Abstract

Photonic temporal modes (TMs) form a field-orthogonal basis set representing a continuous-variable degree of freedom that is in principle infinite dimensional, and create a promising resource for quantum information science and technology. The ideal quantum pulse gate (QPG) is a device that multiplexes and demultiplexes temporally orthogonal optical pulses that have the same carrier frequency, spatial mode, and polarization. The QPG is the chief enabling technology for usage of orthogonal temporal modes as a basis for high-dimensional quantum information storage and processing. The greatest hurdle for QPG implementation using nonlinear-optical, parametric processes with time-varying pump or control fields is the limitation on achievable temporal mode selectivity, defined as perfect TM discrimination combined with unity efficiency. We propose the use of pulsed nonlinear frequency conversion in an optical cavity having greatly different finesses for different frequencies to implement a nearly perfectly TM-selective QPG in a low-loss integrated-optics platform.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Temporal mode sorting using dual-stage quantum frequency conversion by asymmetric Bragg scattering

Jesper B. Christensen, Dileep V. Reddy, C. J. McKinstrie, K. Rottwitt, and M. G. Raymer
Opt. Express 23(18) 23287-23301 (2015)

Tailoring nonlinear processes for quantum optics with pulsed temporal-mode encodings

Vahid Ansari, John M. Donohue, Benjamin Brecht, and Christine Silberhorn
Optica 5(5) 534-550 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. G. Raymer and K. Srinivasan, “Manipulating the color and shape of single photons,” Physics Today 65, 32 (2012).
    [Crossref]
  2. P. C. Humphreys, W. S. Kolthammer, J. Nunn, M. Barbieri, A. Datta, and I. A. Walmsley, “Continuous-Variable Quantum Computing in Optical Time-Frequency Modes Using Quantum Memories,” Physical Review Letters 113, 130502 (2014).
    [Crossref] [PubMed]
  3. J. Nunn, L. J. Wright, C. Söller, L. Zhang, I. A. Walmsley, and B. J. Smith, “Large-alphabet time-frequency entangled quantum key distribution by means of time-to-frequency conversion,” Opt. Express 21, 15959–15973 (2013).
    [Crossref] [PubMed]
  4. L. J. Wright, M. Karpiński, C. Söller, and B. J. Smith, “Spectral shearing of quantum light pulses by electro-optic phase modulation,” Phys. Rev. Lett. 118, 023601 (2017).
    [Crossref] [PubMed]
  5. A. O. C. Davis, P. M. Saulnier, M. Karpiński, and B. J. Smith, “Pulsed single-photon spectrometer by frequency-to-time mapping using chirped fiber bragg gratings,” Opt. Express 25, 12804–12811 (2017).
    [Crossref] [PubMed]
  6. B. J. Smith and M. G. Raymer, “Photon wave functions, wave-packet quantization of light, and coherence theory,” New Journal of Physics 9, 414 (2007).
    [Crossref]
  7. B. Brecht, D. V. Reddy, C. Silberhorn, and M. G. Raymer, “Photon temporal modes: A complete framework for quantum information science,” Phys. Rev. X 5, 041017 (2015).
  8. A. Eckstein, B. Brecht, and C. Silberhorn, “A quantum pulse gate based on spectrally engineered sum frequency generation,” Optics Express 19, 13370 (2011).
    [Crossref]
  9. B. Brecht, A. Eckstein, A. Christ, H. Suche, and C. Silberhorn, “From quantum pulse gate to quantum pulse shaper—engineered frequency conversion in nonlinear optical waveguides,” New Journal of Physics 13, 065029 (2011).
    [Crossref]
  10. D. V. Reddy, M. G. Raymer, C. J. McKinstrie, L. Mejling, and K. Rottwitt, “Temporal mode selectivity by frequency conversion in second-order nonlinear optical waveguides,” Optics Express 21, 13840–13863 (2013).
    [Crossref] [PubMed]
  11. P. Manurkar, N. Jain, M. Silver, Y.-P. Huang, C. Langrock, M. M. Fejer, P. Kumar, and G. S. Kanter, “Multidimensional mode-separable frequency conversion for high-speed quantum communication,” Optica 3, 1300–1307 (2016).
    [Crossref]
  12. D. V. Reddy and M. G. Raymer, “Engineering temporal-mode-selective frequency conversion in nonlinear optical waveguides: from theory to experiment,” Opt. Express 25, 12952–12966 (2017).
    [Crossref] [PubMed]
  13. V. Ansari, J. M. Donohue, M. Allgaier, L. Sasoni, B. Brecht, J. Roslund, N. Treps, G. Harder, and C. Silberhorn, “Tomography and purification of the temporal-mode structure of quantum light,” Phys. Rev. Lett. 120, 213601 (2018).
    [Crossref] [PubMed]
  14. D.V. Reddy, M.G. Raymer, and C.J. McKinstrie, “Efficientsortingofquantum-opticalwavepacketsbytemporal-mode interferometry,” Optics Letters 39, 2924–2927 (2014).
    [Crossref]
  15. D. V. Reddy, M. G. Raymer, and C. J. McKinstrie, “Sorting photon wave packets using temporal-mode interferometry based on multiple-stage quantum frequency conversion,” Phys. Rev. A 91, 012323 (2015).
    [Crossref]
  16. T. Kobayashi, D. Yamazaki, K. Matsuki, R. Ikuta, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Kaoshi, and N. Imoto, “Mach-Zehnder interferometer using frequency-domain beamsplitter,” Opt. Express 25, 12052–12060 (2017).
    [Crossref] [PubMed]
  17. S. Clemmen, A. Farsi, S. Ramelow, and A. L. Gaeta, “Ramsey Interference with Single Photons,” Phys. Rev. Lett. 117, 223601 (2016).
    [Crossref] [PubMed]
  18. N. Quesada and J. E. Sipe, “High efficiency in mode-selective frequency conversion,” Opt. Lett. 41, 364–367 (2016).
    [Crossref] [PubMed]
  19. D. V. Reddy and M. G. Raymer, “High-selectivity quantum pulse gating of photonic temporal modes using all-optical Ramsey interferometry,” Optica 5, 423–428 (2018).
    [Crossref]
  20. Z. Zheng and A. Weiner, “Coherent control of second harmonic generation using spectrally phase coded femtosecond waveforms,” Chemical Physics 267, 161–171 (2001).
    [Crossref]
  21. Z. Zheng, A. M. Weiner, K. R. Parameswaran, M.-H. Chou, and M. M. Fejer, “Femtosecond second-harmonic generation in periodically poled lithium niobate waveguides with simultaneous strong pump depletion and group-velocity walk-off,” J. Opt. Soc. Am. B 19, 839–848 (2002).
    [Crossref]
  22. J. I. Cirac, L. M. Duan, and P. Zöller, “Quantum optical implementation of quantum information processing,” arXiv:quant-ph/0405030 (2004).
  23. X.-H. Bao, A. Reingruber, P. Dietrich, J. Rui, A. Duck, T. Strassel, L. Li, N.-L. Liu, B. Zhao, and J.-W. Pan, “Efficient and long-lived quantum memory with cold atoms inside a ring cavity,” Nat. Phys. 8, 517–521 (2012).
    [Crossref]
  24. J. Nunn, J. H. D. Munns, S. Thomas, K. T. Kaczmarek, C. Qiu, A. Feizpour, E. Poem, B. Brecht, D. J. Saunders, P. M. Ledingham, D. V. Reddy, M. G. Raymer, and I. A. Walmsley, “Theory of noise suppression in Λ-type quantum memories by means of a cavity,” Phys. Rev. A 96, 012338 (2017).
    [Crossref]
  25. M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Lončar, “Monolithic ultra-high-Q lithium niobate microring resonator,” Optica 4, 1536–1537 (2017).
    [Crossref]
  26. D. V. Strekalov, A. S. Kowligy, Y.-P. Huang, and P. Kumar, “Optical sum-frequency generation in a whisperinggallery-mode resonator,” New Journal of Physics 16, 053025 (2014).
    [Crossref]
  27. Q. Li, M. Davanco, and K. Srinivasan, “Efficient and low noise single-photon-level frequency conversion interfaces using si3n4 microrings,” in 2016 Progress in Electromagnetic Research Symposium (PIERS), (2016), pp. 2574.
  28. X. Guo, C.-L. Zou, H. Jung, and H. X. Tang, “On-chip strong coupling and efficient frequency conversion between telecom and visible optical modes,” Phys. Rev. Lett. 117, 123902 (2016).
    [Crossref] [PubMed]
  29. D. V. Strekalov, C. Marquardt, A. B. Matsko, H. G. L. Schwefel, and G. Leuchs, “Nonlinear and quantum optics with whispering gallery resonators,” Journal of Optics 18, 123002 (2016).
    [Crossref]
  30. D. Burnham and R. Chiao, “Coherent Resonance Fluorescence Excited by Short Light Pulses,” Physical Review 188, 667–675 (1969).
    [Crossref]
  31. M. J. Collett and C. W. Gardiner, “Squeezing of intracavity and traveling-wave light fields produced in parametric amplification,” Phys. Rev. A 30, 1386–1391 (1984).
    [Crossref]
  32. M. G. Raymer and C. J. McKinstrie, “Quantum input-output theory for optical cavities with arbitrary coupling strength: Application to two-photon wave-packet shaping,” Phys. Rev. A 88, 043819 (2013).
    [Crossref]
  33. Y.-Z. Sun, Y.-P. Huang, and P. Kumar, “Photonic nonlinearities via quantum zeno blockade,” Phys. Rev. Lett. 110, 223901 (2013).
    [Crossref] [PubMed]
  34. J.-T. Shen and S. Fan, “Theory of single-photon transport in a single-mode waveguide. ii. coupling to a whispering-gallery resonator containing a two-level atom,” Phys. Rev. A 79, 023838 (2009).
    [Crossref]
  35. I. M. Mirza, S. J. van Enk, and H. J. Kimble, “Single-photon time-dependent spectra in coupled cavity arrays,” J. Opt. Soc. Am. B 30, 2640–2649 (2013).
    [Crossref]
  36. F. Sedlmeir, M. R. Foreman, U. Vogl, R. Zeltner, G. Schunk, D. V. Strekalov, C. Marquardt, G. Leuchs, and H. G. L. Schwefel, “Polarization-selective out-coupling of whispering-gallery modes,” Phys. Rev. Applied 7, 024029 (2017).
    [Crossref]
  37. J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104, 153901 (2010).
    [Crossref] [PubMed]
  38. S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
    [Crossref] [PubMed]
  39. K. Y. Yang, D. Y. Oh, S. H. Lee, Q.-F. Yang, X. Yi, B. Shen, H. Wang, and K. Vahala, “Bridging ultrahigh-Q devices and photonic circuits,” Nat. Photon. 12, 297–302 (2018).
    [Crossref]
  40. T. Pellizzari, “Quantum networking with optical fibres,” Phys. Rev. Lett. 79, 5242–5245 (1997).
    [Crossref]
  41. N. Yamamoto and M. R. James, “Zero-dynamics principle for perfect quantum memory in linear networks,” New Journal of Physics 16, 073032 (2014).
    [Crossref]
  42. B. Vogell, B. Vermersch, T. E. Northup, B. P. Lanyon, and C. A. Muschik, “Deterministic quantum state transfer between remote qubits in cavities,” Quantum Science and Technology 2, 045003 (2017).
    [Crossref]
  43. N. V. Vitanov, A. A. Rangelov, B. W. Shore, and K. Bergmann, “Stimulated raman adiabatic passage in physics, chemistry, and beyond,” Rev. Mod. Phys.  89, 015006 (2017).
    [Crossref]
  44. K. L. Tsakmakidis, L. Shen, S. A. Schulz, X. Zheng, J. Upham, X. Deng, H. Altug, A. F. Vakakis, and R. W. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356, 1260–1264 (2017).
    [Crossref] [PubMed]

