Abstract

This paper numerically and experimentally investigates the performance of free-space optical receiver using modes diversity coherent receipt under moderate-to-strong turbulence. By utilizing a three-mode photonic lantern with digital maximum ratio combining, a 40 Gbps QPSK optical signal is received. The turbulence strength is measured by the ratio of beam diameter to atmospheric coherence length, D/r0. The larger the D/r0, the stronger the turbulence is, and vice versa. Compared with conventional single mode fiber based receipt, the required transmitted power can reduce by 4.6 dB and 4 dB at 10% interruption probability under turbulence strength D/r0 = 8 and 16. The required transmitted power at bit error ratio of 2.2 × 10−2 can relax by 4.2 dB and 5 dB under turbulence strength D/r0 = 8 and 16.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Free-space to few-mode-fiber coupling under atmospheric turbulence

Donghao Zheng, Yan Li, Erhu Chen, Beibei Li, Deming Kong, Wei Li, and Jian Wu
Opt. Express 24(16) 18739-18744 (2016)

Performance analysis of fiber-based free-space optical communications with coherent detection spatial diversity

Kangning Li, Jing Ma, Liying Tan, Siyuan Yu, and Chao Zhai
Appl. Opt. 55(17) 4649-4656 (2016)

References

  • View by:
  • |
  • |
  • |

  1. D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the lunar laser communication demonstration,” Proc. SPIE 8971, 89710S (2014).
    [Crossref]
  2. E. Leitgeb, M. Gebhart, and U. Birnbacer, “Optical networks, last mile access and applications,” J Opt. Fiber Commun. Res. 2(1), 56–85 (2005).
    [Crossref]
  3. M. Karlsson and E. Agrell, “Which is the most power-efficient modulation format in optical links?” Opt. Express 17(13), 10814–10819 (2009).
    [Crossref] [PubMed]
  4. X. Liu, S. Chandrasekhar, T. H. Wood, R. W. Tkach, P. J. Winzer, E. C. Burrows, and A. R. Chraplyvy, “M-ary pulse-position modulation and frequency-shift keying with additional polarization/phase modulation for high-sensitivity optical transmission,” Opt. Express 19(26), B868–B881 (2011).
    [Crossref] [PubMed]
  5. X. Liu, T. H. Wood, R. W. Tkach, and S. Chandrasekhar, “Demonstration of Record Sensitivities in Optically Preamplified Receivers by Combining PDM-QPSK and M-Ary Pulse-Position Modulation,” J. Lightwave Technol. 30(4), 406–413 (2012).
    [Crossref]
  6. S. Tsukamoto, K. Katoh, and K. Kikuchi, “Coherent demodulation of optical multilevel phase-shift-keying signals using homodyne detection and digital signal processing,” IEEE Photonics Technol. Lett. 18(10), 1131–1133 (2006).
    [Crossref]
  7. E. Ip, A. P. T. Lau, D. J. F. Barros, and J. M. Kahn, “Coherent detection in optical fiber systems,” Opt. Express 16(2), 753–791 (2008).
    [Crossref] [PubMed]
  8. D. O. Caplan, “Laser communication transmitter and receiver design,” J. Opt. Fiber Commun. Rep. 4(4-5), 225–362 (2007).
    [Crossref]
  9. E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. D. Errico, V. Guarino, and M. Matsumoto, “1.28 terabit/s (32x40 Gbit/s) wdm transmission system for free space optical communications,” IEEE J. Sel. Areas Comm. 27(9), 1639–1645 (2009).
    [Crossref]
  10. J. D. Strasburg and W. W. Harper, “Impact of atmospheric turbulence on beam propagation,” Proc. SPIE 5413, 93–102 (2004).
    [Crossref]
  11. Y. Dikmelik and F. M. Davidson, “Fiber-coupling efficiency for free-space optical communication through atmospheric turbulence,” Appl. Opt. 44(23), 4946–4952 (2005).
    [Crossref] [PubMed]
  12. P. Gatt, T. P. Costello, D. A. Heimmermann, D. C. Castellanos, A. R. Weeks, and C. M. Stickley, “Coherent optical array receivers for the mitigation of atmospheric turbulence and speckle effects,” Appl. Opt. 35(30), 5999–6009 (1996).
