Abstract

In this paper we report a method for removing artifacts caused by the beam splitter in a collinear backscattering Mueller matrix (CBMM) imaging system. As an essential optical component in a collinear back reflection optical path, a 45ϵ6,ρ8,δ10 beam splitter has to be used to separate the incident and the reflection beam. Since the beam splitter induces parasitic dichroism and retardance artifacts in both the illumination and detection optical paths, it leads to artifacts in the experimental results of Muller matrix measurements. We examined the influence of the beam splitter to the measured Mueller matrices in detail and reduced those artifacts in the CBMM system by precisely reconstructing the instrument matrix with a numerical calculation method. By measuring three standard samples we can calculate multiple systematic errors and the polarization characteristics of beam splitter in the CBMM system simultaneously. After the calibration, the maximum error in the Mueller matrix elements can be reduced to less than 0.02.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Permitted experimental errors for optimized variable-retarder Mueller-matrix polarimeters

Neil C. Bruce, Juan Manuel López-Téllez, Omar Rodríguez-Núñez, and Oscar G. Rodríguez-Herrera
Opt. Express 26(11) 13693-13704 (2018)

Measurement and calculation of the two-dimensional backscattering Mueller matrix of a turbid medium

Brent D. Cameron, M. J. Raković, Mehrübe Mehrübeoǧlu, George W. Kattawar, Sohi Rastegar, Lihong V. Wang, and Gerard L. Coté
Opt. Lett. 23(7) 485-487 (1998)

Double-pass axially resolved confocal Mueller matrix imaging polarimetry

David Lara and Chris Dainty
Opt. Lett. 30(21) 2879-2881 (2005)

References

  • View by:
  • |
  • |
  • |

  1. N. Ghosh and I. A. Vitkin, “Tissue polarimetry: concepts, challenges, applications, and outlook,” J. Biomed. Opt. 16(11), 110801 (2011).
    [Crossref] [PubMed]
  2. V. V. Tuchin, “Polarized light interaction with tissues,” J. Biomed. Opt. 21(7), 71114 (2016).
    [Crossref] [PubMed]
  3. S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med. 26(2), 119–129 (2000).
    [Crossref] [PubMed]
  4. R. R. Anderson, “Polarized light examination and photography of the skin,” Arch. Dermatol. 127(7), 1000–1005 (1991).
    [Crossref] [PubMed]
  5. R. Oldenbourg, “A new view on polarization microscopy,” Nature 381(6585), 811–812 (1996).
    [Crossref] [PubMed]
  6. X. Jiang, N. Zeng, and Y. He, “Investigation of linear polarization difference imaging based on rotation of incident and backscattered polarization angles,” Prog. Biochem. Biophys. 34(6), 659–663 (2007).
  7. F. Snik, J. Craven-Jones, M. Escuti, S. Fineschi, D. Harrington, A. D. Martino, D. Mawet, J. Riedi, and J. S. Tyo, “An overview of polarimetric sensing techniques and technology with applications to different research fields,” in Polarization: Measurement, Analysis, and Remote Sensing XI. Vol. 9099 (ISOP, 2014).
  8. S. Alali and A. Vitkin, “Polarized light imaging in biomedicine: emerging Mueller matrix methodologies for bulk tissue assessment,” J. Biomed. Opt. 20(6), 061104 (2015).
    [Crossref] [PubMed]
  9. J. Qi and D. S. Elson, “Mueller polarimetric imaging for surgical and diagnostic applications: a review,” J. Biophotonics 10(8), 950–982 (2017).
    [Crossref] [PubMed]
  10. J. Zhou, H. He, Z. Chen, Y. Wang, and H. Ma, “Modulus design multiwavelength polarization microscope for transmission Mueller matrix imaging,” J. Biomed. Opt. 23(1), 1–8 (2018).
    [Crossref] [PubMed]
  11. Y. Wang, H. He, J. Chang, N. Zeng, S. Liu, M. Li, and H. Ma, “Differentiating characteristic microstructural features of cancerous tissues using Mueller matrix microscope,” Micron 79, 8–15 (2015).
    [Crossref] [PubMed]
  12. Y. Wang, H. He, J. Chang, C. He, S. Liu, M. Li, N. Zeng, J. Wu, and H. Ma, “Mueller matrix microscope: a quantitative tool to facilitate detections and fibrosis scorings of liver cirrhosis and cancer tissues,” J. Biomed. Opt. 21(7), 071112 (2016).
    [Crossref] [PubMed]
  13. R. M. Azzam, “Photopolarimetric measurement of the Mueller matrix by Fourier analysis of a single detected signal,” Opt. Lett. 2(6), 148–150 (1978).
    [Crossref] [PubMed]
  14. H. He, N. Zeng, T. Yun, Y. He, and H. Ma, “Linear polarization reflectance of anisotropic scattering medium,” Optik (Stuttg.) 124(17), 2619–2622 (2013).
    [Crossref]
  15. M. Sun, H. He, N. Zeng, E. Du, Y. Guo, C. Peng, Y. He, and H. Ma, “Probing microstructural information of anisotropic scattering media using rotation-independent polarization parameters,” Appl. Opt. 53(14), 2949–2955 (2014).
    [Crossref] [PubMed]
  16. V. Ushenko, M. Sidor, Y. F. Marchuk, N. Pashkovskaya, and D. Andreichuk, “Azimuth-invariant Mueller-matrix differentiation of the optical anisotropy of biological tissues,” Opt. Spectrosc. 117(1), 152–157 (2014).
    [Crossref]
  17. J. J. Gil, “Invariant quantities of a Mueller matrix under rotation and retarder transformations,” J. Opt. Soc. Am. A 33(1), 52–58 (2016).
    [Crossref] [PubMed]
  18. P. Li, D. Lv, H. He, and H. Ma, “Separating azimuthal orientation dependence in polarization measurements of anisotropic media,” Opt. Express 26(4), 3791–3800 (2018).
    [Crossref] [PubMed]
  19. J. Soni, H. Purwar, H. Lakhotia, S. Chandel, C. Banerjee, U. Kumar, and N. Ghosh, “Quantitative fluorescence and elastic scattering tissue polarimetry using an Eigenvalue calibrated spectroscopic Mueller matrix system,” Opt. Express 21(13), 15475–15489 (2013).
    [Crossref] [PubMed]
  20. W. Li, C. Zhang, X. Chen, H. Gu, and S. Liu, “Mueller matrix polarimeter with imperfect compensators: calibration and correction,” in Computational Optical Sensing and Imaging, Optical Society of America (2014).
  21. K. Bhattacharyya, D. I. Serrano-García, and Y. Otani, “Mueller Matrix Polarimeter with Diattenuation Error Calibration Approach,” in Advances in Optical Science and Engineering (Springer, 2015).
  22. D. H. Goldstein and R. A. Chipman, “Error analysis of a Mueller matrix polarimeter,” J. Opt. Soc. Am. A 7(4), 693–700 (1990).
    [Crossref]
  23. D. H. Goldstein, “Mueller matrix dual-rotating retarder polarimeter,” Appl. Opt. 31(31), 6676–6683 (1992).
    [Crossref] [PubMed]
  24. D. B. Chenault, J. L. Pezzaniti, and R. A. Chipman, “Mueller matrix algorithms,” Proc. SPIE 1746, 231–246 (1991).
    [Crossref]
  25. J. Chang, N. Zeng, H. He, and H. Ma, “Removing the polarization artifacts in Mueller matrix images recorded with a birefringent gradient-index lens,” J. Biomed. Opt. 19(9), 095001 (2014).
    [Crossref]
  26. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Elsevier, 2013).
  27. M. Losurdo and K. Hingerl, Ellipsometry at the Nanoscale (Springer Science & Business Media, 2013).
  28. A. V. Oppenheim, Discrete-time Signal Processing (Pearson Education India, 1999).
  29. K. Levenberg, “A method for the solution of certain non-linear problems in least squares,” Q. Appl. Math. 2(2), 164–168 (1944).
    [Crossref]
  30. X. Cheng, M. Li, J. Zhou, H. Ma, and Q. Hao, “Error analysis of the calibration of a dual-rotating-retarder Mueller matrix polarimeter,” Appl. Opt. 56(25), 7067–7074 (2017).
    [Crossref] [PubMed]
  31. S. Y. Lu and R. A. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A 13(5), 1106–1113 (1996).
    [Crossref]
  32. H. He, M. Sun, N. Zeng, E. Du, S. Liu, Y. Guo, J. Wu, Y. He, and H. Ma, “Mapping local orientation of aligned fibrous scatterers for cancerous tissues using backscattering Mueller matrix imaging,” J. Biomed. Opt. 19(10), 106007 (2014).
    [Crossref] [PubMed]
  33. H. He, Z. Nan, E. Du, Y. Guo, D. Li, R. Liao, and H. Ma, “A possible quantitative Mueller matrix transformation technique for anisotropic scattering media/Eine mögliche quantitative Müller-Matrix-Transformations-Technik für anisotrope streuende Medien,” Photonics Lasers Med. 2(2), 129–137 (2013).
    [Crossref]