2018 (3)

V. Ansari, J. M. Donohue, M. Allgaier, L. Sasoni, B. Brecht, J. Roslund, N. Treps, G. Harder, and C. Silberhorn, “Tomography and purification of the temporal-mode structure of quantum light,” Phys. Rev. Lett. 120, 213601 (2018).
[Crossref] [PubMed]

D. V. Reddy and M. G. Raymer, “High-selectivity quantum pulse gating of photonic temporal modes using all-optical Ramsey interferometry,” Optica 5, 423–428 (2018).
[Crossref]

K. Y. Yang, D. Y. Oh, S. H. Lee, Q.-F. Yang, X. Yi, B. Shen, H. Wang, and K. Vahala, “Bridging ultrahigh-Q devices and photonic circuits,” Nat. Photon. 12, 297–302 (2018).
[Crossref]

2017 (10)

F. Sedlmeir, M. R. Foreman, U. Vogl, R. Zeltner, G. Schunk, D. V. Strekalov, C. Marquardt, G. Leuchs, and H. G. L. Schwefel, “Polarization-selective out-coupling of whispering-gallery modes,” Phys. Rev. Applied 7, 024029 (2017).
[Crossref]

J. Nunn, J. H. D. Munns, S. Thomas, K. T. Kaczmarek, C. Qiu, A. Feizpour, E. Poem, B. Brecht, D. J. Saunders, P. M. Ledingham, D. V. Reddy, M. G. Raymer, and I. A. Walmsley, “Theory of noise suppression in Λ-type quantum memories by means of a cavity,” Phys. Rev. A 96, 012338 (2017).
[Crossref]

M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Lončar, “Monolithic ultra-high-Q lithium niobate microring resonator,” Optica 4, 1536–1537 (2017).
[Crossref]

T. Kobayashi, D. Yamazaki, K. Matsuki, R. Ikuta, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Kaoshi, and N. Imoto, “Mach-Zehnder interferometer using frequency-domain beamsplitter,” Opt. Express 25, 12052–12060 (2017).
[Crossref] [PubMed]

D. V. Reddy and M. G. Raymer, “Engineering temporal-mode-selective frequency conversion in nonlinear optical waveguides: from theory to experiment,” Opt. Express 25, 12952–12966 (2017).
[Crossref] [PubMed]

L. J. Wright, M. Karpiński, C. Söller, and B. J. Smith, “Spectral shearing of quantum light pulses by electro-optic phase modulation,” Phys. Rev. Lett. 118, 023601 (2017).
[Crossref] [PubMed]

A. O. C. Davis, P. M. Saulnier, M. Karpiński, and B. J. Smith, “Pulsed single-photon spectrometer by frequency-to-time mapping using chirped fiber bragg gratings,” Opt. Express 25, 12804–12811 (2017).
[Crossref] [PubMed]

B. Vogell, B. Vermersch, T. E. Northup, B. P. Lanyon, and C. A. Muschik, “Deterministic quantum state transfer between remote qubits in cavities,” Quantum Science and Technology 2, 045003 (2017).
[Crossref]

N. V. Vitanov, A. A. Rangelov, B. W. Shore, and K. Bergmann, “Stimulated raman adiabatic passage in physics, chemistry, and beyond,” Rev. Mod. Phys.  89, 015006 (2017).
[Crossref]

K. L. Tsakmakidis, L. Shen, S. A. Schulz, X. Zheng, J. Upham, X. Deng, H. Altug, A. F. Vakakis, and R. W. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356, 1260–1264 (2017).
[Crossref] [PubMed]

2016 (5)

P. Manurkar, N. Jain, M. Silver, Y.-P. Huang, C. Langrock, M. M. Fejer, P. Kumar, and G. S. Kanter, “Multidimensional mode-separable frequency conversion for high-speed quantum communication,” Optica 3, 1300–1307 (2016).
[Crossref]

S. Clemmen, A. Farsi, S. Ramelow, and A. L. Gaeta, “Ramsey Interference with Single Photons,” Phys. Rev. Lett. 117, 223601 (2016).
[Crossref] [PubMed]

N. Quesada and J. E. Sipe, “High efficiency in mode-selective frequency conversion,” Opt. Lett. 41, 364–367 (2016).
[Crossref] [PubMed]

X. Guo, C.-L. Zou, H. Jung, and H. X. Tang, “On-chip strong coupling and efficient frequency conversion between telecom and visible optical modes,” Phys. Rev. Lett. 117, 123902 (2016).
[Crossref] [PubMed]

D. V. Strekalov, C. Marquardt, A. B. Matsko, H. G. L. Schwefel, and G. Leuchs, “Nonlinear and quantum optics with whispering gallery resonators,” Journal of Optics 18, 123002 (2016).
[Crossref]

2015 (2)

D. V. Reddy, M. G. Raymer, and C. J. McKinstrie, “Sorting photon wave packets using temporal-mode interferometry based on multiple-stage quantum frequency conversion,” Phys. Rev. A 91, 012323 (2015).
[Crossref]

B. Brecht, D. V. Reddy, C. Silberhorn, and M. G. Raymer, “Photon temporal modes: A complete framework for quantum information science,” Phys. Rev. X 5, 041017 (2015).

2014 (4)

P. C. Humphreys, W. S. Kolthammer, J. Nunn, M. Barbieri, A. Datta, and I. A. Walmsley, “Continuous-Variable Quantum Computing in Optical Time-Frequency Modes Using Quantum Memories,” Physical Review Letters 113, 130502 (2014).
[Crossref] [PubMed]

D.V. Reddy, M.G. Raymer, and C.J. McKinstrie, “Efficientsortingofquantum-opticalwavepacketsbytemporal-mode interferometry,” Optics Letters 39, 2924–2927 (2014).
[Crossref]

D. V. Strekalov, A. S. Kowligy, Y.-P. Huang, and P. Kumar, “Optical sum-frequency generation in a whisperinggallery-mode resonator,” New Journal of Physics 16, 053025 (2014).
[Crossref]

N. Yamamoto and M. R. James, “Zero-dynamics principle for perfect quantum memory in linear networks,” New Journal of Physics 16, 073032 (2014).
[Crossref]

2013 (5)

I. M. Mirza, S. J. van Enk, and H. J. Kimble, “Single-photon time-dependent spectra in coupled cavity arrays,” J. Opt. Soc. Am. B 30, 2640–2649 (2013).
[Crossref]

M. G. Raymer and C. J. McKinstrie, “Quantum input-output theory for optical cavities with arbitrary coupling strength: Application to two-photon wave-packet shaping,” Phys. Rev. A 88, 043819 (2013).
[Crossref]

Y.-Z. Sun, Y.-P. Huang, and P. Kumar, “Photonic nonlinearities via quantum zeno blockade,” Phys. Rev. Lett. 110, 223901 (2013).
[Crossref] [PubMed]

J. Nunn, L. J. Wright, C. Söller, L. Zhang, I. A. Walmsley, and B. J. Smith, “Large-alphabet time-frequency entangled quantum key distribution by means of time-to-frequency conversion,” Opt. Express 21, 15959–15973 (2013).
[Crossref] [PubMed]

D. V. Reddy, M. G. Raymer, C. J. McKinstrie, L. Mejling, and K. Rottwitt, “Temporal mode selectivity by frequency conversion in second-order nonlinear optical waveguides,” Optics Express 21, 13840–13863 (2013).
[Crossref] [PubMed]

2012 (2)

M. G. Raymer and K. Srinivasan, “Manipulating the color and shape of single photons,” Physics Today 65, 32 (2012).
[Crossref]

X.-H. Bao, A. Reingruber, P. Dietrich, J. Rui, A. Duck, T. Strassel, L. Li, N.-L. Liu, B. Zhao, and J.-W. Pan, “Efficient and long-lived quantum memory with cold atoms inside a ring cavity,” Nat. Phys. 8, 517–521 (2012).
[Crossref]

2011 (2)

A. Eckstein, B. Brecht, and C. Silberhorn, “A quantum pulse gate based on spectrally engineered sum frequency generation,” Optics Express 19, 13370 (2011).
[Crossref]