    [Crossref] [PubMed]
  13. S. Navidpour, M. Uysal, and M. Kavehrad, “BER Performance of Free-Space Optical Transmission with Spatial Diversity,” IEEE Trans. Wirel. Commun. 6(8), 2813–2819 (2007).
    [Crossref]
  14. W. Liu, K. Yao, D. Huang, X. Lin, L. Wang, and Y. Lv, “Performance evaluation of coherent free space optical communications with a double-stage fast-steering-mirror adaptive optics system depending on the Greenwood frequency,” Opt. Express 24(12), 13288–13302 (2016).
    [Crossref] [PubMed]
  15. M. L. Plett, P. R. Barbier, and D. W. Rush, “Compact adaptive optical system based on blind optimization and a micromachined membrane deformable mirror,” Appl. Opt. 40(3), 327–330 (2001).
    [Crossref] [PubMed]
  16. W. Wang, S. Zhong, Fu, and C. Lin, “Performance Comparison of Different Modulation Formats Over Free-Space Optical (FSO) Turbulence Links With Space Diversity Reception Technique,” IEEE Photonics J. 1(6), 277–285 (2009).
    [Crossref]
  17. K. Li, J. Ma, L. Tan, S. Yu, and C. Zhai, “Performance analysis of fiber-based free-space optical communications with coherent detection spatial diversity,” Appl. Opt. 55(17), 4649–4656 (2016).
    [Crossref] [PubMed]
  18. D. Zheng, Y. Li, E. Chen, B. Li, D. Kong, W. Li, and J. Wu, “Free-space to few-mode-fiber coupling under atmospheric turbulence,” Opt. Express 24(16), 18739–18744 (2016).
    [Crossref] [PubMed]
  19. D. J. Geisler, T. M. Yarnall, G. Lund, C. M. Schieler, M. L. Stevens, N. K. Fontaine, B. S. Robinson, and S. A. Hamilton, “Experimental Comparison of 3-Mode and Single-Mode Coupling Over a 1.6-km Free-Space Link,” Proc. SPIE 10524, 105240H (2018).
  20. D. Zheng, Y. Li, B. Li, W. Li, E. Chen, and J. Wu, “Free Space to Few-Mode Fiber Coupling Efficiency improvement with Adaptive Optics under Atmospheric Turbulence,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2017), paper Th3C.2.
    [Crossref]
  21. M. Arikawa, Y. Ono, and T. Ito, “Mode diversity coherent receiver with few-mode fiber-coupling for high-speed free-space optical communication under atmospheric turbulence,” Proc. SPIE 10524, 1052412 (2018).
  22. L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE, 2005), Chap. 3.
  23. D. L. Fried, “Statistics of a geometric representation of wavefront distortion,” J. Opt. Soc. Am. 55(11), 1427–1435 (1965).
    [Crossref]
  24. F. S. Vetelino, C. Young, L. Andrews, and J. Recolons, “Aperture averaging effects on the probability density of irradiance fluctuations in moderate-to-strong turbulence,” Appl. Opt. 46(11), 2099–2108 (2007).
    [Crossref] [PubMed]
  25. M. Yu, Y. Li, J. Pang, D. Kong, Z. Yang, and J. Wu, “Highly Power-Efficient Nyquist-mPPM-LQAM Modulation With Enhanced Spectrum Efficiency,” IEEE Photonics Technol. Lett. 29(1), 94–97 (2017).
    [Crossref]
  26. K. Kikuchi and S. Tsukamoto, “Evaluation of Sensitivity of the Digital CoherentReceiver,” J. Lightwave Technol. 26(13), 1817–1822 (2008).
    [Crossref]
  27. I. Fatadin, S. J. Savory, and D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photonics Technol. Lett. 20(20), 1733–1735 (2008).
    [Crossref]
  28. S. J. Savory, “Digital coherent optical receivers: Algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1164–1179 (2010).
    [Crossref]

2018 (2)

D. J. Geisler, T. M. Yarnall, G. Lund, C. M. Schieler, M. L. Stevens, N. K. Fontaine, B. S. Robinson, and S. A. Hamilton, “Experimental Comparison of 3-Mode and Single-Mode Coupling Over a 1.6-km Free-Space Link,” Proc. SPIE 10524, 105240H (2018).

