. Ohtsu, and M. Irie, Nano-Optics (Springer-Verlag, 2002).
[Crossref]

Ishii, S.

S. Ishii, K. Chen, H. Okuyama, and T. Nagao, “Resonant optical absorption and photothermal process in high refractive index Germanium nanoparticles,” Adv. Opt. Mater. 5(5), 1600902 (2017).
[Crossref]

Jain, M.

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13(4), 1806–1809 (2013).
[Crossref] [PubMed]

Ji, W.

D. Cai, Y. Huang, W. Wang, W. Ji, J. Chen, Z. Chen, and S. Liu, “Fano resonances generated in a single dielectric homogeneous nanoparticle with high structural symmetry,” J. Phys. Chem. C 119(8), 4252–4260 (2015).
[Crossref]

Joannopoulos, J. D.

G. Tao, J. J. Kaufman, S. Shabahang, R. R. Naraghia, S. V. Sukhov, J. D. Joannopoulos, Y. Fink, A. Dogariu, and A. F. Abouraddy, “Digital design of multimaterial photonic particles,” PNAS 113(25), 6839–6844 (2016).
[Crossref] [PubMed]

Kaufman, J. J.

G. Tao, J. J. Kaufman, S. Shabahang, R. R. Naraghia, S. V. Sukhov, J. D. Joannopoulos, Y. Fink, A. Dogariu, and A. F. Abouraddy, “Digital design of multimaterial photonic particles,” PNAS 113(25), 6839–6844 (2016).
[Crossref] [PubMed]

Kawata, S.

S. Kawata, M. Ohtsu, and M. Irie, Nano-Optics (Springer-Verlag, 2002).
[Crossref]

Ke, Y.

H. Wang, P. Liu, Y. Ke, Y. Su, L. Zhang, N. Xu, S. Deng, and H. Chen, “Janus magneto-electric nanosphere dimers exhibiting unidirectional visible light scattering and strong electromagnetic field enhancement,” ACS Nano 9(1), 436–448 (2015).
[Crossref] [PubMed]

Kerker, M.

Kern, K.

J. Dorfmüller, D. Dregely, M. Esslinger, W. Khunsin, R. Vogelgesang, K. Kern, and H. Giessen, “Near-field dynamics of optical Yagi-Uda nanoantennas,” Nano Lett. 11(7), 2819–2824 (2011).
[Crossref] [PubMed]

Khunsin, W.

J. Dorfmüller, D. Dregely, M. Esslinger, W. Khunsin, R. Vogelgesang, K. Kern, and H. Giessen, “Near-field dynamics of optical Yagi-Uda nanoantennas,” Nano Lett. 11(7), 2819–2824 (2011).
[Crossref] [PubMed]

Khurgin, J. B.

J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nature Nanotech. 10(1), 2–6 (2015).
[Crossref]

Kim, Y.

M. Kuo, Y. Kim, M. Hsieh, and S. Lin, “Efficient and directed nano-LED emission by a complete elimination of transverse-electric guided modes,” Nano Lett. 11(2), 476–481 (2011).
[Crossref]

Kivshar, Y.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

Kivshar, Y. S.

W. Liu and Y. S. Kivshar, “Generalized Kerker effects in nanophotonics and meta-optics [Invited],” Opt. Express 26(10), 13085–13105 (2018).
[Crossref] [PubMed]

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core-shell nanoparticles,” ACS Nano 6(6), 5489–5497 (2012).
[Crossref] [PubMed]

I. S. Maksymov, I. Staude, A. E. Miroshnichenko, and Y. S. Kivshar, “Optical Yagi-Uda nanoantennas,” Nanophotonics 1(1), 65–81 (2012).
[Crossref]

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257 (2010).
[Crossref]

Knoester, J.

J. Munárriz, A. V. Malyshev, V. A. Malyshev, and J. Knoester, “Optical nanoantennas with tunable radiation patterns,” Nano Lett. 13(2), 444–450 (2013).
[Crossref] [PubMed]

Koenderink, A. F.

S. R. K. Rodriguez, F. Bernal, T. P. Steinbusch, M. A. Verschuuren, A. F. Koenderink, and J. Gómez Rivas, “Breaking the symmetry of forward-backward light emission with localized and collective magnetoelectric resonances in arrays of pyramid-shaped aluminum nanoparticles,” Phys. Rev. Lett. 113(24), 247401 (2014).
[Crossref] [PubMed]

Kuo, M.

M. Kuo, Y. Kim, M. Hsieh, and S. Lin, “Efficient and directed nano-LED emission by a complete elimination of transverse-electric guided modes,” Nano Lett. 11(2), 476–481 (2011).
[Crossref]

Kuznetsov, A. I.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2(7), 492 (2012).
[Crossref] [PubMed]

Lan, S.

