Abstract

The axial polarization pulling, due to stimulated Brillouin scattering (SBS) in linear polarization maintaining fibers (PMFs), is proposed, simulated by vectored SBS equations, and demonstrated experimentally. The simulation shows that the SBS pulling is always towards one of principal axes of PMF, depending on the pump light projection of the input state of polarization (SOP) on the polarization vector of PMFs. Based on this principle, an SBS fiber laser with 20 m PMF is configured. Further, we observe that the SOP of lasing light switches between two orthogonal SOPs, as the pump light changes its SOP between two half spheres of the Poincaré sphere. Moreover, the orthogonal polarization switching (OPS) scenarios relating to different powers and SOPs of pump light are studied. We analyze and experimentally demonstrate the lasing conditions for the fully polarized OPS state, where only one of the principal polarization modes resonates, as well as the depolarization state, where two principal polarization modes resonate simultaneously.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Polarization dependent Brillouin frequency shift fluctuation induced by low birefringence in single mode fiber

Chunhua Wang, Yunliang Han, Fufei Pang, Liang Chen, and Xiaoyi Bao
Opt. Express 25(25) 31896-31905 (2017)

Evidence of Raman-induced polarization pulling

Mario Martinelli, Matteo Cirigliano, Maddalena Ferrario, Lucia Marazzi, and Paolo Martelli
Opt. Express 17(2) 947-955 (2009)

References

  • View by:
  • |
  • |
  • |

  1. Q. Lin and G. P. Agrawal, “Vector theory of four-wave mixing: polarization effects in fiber-optic parameteric amplifiers,” J. Opt. Soc. Am. B 21(6), 1216–1224 (2004).
    [Crossref]
  2. S. Pitois, J. Fatome, and G. Millot, “Polarization attraction using counter-propagating waves in optical fiber at telecommunication wavelengths,” Opt. Express 16(9), 6646–6651 (2008).
    [Crossref] [PubMed]
  3. B. Stiller, P. Morin, D. M. Nguyen, J. Fatome, S. Pitois, E. Lantz, H. Maillotte, C. R. Menyuk, and T. Sylvestre, “Demonstration of polarization pulling using a fiber-optic parametric amplifier,” Opt. Express 20(24), 27248–27253 (2012).
    [Crossref] [PubMed]
  4. S. H. Wang, X. Xu, and P. K. A. Wai, “Polarization pulling in Raman assisted fiber optical parametric amplifiers,” Opt. Express 24(7), 6884–6898 (2016).
    [Crossref] [PubMed]
  5. M. Martinelli, M. Cirigliano, M. Ferrario, L. Marazzi, and P. Martelli, “Evidence of Raman-induced polarization pulling,” Opt. Express 17(2), 947–955 (2009).
    [Crossref] [PubMed]
  6. N. J. Muga, M. F. Ferreira, and A. N. Pinto, “Broadband polarization pulling using Raman amplification,” Opt. Express 19(19), 18707–18712 (2011).
    [Crossref] [PubMed]
  7. G. Millot and S. Wabnitz, “Nonlinear polarization effects in optical fibers: polarization attraction and modulation instability (Invited),” J. Opt. Soc. Am. B 31(11), 2754–2768 (2014).
    [Crossref]
  8. R. H. Stolen, “Polarization effects in fiber Raman and Brillouin lasers,” IEEE J. Quantum Electron. 15(10), 1157–1160 (1979).
    [Crossref]
  9. A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express 16(26), 21692–21707 (2008).
    [Crossref] [PubMed]
  10. Z. Shmilovitch, N. Primerov, A. Zadok, A. Eyal, S. Chin, L. Thevenaz, and M. Tur, “Dual-pump push-pull polarization control using stimulated Brillouin scattering,” Opt. Express 19(27), 25873–25880 (2011).
    [Crossref] [PubMed]
  11. S. Preussler, A. Zadok, A. Wiatrek, M. Tur, and T. Schneider, “Enhancement of spectral resolution and optical rejection ratio of Brillouin optical spectral analysis using polarization pulling,” Opt. Express 20(13), 14734–14745 (2012).
    [Crossref] [PubMed]
  12. A. Wise, M. Tur, and A. Zadok, “Sharp tunable optical filters based on the polarization attributes of stimulated Brillouin scattering,” Opt. Express 19(22), 21945–21955 (2011).
    [Crossref] [PubMed]
  13. Y. Han, C. Wang, Y. Zhang, and G. Liu, “SBS gain spectrum adjustment based on the polarization spreading effect of stimulated Brillouin scattering in fibers,” Asia Communications and Photonics Conference, Part F83-ACPC (2017).
  14. S. Preußler, N. Wenzel, R. P. Braun, N. Owschimikow, C. Vogel, A. Deninger, A. Zadok, U. Woggon, and T. Schneider, “Generation of ultra-narrow, stable and tunable millimeter- and terahertz- waves with very low phase noise,” Opt. Express 21(20), 23950–23962 (2013).
    [Crossref] [PubMed]
  15. C. Wang, Q. Zhang, C. Mou, L. Wu, L. Chen, and X. Bao, “Spectral polarization spreading behaviors in stimulated Brillouin scattering of fibers,” IEEE Photonics J. 9(1), 6100111 (2017).
    [Crossref]
  16. C. Wang, Y. Han, F. Pang, L. Chen, and X. Bao, “Polarization dependent Brillouin frequency shift fluctuation induced by low birefringence in single mode fiber,” Opt. Express 25(25), 31896–31905 (2017).
    [Crossref] [PubMed]
  17. L. Zhang, Y. Wang, Y. Xu, D. Zhou, L. Chen, and X. Bao, “Linearly polarized multi-wavelength fiber laser comb via Brillouin random lasing oscillation,” IEEE Photonics techno. Lett. 30(11), 1005–1008 (2018).
  18. L. Zhang, Y. Xu, S. Gao, B. Saxena, L. Chen, and X. Bao, “Linearly polarized low-noise Brillouin random fiber laser,” Opt. Lett. 42(4), 739–742 (2017).
    [Crossref] [PubMed]
  19. J. Fatome, S. Pitois, and G. Millot, “Experimental evidence of Brillouin-induced polarization wheeling in highly birefringent optical fibers,” Opt. Express 17(15), 12612–12618 (2009).
    [Crossref] [PubMed]
  20. Y. Lin, S. Huang, and L. Qian, “Stable polarization-dependent self-pulsing in a Brillouin amplified spun fiber,” Advanced Photonics Congress 2016, SoW1H.6.
  21. W. Zou, Z. He, and K. Hotate, “Two-dimensional finite-element modal analysis of Brillouin gain spectra in optical fibers,” IEEE Photonics Technol. Lett. 18(23), 2487–2489 (2006).
    [Crossref]
  22. Q. Yu, X. Bao, and L. Chen, “Strain dependence of Brillouin frequency, intensity, and bandwidth in polarization-maintaining fibers,” Opt. Lett. 29(14), 1605–1607 (2004).
    [Crossref] [PubMed]