B. Brecht, A. Eckstein, A. Christ, H. Suche, and C. Silberhorn, “From quantum pulse gate to quantum pulse shaper—engineered frequency conversion in nonlinear optical waveguides,” New Journal of Physics 13, 065029 (2011).
[Crossref]

2010 (1)

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104, 153901 (2010).
[Crossref] [PubMed]

2009 (1)

J.-T. Shen and S. Fan, “Theory of single-photon transport in a single-mode waveguide. ii. coupling to a whispering-gallery resonator containing a two-level atom,” Phys. Rev. A 79, 023838 (2009).
[Crossref]

2007 (1)

B. J. Smith and M. G. Raymer, “Photon wave functions, wave-packet quantization of light, and coherence theory,” New Journal of Physics 9, 414 (2007).
[Crossref]

2003 (1)

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[Crossref] [PubMed]

2002 (1)

2001 (1)

Z. Zheng and A. Weiner, “Coherent control of second harmonic generation using spectrally phase coded femtosecond waveforms,” Chemical Physics 267, 161–171 (2001).
[Crossref]

1997 (1)

T. Pellizzari, “Quantum networking with optical fibres,” Phys. Rev. Lett. 79, 5242–5245 (1997).
[Crossref]

1984 (1)

M. J. Collett and C. W. Gardiner, “Squeezing of intracavity and traveling-wave light fields produced in parametric amplification,” Phys. Rev. A 30, 1386–1391 (1984).
[Crossref]

1969 (1)

D. Burnham and R. Chiao, “Coherent Resonance Fluorescence Excited by Short Light Pulses,” Physical Review 188, 667–675 (1969).
[Crossref]

Allgaier, M.

V. Ansari, J. M. Donohue, M. Allgaier, L. Sasoni, B. Brecht, J. Roslund, N. Treps, G. Harder, and C. Silberhorn, “Tomography and purification of the temporal-mode structure of quantum light,” Phys. Rev. Lett. 120, 213601 (2018).
[Crossref] [PubMed]

Altug, H.

K. L. Tsakmakidis, L. Shen, S. A. Schulz, X. Zheng, J. Upham, X. Deng, H. Altug, A. F. Vakakis, and R. W. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356, 1260–1264 (2017).
[Crossref] [PubMed]

Andersen, U. L.

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104, 153901 (2010).
[Crossref] [PubMed]

Ansari, V.

V. Ansari, J. M. Donohue, M. Allgaier, L. Sasoni, B. Brecht, J. Roslund, N. Treps, G. Harder, and C. Silberhorn, “Tomography and purification of the temporal-mode structure of quantum light,” Phys. Rev. Lett. 120, 213601 (2018).
[Crossref] [PubMed]

Bao, X.-H.

X.-H. Bao, A. Reingruber, P. Dietrich, J. Rui, A. Duck, T. Strassel, L. Li, N.-L. Liu, B. Zhao, and J.-W. Pan, “Efficient and long-lived quantum memory with cold atoms inside a ring cavity,” Nat. Phys. 8, 517–521 (2012).
[Crossref]

Barbieri, M.

P. C. Humphreys, W. S. Kolthammer, J. Nunn, M. Barbieri, A. Datta, and I. A. Walmsley, “Continuous-Variable Quantum Computing in Optical Time-Frequency Modes Using Quantum Memories,” Physical Review Letters 113, 130502 (2014).
[Crossref] [PubMed]

Bergmann, K.

N. V. Vitanov, A. A. Rangelov, B. W. Shore, and K. Bergmann, “Stimulated raman adiabatic passage in physics, chemistry, and beyond,” Rev. Mod. Phys.  89, 015006 (2017).
[Crossref]

Boyd, R. W.

K. L. Tsakmakidis, L. Shen, S. A. Schulz, X. Zheng, J. Upham, X. Deng, H. Altug, A. F. Vakakis, and R. W. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356, 1260–1264 (2017).
[Crossref] [PubMed]

Brecht, B.

V. Ansari, J. M. Donohue, M. Allgaier, L. Sasoni, B. Brecht, J. Roslund, N. Treps, G. Harder, and C. Silberhorn, “Tomography and purification of the temporal-mode structure of quantum light,” Phys. Rev. Lett. 120, 213601 (2018).
[Crossref] [PubMed]

J. Nunn, J. H. D. Munns, S. Thomas, K. T. Kaczmarek, C. Qiu, A. Feizpour, E. Poem, B. Brecht, D. J. Saunders, P. M. Ledingham, D. V. Reddy, M. G. Raymer, and I. A. Walmsley, “Theory of noise suppression in Λ-type quantum memories by means of a cavity,” Phys. Rev. A 96, 012338 (2017).
[Crossref]

B. Brecht, D. V. Reddy, C. Silberhorn, and M. G. Raymer, “Photon temporal modes: A complete framework for quantum information science,” Phys. Rev. X 5, 041017 (2015).

A. Eckstein, B. Brecht, and C. Silberhorn, “A quantum pulse gate based on spectrally engineered sum frequency generation,” Optics Express 19, 13370 (2011).
[Crossref]

B. Brecht, A. Eckstein, A. Christ, H. Suche, and C. Silberhorn, “From quantum pulse gate to quantum pulse shaper—engineered frequency conversion in nonlinear optical waveguides,” New Journal of Physics 13, 065029 (2011).
[Crossref]

Burnham, D.

D. Burnham and R. Chiao, “Coherent Resonance Fluorescence Excited by Short Light Pulses,” Physical Review 188, 667–675 (1969).
[Crossref]

Cheng, R.

Chiao, R.

D. Burnham and R. Chiao, “Coherent Resonance Fluorescence Excited by Short Light Pulses,” Physical Review 188, 667–675 (1969).
[Crossref]

Chou, M.-H.

Christ, A.

B. Brecht, A. Eckstein, A. Christ, H. Suche, and C. Silberhorn, “From quantum pulse gate to quantum pulse shaper—engineered frequency conversion in nonlinear optical waveguides,” New Journal of Physics 13, 065029 (2011).
[Crossref]

Cirac, J. I.

J. I. Cirac, L. M. Duan, and P. Zöller, “Quantum optical implementation of quantum information processing,” arXiv:quant-ph/0405030 (2004).

Clemmen, S.

S. Clemmen, A. Farsi, S. Ramelow, and A. L. Gaeta, “Ramsey Interference with Single Photons,” Phys. Rev. Lett. 117, 223601 (2016).
[Crossref] [PubMed]

Collett, M. J.

M. J. Collett and C. W. Gardiner, “Squeezing of intracavity and traveling-wave light fields produced in parametric amplification,” Phys. Rev. A 30, 1386–1391 (1984).
[Crossref]

Datta, A.

P. C. Humphreys, W. S. Kolthammer, J. Nunn, M. Barbieri, A. Datta, and I. A. Walmsley, “Continuous-Variable Quantum Computing in Optical Time-Frequency Modes Using Quantum Memories,” Physical Review Letters 113, 130502 (2014).
[Crossref] [PubMed]

Davanco, M.

Q. Li, M. Davanco, and K. Srinivasan, “Efficient and low noise single-photon-level frequency conversion interfaces using si3n4 microrings,” in 2016 Progress in Electromagnetic Research Symposium (PIERS), (2016), pp. 2574.

Davis, A. O. C.

Deng, X.

K. L. Tsakmakidis, L. Shen, S. A. Schulz, X. Zheng, J. Upham, X. Deng, H. Altug, A. F. Vakakis, and R. W. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356, 1260–1264 (2017).
[Crossref] [PubMed]

Dietrich, P.

X.-H. Bao, A. Reingruber, P. Dietrich, J. Rui, A. Duck, T. Strassel, L. Li, N.-L. Liu, B. Zhao, and J.-W. Pan, “Efficient and long-lived quantum memory with cold atoms inside a ring cavity,” Nat. Phys. 8, 517–521 (2012).
[Crossref]

Donohue, J. M.

V. Ansari, J. M. Donohue, M. Allgaier, L. Sasoni, B. Brecht, J. Roslund, N. Treps, G. Harder, and C. Silberhorn, “Tomography and purification of the temporal-mode structure of quantum light,” Phys. Rev. Lett. 120, 213601 (2018).
[Crossref] [PubMed]

Duan, L. M.

J. I. Cirac, L. M. Duan, and P. Zöller, “Quantum optical implementation of quantum information processing,” arXiv:quant-ph/0405030 (2004).

Duck, A.

X.-H. Bao, A. Reingruber, P. Dietrich, J. Rui, A. Duck, T. Strassel, L. Li, N.-L. Liu, B. Zhao, and J.-W. Pan, “Efficient and long-lived quantum memory with cold atoms inside a ring cavity,” Nat. Phys. 8, 517–521 (2012).
[Crossref]

Eckstein, A.

A. Eckstein, B. Brecht, and C. Silberhorn, “A quantum pulse gate based on spectrally engineered sum frequency generation,” Optics Express 19, 13370 (2011).
[Crossref]

B. Brecht, A. Eckstein, A. Christ, H. Suche, and C. Silberhorn, “From quantum pulse gate to quantum pulse shaper—engineered frequency conversion in nonlinear optical waveguides,” New Journal of Physics 13, 065029 (2011).
[Crossref]

Elser, D.

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104, 153901 (2010).
[Crossref] [PubMed]

Fan, S.

J.-T. Shen and S. Fan, “Theory of single-photon transport in a single-mode waveguide. ii. coupling to a whispering-gallery resonator containing a two-level atom,” Phys. Rev. A 79, 023838 (2009).
[Crossref]

Farsi, A.

S. Clemmen, A. Farsi, S. Ramelow, and A. L. Gaeta, “Ramsey Interference with Single Photons,” Phys. Rev. Lett. 117, 223601 (2016).
[Crossref] [PubMed]

Feizpour, A.