Lapin, Z.

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13(4), 1806–1809 (2013).
[Crossref] [PubMed]

Li, Y.

G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, and S. A. Maier, “Enhanced third harmonic generation in single Germanium nanodisks excited at the anapole Mode,” Nano Lett. 16(7), 4635 (2016).
[Crossref] [PubMed]

Y. Li, M. Wan, W. Wu, Z. Chen, P. Zhan, and Z. Wang, “Broadband zero-backward and near-zero-forward scattering by metallo-dielectric core-shell nanoparticles,” Sci. Rep. 5, 12491 (2015).
[Crossref] [PubMed]

Liang, Z.

Lin, H.

W. Wang, X. Zhao, L. Zheng, L. Xiong, Y. Lin, and H. Lin, “Highly-tunable magnetic and electric responses in the perforated Au-SiO2-Si multilayer nanoshells,” Plasmonics. 13(1), 1–6 (2017).

Lin, S.

M. Kuo, Y. Kim, M. Hsieh, and S. Lin, “Efficient and directed nano-LED emission by a complete elimination of transverse-electric guided modes,” Nano Lett. 11(2), 476–481 (2011).
[Crossref]

Lin, Y.

W. Wang, X. Zhao, L. Zheng, L. Xiong, Y. Lin, and H. Lin, “Highly-tunable magnetic and electric responses in the perforated Au-SiO2-Si multilayer nanoshells,” Plasmonics. 13(1), 1–6 (2017).

Lippens, D.

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12(12), 60–69 (2009).
[Crossref]

Liu, H.

Liu, P.

H. Wang, P. Liu, Y. Ke, Y. Su, L. Zhang, N. Xu, S. Deng, and H. Chen, “Janus magneto-electric nanosphere dimers exhibiting unidirectional visible light scattering and strong electromagnetic field enhancement,” ACS Nano 9(1), 436–448 (2015).
[Crossref] [PubMed]

Liu, S.

D. Cai, Y. Huang, W. Wang, W. Ji, J. Chen, Z. Chen, and S. Liu, “Fano resonances generated in a single dielectric homogeneous nanoparticle with high structural symmetry,” J. Phys. Chem. C 119(8), 4252–4260 (2015).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

Liu, W.

W. Liu and Y. S. Kivshar, “Generalized Kerker effects in nanophotonics and meta-optics [Invited],” Opt. Express 26(10), 13085–13105 (2018).
[Crossref] [PubMed]

W. Liu, “Generalized magnetic mirrors,” Phys. Rev. Lett. 119(12), 123902 (2017).
[Crossref]

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core-shell nanoparticles,” ACS Nano 6(6), 5489–5497 (2012).
[Crossref] [PubMed]

Liu, Y.

W. Wang, Y. Wang, Y. Shi, and Y. Liu, “Magnetic-based double Fano resonances in Au-SiO2-Si multilayer nanoshells,” Plasmonics. 12(5), 1537–1543 (2017).
[Crossref]

López, C.

Luk, T. S.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

Luk’yanchuk, B.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2(7), 492 (2012).
[Crossref] [PubMed]

Ma, C.

C. Ma, J. Yan, Y. Huang, and G. Yang, “Directional scattering in a germanium nanosphere in the visible light region,” Adv. Opt. Mater. 5(24), 1700761 (2017).
[Crossref]

Maier, S. A.

G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, and S. A. Maier, “Enhanced third harmonic generation in single Germanium nanodisks excited at the anapole Mode,” Nano Lett. 16(7), 4635 (2016).
[Crossref] [PubMed]

Maksymov, I. S.

I. S. Maksymov, I. Staude, A. E. Miroshnichenko, and Y. S. Kivshar, “Optical Yagi-Uda nanoantennas,” Nanophotonics 1(1), 65–81 (2012).
[Crossref]

Malyshev, A. V.

J. Munárriz, A. V. Malyshev, V. A. Malyshev, and J. Knoester, “Optical nanoantennas with tunable radiation patterns,” Nano Lett. 13(2), 444–450 (2013).
[Crossref] [PubMed]

Malyshev, V. A.

J. Munárriz, A. V. Malyshev, V. A. Malyshev, and J. Knoester, “Optical nanoantennas with tunable radiation patterns,” Nano Lett. 13(2), 444–450 (2013).
[Crossref] [PubMed]

Ming, N.

J. Pan, Z. Chen, Z. Yan, Z. Cao, P. Zhan, N. Ming, and Z. Wang, “Symmetric and anti-symmetric magnetic resonances in double-triangle nanoparticle arrays fabricated via angle-resolved nanosphere lithography,” Aip Adv. 1(4), 2075 (2011).
[Crossref]

Miroshnichenko, A. E.