M. Arikawa, Y. Ono, and T. Ito, “Mode diversity coherent receiver with few-mode fiber-coupling for high-speed free-space optical communication under atmospheric turbulence,” Proc. SPIE 10524, 1052412 (2018).

2017 (1)

M. Yu, Y. Li, J. Pang, D. Kong, Z. Yang, and J. Wu, “Highly Power-Efficient Nyquist-mPPM-LQAM Modulation With Enhanced Spectrum Efficiency,” IEEE Photonics Technol. Lett. 29(1), 94–97 (2017).
[Crossref]

2016 (3)

2014 (1)

D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the lunar laser communication demonstration,” Proc. SPIE 8971, 89710S (2014).
[Crossref]

2012 (1)

2011 (1)

2010 (1)

S. J. Savory, “Digital coherent optical receivers: Algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1164–1179 (2010).
[Crossref]

2009 (3)

M. Karlsson and E. Agrell, “Which is the most power-efficient modulation format in optical links?” Opt. Express 17(13), 10814–10819 (2009).
[Crossref] [PubMed]

W. Wang, S. Zhong, Fu, and C. Lin, “Performance Comparison of Different Modulation Formats Over Free-Space Optical (FSO) Turbulence Links With Space Diversity Reception Technique,” IEEE Photonics J. 1(6), 277–285 (2009).
[Crossref]

E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. D. Errico, V. Guarino, and M. Matsumoto, “1.28 terabit/s (32x40 Gbit/s) wdm transmission system for free space optical communications,” IEEE J. Sel. Areas Comm. 27(9), 1639–1645 (2009).
[Crossref]

2008 (3)

2007 (3)

F. S. Vetelino, C. Young, L. Andrews, and J. Recolons, “Aperture averaging effects on the probability density of irradiance fluctuations in moderate-to-strong turbulence,” Appl. Opt. 46(11), 2099–2108 (2007).
[Crossref] [PubMed]

D. O. Caplan, “Laser communication transmitter and receiver design,” J. Opt. Fiber Commun. Rep. 4(4-5), 225–362 (2007).
[Crossref]

S. Navidpour, M. Uysal, and M. Kavehrad, “BER Performance of Free-Space Optical Transmission with Spatial Diversity,” IEEE Trans. Wirel. Commun. 6(8), 2813–2819 (2007).
[Crossref]

2006 (1)

S. Tsukamoto, K. Katoh, and K. Kikuchi, “Coherent demodulation of optical multilevel phase-shift-keying signals using homodyne detection and digital signal processing,” IEEE Photonics Technol. Lett. 18(10), 1131–1133 (2006).
[Crossref]

2005 (2)

E. Leitgeb, M. Gebhart, and U. Birnbacer, “Optical networks, last mile access and applications,” J Opt. Fiber Commun. Res. 2(1), 56–85 (2005).
[Crossref]

Y. Dikmelik and F. M. Davidson, “Fiber-coupling efficiency for free-space optical communication through atmospheric turbulence,” Appl. Opt. 44(23), 4946–4952 (2005).
[Crossref] [PubMed]

2004 (1)

J. D. Strasburg and W. W. Harper, “Impact of atmospheric turbulence on beam propagation,” Proc. SPIE 5413, 93–102 (2004).
[Crossref]

2001 (1)

1996 (1)

1965 (1)

Agrell, E.

Andrews, L.

Arikawa, M.

M. Arikawa, Y. Ono, and T. Ito, “Mode diversity coherent receiver with few-mode fiber-coupling for high-speed free-space optical communication under atmospheric turbulence,” Proc. SPIE 10524, 1052412 (2018).

Arimoto, Y.

E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. D. Errico, V. Guarino, and M. Matsumoto, “1.28 terabit/s (32x40 Gbit/s) wdm transmission system for free space optical communications,” IEEE J. Sel. Areas Comm. 27(9), 1639–1645 (2009).
[Crossref]

Barbier, P. R.