2018 (2)

J. Zhou, H. He, Z. Chen, Y. Wang, and H. Ma, “Modulus design multiwavelength polarization microscope for transmission Mueller matrix imaging,” J. Biomed. Opt. 23(1), 1–8 (2018).
[Crossref] [PubMed]

P. Li, D. Lv, H. He, and H. Ma, “Separating azimuthal orientation dependence in polarization measurements of anisotropic media,” Opt. Express 26(4), 3791–3800 (2018).
[Crossref] [PubMed]

2017 (2)

J. Qi and D. S. Elson, “Mueller polarimetric imaging for surgical and diagnostic applications: a review,” J. Biophotonics 10(8), 950–982 (2017).
[Crossref] [PubMed]

X. Cheng, M. Li, J. Zhou, H. Ma, and Q. Hao, “Error analysis of the calibration of a dual-rotating-retarder Mueller matrix polarimeter,” Appl. Opt. 56(25), 7067–7074 (2017).
[Crossref] [PubMed]

2016 (3)

J. J. Gil, “Invariant quantities of a Mueller matrix under rotation and retarder transformations,” J. Opt. Soc. Am. A 33(1), 52–58 (2016).
[Crossref] [PubMed]

Y. Wang, H. He, J. Chang, C. He, S. Liu, M. Li, N. Zeng, J. Wu, and H. Ma, “Mueller matrix microscope: a quantitative tool to facilitate detections and fibrosis scorings of liver cirrhosis and cancer tissues,” J. Biomed. Opt. 21(7), 071112 (2016).
[Crossref] [PubMed]

V. V. Tuchin, “Polarized light interaction with tissues,” J. Biomed. Opt. 21(7), 71114 (2016).
[Crossref] [PubMed]

2015 (2)

Y. Wang, H. He, J. Chang, N. Zeng, S. Liu, M. Li, and H. Ma, “Differentiating characteristic microstructural features of cancerous tissues using Mueller matrix microscope,” Micron 79, 8–15 (2015).
[Crossref] [PubMed]

S. Alali and A. Vitkin, “Polarized light imaging in biomedicine: emerging Mueller matrix methodologies for bulk tissue assessment,” J. Biomed. Opt. 20(6), 061104 (2015).
[Crossref] [PubMed]

2014 (4)