T. Feng, Y. Xu, W. Zhang, and A. E. Miroshnichenko, “Ideal magnetic dipole scattering,” Phys. Rev. Lett. 118(17), 173901 (2017).
[Crossref] [PubMed]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

I. S. Maksymov, I. Staude, A. E. Miroshnichenko, and Y. S. Kivshar, “Optical Yagi-Uda nanoantennas,” Nanophotonics 1(1), 65–81 (2012).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2(7), 492 (2012).
[Crossref] [PubMed]

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core-shell nanoparticles,” ACS Nano 6(6), 5489–5497 (2012).
[Crossref] [PubMed]

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257 (2010).
[Crossref]

Moreno, F.

J. M. Sanz, R. A. Osa, A. I. Barreda, J. M. Saiz, F. González, and F. Moreno, “Influence of pollutants in the magneto-dielectric response of silicon nanoparticles,” Opt. Lett. 39(11), 3142–3144 (2014).
[Crossref] [PubMed]

R. Gomez-Medina, B. Garcia-Camara, I. Suarez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Saenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. of Nanophotonics 5(1), 053512 (2011).
[Crossref]

Munárriz, J.

J. Munárriz, A. V. Malyshev, V. A. Malyshev, and J. Knoester, “Optical nanoantennas with tunable radiation patterns,” Nano Lett. 13(2), 444–450 (2013).
[Crossref] [PubMed]

Nagao, T.

S. Ishii, K. Chen, H. Okuyama, and T. Nagao, “Resonant optical absorption and photothermal process in high refractive index Germanium nanoparticles,” Adv. Opt. Mater. 5(5), 1600902 (2017).
[Crossref]

Naraghia, R. R.

G. Tao, J. J. Kaufman, S. Shabahang, R. R. Naraghia, S. V. Sukhov, J. D. Joannopoulos, Y. Fink, A. Dogariu, and A. F. Abouraddy, “Digital design of multimaterial photonic particles,” PNAS 113(25), 6839–6844 (2016).
[Crossref] [PubMed]

Neshev, D. N.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core-shell nanoparticles,” ACS Nano 6(6), 5489–5497 (2012).
[Crossref] [PubMed]

Nielsen, M. P.

G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, and S. A. Maier, “Enhanced third harmonic generation in single Germanium nanodisks excited at the anapole Mode,” Nano Lett. 16(7), 4635 (2016).
[Crossref] [PubMed]

Nieto-Vesperinas, M.

R. Gomez-Medina, B. Garcia-Camara, I. Suarez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Saenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. of Nanophotonics 5(1), 053512 (2011).
[Crossref]

A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron Silicon particles in the infrared,” Opt. Express 19(6), 4815–4826 (2011).
[Crossref] [PubMed]

Niu, X.

P. Yu, Y. Yao, J. Wu, X. Niu, A. L. Rogach, and Z. Wang, “Effects of plasmonic metal core-dielectric shell nanoparticles on the broadband light absorption enhancement in thin film solar cells,” Sci. Rep. 7(1), 7696 (2017).
[Crossref] [PubMed]

Novotny, L.

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13(4), 1806–1809 (2013).
[Crossref] [PubMed]

L. Novotny and B. Hecht, Principles of nano-optics (Cambridge University, 2006).
[Crossref]

Ohtsu, M.

S. Kawata, M. Ohtsu, and M. Irie, Nano-Optics (Springer-Verlag, 2002).
[Crossref]

Okuyama, H.

S. Ishii, K. Chen, H. Okuyama, and T. Nagao, “Resonant optical absorption and photothermal process in high refractive index Germanium nanoparticles,” Adv. Opt. Mater. 5(5), 1600902 (2017).
[Crossref]

Osa, R. A.

Oulton, R. F.

G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, and S. A. Maier, “Enhanced third harmonic generation in single Germanium nanodisks excited at the anapole Mode,” Nano Lett. 16(7), 4635 (2016).
[Crossref] [PubMed]

Ouyang, M.

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

Pan, J.

J. Pan, Z. Chen, Z. Yan, Z. Cao, P. Zhan, N. Ming, and Z. Wang, “Symmetric and anti-symmetric magnetic resonances in double-triangle nanoparticle arrays fabricated via angle-resolved nanosphere lithography,” Aip Adv. 1(4), 2075 (2011).
[Crossref]

Panmai, M.

Peng, Y.

Person, S.

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13(4), 1806–1809 (2013).
[Crossref] [PubMed]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mater. 9(3), 205–213 (2010).
[Crossref]

Rodriguez, S. R. K.

S. R. K. Rodriguez, F. Bernal, T. P. Steinbusch, M. A. Verschuuren, A. F. Koenderink, and J. Gómez Rivas, “Breaking the symmetry of forward-backward light emission with localized and collective magnetoelectric resonances in arrays of pyramid-shaped aluminum nanoparticles,” Phys. Rev. Lett. 113(24), 247401 (2014).
[Crossref] [PubMed]

Rogach, A. L.