Barros, D. J. F.

Birnbacer, U.

E. Leitgeb, M. Gebhart, and U. Birnbacer, “Optical networks, last mile access and applications,” J Opt. Fiber Commun. Res. 2(1), 56–85 (2005).
[Crossref]

Boroson, D. M.

D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the lunar laser communication demonstration,” Proc. SPIE 8971, 89710S (2014).
[Crossref]

Burianek, D. A.

D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the lunar laser communication demonstration,” Proc. SPIE 8971, 89710S (2014).
[Crossref]

Burrows, E. C.

Caplan, D. O.

D. O. Caplan, “Laser communication transmitter and receiver design,” J. Opt. Fiber Commun. Rep. 4(4-5), 225–362 (2007).
[Crossref]

Castellanos, D. C.

Chandrasekhar, S.

Chen, E.

Chraplyvy, A. R.

Ciaramella, E.

E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. D. Errico, V. Guarino, and M. Matsumoto, “1.28 terabit/s (32x40 Gbit/s) wdm transmission system for free space optical communications,” IEEE J. Sel. Areas Comm. 27(9), 1639–1645 (2009).
[Crossref]

Contestabile, G.

E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. D. Errico, V. Guarino, and M. Matsumoto, “1.28 terabit/s (32x40 Gbit/s) wdm transmission system for free space optical communications,” IEEE J. Sel. Areas Comm. 27(9), 1639–1645 (2009).
[Crossref]

Cornwell, D. M.

D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the lunar laser communication demonstration,” Proc. SPIE 8971, 89710S (2014).
[Crossref]

Costello, T. P.

Davidson, F. M.

Dikmelik, Y.

Errico, A. D.

E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. D. Errico, V. Guarino, and M. Matsumoto, “1.28 terabit/s (32x40 Gbit/s) wdm transmission system for free space optical communications,” IEEE J. Sel. Areas Comm. 27(9), 1639–1645 (2009).
[Crossref]

Fatadin, I.

I. Fatadin, S. J. Savory, and D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photonics Technol. Lett. 20(20), 1733–1735 (2008).
[Crossref]

Fontaine, N. K.

D. J. Geisler, T. M. Yarnall, G. Lund, C. M. Schieler, M. L. Stevens, N. K. Fontaine, B. S. Robinson, and S. A. Hamilton, “Experimental Comparison of 3-Mode and Single-Mode Coupling Over a 1.6-km Free-Space Link,” Proc. SPIE 10524, 105240H (2018).

Fried, D. L.

Fu,

W. Wang, S. Zhong, Fu, and C. Lin, “Performance Comparison of Different Modulation Formats Over Free-Space Optical (FSO) Turbulence Links With Space Diversity Reception Technique,” IEEE Photonics J. 1(6), 277–285 (2009).
[Crossref]

Gatt, P.

Gebhart, M.

E. Leitgeb, M. Gebhart, and U. Birnbacer, “Optical networks, last mile access and applications,” J Opt. Fiber Commun. Res. 2(1), 56–85 (2005).
[Crossref]

Geisler, D. J.

D. J. Geisler, T. M. Yarnall, G. Lund, C. M. Schieler, M. L. Stevens, N. K. Fontaine, B. S. Robinson, and S. A. Hamilton, “Experimental Comparison of 3-Mode and Single-Mode Coupling Over a 1.6-km Free-Space Link,” Proc. SPIE 10524, 105240H (2018).

Guarino, V.

E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. D. Errico, V. Guarino, and M. Matsumoto, “1.28 terabit/s (32x40 Gbit/s) wdm transmission system for free space optical communications,” IEEE J. Sel. Areas Comm. 27(9), 1639–1645 (2009).
[Crossref]

Hamilton, S. A.

D. J. Geisler, T. M. Yarnall, G. Lund, C. M. Schieler, M. L. Stevens, N. K. Fontaine, B. S. Robinson, and S. A. Hamilton, “Experimental Comparison of 3-Mode and Single-Mode Coupling Over a 1.6-km Free-Space Link,” Proc. SPIE 10524, 105240H (2018).