M. Sun, H. He, N. Zeng, E. Du, Y. Guo, C. Peng, Y. He, and H. Ma, “Probing microstructural information of anisotropic scattering media using rotation-independent polarization parameters,” Appl. Opt. 53(14), 2949–2955 (2014).
[Crossref] [PubMed]

V. Ushenko, M. Sidor, Y. F. Marchuk, N. Pashkovskaya, and D. Andreichuk, “Azimuth-invariant Mueller-matrix differentiation of the optical anisotropy of biological tissues,” Opt. Spectrosc. 117(1), 152–157 (2014).
[Crossref]

H. He, M. Sun, N. Zeng, E. Du, S. Liu, Y. Guo, J. Wu, Y. He, and H. Ma, “Mapping local orientation of aligned fibrous scatterers for cancerous tissues using backscattering Mueller matrix imaging,” J. Biomed. Opt. 19(10), 106007 (2014).
[Crossref] [PubMed]

J. Chang, N. Zeng, H. He, and H. Ma, “Removing the polarization artifacts in Mueller matrix images recorded with a birefringent gradient-index lens,” J. Biomed. Opt. 19(9), 095001 (2014).
[Crossref]

2013 (3)

H. He, Z. Nan, E. Du, Y. Guo, D. Li, R. Liao, and H. Ma, “A possible quantitative Mueller matrix transformation technique for anisotropic scattering media/Eine mögliche quantitative Müller-Matrix-Transformations-Technik für anisotrope streuende Medien,” Photonics Lasers Med. 2(2), 129–137 (2013).
[Crossref]

J. Soni, H. Purwar, H. Lakhotia, S. Chandel, C. Banerjee, U. Kumar, and N. Ghosh, “Quantitative fluorescence and elastic scattering tissue polarimetry using an Eigenvalue calibrated spectroscopic Mueller matrix system,” Opt. Express 21(13), 15475–15489 (2013).
[Crossref] [PubMed]

H. He, N. Zeng, T. Yun, Y. He, and H. Ma, “Linear polarization reflectance of anisotropic scattering medium,” Optik (Stuttg.) 124(17), 2619–2622 (2013).
[Crossref]

2011 (1)

N. Ghosh and I. A. Vitkin, “Tissue polarimetry: concepts, challenges, applications, and outlook,” J. Biomed. Opt. 16(11), 110801 (2011).
[Crossref] [PubMed]

2007 (1)

X. Jiang, N. Zeng, and Y. He, “Investigation of linear polarization difference imaging based on rotation of incident and backscattered polarization angles,” Prog. Biochem. Biophys. 34(6), 659–663 (2007).

2000 (1)

S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med. 26(2), 119–129 (2000).
[Crossref] [PubMed]

1996 (2)

1992 (1)

1991 (2)

D. B. Chenault, J. L. Pezzaniti, and R. A. Chipman, “Mueller matrix algorithms,” Proc. SPIE 1746, 231–246 (1991).
[Crossref]

R. R. Anderson, “Polarized light examination and photography of the skin,” Arch. Dermatol. 127(7), 1000–1005 (1991).
[Crossref] [PubMed]

1990 (1)

1978 (1)

1944 (1)

K. Levenberg, “A method for the solution of certain non-linear problems in least squares,” Q. Appl. Math. 2(2), 164–168 (1944).
[Crossref]

Alali, S.

S. Alali and A. Vitkin, “Polarized light imaging in biomedicine: emerging Mueller matrix methodologies for bulk tissue assessment,” J. Biomed. Opt. 20(6), 061104 (2015).
[Crossref] [PubMed]

Anderson, R. R.

R. R. Anderson, “Polarized light examination and photography of the skin,” Arch. Dermatol. 127(7), 1000–1005 (1991).
[Crossref] [PubMed]

Andreichuk, D.

V. Ushenko, M. Sidor, Y. F. Marchuk, N. Pashkovskaya, and D. Andreichuk, “Azimuth-invariant Mueller-matrix differentiation of the optical anisotropy of biological tissues,” Opt. Spectrosc. 117(1), 152–157 (2014).
[Crossref]

Azzam, R. M.

Banerjee, C.

Chandel, S.

Chang, J.

Y. Wang, H. He, J. Chang, C. He, S. Liu, M. Li, N. Zeng, J. Wu, and H. Ma, “Mueller matrix microscope: a quantitative tool to facilitate detections and fibrosis scorings of liver cirrhosis and cancer tissues,” J. Biomed. Opt. 21(7), 071112 (2016).
[Crossref] [PubMed]

Y. Wang, H. He, J. Chang, N. Zeng, S. Liu, M. Li, and H. Ma, “Differentiating characteristic microstructural features of cancerous tissues using Mueller matrix microscope,” Micron 79, 8–15 (2015).
[Crossref] [PubMed]

J. Chang, N. Zeng, H. He, and H. Ma, “Removing the polarization artifacts in Mueller matrix images recorded with a birefringent gradient-index lens,” J. Biomed. Opt. 19(9), 095001 (2014).
[Crossref]

Chen, Z.

J. Zhou, H. He, Z. Chen, Y. Wang, and H. Ma, “Modulus design multiwavelength polarization microscope for transmission Mueller matrix imaging,” J. Biomed. Opt. 23(1), 1–8 (2018).
[Crossref] [PubMed]

Chenault, D. B.

D. B. Chenault, J. L. Pezzaniti, and R. A. Chipman, “Mueller matrix algorithms,” Proc. SPIE 1746, 231–246 (1991).
[Crossref]

Cheng, X.

Chipman, R. A.

Du, E.