J. Nunn, J. H. D. Munns, S. Thomas, K. T. Kaczmarek, C. Qiu, A. Feizpour, E. Poem, B. Brecht, D. J. Saunders, P. M. Ledingham, D. V. Reddy, M. G. Raymer, and I. A. Walmsley, “Theory of noise suppression in Λ-type quantum memories by means of a cavity,” Phys. Rev. A 96, 012338 (2017).
[Crossref]

Fejer, M. M.

Foreman, M. R.

F. Sedlmeir, M. R. Foreman, U. Vogl, R. Zeltner, G. Schunk, D. V. Strekalov, C. Marquardt, G. Leuchs, and H. G. L. Schwefel, “Polarization-selective out-coupling of whispering-gallery modes,” Phys. Rev. Applied 7, 024029 (2017).
[Crossref]

Fürst, J. U.

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104, 153901 (2010).
[Crossref] [PubMed]

Gaeta, A. L.

S. Clemmen, A. Farsi, S. Ramelow, and A. L. Gaeta, “Ramsey Interference with Single Photons,” Phys. Rev. Lett. 117, 223601 (2016).
[Crossref] [PubMed]

Gardiner, C. W.

M. J. Collett and C. W. Gardiner, “Squeezing of intracavity and traveling-wave light fields produced in parametric amplification,” Phys. Rev. A 30, 1386–1391 (1984).
[Crossref]

Guo, X.

X. Guo, C.-L. Zou, H. Jung, and H. X. Tang, “On-chip strong coupling and efficient frequency conversion between telecom and visible optical modes,” Phys. Rev. Lett. 117, 123902 (2016).
[Crossref] [PubMed]

Harder, G.

V. Ansari, J. M. Donohue, M. Allgaier, L. Sasoni, B. Brecht, J. Roslund, N. Treps, G. Harder, and C. Silberhorn, “Tomography and purification of the temporal-mode structure of quantum light,” Phys. Rev. Lett. 120, 213601 (2018).
[Crossref] [PubMed]

Huang, Y.-P.

P. Manurkar, N. Jain, M. Silver, Y.-P. Huang, C. Langrock, M. M. Fejer, P. Kumar, and G. S. Kanter, “Multidimensional mode-separable frequency conversion for high-speed quantum communication,” Optica 3, 1300–1307 (2016).
[Crossref]

D. V. Strekalov, A. S. Kowligy, Y.-P. Huang, and P. Kumar, “Optical sum-frequency generation in a whisperinggallery-mode resonator,” New Journal of Physics 16, 053025 (2014).
[Crossref]

Y.-Z. Sun, Y.-P. Huang, and P. Kumar, “Photonic nonlinearities via quantum zeno blockade,” Phys. Rev. Lett. 110, 223901 (2013).
[Crossref] [PubMed]

Humphreys, P. C.

P. C. Humphreys, W. S. Kolthammer, J. Nunn, M. Barbieri, A. Datta, and I. A. Walmsley, “Continuous-Variable Quantum Computing in Optical Time-Frequency Modes Using Quantum Memories,” Physical Review Letters 113, 130502 (2014).
[Crossref] [PubMed]

Ikuta, R.

Imoto, N.

Jain, N.

James, M. R.

N. Yamamoto and M. R. James, “Zero-dynamics principle for perfect quantum memory in linear networks,” New Journal of Physics 16, 073032 (2014).
[Crossref]

Jung, H.

X. Guo, C.-L. Zou, H. Jung, and H. X. Tang, “On-chip strong coupling and efficient frequency conversion between telecom and visible optical modes,” Phys. Rev. Lett. 117, 123902 (2016).
[Crossref] [PubMed]

Kaczmarek, K. T.

J. Nunn, J. H. D. Munns, S. Thomas, K. T. Kaczmarek, C. Qiu, A. Feizpour, E. Poem, B. Brecht, D. J. Saunders, P. M. Ledingham, D. V. Reddy, M. G. Raymer, and I. A. Walmsley, “Theory of noise suppression in Λ-type quantum memories by means of a cavity,” Phys. Rev. A 96, 012338 (2017).
[Crossref]

Kanter, G. S.

Kaoshi, M.

Karpinski, M.

L. J. Wright, M. Karpiński, C. Söller, and B. J. Smith, “Spectral shearing of quantum light pulses by electro-optic phase modulation,” Phys. Rev. Lett. 118, 023601 (2017).
[Crossref] [PubMed]

A. O. C. Davis, P. M. Saulnier, M. Karpiński, and B. J. Smith, “Pulsed single-photon spectrometer by frequency-to-time mapping using chirped fiber bragg gratings,” Opt. Express 25, 12804–12811 (2017).
[Crossref] [PubMed]

Kimble, H. J.

Kippenberg, T. J.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[Crossref] [PubMed]

Kobayashi, T.

Kolthammer, W. S.

P. C. Humphreys, W. S. Kolthammer, J. Nunn, M. Barbieri, A. Datta, and I. A. Walmsley, “Continuous-Variable Quantum Computing in Optical Time-Frequency Modes Using Quantum Memories,” Physical Review Letters 113, 130502 (2014).
[Crossref] [PubMed]

Kowligy, A. S.

D. V. Strekalov, A. S. Kowligy, Y.-P. Huang, and P. Kumar, “Optical sum-frequency generation in a whisperinggallery-mode resonator,” New Journal of Physics 16, 053025 (2014).
[Crossref]

Kumar, P.

P. Manurkar, N. Jain, M. Silver, Y.-P. Huang, C. Langrock, M. M. Fejer, P. Kumar, and G. S. Kanter, “Multidimensional mode-separable frequency conversion for high-speed quantum communication,” Optica 3, 1300–1307 (2016).
[Crossref]

D. V. Strekalov, A. S. Kowligy, Y.-P. Huang, and P. Kumar, “Optical sum-frequency generation in a whisperinggallery-mode resonator,” New Journal of Physics 16, 053025 (2014).
[Crossref]

Y.-Z. Sun, Y.-P. Huang, and P. Kumar, “Photonic nonlinearities via quantum zeno blockade,” Phys. Rev. Lett. 110, 223901 (2013).
[Crossref] [PubMed]

Langrock, C.

Lanyon, B. P.

B. Vogell, B. Vermersch, T. E. Northup, B. P. Lanyon, and C. A. Muschik, “Deterministic quantum state transfer between remote qubits in cavities,” Quantum Science and Technology 2, 045003 (2017).
[Crossref]

Lassen, M.

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104, 153901 (2010).
[Crossref] [PubMed]

Ledingham, P. M.

J. Nunn, J. H. D. Munns, S. Thomas, K. T. Kaczmarek, C. Qiu, A. Feizpour, E. Poem, B. Brecht, D. J. Saunders, P. M. Ledingham, D. V. Reddy, M. G. Raymer, and I. A. Walmsley, “Theory of noise suppression in Λ-type quantum memories by means of a cavity,” Phys. Rev. A 96, 012338 (2017).
[Crossref]

Lee, S. H.

K. Y. Yang, D. Y. Oh, S. H. Lee, Q.-F. Yang, X. Yi, B. Shen, H. Wang, and K. Vahala, “Bridging ultrahigh-Q devices and photonic circuits,” Nat. Photon. 12, 297–302 (2018).
[Crossref]

Leuchs, G.

F. Sedlmeir, M. R. Foreman, U. Vogl, R. Zeltner, G. Schunk, D. V. Strekalov, C. Marquardt, G. Leuchs, and H. G. L. Schwefel, “Polarization-selective out-coupling of whispering-gallery modes,” Phys. Rev. Applied 7, 024029 (2017).
[Crossref]

D. V. Strekalov, C. Marquardt, A. B. Matsko, H. G. L. Schwefel, and G. Leuchs, “Nonlinear and quantum optics with whispering gallery resonators,” Journal of Optics 18, 123002 (2016).
[Crossref]

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104, 153901 (2010).
[Crossref] [PubMed]

Li, L.

X.-H. Bao, A. Reingruber, P. Dietrich, J. Rui, A. Duck, T. Strassel, L. Li, N.-L. Liu, B. Zhao, and J.-W. Pan, “Efficient and long-lived quantum memory with cold atoms inside a ring cavity,” Nat. Phys. 8, 517–521 (2012).
[Crossref]

Li, Q.

Q. Li, M. Davanco, and K. Srinivasan, “Efficient and low noise single-photon-level frequency conversion interfaces using si3n4 microrings,” in 2016 Progress in Electromagnetic Research Symposium (PIERS), (2016), pp. 2574.

Liu, N.-L.

X.-H. Bao, A. Reingruber, P. Dietrich, J. Rui, A. Duck, T. Strassel, L. Li, N.-L. Liu, B. Zhao, and J.-W. Pan, “Efficient and long-lived quantum memory with cold atoms inside a ring cavity,” Nat. Phys. 8, 517–521 (2012).
[Crossref]

Loncar, M.

Manurkar, P.

Marquardt, C.

F. Sedlmeir, M. R. Foreman, U. Vogl, R. Zeltner, G. Schunk, D. V. Strekalov, C. Marquardt, G. Leuchs, and H. G. L. Schwefel, “Polarization-selective out-coupling of whispering-gallery modes,” Phys. Rev. Applied 7, 024029 (2017).
[Crossref]

D. V. Strekalov, C. Marquardt, A. B. Matsko, H. G. L. Schwefel, and G. Leuchs, “Nonlinear and quantum optics with whispering gallery resonators,” Journal of Optics 18, 123002 (2016).
[Crossref]

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104, 153901 (2010).
[Crossref] [PubMed]

Matsko, A. B.

D. V. Strekalov, C. Marquardt, A. B. Matsko, H. G. L. Schwefel, and G. Leuchs, “Nonlinear and quantum optics with whispering gallery resonators,” Journal of Optics 18, 123002 (2016).
[Crossref]

Matsuki, K.

McKinstrie, C. J.