Harper, W. W.

J. D. Strasburg and W. W. Harper, “Impact of atmospheric turbulence on beam propagation,” Proc. SPIE 5413, 93–102 (2004).
[Crossref]

Heimmermann, D. A.

Huang, D.

Ip, E.

Ito, T.

M. Arikawa, Y. Ono, and T. Ito, “Mode diversity coherent receiver with few-mode fiber-coupling for high-speed free-space optical communication under atmospheric turbulence,” Proc. SPIE 10524, 1052412 (2018).

Ives, D.

I. Fatadin, S. J. Savory, and D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photonics Technol. Lett. 20(20), 1733–1735 (2008).
[Crossref]

Kahn, J. M.

Karlsson, M.

Katoh, K.

S. Tsukamoto, K. Katoh, and K. Kikuchi, “Coherent demodulation of optical multilevel phase-shift-keying signals using homodyne detection and digital signal processing,” IEEE Photonics Technol. Lett. 18(10), 1131–1133 (2006).
[Crossref]

Kavehrad, M.

S. Navidpour, M. Uysal, and M. Kavehrad, “BER Performance of Free-Space Optical Transmission with Spatial Diversity,” IEEE Trans. Wirel. Commun. 6(8), 2813–2819 (2007).
[Crossref]

Khatri, F.

D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the lunar laser communication demonstration,” Proc. SPIE 8971, 89710S (2014).
[Crossref]

Kikuchi, K.

K. Kikuchi and S. Tsukamoto, “Evaluation of Sensitivity of the Digital CoherentReceiver,” J. Lightwave Technol. 26(13), 1817–1822 (2008).
[Crossref]

S. Tsukamoto, K. Katoh, and K. Kikuchi, “Coherent demodulation of optical multilevel phase-shift-keying signals using homodyne detection and digital signal processing,” IEEE Photonics Technol. Lett. 18(10), 1131–1133 (2006).
[Crossref]

Kong, D.

M. Yu, Y. Li, J. Pang, D. Kong, Z. Yang, and J. Wu, “Highly Power-Efficient Nyquist-mPPM-LQAM Modulation With Enhanced Spectrum Efficiency,” IEEE Photonics Technol. Lett. 29(1), 94–97 (2017).
[Crossref]

D. Zheng, Y. Li, E. Chen, B. Li, D. Kong, W. Li, and J. Wu, “Free-space to few-mode-fiber coupling under atmospheric turbulence,” Opt. Express 24(16), 18739–18744 (2016).
[Crossref] [PubMed]

Kovalik, J. M.

D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the lunar laser communication demonstration,” Proc. SPIE 8971, 89710S (2014).
[Crossref]

Lau, A. P. T.

Leitgeb, E.

E. Leitgeb, M. Gebhart, and U. Birnbacer, “Optical networks, last mile access and applications,” J Opt. Fiber Commun. Res. 2(1), 56–85 (2005).
[Crossref]

Li, B.

Li, K.

Li, W.

Li, Y.

M. Yu, Y. Li, J. Pang, D. Kong, Z. Yang, and J. Wu, “Highly Power-Efficient Nyquist-mPPM-LQAM Modulation With Enhanced Spectrum Efficiency,” IEEE Photonics Technol. Lett. 29(1), 94–97 (2017).
[Crossref]

D. Zheng, Y. Li, E. Chen, B. Li, D. Kong, W. Li, and J. Wu, “Free-space to few-mode-fiber coupling under atmospheric turbulence,” Opt. Express 24(16), 18739–18744 (2016).
[Crossref] [PubMed]

Lin, C.

W. Wang, S. Zhong, Fu, and C. Lin, “Performance Comparison of Different Modulation Formats Over Free-Space Optical (FSO) Turbulence Links With Space Diversity Reception Technique,” IEEE Photonics J. 1(6), 277–285 (2009).
[Crossref]

Lin, X.

Liu, W.

Liu, X.

Lund, G.