P. Yu, Y. Yao, J. Wu, X. Niu, A. L. Rogach, and Z. Wang, “Effects of plasmonic metal core-dielectric shell nanoparticles on the broadband light absorption enhancement in thin film solar cells,” Sci. Rep. 7(1), 7696 (2017).
[Crossref] [PubMed]

Saenz, J. J.

R. Gomez-Medina, B. Garcia-Camara, I. Suarez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Saenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. of Nanophotonics 5(1), 053512 (2011).
[Crossref]

Sáenz, J. J.

Saiz, J. M.

Sanz, J. M.

Scheffold, F.

Shabahang, S.

G. Tao, J. J. Kaufman, S. Shabahang, R. R. Naraghia, S. V. Sukhov, J. D. Joannopoulos, Y. Fink, A. Dogariu, and A. F. Abouraddy, “Digital design of multimaterial photonic particles,” PNAS 113(25), 6839–6844 (2016).
[Crossref] [PubMed]

Shi, Y.

W. Wang, Y. Wang, Y. Shi, and Y. Liu, “Magnetic-based double Fano resonances in Au-SiO2-Si multilayer nanoshells,” Plasmonics. 12(5), 1537–1543 (2017).
[Crossref]

Soukoulis, C. M.

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nature Photon. 5(9), 523–530 (2011).
[Crossref]

Staude, I.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

I. S. Maksymov, I. Staude, A. E. Miroshnichenko, and Y. S. Kivshar, “Optical Yagi-Uda nanoantennas,” Nanophotonics 1(1), 65–81 (2012).
[Crossref]

Steinbusch, T. P.

S. R. K. Rodriguez, F. Bernal, T. P. Steinbusch, M. A. Verschuuren, A. F. Koenderink, and J. Gómez Rivas, “Breaking the symmetry of forward-backward light emission with localized and collective magnetoelectric resonances in arrays of pyramid-shaped aluminum nanoparticles,” Phys. Rev. Lett. 113(24), 247401 (2014).
[Crossref] [PubMed]

Su, Y.

H. Wang, P. Liu, Y. Ke, Y. Su, L. Zhang, N. Xu, S. Deng, and H. Chen, “Janus magneto-electric nanosphere dimers exhibiting unidirectional visible light scattering and strong electromagnetic field enhancement,” ACS Nano 9(1), 436–448 (2015).
[Crossref] [PubMed]

Suarez-Lacalle, I.

R. Gomez-Medina, B. Garcia-Camara, I. Suarez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Saenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. of Nanophotonics 5(1), 053512 (2011).
[Crossref]

Sukhov, S. V.

G. Tao, J. J. Kaufman, S. Shabahang, R. R. Naraghia, S. V. Sukhov, J. D. Joannopoulos, Y. Fink, A. Dogariu, and A. F. Abouraddy, “Digital design of multimaterial photonic particles,” PNAS 113(25), 6839–6844 (2016).
[Crossref] [PubMed]

Sun, Z.

Tao, G.

G. Tao, J. J. Kaufman, S. Shabahang, R. R. Naraghia, S. V. Sukhov, J. D. Joannopoulos, Y. Fink, A. Dogariu, and A. F. Abouraddy, “Digital design of multimaterial photonic particles,” PNAS 113(25), 6839–6844 (2016).
[Crossref] [PubMed]

Tie, S.

Verschuuren, M. A.

S. R. K. Rodriguez, F. Bernal, T. P. Steinbusch, M. A. Verschuuren, A. F. Koenderink, and J. Gómez Rivas, “Breaking the symmetry of forward-backward light emission with localized and collective magnetoelectric resonances in arrays of pyramid-shaped aluminum nanoparticles,” Phys. Rev. Lett. 113(24), 247401 (2014).
[Crossref] [PubMed]

Vogelgesang, R.

J. Dorfmüller, D. Dregely, M. Esslinger, W. Khunsin, R. Vogelgesang, K. Kern, and H. Giessen, “Near-field dynamics of optical Yagi-Uda nanoantennas,” Nano Lett. 11(7), 2819–2824 (2011).
[Crossref] [PubMed]

Wan, M.

Y. Li, M. Wan, W. Wu, Z. Chen, P. Zhan, and Z. Wang, “Broadband zero-backward and near-zero-forward scattering by metallo-dielectric core-shell nanoparticles,” Sci. Rep. 5, 12491 (2015).
[Crossref] [PubMed]

Wang, D.

D. Wang, W. Zhu, M. D. Best, J. P. Camden, and K. B. Crozier, “Directional raman scattering from single molecules in the feed gaps of optical antennas,” Nano Lett. 13(5), 2194–2198 (2013).
[Crossref] [PubMed]

wang, D. S.