D. V. Reddy, M. G. Raymer, and C. J. McKinstrie, “Sorting photon wave packets using temporal-mode interferometry based on multiple-stage quantum frequency conversion,” Phys. Rev. A 91, 012323 (2015).
[Crossref]

D. V. Reddy, M. G. Raymer, C. J. McKinstrie, L. Mejling, and K. Rottwitt, “Temporal mode selectivity by frequency conversion in second-order nonlinear optical waveguides,” Optics Express 21, 13840–13863 (2013).
[Crossref] [PubMed]

M. G. Raymer and C. J. McKinstrie, “Quantum input-output theory for optical cavities with arbitrary coupling strength: Application to two-photon wave-packet shaping,” Phys. Rev. A 88, 043819 (2013).
[Crossref]

McKinstrie, C.J.

D.V. Reddy, M.G. Raymer, and C.J. McKinstrie, “Efficientsortingofquantum-opticalwavepacketsbytemporal-mode interferometry,” Optics Letters 39, 2924–2927 (2014).
[Crossref]

Mejling, L.

D. V. Reddy, M. G. Raymer, C. J. McKinstrie, L. Mejling, and K. Rottwitt, “Temporal mode selectivity by frequency conversion in second-order nonlinear optical waveguides,” Optics Express 21, 13840–13863 (2013).
[Crossref] [PubMed]

Miki, S.

Mirza, I. M.

Munns, J. H. D.

J. Nunn, J. H. D. Munns, S. Thomas, K. T. Kaczmarek, C. Qiu, A. Feizpour, E. Poem, B. Brecht, D. J. Saunders, P. M. Ledingham, D. V. Reddy, M. G. Raymer, and I. A. Walmsley, “Theory of noise suppression in Λ-type quantum memories by means of a cavity,” Phys. Rev. A 96, 012338 (2017).
[Crossref]

Muschik, C. A.

B. Vogell, B. Vermersch, T. E. Northup, B. P. Lanyon, and C. A. Muschik, “Deterministic quantum state transfer between remote qubits in cavities,” Quantum Science and Technology 2, 045003 (2017).
[Crossref]

Northup, T. E.

B. Vogell, B. Vermersch, T. E. Northup, B. P. Lanyon, and C. A. Muschik, “Deterministic quantum state transfer between remote qubits in cavities,” Quantum Science and Technology 2, 045003 (2017).
[Crossref]

Nunn, J.

J. Nunn, J. H. D. Munns, S. Thomas, K. T. Kaczmarek, C. Qiu, A. Feizpour, E. Poem, B. Brecht, D. J. Saunders, P. M. Ledingham, D. V. Reddy, M. G. Raymer, and I. A. Walmsley, “Theory of noise suppression in Λ-type quantum memories by means of a cavity,” Phys. Rev. A 96, 012338 (2017).
[Crossref]

P. C. Humphreys, W. S. Kolthammer, J. Nunn, M. Barbieri, A. Datta, and I. A. Walmsley, “Continuous-Variable Quantum Computing in Optical Time-Frequency Modes Using Quantum Memories,” Physical Review Letters 113, 130502 (2014).
[Crossref] [PubMed]

J. Nunn, L. J. Wright, C. Söller, L. Zhang, I. A. Walmsley, and B. J. Smith, “Large-alphabet time-frequency entangled quantum key distribution by means of time-to-frequency conversion,” Opt. Express 21, 15959–15973 (2013).
[Crossref] [PubMed]

Oh, D. Y.

K. Y. Yang, D. Y. Oh, S. H. Lee, Q.-F. Yang, X. Yi, B. Shen, H. Wang, and K. Vahala, “Bridging ultrahigh-Q devices and photonic circuits,” Nat. Photon. 12, 297–302 (2018).
[Crossref]

Painter, O. J.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[Crossref] [PubMed]

Pan, J.-W.

X.-H. Bao, A. Reingruber, P. Dietrich, J. Rui, A. Duck, T. Strassel, L. Li, N.-L. Liu, B. Zhao, and J.-W. Pan, “Efficient and long-lived quantum memory with cold atoms inside a ring cavity,” Nat. Phys. 8, 517–521 (2012).
[Crossref]

Parameswaran, K. R.

Pellizzari, T.

T. Pellizzari, “Quantum networking with optical fibres,” Phys. Rev. Lett. 79, 5242–5245 (1997).
[Crossref]

Poem, E.

J. Nunn, J. H. D. Munns, S. Thomas, K. T. Kaczmarek, C. Qiu, A. Feizpour, E. Poem, B. Brecht, D. J. Saunders, P. M. Ledingham, D. V. Reddy, M. G. Raymer, and I. A. Walmsley, “Theory of noise suppression in Λ-type quantum memories by means of a cavity,” Phys. Rev. A 96, 012338 (2017).
[Crossref]

Qiu, C.

J. Nunn, J. H. D. Munns, S. Thomas, K. T. Kaczmarek, C. Qiu, A. Feizpour, E. Poem, B. Brecht, D. J. Saunders, P. M. Ledingham, D. V. Reddy, M. G. Raymer, and I. A. Walmsley, “Theory of noise suppression in Λ-type quantum memories by means of a cavity,” Phys. Rev. A 96, 012338 (2017).
[Crossref]

Quesada, N.

Ramelow, S.

S. Clemmen, A. Farsi, S. Ramelow, and A. L. Gaeta, “Ramsey Interference with Single Photons,” Phys. Rev. Lett. 117, 223601 (2016).
[Crossref] [PubMed]

Rangelov, A. A.

N. V. Vitanov, A. A. Rangelov, B. W. Shore, and K. Bergmann, “Stimulated raman adiabatic passage in physics, chemistry, and beyond,” Rev. Mod. Phys.  89, 015006 (2017).
[Crossref]

Raymer, M. G.

D. V. Reddy and M. G. Raymer, “High-selectivity quantum pulse gating of photonic temporal modes using all-optical Ramsey interferometry,” Optica 5, 423–428 (2018).
[Crossref]

J. Nunn, J. H. D. Munns, S. Thomas, K. T. Kaczmarek, C. Qiu, A. Feizpour, E. Poem, B. Brecht, D. J. Saunders, P. M. Ledingham, D. V. Reddy, M. G. Raymer, and I. A. Walmsley, “Theory of noise suppression in Λ-type quantum memories by means of a cavity,” Phys. Rev. A 96, 012338 (2017).
[Crossref]

D. V. Reddy and M. G. Raymer, “Engineering temporal-mode-selective frequency conversion in nonlinear optical waveguides: from theory to experiment,” Opt. Express 25, 12952–12966 (2017).
[Crossref] [PubMed]

D. V. Reddy, M. G. Raymer, and C. J. McKinstrie, “Sorting photon wave packets using temporal-mode interferometry based on multiple-stage quantum frequency conversion,” Phys. Rev. A 91, 012323 (2015).
[Crossref]

B. Brecht, D. V. Reddy, C. Silberhorn, and M. G. Raymer, “Photon temporal modes: A complete framework for quantum information science,” Phys. Rev. X 5, 041017 (2015).

D. V. Reddy, M. G. Raymer, C. J. McKinstrie, L. Mejling, and K. Rottwitt, “Temporal mode selectivity by frequency conversion in second-order nonlinear optical waveguides,” Optics Express 21, 13840–13863 (2013).
[Crossref] [PubMed]

M. G. Raymer and C. J. McKinstrie, “Quantum input-output theory for optical cavities with arbitrary coupling strength: Application to two-photon wave-packet shaping,” Phys. Rev. A 88, 043819 (2013).
[Crossref]

M. G. Raymer and K. Srinivasan, “Manipulating the color and shape of single photons,” Physics Today 65, 32 (2012).
[Crossref]

B. J. Smith and M. G. Raymer, “Photon wave functions, wave-packet quantization of light, and coherence theory,” New Journal of Physics 9, 414 (2007).
[Crossref]

Raymer, M.G.

D.V. Reddy, M.G. Raymer, and C.J. McKinstrie, “Efficientsortingofquantum-opticalwavepacketsbytemporal-mode interferometry,” Optics Letters 39, 2924–2927 (2014).
[Crossref]

Reddy, D. V.

D. V. Reddy and M. G. Raymer, “High-selectivity quantum pulse gating of photonic temporal modes using all-optical Ramsey interferometry,” Optica 5, 423–428 (2018).
[Crossref]

J. Nunn, J. H. D. Munns, S. Thomas, K. T. Kaczmarek, C. Qiu, A. Feizpour, E. Poem, B. Brecht, D. J. Saunders, P. M. Ledingham, D. V. Reddy, M. G. Raymer, and I. A. Walmsley, “Theory of noise suppression in Λ-type quantum memories by means of a cavity,” Phys. Rev. A 96, 012338 (2017).
[Crossref]

D. V. Reddy and M. G. Raymer, “Engineering temporal-mode-selective frequency conversion in nonlinear optical waveguides: from theory to experiment,” Opt. Express 25, 12952–12966 (2017).
[Crossref] [PubMed]

D. V. Reddy, M. G. Raymer, and C. J. McKinstrie, “Sorting photon wave packets using temporal-mode interferometry based on multiple-stage quantum frequency conversion,” Phys. Rev. A 91, 012323 (2015).
[Crossref]

B. Brecht, D. V. Reddy, C. Silberhorn, and M. G. Raymer, “Photon temporal modes: A complete framework for quantum information science,” Phys. Rev. X 5, 041017 (2015).

D. V. Reddy, M. G. Raymer, C. J. McKinstrie, L. Mejling, and K. Rottwitt, “Temporal mode selectivity by frequency conversion in second-order nonlinear optical waveguides,” Optics Express 21, 13840–13863 (2013).
[Crossref] [PubMed]

Reddy, D.V.

D.V. Reddy, M.G. Raymer, and C.J. McKinstrie, “Efficientsortingofquantum-opticalwavepacketsbytemporal-mode interferometry,” Optics Letters 39, 2924–2927 (2014).
[Crossref]

Reingruber, A.