D. J. Geisler, T. M. Yarnall, G. Lund, C. M. Schieler, M. L. Stevens, N. K. Fontaine, B. S. Robinson, and S. A. Hamilton, “Experimental Comparison of 3-Mode and Single-Mode Coupling Over a 1.6-km Free-Space Link,” Proc. SPIE 10524, 105240H (2018).

Lv, Y.

Ma, J.

Matsumoto, M.

E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. D. Errico, V. Guarino, and M. Matsumoto, “1.28 terabit/s (32x40 Gbit/s) wdm transmission system for free space optical communications,” IEEE J. Sel. Areas Comm. 27(9), 1639–1645 (2009).
[Crossref]

Murphy, D. V.

D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the lunar laser communication demonstration,” Proc. SPIE 8971, 89710S (2014).
[Crossref]

Navidpour, S.

S. Navidpour, M. Uysal, and M. Kavehrad, “BER Performance of Free-Space Optical Transmission with Spatial Diversity,” IEEE Trans. Wirel. Commun. 6(8), 2813–2819 (2007).
[Crossref]

Ono, Y.

M. Arikawa, Y. Ono, and T. Ito, “Mode diversity coherent receiver with few-mode fiber-coupling for high-speed free-space optical communication under atmospheric turbulence,” Proc. SPIE 10524, 1052412 (2018).

Pang, J.

M. Yu, Y. Li, J. Pang, D. Kong, Z. Yang, and J. Wu, “Highly Power-Efficient Nyquist-mPPM-LQAM Modulation With Enhanced Spectrum Efficiency,” IEEE Photonics Technol. Lett. 29(1), 94–97 (2017).
[Crossref]

Plett, M. L.

Presi, M.

E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. D. Errico, V. Guarino, and M. Matsumoto, “1.28 terabit/s (32x40 Gbit/s) wdm transmission system for free space optical communications,” IEEE J. Sel. Areas Comm. 27(9), 1639–1645 (2009).
[Crossref]

Recolons, J.

Robinson, B. S.

D. J. Geisler, T. M. Yarnall, G. Lund, C. M. Schieler, M. L. Stevens, N. K. Fontaine, B. S. Robinson, and S. A. Hamilton, “Experimental Comparison of 3-Mode and Single-Mode Coupling Over a 1.6-km Free-Space Link,” Proc. SPIE 10524, 105240H (2018).

D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the lunar laser communication demonstration,” Proc. SPIE 8971, 89710S (2014).
[Crossref]

Rush, D. W.

Savory, S. J.

S. J. Savory, “Digital coherent optical receivers: Algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1164–1179 (2010).
[Crossref]

I. Fatadin, S. J. Savory, and D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photonics Technol. Lett. 20(20), 1733–1735 (2008).
[Crossref]

Schieler, C. M.

D. J. Geisler, T. M. Yarnall, G. Lund, C. M. Schieler, M. L. Stevens, N. K. Fontaine, B. S. Robinson, and S. A. Hamilton, “Experimental Comparison of 3-Mode and Single-Mode Coupling Over a 1.6-km Free-Space Link,” Proc. SPIE 10524, 105240H (2018).

Sodnik, Z.

D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the lunar laser communication demonstration,” Proc. SPIE 8971, 89710S (2014).
[Crossref]

Stevens, M. L.

D. J. Geisler, T. M. Yarnall, G. Lund, C. M. Schieler, M. L. Stevens, N. K. Fontaine, B. S. Robinson, and S. A. Hamilton, “Experimental Comparison of 3-Mode and Single-Mode Coupling Over a 1.6-km Free-Space Link,” Proc. SPIE 10524, 105240H (2018).

Stickley, C. M.

Strasburg, J. D.

J. D. Strasburg and W. W. Harper, “Impact of atmospheric turbulence on beam propagation,” Proc. SPIE 5413, 93–102 (2004).
[Crossref]

Tan, L.

Tkach, R. W.

Tsukamoto, S.

K. Kikuchi and S. Tsukamoto, “Evaluation of Sensitivity of the Digital CoherentReceiver,” J. Lightwave Technol. 26(13), 1817–1822 (2008).
[Crossref]

S. Tsukamoto, K. Katoh, and K. Kikuchi, “Coherent demodulation of optical multilevel phase-shift-keying signals using homodyne detection and digital signal processing,” IEEE Photonics Technol. Lett. 18(10), 1131–1133 (2006).
[Crossref]

Uysal, M.