Wang, H.

H. Wang, P. Liu, Y. Ke, Y. Su, L. Zhang, N. Xu, S. Deng, and H. Chen, “Janus magneto-electric nanosphere dimers exhibiting unidirectional visible light scattering and strong electromagnetic field enhancement,” ACS Nano 9(1), 436–448 (2015).
[Crossref] [PubMed]

Wang, W.

W. Wang, Y. Wang, Y. Shi, and Y. Liu, “Magnetic-based double Fano resonances in Au-SiO2-Si multilayer nanoshells,” Plasmonics. 12(5), 1537–1543 (2017).
[Crossref]

W. Wang, X. Zhao, L. Zheng, L. Xiong, Y. Lin, and H. Lin, “Highly-tunable magnetic and electric responses in the perforated Au-SiO2-Si multilayer nanoshells,” Plasmonics. 13(1), 1–6 (2017).

D. Cai, Y. Huang, W. Wang, W. Ji, J. Chen, Z. Chen, and S. Liu, “Fano resonances generated in a single dielectric homogeneous nanoparticle with high structural symmetry,” J. Phys. Chem. C 119(8), 4252–4260 (2015).
[Crossref]

Wang, Y.

W. Wang, Y. Wang, Y. Shi, and Y. Liu, “Magnetic-based double Fano resonances in Au-SiO2-Si multilayer nanoshells,” Plasmonics. 12(5), 1537–1543 (2017).
[Crossref]

Wang, Z.

P. Yu, Y. Yao, J. Wu, X. Niu, A. L. Rogach, and Z. Wang, “Effects of plasmonic metal core-dielectric shell nanoparticles on the broadband light absorption enhancement in thin film solar cells,” Sci. Rep. 7(1), 7696 (2017).
[Crossref] [PubMed]

Y. Li, M. Wan, W. Wu, Z. Chen, P. Zhan, and Z. Wang, “Broadband zero-backward and near-zero-forward scattering by metallo-dielectric core-shell nanoparticles,” Sci. Rep. 5, 12491 (2015).
[Crossref] [PubMed]

J. Pan, Z. Chen, Z. Yan, Z. Cao, P. Zhan, N. Ming, and Z. Wang, “Symmetric and anti-symmetric magnetic resonances in double-triangle nanoparticle arrays fabricated via angle-resolved nanosphere lithography,” Aip Adv. 1(4), 2075 (2011).
[Crossref]

Wegener, M.

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nature Photon. 5(9), 523–530 (2011).
[Crossref]

Wicks, G.

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13(4), 1806–1809 (2013).
[Crossref] [PubMed]

Wu, J.

P. Yu, Y. Yao, J. Wu, X. Niu, A. L. Rogach, and Z. Wang, “Effects of plasmonic metal core-dielectric shell nanoparticles on the broadband light absorption enhancement in thin film solar cells,” Sci. Rep. 7(1), 7696 (2017).
[Crossref] [PubMed]

Wu, W.

Y. Li, M. Wan, W. Wu, Z. Chen, P. Zhan, and Z. Wang, “Broadband zero-backward and near-zero-forward scattering by metallo-dielectric core-shell nanoparticles,” Sci. Rep. 5, 12491 (2015).
[Crossref] [PubMed]

Xiang, J.

Xiong, L.

W. Wang, X. Zhao, L. Zheng, L. Xiong, Y. Lin, and H. Lin, “Highly-tunable magnetic and electric responses in the perforated Au-SiO2-Si multilayer nanoshells,” Plasmonics. 13(1), 1–6 (2017).

Xu, N.

H. Wang, P. Liu, Y. Ke, Y. Su, L. Zhang, N. Xu, S. Deng, and H. Chen, “Janus magneto-electric nanosphere dimers exhibiting unidirectional visible light scattering and strong electromagnetic field enhancement,” ACS Nano 9(1), 436–448 (2015).
[Crossref] [PubMed]

Xu, Y.

T. Feng, Y. Xu, W. Zhang, and A. E. Miroshnichenko, “Ideal magnetic dipole scattering,” Phys. Rev. Lett. 118(17), 173901 (2017).
[Crossref] [PubMed]

T. Feng, Y. Xu, Z. Liang, and W. Zhang, “All-dielectric hollow nanodisk for tailoring magnetic dipole emission,” Opt. Lett. 41(21), 5011–5014 (2016).
[Crossref] [PubMed]

Yan, J.

C. Ma, J. Yan, Y. Huang, and G. Yang, “Directional scattering in a germanium nanosphere in the visible light region,” Adv. Opt. Mater. 5(24), 1700761 (2017).
[Crossref]

Yan, Z.