M. Sun, H. He, N. Zeng, E. Du, Y. Guo, C. Peng, Y. He, and H. Ma, “Probing microstructural information of anisotropic scattering media using rotation-independent polarization parameters,” Appl. Opt. 53(14), 2949–2955 (2014).
[Crossref] [PubMed]

H. He, M. Sun, N. Zeng, E. Du, S. Liu, Y. Guo, J. Wu, Y. He, and H. Ma, “Mapping local orientation of aligned fibrous scatterers for cancerous tissues using backscattering Mueller matrix imaging,” J. Biomed. Opt. 19(10), 106007 (2014).
[Crossref] [PubMed]

H. He, Z. Nan, E. Du, Y. Guo, D. Li, R. Liao, and H. Ma, “A possible quantitative Mueller matrix transformation technique for anisotropic scattering media/Eine mögliche quantitative Müller-Matrix-Transformations-Technik für anisotrope streuende Medien,” Photonics Lasers Med. 2(2), 129–137 (2013).
[Crossref]

Elson, D. S.

J. Qi and D. S. Elson, “Mueller polarimetric imaging for surgical and diagnostic applications: a review,” J. Biophotonics 10(8), 950–982 (2017).
[Crossref] [PubMed]

Ghosh, N.

Gil, J. J.

Goldstein, D. H.

Guo, Y.

M. Sun, H. He, N. Zeng, E. Du, Y. Guo, C. Peng, Y. He, and H. Ma, “Probing microstructural information of anisotropic scattering media using rotation-independent polarization parameters,” Appl. Opt. 53(14), 2949–2955 (2014).
[Crossref] [PubMed]

H. He, M. Sun, N. Zeng, E. Du, S. Liu, Y. Guo, J. Wu, Y. He, and H. Ma, “Mapping local orientation of aligned fibrous scatterers for cancerous tissues using backscattering Mueller matrix imaging,” J. Biomed. Opt. 19(10), 106007 (2014).
[Crossref] [PubMed]

H. He, Z. Nan, E. Du, Y. Guo, D. Li, R. Liao, and H. Ma, “A possible quantitative Mueller matrix transformation technique for anisotropic scattering media/Eine mögliche quantitative Müller-Matrix-Transformations-Technik für anisotrope streuende Medien,” Photonics Lasers Med. 2(2), 129–137 (2013).
[Crossref]

Hao, Q.

He, C.

Y. Wang, H. He, J. Chang, C. He, S. Liu, M. Li, N. Zeng, J. Wu, and H. Ma, “Mueller matrix microscope: a quantitative tool to facilitate detections and fibrosis scorings of liver cirrhosis and cancer tissues,” J. Biomed. Opt. 21(7), 071112 (2016).
[Crossref] [PubMed]

He, H.

J. Zhou, H. He, Z. Chen, Y. Wang, and H. Ma, “Modulus design multiwavelength polarization microscope for transmission Mueller matrix imaging,” J. Biomed. Opt. 23(1), 1–8 (2018).
[Crossref] [PubMed]

P. Li, D. Lv, H. He, and H. Ma, “Separating azimuthal orientation dependence in polarization measurements of anisotropic media,” Opt. Express 26(4), 3791–3800 (2018).
[Crossref] [PubMed]

Y. Wang, H. He, J. Chang, C. He, S. Liu, M. Li, N. Zeng, J. Wu, and H. Ma, “Mueller matrix microscope: a quantitative tool to facilitate detections and fibrosis scorings of liver cirrhosis and cancer tissues,” J. Biomed. Opt. 21(7), 071112 (2016).
[Crossref] [PubMed]

Y. Wang, H. He, J. Chang, N. Zeng, S. Liu, M. Li, and H. Ma, “Differentiating characteristic microstructural features of cancerous tissues using Mueller matrix microscope,” Micron 79, 8–15 (2015).
[Crossref] [PubMed]

H. He, M. Sun, N. Zeng, E. Du, S. Liu, Y. Guo, J. Wu, Y. He, and H. Ma, “Mapping local orientation of aligned fibrous scatterers for cancerous tissues using backscattering Mueller matrix imaging,” J. Biomed. Opt. 19(10), 106007 (2014).
[Crossref] [PubMed]

J. Chang, N. Zeng, H. He, and H. Ma, “Removing the polarization artifacts in Mueller matrix images recorded with a birefringent gradient-index lens,” J. Biomed. Opt. 19(9), 095001 (2014).
[Crossref]

M. Sun, H. He, N. Zeng, E. Du, Y. Guo, C. Peng, Y. He, and H. Ma, “Probing microstructural information of anisotropic scattering media using rotation-independent polarization parameters,” Appl. Opt. 53(14), 2949–2955 (2014).
[Crossref] [PubMed]

H. He, N. Zeng, T. Yun, Y. He, and H. Ma, “Linear polarization reflectance of anisotropic scattering medium,” Optik (Stuttg.) 124(17), 2619–2622 (2013).
[Crossref]

H. He, Z. Nan, E. Du, Y. Guo, D. Li, R. Liao, and H. Ma, “A possible quantitative Mueller matrix transformation technique for anisotropic scattering media/Eine mögliche quantitative Müller-Matrix-Transformations-Technik für anisotrope streuende Medien,” Photonics Lasers Med. 2(2), 129–137 (2013).
[Crossref]

He, Y.

H. He, M. Sun, N. Zeng, E. Du, S. Liu, Y. Guo, J. Wu, Y. He, and H. Ma, “Mapping local orientation of aligned fibrous scatterers for cancerous tissues using backscattering Mueller matrix imaging,” J. Biomed. Opt. 19(10), 106007 (2014).
[Crossref] [PubMed]

M. Sun, H. He, N. Zeng, E. Du, Y. Guo, C. Peng, Y. He, and H. Ma, “Probing microstructural information of anisotropic scattering media using rotation-independent polarization parameters,” Appl. Opt. 53(14), 2949–2955 (2014).
[Crossref] [PubMed]

H. He, N. Zeng, T. Yun, Y. He, and H. Ma, “Linear polarization reflectance of anisotropic scattering medium,” Optik (Stuttg.) 124(17), 2619–2622 (2013).
[Crossref]

X. Jiang, N. Zeng, and Y. He, “Investigation of linear polarization difference imaging based on rotation of incident and backscattered polarization angles,” Prog. Biochem. Biophys. 34(6), 659–663 (2007).