S. Navidpour, M. Uysal, and M. Kavehrad, “BER Performance of Free-Space Optical Transmission with Spatial Diversity,” IEEE Trans. Wirel. Commun. 6(8), 2813–2819 (2007).
[Crossref]

Vetelino, F. S.

Wang, L.

Wang, W.

W. Wang, S. Zhong, Fu, and C. Lin, “Performance Comparison of Different Modulation Formats Over Free-Space Optical (FSO) Turbulence Links With Space Diversity Reception Technique,” IEEE Photonics J. 1(6), 277–285 (2009).
[Crossref]

Weeks, A. R.

Winzer, P. J.

Wood, T. H.

Wu, J.

M. Yu, Y. Li, J. Pang, D. Kong, Z. Yang, and J. Wu, “Highly Power-Efficient Nyquist-mPPM-LQAM Modulation With Enhanced Spectrum Efficiency,” IEEE Photonics Technol. Lett. 29(1), 94–97 (2017).
[Crossref]

D. Zheng, Y. Li, E. Chen, B. Li, D. Kong, W. Li, and J. Wu, “Free-space to few-mode-fiber coupling under atmospheric turbulence,” Opt. Express 24(16), 18739–18744 (2016).
[Crossref] [PubMed]

Yang, Z.

M. Yu, Y. Li, J. Pang, D. Kong, Z. Yang, and J. Wu, “Highly Power-Efficient Nyquist-mPPM-LQAM Modulation With Enhanced Spectrum Efficiency,” IEEE Photonics Technol. Lett. 29(1), 94–97 (2017).
[Crossref]

Yao, K.

Yarnall, T. M.

D. J. Geisler, T. M. Yarnall, G. Lund, C. M. Schieler, M. L. Stevens, N. K. Fontaine, B. S. Robinson, and S. A. Hamilton, “Experimental Comparison of 3-Mode and Single-Mode Coupling Over a 1.6-km Free-Space Link,” Proc. SPIE 10524, 105240H (2018).

Young, C.

Yu, M.

M. Yu, Y. Li, J. Pang, D. Kong, Z. Yang, and J. Wu, “Highly Power-Efficient Nyquist-mPPM-LQAM Modulation With Enhanced Spectrum Efficiency,” IEEE Photonics Technol. Lett. 29(1), 94–97 (2017).
[Crossref]

Yu, S.

Zhai, C.

Zheng, D.

Zhong, S.

W. Wang, S. Zhong, Fu, and C. Lin, “Performance Comparison of Different Modulation Formats Over Free-Space Optical (FSO) Turbulence Links With Space Diversity Reception Technique,” IEEE Photonics J. 1(6), 277–285 (2009).
[Crossref]

Appl. Opt. (5)

IEEE J. Sel. Areas Comm. (1)

E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. D. Errico, V. Guarino, and M. Matsumoto, “1.28 terabit/s (32x40 Gbit/s) wdm transmission system for free space optical communications,” IEEE J. Sel. Areas Comm. 27(9), 1639–1645 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. J. Savory, “Digital coherent optical receivers: Algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1164–1179 (2010).
[Crossref]

IEEE Photonics J. (1)

W. Wang, S. Zhong, Fu, and C. Lin, “Performance Comparison of Different Modulation Formats Over Free-Space Optical (FSO) Turbulence Links With Space Diversity Reception Technique,” IEEE Photonics J. 1(6), 277–285 (2009).
[Crossref]

IEEE Photonics Technol. Lett. (3)

M. Yu, Y. Li, J. Pang, D. Kong, Z. Yang, and J. Wu, “Highly Power-Efficient Nyquist-mPPM-LQAM Modulation With Enhanced Spectrum Efficiency,” IEEE Photonics Technol. Lett. 29(1), 94–97 (2017).
[Crossref]

I. Fatadin, S. J. Savory, and D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photonics Technol. Lett. 20(20), 1733–1735 (2008).
[Crossref]