X.-H. Bao, A. Reingruber, P. Dietrich, J. Rui, A. Duck, T. Strassel, L. Li, N.-L. Liu, B. Zhao, and J.-W. Pan, “Efficient and long-lived quantum memory with cold atoms inside a ring cavity,” Nat. Phys. 8, 517–521 (2012).
[Crossref]

Roslund, J.

V. Ansari, J. M. Donohue, M. Allgaier, L. Sasoni, B. Brecht, J. Roslund, N. Treps, G. Harder, and C. Silberhorn, “Tomography and purification of the temporal-mode structure of quantum light,” Phys. Rev. Lett. 120, 213601 (2018).
[Crossref] [PubMed]

Rottwitt, K.

D. V. Reddy, M. G. Raymer, C. J. McKinstrie, L. Mejling, and K. Rottwitt, “Temporal mode selectivity by frequency conversion in second-order nonlinear optical waveguides,” Optics Express 21, 13840–13863 (2013).
[Crossref] [PubMed]

Rui, J.

X.-H. Bao, A. Reingruber, P. Dietrich, J. Rui, A. Duck, T. Strassel, L. Li, N.-L. Liu, B. Zhao, and J.-W. Pan, “Efficient and long-lived quantum memory with cold atoms inside a ring cavity,” Nat. Phys. 8, 517–521 (2012).
[Crossref]

Sasoni, L.

V. Ansari, J. M. Donohue, M. Allgaier, L. Sasoni, B. Brecht, J. Roslund, N. Treps, G. Harder, and C. Silberhorn, “Tomography and purification of the temporal-mode structure of quantum light,” Phys. Rev. Lett. 120, 213601 (2018).
[Crossref] [PubMed]

Saulnier, P. M.

Saunders, D. J.

J. Nunn, J. H. D. Munns, S. Thomas, K. T. Kaczmarek, C. Qiu, A. Feizpour, E. Poem, B. Brecht, D. J. Saunders, P. M. Ledingham, D. V. Reddy, M. G. Raymer, and I. A. Walmsley, “Theory of noise suppression in Λ-type quantum memories by means of a cavity,” Phys. Rev. A 96, 012338 (2017).
[Crossref]

Schulz, S. A.

K. L. Tsakmakidis, L. Shen, S. A. Schulz, X. Zheng, J. Upham, X. Deng, H. Altug, A. F. Vakakis, and R. W. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356, 1260–1264 (2017).
[Crossref] [PubMed]

Schunk, G.

F. Sedlmeir, M. R. Foreman, U. Vogl, R. Zeltner, G. Schunk, D. V. Strekalov, C. Marquardt, G. Leuchs, and H. G. L. Schwefel, “Polarization-selective out-coupling of whispering-gallery modes,” Phys. Rev. Applied 7, 024029 (2017).
[Crossref]

Schwefel, H. G. L.

F. Sedlmeir, M. R. Foreman, U. Vogl, R. Zeltner, G. Schunk, D. V. Strekalov, C. Marquardt, G. Leuchs, and H. G. L. Schwefel, “Polarization-selective out-coupling of whispering-gallery modes,” Phys. Rev. Applied 7, 024029 (2017).
[Crossref]

D. V. Strekalov, C. Marquardt, A. B. Matsko, H. G. L. Schwefel, and G. Leuchs, “Nonlinear and quantum optics with whispering gallery resonators,” Journal of Optics 18, 123002 (2016).
[Crossref]

Sedlmeir, F.

F. Sedlmeir, M. R. Foreman, U. Vogl, R. Zeltner, G. Schunk, D. V. Strekalov, C. Marquardt, G. Leuchs, and H. G. L. Schwefel, “Polarization-selective out-coupling of whispering-gallery modes,” Phys. Rev. Applied 7, 024029 (2017).
[Crossref]

Shams-Ansari, A.

Shen, B.

K. Y. Yang, D. Y. Oh, S. H. Lee, Q.-F. Yang, X. Yi, B. Shen, H. Wang, and K. Vahala, “Bridging ultrahigh-Q devices and photonic circuits,” Nat. Photon. 12, 297–302 (2018).
[Crossref]

Shen, J.-T.

J.-T. Shen and S. Fan, “Theory of single-photon transport in a single-mode waveguide. ii. coupling to a whispering-gallery resonator containing a two-level atom,” Phys. Rev. A 79, 023838 (2009).
[Crossref]

Shen, L.

K. L. Tsakmakidis, L. Shen, S. A. Schulz, X. Zheng, J. Upham, X. Deng, H. Altug, A. F. Vakakis, and R. W. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356, 1260–1264 (2017).
[Crossref] [PubMed]

Shore, B. W.

N. V. Vitanov, A. A. Rangelov, B. W. Shore, and K. Bergmann, “Stimulated raman adiabatic passage in physics, chemistry, and beyond,” Rev. Mod. Phys.  89, 015006 (2017).
[Crossref]

Silberhorn, C.

V. Ansari, J. M. Donohue, M. Allgaier, L. Sasoni, B. Brecht, J. Roslund, N. Treps, G. Harder, and C. Silberhorn, “Tomography and purification of the temporal-mode structure of quantum light,” Phys. Rev. Lett. 120, 213601 (2018).
[Crossref] [PubMed]

B. Brecht, D. V. Reddy, C. Silberhorn, and M. G. Raymer, “Photon temporal modes: A complete framework for quantum information science,” Phys. Rev. X 5, 041017 (2015).

A. Eckstein, B. Brecht, and C. Silberhorn, “A quantum pulse gate based on spectrally engineered sum frequency generation,” Optics Express 19, 13370 (2011).
[Crossref]

B. Brecht, A. Eckstein, A. Christ, H. Suche, and C. Silberhorn, “From quantum pulse gate to quantum pulse shaper—engineered frequency conversion in nonlinear optical waveguides,” New Journal of Physics 13, 065029 (2011).
[Crossref]

Silver, M.

Sipe, J. E.

Smith, B. J.

Söller, C.

L. J. Wright, M. Karpiński, C. Söller, and B. J. Smith, “Spectral shearing of quantum light pulses by electro-optic phase modulation,” Phys. Rev. Lett. 118, 023601 (2017).
[Crossref] [PubMed]

J. Nunn, L. J. Wright, C. Söller, L. Zhang, I. A. Walmsley, and B. J. Smith, “Large-alphabet time-frequency entangled quantum key distribution by means of time-to-frequency conversion,” Opt. Express 21, 15959–15973 (2013).
[Crossref] [PubMed]

Spillane, S. M.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[Crossref] [PubMed]

Srinivasan, K.

M. G. Raymer and K. Srinivasan, “Manipulating the color and shape of single photons,” Physics Today 65, 32 (2012).
[Crossref]

Q. Li, M. Davanco, and K. Srinivasan, “Efficient and low noise single-photon-level frequency conversion interfaces using si3n4 microrings,” in 2016 Progress in Electromagnetic Research Symposium (PIERS), (2016), pp. 2574.

Strassel, T.

X.-H. Bao, A. Reingruber, P. Dietrich, J. Rui, A. Duck, T. Strassel, L. Li, N.-L. Liu, B. Zhao, and J.-W. Pan, “Efficient and long-lived quantum memory with cold atoms inside a ring cavity,” Nat. Phys. 8, 517–521 (2012).
[Crossref]

Strekalov, D. V.

F. Sedlmeir, M. R. Foreman, U. Vogl, R. Zeltner, G. Schunk, D. V. Strekalov, C. Marquardt, G. Leuchs, and H. G. L. Schwefel, “Polarization-selective out-coupling of whispering-gallery modes,” Phys. Rev. Applied 7, 024029 (2017).
[Crossref]

D. V. Strekalov, C. Marquardt, A. B. Matsko, H. G. L. Schwefel, and G. Leuchs, “Nonlinear and quantum optics with whispering gallery resonators,” Journal of Optics 18, 123002 (2016).
[Crossref]

D. V. Strekalov, A. S. Kowligy, Y.-P. Huang, and P. Kumar, “Optical sum-frequency generation in a whisperinggallery-mode resonator,” New Journal of Physics 16, 053025 (2014).
[Crossref]

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104, 153901 (2010).
[Crossref] [PubMed]

Suche, H.

B. Brecht, A. Eckstein, A. Christ, H. Suche, and C. Silberhorn, “From quantum pulse gate to quantum pulse shaper—engineered frequency conversion in nonlinear optical waveguides,” New Journal of Physics 13, 065029 (2011).
[Crossref]

Sun, Y.-Z.

Y.-Z. Sun, Y.-P. Huang, and P. Kumar, “Photonic nonlinearities via quantum zeno blockade,” Phys. Rev. Lett. 110, 223901 (2013).
[Crossref] [PubMed]

Tang, H. X.

X. Guo, C.-L. Zou, H. Jung, and H. X. Tang, “On-chip strong coupling and efficient frequency conversion between telecom and visible optical modes,” Phys. Rev. Lett. 117, 123902 (2016).
[Crossref] [PubMed]

Terai, H.

Thomas, S.

J. Nunn, J. H. D. Munns, S. Thomas, K. T. Kaczmarek, C. Qiu, A. Feizpour, E. Poem, B. Brecht, D. J. Saunders, P. M. Ledingham, D. V. Reddy, M. G. Raymer, and I. A. Walmsley, “Theory of noise suppression in Λ-type quantum memories by means of a cavity,” Phys. Rev. A 96, 012338 (2017).
[Crossref]

Treps, N.

V. Ansari, J. M. Donohue, M. Allgaier, L. Sasoni, B. Brecht, J. Roslund, N. Treps, G. Harder, and C. Silberhorn, “Tomography and purification of the temporal-mode structure of quantum light,” Phys. Rev. Lett. 120, 213601 (2018).
[Crossref] [PubMed]

Tsakmakidis, K. L.

K. L. Tsakmakidis, L. Shen, S. A. Schulz, X. Zheng, J. Upham, X. Deng, H. Altug, A. F. Vakakis, and R. W. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356, 1260–1264 (2017).
[Crossref] [PubMed]

Upham, J.