Jacques, S. L.

S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med. 26(2), 119–129 (2000).
[Crossref] [PubMed]

Jiang, X.

X. Jiang, N. Zeng, and Y. He, “Investigation of linear polarization difference imaging based on rotation of incident and backscattered polarization angles,” Prog. Biochem. Biophys. 34(6), 659–663 (2007).

Kumar, U.

Lakhotia, H.

Lee, K.

S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med. 26(2), 119–129 (2000).
[Crossref] [PubMed]

Levenberg, K.

K. Levenberg, “A method for the solution of certain non-linear problems in least squares,” Q. Appl. Math. 2(2), 164–168 (1944).
[Crossref]

Li, D.

H. He, Z. Nan, E. Du, Y. Guo, D. Li, R. Liao, and H. Ma, “A possible quantitative Mueller matrix transformation technique for anisotropic scattering media/Eine mögliche quantitative Müller-Matrix-Transformations-Technik für anisotrope streuende Medien,” Photonics Lasers Med. 2(2), 129–137 (2013).
[Crossref]

Li, M.

X. Cheng, M. Li, J. Zhou, H. Ma, and Q. Hao, “Error analysis of the calibration of a dual-rotating-retarder Mueller matrix polarimeter,” Appl. Opt. 56(25), 7067–7074 (2017).
[Crossref] [PubMed]

Y. Wang, H. He, J. Chang, C. He, S. Liu, M. Li, N. Zeng, J. Wu, and H. Ma, “Mueller matrix microscope: a quantitative tool to facilitate detections and fibrosis scorings of liver cirrhosis and cancer tissues,” J. Biomed. Opt. 21(7), 071112 (2016).
[Crossref] [PubMed]

Y. Wang, H. He, J. Chang, N. Zeng, S. Liu, M. Li, and H. Ma, “Differentiating characteristic microstructural features of cancerous tissues using Mueller matrix microscope,” Micron 79, 8–15 (2015).
[Crossref] [PubMed]

Li, P.

Liao, R.

H. He, Z. Nan, E. Du, Y. Guo, D. Li, R. Liao, and H. Ma, “A possible quantitative Mueller matrix transformation technique for anisotropic scattering media/Eine mögliche quantitative Müller-Matrix-Transformations-Technik für anisotrope streuende Medien,” Photonics Lasers Med. 2(2), 129–137 (2013).
[Crossref]

Liu, S.

Y. Wang, H. He, J. Chang, C. He, S. Liu, M. Li, N. Zeng, J. Wu, and H. Ma, “Mueller matrix microscope: a quantitative tool to facilitate detections and fibrosis scorings of liver cirrhosis and cancer tissues,” J. Biomed. Opt. 21(7), 071112 (2016).
[Crossref] [PubMed]

Y. Wang, H. He, J. Chang, N. Zeng, S. Liu, M. Li, and H. Ma, “Differentiating characteristic microstructural features of cancerous tissues using Mueller matrix microscope,” Micron 79, 8–15 (2015).
[Crossref] [PubMed]

H. He, M. Sun, N. Zeng, E. Du, S. Liu, Y. Guo, J. Wu, Y. He, and H. Ma, “Mapping local orientation of aligned fibrous scatterers for cancerous tissues using backscattering Mueller matrix imaging,” J. Biomed. Opt. 19(10), 106007 (2014).
[Crossref] [PubMed]

Lu, S. Y.

Lv, D.

Ma, H.

P. Li, D. Lv, H. He, and H. Ma, “Separating azimuthal orientation dependence in polarization measurements of anisotropic media,” Opt. Express 26(4), 3791–3800 (2018).
[Crossref] [PubMed]

J. Zhou, H. He, Z. Chen, Y. Wang, and H. Ma, “Modulus design multiwavelength polarization microscope for transmission Mueller matrix imaging,” J. Biomed. Opt. 23(1), 1–8 (2018).
[Crossref] [PubMed]

X. Cheng, M. Li, J. Zhou, H. Ma, and Q. Hao, “Error analysis of the calibration of a dual-rotating-retarder Mueller matrix polarimeter,” Appl. Opt. 56(25), 7067–7074 (2017).
[Crossref] [PubMed]

Y. Wang, H. He, J. Chang, C. He, S. Liu, M. Li, N. Zeng, J. Wu, and H. Ma, “Mueller matrix microscope: a quantitative tool to facilitate detections and fibrosis scorings of liver cirrhosis and cancer tissues,” J. Biomed. Opt. 21(7), 071112 (2016).
[Crossref] [PubMed]

Y. Wang, H. He, J. Chang, N. Zeng, S. Liu, M. Li, and H. Ma, “Differentiating characteristic microstructural features of cancerous tissues using Mueller matrix microscope,” Micron 79, 8–15 (2015).
[Crossref] [PubMed]

J. Chang, N. Zeng, H. He, and H. Ma, “Removing the polarization artifacts in Mueller matrix images recorded with a birefringent gradient-index lens,” J. Biomed. Opt. 19(9), 095001 (2014).
[Crossref]

H. He, M. Sun, N. Zeng, E. Du, S. Liu, Y. Guo, J. Wu, Y. He, and H. Ma, “Mapping local orientation of aligned fibrous scatterers for cancerous tissues using backscattering Mueller matrix imaging,” J. Biomed. Opt. 19(10), 106007 (2014).
[Crossref] [PubMed]

M. Sun, H. He, N. Zeng, E. Du, Y. Guo, C. Peng, Y. He, and H. Ma, “Probing microstructural information of anisotropic scattering media using rotation-independent polarization parameters,” Appl. Opt. 53(14), 2949–2955 (2014).
[Crossref] [PubMed]

H. He, Z. Nan, E. Du, Y. Guo, D. Li, R. Liao, and H. Ma, “A possible quantitative Mueller matrix transformation technique for anisotropic scattering media/Eine mögliche quantitative Müller-Matrix-Transformations-Technik für anisotrope streuende Medien,” Photonics Lasers Med. 2(2), 129–137 (2013).
[Crossref]

H. He, N. Zeng, T. Yun, Y. He, and H. Ma, “Linear polarization reflectance of anisotropic scattering medium,” Optik (Stuttg.) 124(17), 2619–2622 (2013).
[Crossref]

Marchuk, Y. F.