S. Tsukamoto, K. Katoh, and K. Kikuchi, “Coherent demodulation of optical multilevel phase-shift-keying signals using homodyne detection and digital signal processing,” IEEE Photonics Technol. Lett. 18(10), 1131–1133 (2006).
[Crossref]

IEEE Trans. Wirel. Commun. (1)

S. Navidpour, M. Uysal, and M. Kavehrad, “BER Performance of Free-Space Optical Transmission with Spatial Diversity,” IEEE Trans. Wirel. Commun. 6(8), 2813–2819 (2007).
[Crossref]

J Opt. Fiber Commun. Res. (1)

E. Leitgeb, M. Gebhart, and U. Birnbacer, “Optical networks, last mile access and applications,” J Opt. Fiber Commun. Res. 2(1), 56–85 (2005).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Fiber Commun. Rep. (1)

D. O. Caplan, “Laser communication transmitter and receiver design,” J. Opt. Fiber Commun. Rep. 4(4-5), 225–362 (2007).
[Crossref]

J. Opt. Soc. Am. (1)

Opt. Express (5)

Proc. SPIE (4)

D. J. Geisler, T. M. Yarnall, G. Lund, C. M. Schieler, M. L. Stevens, N. K. Fontaine, B. S. Robinson, and S. A. Hamilton, “Experimental Comparison of 3-Mode and Single-Mode Coupling Over a 1.6-km Free-Space Link,” Proc. SPIE 10524, 105240H (2018).

J. D. Strasburg and W. W. Harper, “Impact of atmospheric turbulence on beam propagation,” Proc. SPIE 5413, 93–102 (2004).
[Crossref]

D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the lunar laser communication demonstration,” Proc. SPIE 8971, 89710S (2014).
[Crossref]

M. Arikawa, Y. Ono, and T. Ito, “Mode diversity coherent receiver with few-mode fiber-coupling for high-speed free-space optical communication under atmospheric turbulence,” Proc. SPIE 10524, 1052412 (2018).

Other (2)

L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE, 2005), Chap. 3.

D. Zheng, Y. Li, B. Li, W. Li, E. Chen, and J. Wu, “Free Space to Few-Mode Fiber Coupling Efficiency improvement with Adaptive Optics under Atmospheric Turbulence,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2017), paper Th3C.2.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic modeling for fiber collection efficiency of FSO beam.
Fig. 2
Fig. 2 (a) Intensity and phase field of each LP modes, (b) Typical phase masks, corresponding received beam speckles and focused beam spots.
Fig. 3
Fig. 3 (a) Instantaneous receiving power and (b) cumulative probability of receiving power with transmitting power at 0 dBm under turbulence strength D/r0 = 4, 8, and 16.
Fig. 4
Fig. 4 The experimental setup of 40 Gbps QPSK free space communication system with modes diversity.
Fig. 5
Fig. 5 (a) Experimental receiving power, (b) typical beam speckles, and (c) cumulative probability of receiving power under different strengths of turbulence.
Fig. 6
Fig. 6 Experimental BER performance under different turbulence strength.
Fig. 7
Fig. 7 Typical constellations under turbulence strength (a) D/r0 = 4, (b) D/r0 = 8, (c) D/r0 = 16, and (d) D/r0 = 32,.
Fig. 8
Fig. 8 Interruption probability versus transmitted power
Fig. 9
Fig. 9 Measured BER performance versus transmitted power.

Tables (2)

Tables Icon

Table 1 Average Receiving Power in Simulation

Tables Icon

Table 2 Average Receiving Power in Experiment

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E l,m ( r,θ )={ A l,m J m ( u l,m r/a ) J m ( u l,m ) { cos( lφ ) sin( lφ ) } ra A l,m J m ( u l,m ) K m ( w l,m r/a ) K m ( w l,m ) { cos( lφ ) sin( lφ ) } r>a
η l,m = | U in ( r,θ ) E l,m * ( r,θ )drdθ | 2 | U in ( r,θ ) | 2 drdθ | E l,m ( r,θ ) | 2 drdθ
SN R QPSK = P S hν n sp B
SN R MRC = i SN R i = i 1 hν n sp B P i

Metrics