J. Pan, Z. Chen, Z. Yan, Z. Cao, P. Zhan, N. Ming, and Z. Wang, “Symmetric and anti-symmetric magnetic resonances in double-triangle nanoparticle arrays fabricated via angle-resolved nanosphere lithography,” Aip Adv. 1(4), 2075 (2011).
[Crossref]

Yang, G.

C. Ma, J. Yan, Y. Huang, and G. Yang, “Directional scattering in a germanium nanosphere in the visible light region,” Adv. Opt. Mater. 5(24), 1700761 (2017).
[Crossref]

Yao, Y.

P. Yu, Y. Yao, J. Wu, X. Niu, A. L. Rogach, and Z. Wang, “Effects of plasmonic metal core-dielectric shell nanoparticles on the broadband light absorption enhancement in thin film solar cells,” Sci. Rep. 7(1), 7696 (2017).
[Crossref] [PubMed]

Yu, P.

P. Yu, Y. Yao, J. Wu, X. Niu, A. L. Rogach, and Z. Wang, “Effects of plasmonic metal core-dielectric shell nanoparticles on the broadband light absorption enhancement in thin film solar cells,” Sci. Rep. 7(1), 7696 (2017).
[Crossref] [PubMed]

Yu, Y. F.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

Zhan, P.

Y. Li, M. Wan, W. Wu, Z. Chen, P. Zhan, and Z. Wang, “Broadband zero-backward and near-zero-forward scattering by metallo-dielectric core-shell nanoparticles,” Sci. Rep. 5, 12491 (2015).
[Crossref] [PubMed]

J. Pan, Z. Chen, Z. Yan, Z. Cao, P. Zhan, N. Ming, and Z. Wang, “Symmetric and anti-symmetric magnetic resonances in double-triangle nanoparticle arrays fabricated via angle-resolved nanosphere lithography,” Aip Adv. 1(4), 2075 (2011).
[Crossref]

Zhang, D.

Zhang, F.

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12(12), 60–69 (2009).
[Crossref]

Zhang, J.

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2(7), 492 (2012).
[Crossref] [PubMed]

Zhang, L.

H. Wang, P. Liu, Y. Ke, Y. Su, L. Zhang, N. Xu, S. Deng, and H. Chen, “Janus magneto-electric nanosphere dimers exhibiting unidirectional visible light scattering and strong electromagnetic field enhancement,” ACS Nano 9(1), 436–448 (2015).
[Crossref] [PubMed]

Zhang, W.

T. Feng, Y. Xu, W. Zhang, and A. E. Miroshnichenko, “Ideal magnetic dipole scattering,” Phys. Rev. Lett. 118(17), 173901 (2017).
[Crossref] [PubMed]

T. Feng, Y. Xu, Z. Liang, and W. Zhang, “All-dielectric hollow nanodisk for tailoring magnetic dipole emission,” Opt. Lett. 41(21), 5011–5014 (2016).
[Crossref] [PubMed]

Zhao, Q.

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12(12), 60–69 (2009).
[Crossref]

Zhao, X.

W. Wang, X. Zhao, L. Zheng, L. Xiong, Y. Lin, and H. Lin, “Highly-tunable magnetic and electric responses in the perforated Au-SiO2-Si multilayer nanoshells,” Plasmonics. 13(1), 1–6 (2017).

Zheng, L.

W. Wang, X. Zhao, L. Zheng, L. Xiong, Y. Lin, and H. Lin, “Highly-tunable magnetic and electric responses in the perforated Au-SiO2-Si multilayer nanoshells,” Plasmonics. 13(1), 1–6 (2017).

Zhou, J.

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12(12), 60–69 (2009).
[Crossref]

Zhu, W.

D. Wang, W. Zhu, M. D. Best, J. P. Camden, and K. B. Crozier, “Directional raman scattering from single molecules in the feed gaps of optical antennas,” Nano Lett. 13(5), 2194–2198 (2013).
[Crossref] [PubMed]

ACS Nano (3)

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

H. Wang, P. Liu, Y. Ke, Y. Su, L. Zhang, N. Xu, S. Deng, and H. Chen, “Janus magneto-electric nanosphere dimers exhibiting unidirectional visible light scattering and strong electromagnetic field enhancement,” ACS Nano 9(1), 436–448 (2015).
[Crossref] [PubMed]

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core-shell nanoparticles,” ACS Nano 6(6), 5489–5497 (2012).
[Crossref] [PubMed]

Adv. Opt. Mater. (2)

S. Ishii, K. Chen, H. Okuyama, and T. Nagao, “Resonant optical absorption and photothermal process in high refractive index Germanium nanoparticles,” Adv. Opt. Mater. 5(5), 1600902 (2017).
[Crossref]

C. Ma, J. Yan, Y. Huang, and G. Yang, “Directional scattering in a germanium nanosphere in the visible light region,” Adv. Opt. Mater. 5(24), 1700761 (2017).
[Crossref]