2018 (1)

L. Zhang, Y. Wang, Y. Xu, D. Zhou, L. Chen, and X. Bao, “Linearly polarized multi-wavelength fiber laser comb via Brillouin random lasing oscillation,” IEEE Photonics techno. Lett. 30(11), 1005–1008 (2018).

2017 (3)

2016 (1)

2014 (1)

2013 (1)

2012 (2)

2011 (3)

2009 (2)

2008 (2)

2006 (1)

W. Zou, Z. He, and K. Hotate, “Two-dimensional finite-element modal analysis of Brillouin gain spectra in optical fibers,” IEEE Photonics Technol. Lett. 18(23), 2487–2489 (2006).
[Crossref]

2004 (2)

1979 (1)

R. H. Stolen, “Polarization effects in fiber Raman and Brillouin lasers,” IEEE J. Quantum Electron. 15(10), 1157–1160 (1979).
[Crossref]

Agrawal, G. P.

Bao, X.

Braun, R. P.

Chen, L.

Chin, S.

Cirigliano, M.

Deninger, A.

Eyal, A.

Fatome, J.

Ferrario, M.

Ferreira, M. F.

Gao, S.

Han, Y.

He, Z.

W. Zou, Z. He, and K. Hotate, “Two-dimensional finite-element modal analysis of Brillouin gain spectra in optical fibers,” IEEE Photonics Technol. Lett. 18(23), 2487–2489 (2006).
[Crossref]

Hotate, K.

W. Zou, Z. He, and K. Hotate, “Two-dimensional finite-element modal analysis of Brillouin gain spectra in optical fibers,” IEEE Photonics Technol. Lett. 18(23), 2487–2489 (2006).
[Crossref]

Lantz, E.