K. L. Tsakmakidis, L. Shen, S. A. Schulz, X. Zheng, J. Upham, X. Deng, H. Altug, A. F. Vakakis, and R. W. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356, 1260–1264 (2017).
[Crossref] [PubMed]

Vahala, K.

K. Y. Yang, D. Y. Oh, S. H. Lee, Q.-F. Yang, X. Yi, B. Shen, H. Wang, and K. Vahala, “Bridging ultrahigh-Q devices and photonic circuits,” Nat. Photon. 12, 297–302 (2018).
[Crossref]

Vahala, K. J.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[Crossref] [PubMed]

Vakakis, A. F.

K. L. Tsakmakidis, L. Shen, S. A. Schulz, X. Zheng, J. Upham, X. Deng, H. Altug, A. F. Vakakis, and R. W. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356, 1260–1264 (2017).
[Crossref] [PubMed]

van Enk, S. J.

Vermersch, B.

B. Vogell, B. Vermersch, T. E. Northup, B. P. Lanyon, and C. A. Muschik, “Deterministic quantum state transfer between remote qubits in cavities,” Quantum Science and Technology 2, 045003 (2017).
[Crossref]

Vitanov, N. V.

N. V. Vitanov, A. A. Rangelov, B. W. Shore, and K. Bergmann, “Stimulated raman adiabatic passage in physics, chemistry, and beyond,” Rev. Mod. Phys.  89, 015006 (2017).
[Crossref]

Vogell, B.

B. Vogell, B. Vermersch, T. E. Northup, B. P. Lanyon, and C. A. Muschik, “Deterministic quantum state transfer between remote qubits in cavities,” Quantum Science and Technology 2, 045003 (2017).
[Crossref]

Vogl, U.

F. Sedlmeir, M. R. Foreman, U. Vogl, R. Zeltner, G. Schunk, D. V. Strekalov, C. Marquardt, G. Leuchs, and H. G. L. Schwefel, “Polarization-selective out-coupling of whispering-gallery modes,” Phys. Rev. Applied 7, 024029 (2017).
[Crossref]

Walmsley, I. A.

J. Nunn, J. H. D. Munns, S. Thomas, K. T. Kaczmarek, C. Qiu, A. Feizpour, E. Poem, B. Brecht, D. J. Saunders, P. M. Ledingham, D. V. Reddy, M. G. Raymer, and I. A. Walmsley, “Theory of noise suppression in Λ-type quantum memories by means of a cavity,” Phys. Rev. A 96, 012338 (2017).
[Crossref]

P. C. Humphreys, W. S. Kolthammer, J. Nunn, M. Barbieri, A. Datta, and I. A. Walmsley, “Continuous-Variable Quantum Computing in Optical Time-Frequency Modes Using Quantum Memories,” Physical Review Letters 113, 130502 (2014).
[Crossref] [PubMed]

J. Nunn, L. J. Wright, C. Söller, L. Zhang, I. A. Walmsley, and B. J. Smith, “Large-alphabet time-frequency entangled quantum key distribution by means of time-to-frequency conversion,” Opt. Express 21, 15959–15973 (2013).
[Crossref] [PubMed]

Wang, C.

Wang, H.

K. Y. Yang, D. Y. Oh, S. H. Lee, Q.-F. Yang, X. Yi, B. Shen, H. Wang, and K. Vahala, “Bridging ultrahigh-Q devices and photonic circuits,” Nat. Photon. 12, 297–302 (2018).
[Crossref]

Weiner, A.

Z. Zheng and A. Weiner, “Coherent control of second harmonic generation using spectrally phase coded femtosecond waveforms,” Chemical Physics 267, 161–171 (2001).
[Crossref]

Weiner, A. M.

Wright, L. J.

L. J. Wright, M. Karpiński, C. Söller, and B. J. Smith, “Spectral shearing of quantum light pulses by electro-optic phase modulation,” Phys. Rev. Lett. 118, 023601 (2017).
[Crossref] [PubMed]

J. Nunn, L. J. Wright, C. Söller, L. Zhang, I. A. Walmsley, and B. J. Smith, “Large-alphabet time-frequency entangled quantum key distribution by means of time-to-frequency conversion,” Opt. Express 21, 15959–15973 (2013).
[Crossref] [PubMed]

Yamamoto, N.

N. Yamamoto and M. R. James, “Zero-dynamics principle for perfect quantum memory in linear networks,” New Journal of Physics 16, 073032 (2014).
[Crossref]

Yamamoto, T.

Yamashita, T.

Yamazaki, D.

Yang, K. Y.

K. Y. Yang, D. Y. Oh, S. H. Lee, Q.-F. Yang, X. Yi, B. Shen, H. Wang, and K. Vahala, “Bridging ultrahigh-Q devices and photonic circuits,” Nat. Photon. 12, 297–302 (2018).
[Crossref]

Yang, Q.-F.

K. Y. Yang, D. Y. Oh, S. H. Lee, Q.-F. Yang, X. Yi, B. Shen, H. Wang, and K. Vahala, “Bridging ultrahigh-Q devices and photonic circuits,” Nat. Photon. 12, 297–302 (2018).
[Crossref]

Yi, X.

K. Y. Yang, D. Y. Oh, S. H. Lee, Q.-F. Yang, X. Yi, B. Shen, H. Wang, and K. Vahala, “Bridging ultrahigh-Q devices and photonic circuits,” Nat. Photon. 12, 297–302 (2018).
[Crossref]

Zeltner, R.

F. Sedlmeir, M. R. Foreman, U. Vogl, R. Zeltner, G. Schunk, D. V. Strekalov, C. Marquardt, G. Leuchs, and H. G. L. Schwefel, “Polarization-selective out-coupling of whispering-gallery modes,” Phys. Rev. Applied 7, 024029 (2017).
[Crossref]

Zhang, L.

Zhang, M.

Zhao, B.

X.-H. Bao, A. Reingruber, P. Dietrich, J. Rui, A. Duck, T. Strassel, L. Li, N.-L. Liu, B. Zhao, and J.-W. Pan, “Efficient and long-lived quantum memory with cold atoms inside a ring cavity,” Nat. Phys. 8, 517–521 (2012).
[Crossref]

Zheng, X.

K. L. Tsakmakidis, L. Shen, S. A. Schulz, X. Zheng, J. Upham, X. Deng, H. Altug, A. F. Vakakis, and R. W. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356, 1260–1264 (2017).
[Crossref] [PubMed]

Zheng, Z.

Zöller, P.

J. I. Cirac, L. M. Duan, and P. Zöller, “Quantum optical implementation of quantum information processing,” arXiv:quant-ph/0405030 (2004).

Zou, C.-L.

X. Guo, C.-L. Zou, H. Jung, and H. X. Tang, “On-chip strong coupling and efficient frequency conversion between telecom and visible optical modes,” Phys. Rev. Lett. 117, 123902 (2016).
[Crossref] [PubMed]

Chemical Physics (1)

Z. Zheng and A. Weiner, “Coherent control of second harmonic generation using spectrally phase coded femtosecond waveforms,” Chemical Physics 267, 161–171 (2001).
[Crossref]

J. Opt. Soc. Am. B (2)

Journal of Optics (1)

D. V. Strekalov, C. Marquardt, A. B. Matsko, H. G. L. Schwefel, and G. Leuchs, “Nonlinear and quantum optics with whispering gallery resonators,” Journal of Optics 18, 123002 (2016).
[Crossref]

Nat. Photon. (1)

K. Y. Yang, D. Y. Oh, S. H. Lee, Q.-F. Yang, X. Yi, B. Shen, H. Wang, and K. Vahala, “Bridging ultrahigh-Q devices and photonic circuits,” Nat. Photon. 12, 297–302 (2018).
[Crossref]

Nat. Phys. (1)

X.-H. Bao, A. Reingruber, P. Dietrich, J. Rui, A. Duck, T. Strassel, L. Li, N.-L. Liu, B. Zhao, and J.-W. Pan, “Efficient and long-lived quantum memory with cold atoms inside a ring cavity,” Nat. Phys. 8, 517–521 (2012).
[Crossref]

New Journal of Physics (4)

D. V. Strekalov, A. S. Kowligy, Y.-P. Huang, and P. Kumar, “Optical sum-frequency generation in a whisperinggallery-mode resonator,” New Journal of Physics 16, 053025 (2014).
[Crossref]

B. J. Smith and M. G. Raymer, “Photon wave functions, wave-packet quantization of light, and coherence theory,” New Journal of Physics 9, 414 (2007).
[Crossref]

B. Brecht, A. Eckstein, A. Christ, H. Suche, and C. Silberhorn, “From quantum pulse gate to quantum pulse shaper—engineered frequency conversion in nonlinear optical waveguides,” New Journal of Physics 13, 065029 (2011).
[Crossref]

N. Yamamoto and M. R. James, “Zero-dynamics principle for perfect quantum memory in linear networks,” New Journal of Physics 16, 073032 (2014).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Optica (3)

Optics Express (2)

A. Eckstein, B. Brecht, and C. Silberhorn, “A quantum pulse gate based on spectrally engineered sum frequency generation,” Optics Express 19, 13370 (2011).
[Crossref]

D. V. Reddy, M. G. Raymer, C. J. McKinstrie, L. Mejling, and K. Rottwitt, “Temporal mode selectivity by frequency conversion in second-order nonlinear optical waveguides,” Optics Express 21, 13840–13863 (2013).
[Crossref] [PubMed]

Optics Letters (1)

D.V. Reddy, M.G. Raymer, and C.J. McKinstrie, “Efficientsortingofquantum-opticalwavepacketsbytemporal-mode interferometry,” Optics Letters 39, 2924–2927 (2014).
[Crossref]

Phys. Rev. A (5)

D. V. Reddy, M. G. Raymer, and C. J. McKinstrie, “Sorting photon wave packets using temporal-mode interferometry based on multiple-stage quantum frequency conversion,” Phys. Rev. A 91, 012323 (2015).
[Crossref]