Aip Adv. (1)

J. Pan, Z. Chen, Z. Yan, Z. Cao, P. Zhan, N. Ming, and Z. Wang, “Symmetric and anti-symmetric magnetic resonances in double-triangle nanoparticle arrays fabricated via angle-resolved nanosphere lithography,” Aip Adv. 1(4), 2075 (2011).
[Crossref]

J. of Nanophotonics (1)

R. Gomez-Medina, B. Garcia-Camara, I. Suarez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Saenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. of Nanophotonics 5(1), 053512 (2011).
[Crossref]

J. Opt. Soc. Am. (1)

J. Phys. Chem. C (1)

D. Cai, Y. Huang, W. Wang, W. Ji, J. Chen, Z. Chen, and S. Liu, “Fano resonances generated in a single dielectric homogeneous nanoparticle with high structural symmetry,” J. Phys. Chem. C 119(8), 4252–4260 (2015).
[Crossref]

Mater. Today (1)

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12(12), 60–69 (2009).
[Crossref]

Nano Lett. (7)

J. Munárriz, A. V. Malyshev, V. A. Malyshev, and J. Knoester, “Optical nanoantennas with tunable radiation patterns,” Nano Lett. 13(2), 444–450 (2013).
[Crossref] [PubMed]

J. Dorfmüller, D. Dregely, M. Esslinger, W. Khunsin, R. Vogelgesang, K. Kern, and H. Giessen, “Near-field dynamics of optical Yagi-Uda nanoantennas,” Nano Lett. 11(7), 2819–2824 (2011).
[Crossref] [PubMed]

M. Kuo, Y. Kim, M. Hsieh, and S. Lin, “Efficient and directed nano-LED emission by a complete elimination of transverse-electric guided modes,” Nano Lett. 11(2), 476–481 (2011).
[Crossref]

A. Ahmed and R. Gordon, “Single molecule directivity enhanced raman scattering using nanoantennas,” Nano Lett. 12(5), 2625–2630 (2012).
[Crossref] [PubMed]

D. Wang, W. Zhu, M. D. Best, J. P. Camden, and K. B. Crozier, “Directional raman scattering from single molecules in the feed gaps of optical antennas,” Nano Lett. 13(5), 2194–2198 (2013).
[Crossref] [PubMed]

G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, and S. A. Maier, “Enhanced third harmonic generation in single Germanium nanodisks excited at the anapole Mode,” Nano Lett. 16(7), 4635 (2016).
[Crossref] [PubMed]

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13(4), 1806–1809 (2013).
[Crossref] [PubMed]

Nanophotonics (1)

I. S. Maksymov, I. Staude, A. E. Miroshnichenko, and Y. S. Kivshar, “Optical Yagi-Uda nanoantennas,” Nanophotonics 1(1), 65–81 (2012).
[Crossref]

Nat. Commun. (1)

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

Nature Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mater. 9(3), 205–213 (2010).
[Crossref]

Nature Nanotech. (1)

J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nature Nanotech. 10(1), 2–6 (2015).
[Crossref]

Nature Photon. (1)

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nature Photon. 5(9), 523–530 (2011).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. Lett. (3)

S. R. K. Rodriguez, F. Bernal, T. P. Steinbusch, M. A. Verschuuren, A. F. Koenderink, and J. Gómez Rivas, “Breaking the symmetry of forward-backward light emission with localized and collective magnetoelectric resonances in arrays of pyramid-shaped aluminum nanoparticles,” Phys. Rev. Lett. 113(24), 247401 (2014).
[Crossref] [PubMed]

T. Feng, Y. Xu, W. Zhang, and A. E. Miroshnichenko, “Ideal magnetic dipole scattering,” Phys. Rev. Lett. 118(17), 173901 (2017).
[Crossref] [PubMed]

W. Liu, “Generalized magnetic mirrors,” Phys. Rev. Lett. 119(12), 123902 (2017).
[Crossref]

Plasmonics. (2)

W. Wang, X. Zhao, L. Zheng, L. Xiong, Y. Lin, and H. Lin, “Highly-tunable magnetic and electric responses in the perforated Au-SiO2-Si multilayer nanoshells,” Plasmonics. 13(1), 1–6 (2017).