Lin, Q.

Maillotte, H.

Marazzi, L.

Martelli, P.

Martinelli, M.

Menyuk, C. R.

Millot, G.

Morin, P.

Mou, C.

C. Wang, Q. Zhang, C. Mou, L. Wu, L. Chen, and X. Bao, “Spectral polarization spreading behaviors in stimulated Brillouin scattering of fibers,” IEEE Photonics J. 9(1), 6100111 (2017).
[Crossref]

Muga, N. J.

Nguyen, D. M.

Owschimikow, N.

Pang, F.

Pinto, A. N.

Pitois, S.

Preußler, S.

Preussler, S.

Primerov, N.

Saxena, B.

Schneider, T.

Shmilovitch, Z.

Stiller, B.

Stolen, R. H.

R. H. Stolen, “Polarization effects in fiber Raman and Brillouin lasers,” IEEE J. Quantum Electron. 15(10), 1157–1160 (1979).
[Crossref]

Sylvestre, T.

Thevenaz, L.

Thévenaz, L.

Tur, M.

Vogel, C.

Wabnitz, S.

Wai, P. K. A.

Wang, C.

C. Wang, Q. Zhang, C. Mou, L. Wu, L. Chen, and X. Bao, “Spectral polarization spreading behaviors in stimulated Brillouin scattering of fibers,” IEEE Photonics J. 9(1), 6100111 (2017).
[Crossref]

C. Wang, Y. Han, F. Pang, L. Chen, and X. Bao, “Polarization dependent Brillouin frequency shift fluctuation induced by low birefringence in single mode fiber,” Opt. Express 25(25), 31896–31905 (2017).
[Crossref] [PubMed]

Wang, S. H.

Wang, Y.

L. Zhang, Y. Wang, Y. Xu, D. Zhou, L. Chen, and X. Bao, “Linearly polarized multi-wavelength fiber laser comb via Brillouin random lasing oscillation,” IEEE Photonics techno. Lett. 30(11), 1005–1008 (2018).

Wenzel, N.

Wiatrek, A.

Wise, A.

Woggon, U.

Wu, L.

C. Wang, Q. Zhang, C. Mou, L. Wu, L. Chen, and X. Bao, “Spectral polarization spreading behaviors in stimulated Brillouin scattering of fibers,” IEEE Photonics J. 9(1), 6100111 (2017).
[Crossref]

Xu, X.

Xu, Y.

L. Zhang, Y. Wang, Y. Xu, D. Zhou, L. Chen, and X. Bao, “Linearly polarized multi-wavelength fiber laser comb via Brillouin random lasing oscillation,” IEEE Photonics techno. Lett. 30(11), 1005–1008 (2018).

L. Zhang, Y. Xu, S. Gao, B. Saxena, L. Chen, and X. Bao, “Linearly polarized low-noise Brillouin random fiber laser,” Opt. Lett. 42(4), 739–742 (2017).
[Crossref] [PubMed]

Yu, Q.

Zadok, A.

Zhang, L.

L. Zhang, Y. Wang, Y. Xu, D. Zhou, L. Chen, and X. Bao, “Linearly polarized multi-wavelength fiber laser comb via Brillouin random lasing oscillation,” IEEE Photonics techno. Lett. 30(11), 1005–1008 (2018).

L. Zhang, Y. Xu, S. Gao, B. Saxena, L. Chen, and X. Bao, “Linearly polarized low-noise Brillouin random fiber laser,” Opt. Lett. 42(4), 739–742 (2017).
[Crossref] [PubMed]

Zhang, Q.

C. Wang, Q. Zhang, C. Mou, L. Wu, L. Chen, and X. Bao, “Spectral polarization spreading behaviors in stimulated Brillouin scattering of fibers,” IEEE Photonics J. 9(1), 6100111 (2017).
[Crossref]

Zhou, D.

L. Zhang, Y. Wang, Y. Xu, D. Zhou, L. Chen, and X. Bao, “Linearly polarized multi-wavelength fiber laser comb via Brillouin random lasing oscillation,” IEEE Photonics techno. Lett. 30(11), 1005–1008 (2018).

Zilka, E.

Zou, W.