V. Ushenko, M. Sidor, Y. F. Marchuk, N. Pashkovskaya, and D. Andreichuk, “Azimuth-invariant Mueller-matrix differentiation of the optical anisotropy of biological tissues,” Opt. Spectrosc. 117(1), 152–157 (2014).
[Crossref]

Nan, Z.

H. He, Z. Nan, E. Du, Y. Guo, D. Li, R. Liao, and H. Ma, “A possible quantitative Mueller matrix transformation technique for anisotropic scattering media/Eine mögliche quantitative Müller-Matrix-Transformations-Technik für anisotrope streuende Medien,” Photonics Lasers Med. 2(2), 129–137 (2013).
[Crossref]

Oldenbourg, R.

R. Oldenbourg, “A new view on polarization microscopy,” Nature 381(6585), 811–812 (1996).
[Crossref] [PubMed]

Pashkovskaya, N.

V. Ushenko, M. Sidor, Y. F. Marchuk, N. Pashkovskaya, and D. Andreichuk, “Azimuth-invariant Mueller-matrix differentiation of the optical anisotropy of biological tissues,” Opt. Spectrosc. 117(1), 152–157 (2014).
[Crossref]

Peng, C.

Pezzaniti, J. L.

D. B. Chenault, J. L. Pezzaniti, and R. A. Chipman, “Mueller matrix algorithms,” Proc. SPIE 1746, 231–246 (1991).
[Crossref]

Purwar, H.

Qi, J.

J. Qi and D. S. Elson, “Mueller polarimetric imaging for surgical and diagnostic applications: a review,” J. Biophotonics 10(8), 950–982 (2017).
[Crossref] [PubMed]

Roman, J. R.

S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med. 26(2), 119–129 (2000).
[Crossref] [PubMed]

Sidor, M.

V. Ushenko, M. Sidor, Y. F. Marchuk, N. Pashkovskaya, and D. Andreichuk, “Azimuth-invariant Mueller-matrix differentiation of the optical anisotropy of biological tissues,” Opt. Spectrosc. 117(1), 152–157 (2014).
[Crossref]

Soni, J.

Sun, M.

M. Sun, H. He, N. Zeng, E. Du, Y. Guo, C. Peng, Y. He, and H. Ma, “Probing microstructural information of anisotropic scattering media using rotation-independent polarization parameters,” Appl. Opt. 53(14), 2949–2955 (2014).
[Crossref] [PubMed]

H. He, M. Sun, N. Zeng, E. Du, S. Liu, Y. Guo, J. Wu, Y. He, and H. Ma, “Mapping local orientation of aligned fibrous scatterers for cancerous tissues using backscattering Mueller matrix imaging,” J. Biomed. Opt. 19(10), 106007 (2014).
[Crossref] [PubMed]

Tuchin, V. V.

V. V. Tuchin, “Polarized light interaction with tissues,” J. Biomed. Opt. 21(7), 71114 (2016).
[Crossref] [PubMed]

Ushenko, V.

V. Ushenko, M. Sidor, Y. F. Marchuk, N. Pashkovskaya, and D. Andreichuk, “Azimuth-invariant Mueller-matrix differentiation of the optical anisotropy of biological tissues,” Opt. Spectrosc. 117(1), 152–157 (2014).
[Crossref]

Vitkin, A.

S. Alali and A. Vitkin, “Polarized light imaging in biomedicine: emerging Mueller matrix methodologies for bulk tissue assessment,” J. Biomed. Opt. 20(6), 061104 (2015).
[Crossref] [PubMed]

Vitkin, I. A.

N. Ghosh and I. A. Vitkin, “Tissue polarimetry: concepts, challenges, applications, and outlook,” J. Biomed. Opt. 16(11), 110801 (2011).
[Crossref] [PubMed]

Wang, Y.

J. Zhou, H. He, Z. Chen, Y. Wang, and H. Ma, “Modulus design multiwavelength polarization microscope for transmission Mueller matrix imaging,” J. Biomed. Opt. 23(1), 1–8 (2018).
[Crossref] [PubMed]

Y. Wang, H. He, J. Chang, C. He, S. Liu, M. Li, N. Zeng, J. Wu, and H. Ma, “Mueller matrix microscope: a quantitative tool to facilitate detections and fibrosis scorings of liver cirrhosis and cancer tissues,” J. Biomed. Opt. 21(7), 071112 (2016).
[Crossref] [PubMed]

Y. Wang, H. He, J. Chang, N. Zeng, S. Liu, M. Li, and H. Ma, “Differentiating characteristic microstructural features of cancerous tissues using Mueller matrix microscope,” Micron 79, 8–15 (2015).
[Crossref] [PubMed]

Wu, J.

Y. Wang, H. He, J. Chang, C. He, S. Liu, M. Li, N. Zeng, J. Wu, and H. Ma, “Mueller matrix microscope: a quantitative tool to facilitate detections and fibrosis scorings of liver cirrhosis and cancer tissues,” J. Biomed. Opt. 21(7), 071112 (2016).
[Crossref] [PubMed]

H. He, M. Sun, N. Zeng, E. Du, S. Liu, Y. Guo, J. Wu, Y. He, and H. Ma, “Mapping local orientation of aligned fibrous scatterers for cancerous tissues using backscattering Mueller matrix imaging,” J. Biomed. Opt. 19(10), 106007 (2014).
[Crossref] [PubMed]

Yun, T.