W. Wang, Y. Wang, Y. Shi, and Y. Liu, “Magnetic-based double Fano resonances in Au-SiO2-Si multilayer nanoshells,” Plasmonics. 12(5), 1537–1543 (2017).
[Crossref]

PNAS (1)

G. Tao, J. J. Kaufman, S. Shabahang, R. R. Naraghia, S. V. Sukhov, J. D. Joannopoulos, Y. Fink, A. Dogariu, and A. F. Abouraddy, “Digital design of multimaterial photonic particles,” PNAS 113(25), 6839–6844 (2016).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257 (2010).
[Crossref]

Sci. Rep. (3)

P. Yu, Y. Yao, J. Wu, X. Niu, A. L. Rogach, and Z. Wang, “Effects of plasmonic metal core-dielectric shell nanoparticles on the broadband light absorption enhancement in thin film solar cells,” Sci. Rep. 7(1), 7696 (2017).
[Crossref] [PubMed]

Y. Li, M. Wan, W. Wu, Z. Chen, P. Zhan, and Z. Wang, “Broadband zero-backward and near-zero-forward scattering by metallo-dielectric core-shell nanoparticles,” Sci. Rep. 5, 12491 (2015).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2(7), 492 (2012).
[Crossref] [PubMed]

Other (5)

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (Wiley, 1983).

M. Kerker, The scattering of light and other electromagnetic radiation (Academic, 1969).

L. Novotny and B. Hecht, Principles of nano-optics (Cambridge University, 2006).
[Crossref]

S. Kawata, M. Ohtsu, and M. Irie, Nano-Optics (Springer-Verlag, 2002).
[Crossref]

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Geometry of the core-shell SiO2-Ge-SiO2 nanoparticle.
Fig. 2
Fig. 2 Calculated scattering properties of the core-shell SiO2-Ge-SiO2 nanoparticles with R1 = 58 nm, t1 = 73 nm and t2 = 182 nm. (a) Forward and backward scattering efficiencies spectra. (b) The contribution of the Mie multipole decomposition term to the total scattering efficiency; a1 (ED) and b1 (MD) for the dipole term; a2 (EQ) and b2 (MQ) for the quadrupole term; and a3 and b3 for the octupole term. (c) Far-field scattering patterns of the nanoparticles at 720 nm. (d) Two-dimensional (2D) angular distributions of the nanoparticles at 720 nm.
Fig. 3
Fig. 3 Real and imaginary parts of the multipole Mie scattering coefficients of core-shell SiO2-Ge-SiO2 nanoparticles with R1 = 58 nm, t1 = 73 nm and t2 = 182 nm. (a) The dipole terms a1 and b1. (b) The dipole-related term 3(a1b1) and the quadrupole-related term 5 (a2b2).
Fig. 4
Fig. 4 The relationship between the unidirectional scattering properties of the core-shell SiO2-Ge-SiO2 nanoparticles and the Ge layer thickness t1 with R1 fixed at 76 nm and t2 fixed at 103 nm. (a) Contour plot of the backward scattering efficiency as a function of wavelength and the Ge layer thickness t1. (b) Contour plot of the forward scattering efficiency as a function of wavelength and the Ge layer thickness t1. (c) Forward and backward scattering efficiency spectra of the core-shell SiO2-Ge-SiO2 nanoparticles with R1 = 76 nm, t1 = 8 nm and t2 = 103 nm, as indicated by the horizontal white dashed line in (a). (d) Forward and backward scattering efficiency of the core-shell SiO2-Ge-SiO2 nanoparticles with R1 = 76 nm and t2 =103 nm versus t1 when the wavelength was fixed at 451 nm, as indicated by the vertical white dashed line in (a).
Fig. 5
Fig. 5 Far-field scattering patterns and corresponding 2D angular distributions of core-shell SiO2-Ge-SiO2 nanoparticles at different wavelengths with R1 = 76 nm, t1 = 8 nm and t2 = 103 nm. (a) λ = 458 nm; (b) λ = 600 nm; (c) λ = 700 nm; and (d) λ = 755 nm.
Fig. 6
Fig. 6 (a) The contour of backward scattering efficiency as a function of wavelength and the core SiO2 layer radius R1 with t1 fixed at 16 nm and t2 fixed at 103 nm. (b) The contour of forward scattering efficiency as a function of wavelength and the core SiO2 layer radius R1 with t1 fixed at 16 nm and t2 fixed at 103 nm. (c) The contour of backward scattering efficiency contour as a function of wavelength and the outer SiO2 layer thickness t2 with R1 fixed at 76 nm and t1 fixed at 16 nm. (d) The contour of forward scattering efficiency as a function of wavelength and the outer SiO2 layer thickness t2 with R1 fixed at 76 nm and t1 fixed at 16 nm.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

C sca = 2 π k 2 n = 1 ( 2 n + 1 ) ( | a n | 2 + | b n | 2 ) ,
Q sca = C sca / S ,
Q b = 1 k 2 R 3 2 | n = 1 ( 1 ) n ( 2 n + 1 ) ( a n b n ) | 2 .
Q b = 9 k 2 R 3 2 | a 1 b 1 | 2 .
Q b = 1 k 2 R 3 2 | 5 ( a 2 b 2 ) 3 ( a 1 b 1 ) | 2 .

Metrics