W. Zou, Z. He, and K. Hotate, “Two-dimensional finite-element modal analysis of Brillouin gain spectra in optical fibers,” IEEE Photonics Technol. Lett. 18(23), 2487–2489 (2006).
[Crossref]

IEEE J. Quantum Electron. (1)

R. H. Stolen, “Polarization effects in fiber Raman and Brillouin lasers,” IEEE J. Quantum Electron. 15(10), 1157–1160 (1979).
[Crossref]

IEEE Photonics J. (1)

C. Wang, Q. Zhang, C. Mou, L. Wu, L. Chen, and X. Bao, “Spectral polarization spreading behaviors in stimulated Brillouin scattering of fibers,” IEEE Photonics J. 9(1), 6100111 (2017).
[Crossref]

IEEE Photonics techno. Lett. (1)

L. Zhang, Y. Wang, Y. Xu, D. Zhou, L. Chen, and X. Bao, “Linearly polarized multi-wavelength fiber laser comb via Brillouin random lasing oscillation,” IEEE Photonics techno. Lett. 30(11), 1005–1008 (2018).

IEEE Photonics Technol. Lett. (1)

W. Zou, Z. He, and K. Hotate, “Two-dimensional finite-element modal analysis of Brillouin gain spectra in optical fibers,” IEEE Photonics Technol. Lett. 18(23), 2487–2489 (2006).
[Crossref]

J. Opt. Soc. Am. B (2)

Opt. Express (12)

S. H. Wang, X. Xu, and P. K. A. Wai, “Polarization pulling in Raman assisted fiber optical parametric amplifiers,” Opt. Express 24(7), 6884–6898 (2016).
[Crossref] [PubMed]

S. Pitois, J. Fatome, and G. Millot, “Polarization attraction using counter-propagating waves in optical fiber at telecommunication wavelengths,” Opt. Express 16(9), 6646–6651 (2008).
[Crossref] [PubMed]

A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express 16(26), 21692–21707 (2008).
[Crossref] [PubMed]

M. Martinelli, M. Cirigliano, M. Ferrario, L. Marazzi, and P. Martelli, “Evidence of Raman-induced polarization pulling,” Opt. Express 17(2), 947–955 (2009).
[Crossref] [PubMed]

J. Fatome, S. Pitois, and G. Millot, “Experimental evidence of Brillouin-induced polarization wheeling in highly birefringent optical fibers,” Opt. Express 17(15), 12612–12618 (2009).
[Crossref] [PubMed]

N. J. Muga, M. F. Ferreira, and A. N. Pinto, “Broadband polarization pulling using Raman amplification,” Opt. Express 19(19), 18707–18712 (2011).
[Crossref] [PubMed]

A. Wise, M. Tur, and A. Zadok, “Sharp tunable optical filters based on the polarization attributes of stimulated Brillouin scattering,” Opt. Express 19(22), 21945–21955 (2011).
[Crossref] [PubMed]

Z. Shmilovitch, N. Primerov, A. Zadok, A. Eyal, S. Chin, L. Thevenaz, and M. Tur, “Dual-pump push-pull polarization control using stimulated Brillouin scattering,” Opt. Express 19(27), 25873–25880 (2011).
[Crossref] [PubMed]

S. Preussler, A. Zadok, A. Wiatrek, M. Tur, and T. Schneider, “Enhancement of spectral resolution and optical rejection ratio of Brillouin optical spectral analysis using polarization pulling,” Opt. Express 20(13), 14734–14745 (2012).
[Crossref] [PubMed]

B. Stiller, P. Morin, D. M. Nguyen, J. Fatome, S. Pitois, E. Lantz, H. Maillotte, C. R. Menyuk, and T. Sylvestre, “Demonstration of polarization pulling using a fiber-optic parametric amplifier,” Opt. Express 20(24), 27248–27253 (2012).
[Crossref] [PubMed]

S. Preußler, N. Wenzel, R. P. Braun, N. Owschimikow, C. Vogel, A. Deninger, A. Zadok, U. Woggon, and T. Schneider, “Generation of ultra-narrow, stable and tunable millimeter- and terahertz- waves with very low phase noise,” Opt. Express 21(20), 23950–23962 (2013).
[Crossref] [PubMed]

C. Wang, Y. Han, F. Pang, L. Chen, and X. Bao, “Polarization dependent Brillouin frequency shift fluctuation induced by low birefringence in single mode fiber,” Opt. Express 25(25), 31896–31905 (2017).
[Crossref] [PubMed]

Opt. Lett. (2)

Other (2)

Y. Lin, S. Huang, and L. Qian, “Stable polarization-dependent self-pulsing in a Brillouin amplified spun fiber,” Advanced Photonics Congress 2016, SoW1H.6.