H. He, N. Zeng, T. Yun, Y. He, and H. Ma, “Linear polarization reflectance of anisotropic scattering medium,” Optik (Stuttg.) 124(17), 2619–2622 (2013).
[Crossref]

Zeng, N.

Y. Wang, H. He, J. Chang, C. He, S. Liu, M. Li, N. Zeng, J. Wu, and H. Ma, “Mueller matrix microscope: a quantitative tool to facilitate detections and fibrosis scorings of liver cirrhosis and cancer tissues,” J. Biomed. Opt. 21(7), 071112 (2016).
[Crossref] [PubMed]

Y. Wang, H. He, J. Chang, N. Zeng, S. Liu, M. Li, and H. Ma, “Differentiating characteristic microstructural features of cancerous tissues using Mueller matrix microscope,” Micron 79, 8–15 (2015).
[Crossref] [PubMed]

J. Chang, N. Zeng, H. He, and H. Ma, “Removing the polarization artifacts in Mueller matrix images recorded with a birefringent gradient-index lens,” J. Biomed. Opt. 19(9), 095001 (2014).
[Crossref]

H. He, M. Sun, N. Zeng, E. Du, S. Liu, Y. Guo, J. Wu, Y. He, and H. Ma, “Mapping local orientation of aligned fibrous scatterers for cancerous tissues using backscattering Mueller matrix imaging,” J. Biomed. Opt. 19(10), 106007 (2014).
[Crossref] [PubMed]

M. Sun, H. He, N. Zeng, E. Du, Y. Guo, C. Peng, Y. He, and H. Ma, “Probing microstructural information of anisotropic scattering media using rotation-independent polarization parameters,” Appl. Opt. 53(14), 2949–2955 (2014).
[Crossref] [PubMed]

H. He, N. Zeng, T. Yun, Y. He, and H. Ma, “Linear polarization reflectance of anisotropic scattering medium,” Optik (Stuttg.) 124(17), 2619–2622 (2013).
[Crossref]

X. Jiang, N. Zeng, and Y. He, “Investigation of linear polarization difference imaging based on rotation of incident and backscattered polarization angles,” Prog. Biochem. Biophys. 34(6), 659–663 (2007).

Zhou, J.

J. Zhou, H. He, Z. Chen, Y. Wang, and H. Ma, “Modulus design multiwavelength polarization microscope for transmission Mueller matrix imaging,” J. Biomed. Opt. 23(1), 1–8 (2018).
[Crossref] [PubMed]

X. Cheng, M. Li, J. Zhou, H. Ma, and Q. Hao, “Error analysis of the calibration of a dual-rotating-retarder Mueller matrix polarimeter,” Appl. Opt. 56(25), 7067–7074 (2017).
[Crossref] [PubMed]

Appl. Opt. (3)

Arch. Dermatol. (1)

R. R. Anderson, “Polarized light examination and photography of the skin,” Arch. Dermatol. 127(7), 1000–1005 (1991).
[Crossref] [PubMed]

J. Biomed. Opt. (7)

N. Ghosh and I. A. Vitkin, “Tissue polarimetry: concepts, challenges, applications, and outlook,” J. Biomed. Opt. 16(11), 110801 (2011).
[Crossref] [PubMed]

V. V. Tuchin, “Polarized light interaction with tissues,” J. Biomed. Opt. 21(7), 71114 (2016).
[Crossref] [PubMed]

S. Alali and A. Vitkin, “Polarized light imaging in biomedicine: emerging Mueller matrix methodologies for bulk tissue assessment,” J. Biomed. Opt. 20(6), 061104 (2015).
[Crossref] [PubMed]

J. Zhou, H. He, Z. Chen, Y. Wang, and H. Ma, “Modulus design multiwavelength polarization microscope for transmission Mueller matrix imaging,” J. Biomed. Opt. 23(1), 1–8 (2018).
[Crossref] [PubMed]

Y. Wang, H. He, J. Chang, C. He, S. Liu, M. Li, N. Zeng, J. Wu, and H. Ma, “Mueller matrix microscope: a quantitative tool to facilitate detections and fibrosis scorings of liver cirrhosis and cancer tissues,” J. Biomed. Opt. 21(7), 071112 (2016).
[Crossref] [PubMed]

H. He, M. Sun, N. Zeng, E. Du, S. Liu, Y. Guo, J. Wu, Y. He, and H. Ma, “Mapping local orientation of aligned fibrous scatterers for cancerous tissues using backscattering Mueller matrix imaging,” J. Biomed. Opt. 19(10), 106007 (2014).
[Crossref] [PubMed]

J. Chang, N. Zeng, H. He, and H. Ma, “Removing the polarization artifacts in Mueller matrix images recorded with a birefringent gradient-index lens,” J. Biomed. Opt. 19(9), 095001 (2014).
[Crossref]

J. Biophotonics (1)

J. Qi and D. S. Elson, “Mueller polarimetric imaging for surgical and diagnostic applications: a review,” J. Biophotonics 10(8), 950–982 (2017).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (3)

Lasers Surg. Med. (1)

S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med. 26(2), 119–129 (2000).
[Crossref] [PubMed]

Micron (1)

Y. Wang, H. He, J. Chang, N. Zeng, S. Liu, M. Li, and H. Ma, “Differentiating characteristic microstructural features of cancerous tissues using Mueller matrix microscope,” Micron 79, 8–15 (2015).
[Crossref] [PubMed]

Nature (1)