J. Nunn, J. H. D. Munns, S. Thomas, K. T. Kaczmarek, C. Qiu, A. Feizpour, E. Poem, B. Brecht, D. J. Saunders, P. M. Ledingham, D. V. Reddy, M. G. Raymer, and I. A. Walmsley, “Theory of noise suppression in Λ-type quantum memories by means of a cavity,” Phys. Rev. A 96, 012338 (2017).
[Crossref]

M. J. Collett and C. W. Gardiner, “Squeezing of intracavity and traveling-wave light fields produced in parametric amplification,” Phys. Rev. A 30, 1386–1391 (1984).
[Crossref]

M. G. Raymer and C. J. McKinstrie, “Quantum input-output theory for optical cavities with arbitrary coupling strength: Application to two-photon wave-packet shaping,” Phys. Rev. A 88, 043819 (2013).
[Crossref]

J.-T. Shen and S. Fan, “Theory of single-photon transport in a single-mode waveguide. ii. coupling to a whispering-gallery resonator containing a two-level atom,” Phys. Rev. A 79, 023838 (2009).
[Crossref]

Phys. Rev. Applied (1)

F. Sedlmeir, M. R. Foreman, U. Vogl, R. Zeltner, G. Schunk, D. V. Strekalov, C. Marquardt, G. Leuchs, and H. G. L. Schwefel, “Polarization-selective out-coupling of whispering-gallery modes,” Phys. Rev. Applied 7, 024029 (2017).
[Crossref]

Phys. Rev. Lett. (8)

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104, 153901 (2010).
[Crossref] [PubMed]

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[Crossref] [PubMed]

T. Pellizzari, “Quantum networking with optical fibres,” Phys. Rev. Lett. 79, 5242–5245 (1997).
[Crossref]

X. Guo, C.-L. Zou, H. Jung, and H. X. Tang, “On-chip strong coupling and efficient frequency conversion between telecom and visible optical modes,” Phys. Rev. Lett. 117, 123902 (2016).
[Crossref] [PubMed]

Y.-Z. Sun, Y.-P. Huang, and P. Kumar, “Photonic nonlinearities via quantum zeno blockade,” Phys. Rev. Lett. 110, 223901 (2013).
[Crossref] [PubMed]

S. Clemmen, A. Farsi, S. Ramelow, and A. L. Gaeta, “Ramsey Interference with Single Photons,” Phys. Rev. Lett. 117, 223601 (2016).
[Crossref] [PubMed]

V. Ansari, J. M. Donohue, M. Allgaier, L. Sasoni, B. Brecht, J. Roslund, N. Treps, G. Harder, and C. Silberhorn, “Tomography and purification of the temporal-mode structure of quantum light,” Phys. Rev. Lett. 120, 213601 (2018).
[Crossref] [PubMed]

L. J. Wright, M. Karpiński, C. Söller, and B. J. Smith, “Spectral shearing of quantum light pulses by electro-optic phase modulation,” Phys. Rev. Lett. 118, 023601 (2017).
[Crossref] [PubMed]

Phys. Rev. X (1)

B. Brecht, D. V. Reddy, C. Silberhorn, and M. G. Raymer, “Photon temporal modes: A complete framework for quantum information science,” Phys. Rev. X 5, 041017 (2015).

Physical Review (1)

D. Burnham and R. Chiao, “Coherent Resonance Fluorescence Excited by Short Light Pulses,” Physical Review 188, 667–675 (1969).
[Crossref]

Physical Review Letters (1)

P. C. Humphreys, W. S. Kolthammer, J. Nunn, M. Barbieri, A. Datta, and I. A. Walmsley, “Continuous-Variable Quantum Computing in Optical Time-Frequency Modes Using Quantum Memories,” Physical Review Letters 113, 130502 (2014).
[Crossref] [PubMed]

Physics Today (1)

M. G. Raymer and K. Srinivasan, “Manipulating the color and shape of single photons,” Physics Today 65, 32 (2012).
[Crossref]

Quantum Science and Technology (1)

B. Vogell, B. Vermersch, T. E. Northup, B. P. Lanyon, and C. A. Muschik, “Deterministic quantum state transfer between remote qubits in cavities,” Quantum Science and Technology 2, 045003 (2017).
[Crossref]

Rev. Mod. Phys (1)

N. V. Vitanov, A. A. Rangelov, B. W. Shore, and K. Bergmann, “Stimulated raman adiabatic passage in physics, chemistry, and beyond,” Rev. Mod. Phys.  89, 015006 (2017).
[Crossref]

Science (1)

K. L. Tsakmakidis, L. Shen, S. A. Schulz, X. Zheng, J. Upham, X. Deng, H. Altug, A. F. Vakakis, and R. W. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356, 1260–1264 (2017).
[Crossref] [PubMed]

Other (2)

Q. Li, M. Davanco, and K. Srinivasan, “Efficient and low noise single-photon-level frequency conversion interfaces using si3n4 microrings,” in 2016 Progress in Electromagnetic Research Symposium (PIERS), (2016), pp. 2574.

J. I. Cirac, L. M. Duan, and P. Zöller, “Quantum optical implementation of quantum information processing,” arXiv:quant-ph/0405030 (2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of dichroic-finesse cavity filled with second-order nonlinear optical material. The signal field is S, the pump (control) field is Ω, the cavity-trapped frequency-converted field is C. The converted field C(t) is not shown exiting the cavity, as this occurs on much longer time scales.
Fig. 2
Fig. 2 Numerical simulations of amplitude versus time for (a, b) Gaussian signal input and (c, d) the optimal input temporal mode. The input signal Sinand the control pulse Ω are multiplied by 0.8 for convenient plotting. Parameters for both cases: α = 5.5, γs = 10.1, γc = 0.01. τcav is the cavity round-trip time.
Fig. 3
Fig. 3 Numerical simulations of amplitude versus time for two temporal modes that are orthogonal to the optimum TM used in Fig. 2. Both remain nearly completely unconverted. Same parameters and plotting as in Fig. 2. τcav is the cavity round-trip time.
Fig. 4
Fig. 4 Illustrating the effectiveness of the control field Ωopt (t) to efficiently convert and store the targeted “red” input mode Sin(t). (a) Sin,1(t) = HG0(t), (b) Sin,2(t) = HG1(t). In both cases, using the designed control field drives the converted cavity mode amplitude −iC to near its maximum possible value of 1.0. In both cases: α = 5.5, γs = 10.1, γc = 0.01, q = 10−7. τcav is the cavity round-trip time.
Fig. 5
Fig. 5 (a) “Write” and “read” control fields being applied to the same cavity with a relative time delay. The input mode Sin(t) gets fully captured into a high-Q (by 3 orders of magnitude) cavity mode C(t). (b) The read-out control pulse for these parameters recovers 93% of the amplitude into the Sout(t) mode, whose TM shape can be controlled by the shape of the read-out control field. τcav is the cavity round-trip time.
Fig. 6
Fig. 6 (a) Schematic for optical microresonator coupled to different guided fields. (b) Two microresonators mutually optically coupled through a third racetrack waveguide. The control fields can be shaped to adiabatically transfer amplitude. (c) Microresonators in a bus network topology. Different resonators can store different components of a qudit, either encoded in time bins or an overlapping temporal-mode space. Individually addressing each microresonator enables custom connectivity graphs, functioning as a quantum RAM (random-access memory) buffer, or indeed, simulating a scalable quantum internet.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

t S ( t ) = i α Ω * ( t ) C ( t ) γ ~ s S ( t ) + 2 γ s S in ( t ) ,
t C ( t ) = i α Ω ( t ) S ( t ) γ ~ c C ( t ) + 2 γ c C in ( t ) .
S out ( t ) = S in ( t ) + 2 γ s S ( t ) , C out ( t ) = C in ( t ) + 2 γ c C ( t ) .
S ( t ) = i ( α / γ ~ s ) Ω * ( t ) C ( t ) + 2 γ s / γ ~ s 2 S in ( t )
t C ( t ) = [ f s | Ω ( t ) | 2 γ ~ c ] C ( t ) + i g s Ω ( t ) S in ( t ) .
C ( t ) = i g s e f s ϵ ( t ) t e f s ϵ ( t ) Ω ( t ) S in ( t ) d t ,
S i n , o p t ( t ) = N Ω * ( t ) exp [ f s t | Ω ( t ) | 2 d t ] ,
( t K ( t ) 2 K ( t ) ) + K ( t ) = t S i n ( t ) S i n ( t ) .
Ω o p t ( t ) = e i θ e i arg [ S in ( t ) ] S in ( t ) 2 q + 2 f s t 0 t S in ( t ) 2 d t
K ( t ) = K ( t 0 ) S in ( t ) 2 S in ( t 0 ) 2 + 2 K ( t 0 ) t 0 t S in ( t ) 2 d t
μ 2 K ( t ) = i e i arg [ Ω ( t ) ] 2 f s | Ω ( t ) | 2 = i 2 f s Ω ( t )
μ 2 K ( t ) = i e i arg [ Ω ( t ) ] 2 f s | Ω ( t ) | 2 = i 2 f s Ω ( t )
Ω o p t ( t ) = μ 2 K ( t ) i 2 f s = e i arg [ Ω ( t ) ] K ( t ) f s e i arg [ Ω ( t ) ] S in ( t ) 2 S in ( t 0 ) 2 f s / K ( t 0 ) + 2 f s t 0 t S in ( t ) 2 d t
Ω o p t ( t ) = e i arg [ Ω ( t ) ] S in ( t ) 2 S in ( t 0 ) 2 / | Ω ( t 0 ) | 2 + 2 f s t 0 t S in ( t ) 2 d t
μ 2 K ( t ) = i 2 f s e i arg [ Ω ( t ) ] | Ω ( t ) | 2 = i 2 f s Ω ( t )
Ω o p t ( t ) = e i θ e i arg [ S in ( t ) ] S in ( t ) 2 q + 2 f s t 0 t S in ( t ) 2 d t