Y. Han, C. Wang, Y. Zhang, and G. Liu, “SBS gain spectrum adjustment based on the polarization spreading effect of stimulated Brillouin scattering in fibers,” Asia Communications and Photonics Conference, Part F83-ACPC (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) 100 SOPs uniformly distributed over the Poincaré sphere (blue dots), and the simulated s ^ out max (red circles at V and H) for different p ^ in when L b =0.25 m; (b) the simulated s ^ out max for different p ^ in when L b =40 m; (c) simulated relationships between s ^ out max β ^ l and p ^ in β ^ l , and (d) simulated curves of G max and G min vs. p ^ in β ^ l for different beat lengths.
Fig. 2
Fig. 2 Experimental setup of OPS-BFL, in which, TLS: tunable laser; P: polarizer; LC: liquid crystal waveplate; PC: polarization controller; EDFA: Erbium–doped fiber amplifier; Cir: circulator; PBS: polarization beam splitter; PSA: polarization state analyzer; OSA: optical spectrum analyzer; ISO: isolator; Osc: oscilloscope; C1 and C2: couplers; D1 and D2: optical detectors.
Fig. 3
Fig. 3 Experimental characterization of PMF-BFL: (a) the 19 generated p ^ in ; (b) the measured SOP trajectory of lasing light, (c) the measured time recordings of normalized Stokes parameters, and (d) the normalized measured intensities of two orthogonally polarized light components by D1 and D2 as changing p ^ in .
Fig. 4
Fig. 4 (a) Measured and simulated relationships between the normalized G max and p ^ in β ^ l ; (b) measured lasing spectrums for different p ^ in .
Fig. 5
Fig. 5 Polarization regions of lasing determined by threshold pump power and pump SOP.
Fig. 6
Fig. 6 Normalized measurements of D1 and D2 as p ^ in changing orderly (a) for different pump powers at point 2 of 123, 117, 105, 93, and 80 mW, and (b) for different pump powers of 130, 148, 179, 210, and 241 mW. (c) Synchronization measurements of DOP by PSA corresponding to the measurements of (b).
Fig. 7
Fig. 7 Measured spectrum densities of (a) fully polarized lasing light as p ^ in β ^ l =1 and (b) depolarized lasing light as p ^ in β ^ l 0, for I p0 =154 mW.
Fig. 8
Fig. 8 Simulated influence of pump-depletion on OPS performance: (a) distributions of G max and G min over p ^ in β ^ l and (b) switching performance of s ^ out max β ^ l , for different input signal powers with I p0 =80mW.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

d I s dz = r 0 I p I s (1+ s ^ p ^ );
d I p dz =0;
d p ^ dz = β l × p ^ ;
d s ^ dz = β l × s ^ + r 0 I p [ p ^ ( s ^ p ^ ) s ^ ].
d 2 ( s ^ × β ^ l )( p ^ × β ^ l ) d z 2 =4 β l 2 ( s ^ × β ^ l )( p ^ × β ^ l ).
0 L ( s ^ p ^ )dz = 0 L [ ( s ^ × β ^ l )( p ^ × β ^ l )+( s ^ β ^ l )( p ^ β ^ l ) ] dz 0 L ( s ^ β ^ l )( p ^ β ^ l ) dz.
d I s dz = r 0 I p0 I s [ 1+( p ^ in β ^ l )( s ^ β ^ l ) ];
d( s ^ β ^ l ) dz = r 0 I p 0 p ^ in β ^ l [ 1 ( s ^ β ^ l ) 2 ].
G= e r 0 I p0 ( L+ p ^ in β ^ l 0 L ( s ^ β ^ l )dz ) .
G max/min ( p ^ in β ^ l )= e r 0 I p0 L(1±| p ^ in β ^ l |) .
r 0 =ln( G max, p ^ in β ^ l =1 / G max, p ^ in β ^ l =0 )/ I p0 L=0.2743.
I PTH ( p ^ in β ^ l )= α dB 10lg(1K) 4.34 r 0 L(1±| p ^ in β ^ l |) ,
| p ^ in β ^ l |>| 1 α dB 10lg(1K) 4.34 r 0 L I p0 |,

Metrics