R. Oldenbourg, “A new view on polarization microscopy,” Nature 381(6585), 811–812 (1996).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Opt. Spectrosc. (1)

V. Ushenko, M. Sidor, Y. F. Marchuk, N. Pashkovskaya, and D. Andreichuk, “Azimuth-invariant Mueller-matrix differentiation of the optical anisotropy of biological tissues,” Opt. Spectrosc. 117(1), 152–157 (2014).
[Crossref]

Optik (Stuttg.) (1)

H. He, N. Zeng, T. Yun, Y. He, and H. Ma, “Linear polarization reflectance of anisotropic scattering medium,” Optik (Stuttg.) 124(17), 2619–2622 (2013).
[Crossref]

Photonics Lasers Med. (1)

H. He, Z. Nan, E. Du, Y. Guo, D. Li, R. Liao, and H. Ma, “A possible quantitative Mueller matrix transformation technique for anisotropic scattering media/Eine mögliche quantitative Müller-Matrix-Transformations-Technik für anisotrope streuende Medien,” Photonics Lasers Med. 2(2), 129–137 (2013).
[Crossref]

Proc. SPIE (1)

D. B. Chenault, J. L. Pezzaniti, and R. A. Chipman, “Mueller matrix algorithms,” Proc. SPIE 1746, 231–246 (1991).
[Crossref]

Prog. Biochem. Biophys. (1)

X. Jiang, N. Zeng, and Y. He, “Investigation of linear polarization difference imaging based on rotation of incident and backscattered polarization angles,” Prog. Biochem. Biophys. 34(6), 659–663 (2007).

Q. Appl. Math. (1)

K. Levenberg, “A method for the solution of certain non-linear problems in least squares,” Q. Appl. Math. 2(2), 164–168 (1944).
[Crossref]

Other (6)

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Elsevier, 2013).

M. Losurdo and K. Hingerl, Ellipsometry at the Nanoscale (Springer Science & Business Media, 2013).

A. V. Oppenheim, Discrete-time Signal Processing (Pearson Education India, 1999).

F. Snik, J. Craven-Jones, M. Escuti, S. Fineschi, D. Harrington, A. D. Martino, D. Mawet, J. Riedi, and J. S. Tyo, “An overview of polarimetric sensing techniques and technology with applications to different research fields,” in Polarization: Measurement, Analysis, and Remote Sensing XI. Vol. 9099 (ISOP, 2014).

W. Li, C. Zhang, X. Chen, H. Gu, and S. Liu, “Mueller matrix polarimeter with imperfect compensators: calibration and correction,” in Computational Optical Sensing and Imaging, Optical Society of America (2014).

K. Bhattacharyya, D. I. Serrano-García, and Y. Otani, “Mueller Matrix Polarimeter with Diattenuation Error Calibration Approach,” in Advances in Optical Science and Engineering (Springer, 2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of the collinear backscattering Mueller matrix imaging system.
Fig. 2
Fig. 2 Schematic of the transmission Mueller matrix measuring system with artificially added dichroism.
Fig. 3
Fig. 3 Standard deviations and maximum errors of ΔM when the values of dichroism change from 0 to 0.3.
Fig. 4
Fig. 4 Standard deviations and maximum errors of ΔM when the direction of dichroism changes from 0 to 72 degrees.
Fig. 5
Fig. 5 The calculated Muller matrix of mirror, (a) by the new calibration method, (b) by the previous calibration method.
Fig. 6
Fig. 6 Experimental results of Mueller matrix for the concentrically well-aligned silk sample. (a) The experimental result in calibrated CBMM system, (b) the experimental result in calibrated non- collinear backscattering imaging system.

Tables (4)

Tables Icon

Table 1 The calculated transmission Muller matrix of plate beam splitter

Tables Icon

Table 2 The measured Muller matrix of air

Tables Icon

Table 3 The calculated Muller matrix of beam splitter

Tables Icon

Table 4 The measured Muller matrix of beam splitter

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

M( θ,ψ,Δ )=R( θ )[ 1 cos2ψ 0 0 cos2ψ 1 0 0 0 0 sin2ψcosΔ sin2ψsinΔ 0 0 sin2ψsinΔ sin2ψcosΔ ]R( θ )
R( θ )=[ 1 0 0 0 0 cos2θ sin2θ 0 0 sin2θ cos2θ 0 0 0 0 1 ]
M P ( θ )=M( θ,π/2,0 )
M R ( δ,θ )=M( θ,0,δ )
I(q)= a 0 + n=1 N ( a n cos2nγq+ b n sin2nγq )
M P1 ( q )= M P ( 0 ) M R1 ( q )= M R ( δ 1 ,( q1 ) θ 1 + ε 3 ) M R2 ( q )= M R ( δ 2 ,( q1 ) θ 2 + ε 4 ) M P2 ( q )= M P ( ε 5 )
M S1 =M( ε 6 , ρ 7 , δ 9 ) M S2 =M( ε 6 , ρ 8 , δ 10 )
M m =[ 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 ]
D1= M m D2= M R ( δ 11 , ε 12 +π/6 ) M m M R ( δ 11 , ε 12 +7π/6 )= M m M R ( 2 δ 11 , ε 12 +π/6 ) D3= M R ( δ 11 , ε 12 +2π/3 ) M m M R ( δ 11 , ε 12 +5π/3 )= M m M R ( 2 δ 11 , ε 12 +2π/3 )
I i ( q )=μ+c η i M P ( ε 5 ) M R2 ( q ) M S2 D i M S1 M R1 ( q ) M P ( 0 ) S in
I i ( q )=μ+ η i A( q ) D i G( q )
I i Jμ= η i Fvec( D i )
F T ( q )=vec( G T ( q ) A T ( q ) )
vec( M sample )=pinv( F )( IJμ )

Metrics