Abstract

In inter-satellite laser communication systems, accurate positioning of the beacon is essential for establishing a steady laser communication link. For inter-satellite optical communication, the main factor affecting the acquisition and tracking of the beacon is the background noise, such as stellar background light. In this study, we considered the effect of the background noise on a beacon in inter-satellite optical communication and proposed a new recognition algorithm for the beacon, which uses the optical flow vector obtained from the image data. We verified the feasibility of this method by performing simulation analysis and experiments. Both simulation and experiments showed that the new algorithm could accurately obtain the position of the centroid of the beacon under the effect of the background light. Furthermore, considering the identification probability of a light spot through the background light, the locating accuracy of the new algorithm was higher than that of the conventional gray centroid algorithm. Therefore, this new approach would be beneficial for the design of satellite-to-ground optical communication systems.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Accurate beacon positioning method for satellite-to-ground optical communication

Qiang Wang, Ling Tong, Siyuan Yu, Liying Tan, and Jing Ma
Opt. Express 25(25) 30996-31005 (2017)

Quick topological method for acquiring the beacon in inter-satellite laser communications

Qiang Wang, Jing Ma, Liying Tan, and Siyuan Yu
Appl. Opt. 53(33) 7863-7867 (2014)

Precise locating approach of the beacon based on gray gradient segmentation interpolation in satellite optical communications

Qiang Wang, Yuefei Liu, Yiqiang Chen, Jing Ma, Liying Tan, and Siyuan Yu
Appl. Opt. 56(7) 1826-1832 (2017)

References

  • View by:
  • |
  • |
  • |

  1. T. Jono, Y. Takayama, K. Shiratama, I. Mase, B. Demelenne, Z. Sodnik, A. Bird, M. Toyoshima, H. Kunimori, D. Giggenbach, N. Perlot, M. Knapek, and K. Arai, “Overview of the inter-orbit and the orbit-to-ground laser communication demonstration by OICETS,” Proc. SPIE 6457, 645702 (2007).
    [Crossref]
  2. D. M. Boroson and B. S. Robinson, “The lunar laser communication demonstration: NASA’s first step toward very high data rate support of science and exploration missions,” Space Sci. Rev. 185(1), 115–128 (2014).
    [Crossref]
  3. S. Yu, Z. Ma, J. Ma, F. Wu, and L. Tan, “Far-field correlation of bidirectional tracking beams due to wave-front deformation in inter-satellites optical communication links,” Opt. Express 23(6), 7263–7272 (2015).
    [Crossref] [PubMed]
  4. C. Zhai, L. Tan, S. Yu, and J. Ma, “Fiber coupling efficiency for a Gaussian-beam wave propagating through non-Kolmogorov turbulence,” Opt. Express 23(12), 15242–15255 (2015).
    [Crossref] [PubMed]
  5. X. Chen, Y. Zheng, and Y. Wang, “Influence of spot noise in inter-satellite optical communications and suppression algorithm,” Chin. J. Lasers 37(03), 743–747 (2010).
    [Crossref]
  6. Q. Xu, J. Yu, and Y. Zhou, “Decreasing earth background radiation in satellite-ground communication,” Infrared Laser Eng. 43(07), 2300–2306 (2014).
  7. Q. Han, J. Ma, and L. Tan, “Analysis of stellar background noise and study of restraining methods in satellite optical communication,” Opt. Technol. 31(03), 330–334 (2005).
  8. Q. Wang, J. Ma, L. Tan, and S. Yu, “Quick topological method for acquiring the beacon in inter-satellite laser communications,” Appl. Opt. 53(33), 7863–7867 (2014).
    [Crossref] [PubMed]
  9. B. K. P. Horn and B. G. Schunck, “Determining optical flow,” Artif. Intell. 17(1), 185–203 (1981).
    [Crossref]
  10. G. R. Bradski and A. Kaehler, Learning Open CV (Tsinghua University, 2009), 356–371.
  11. Q. Han, J. Ma, and L. Tan, “Influences of stellar background noise on tracking and pointing subsystem of inter-satellite optical communications,” Opt. Technol. 32(03), 444–448 (2006).
  12. J. W. Alexander, S. Lee, and C. Chen, “Pointing and tracking concepts for deep-space missions,” Proc. SPIE 3615, 230–249 (1999).
    [Crossref]

2015 (2)

2014 (3)

D. M. Boroson and B. S. Robinson, “The lunar laser communication demonstration: NASA’s first step toward very high data rate support of science and exploration missions,” Space Sci. Rev. 185(1), 115–128 (2014).
[Crossref]

Q. Xu, J. Yu, and Y. Zhou, “Decreasing earth background radiation in satellite-ground communication,” Infrared Laser Eng. 43(07), 2300–2306 (2014).

Q. Wang, J. Ma, L. Tan, and S. Yu, “Quick topological method for acquiring the beacon in inter-satellite laser communications,” Appl. Opt. 53(33), 7863–7867 (2014).
[Crossref] [PubMed]

2010 (1)

X. Chen, Y. Zheng, and Y. Wang, “Influence of spot noise in inter-satellite optical communications and suppression algorithm,” Chin. J. Lasers 37(03), 743–747 (2010).
[Crossref]

2007 (1)

T. Jono, Y. Takayama, K. Shiratama, I. Mase, B. Demelenne, Z. Sodnik, A. Bird, M. Toyoshima, H. Kunimori, D. Giggenbach, N. Perlot, M. Knapek, and K. Arai, “Overview of the inter-orbit and the orbit-to-ground laser communication demonstration by OICETS,” Proc. SPIE 6457, 645702 (2007).
[Crossref]

2006 (1)

Q. Han, J. Ma, and L. Tan, “Influences of stellar background noise on tracking and pointing subsystem of inter-satellite optical communications,” Opt. Technol. 32(03), 444–448 (2006).

2005 (1)

Q. Han, J. Ma, and L. Tan, “Analysis of stellar background noise and study of restraining methods in satellite optical communication,” Opt. Technol. 31(03), 330–334 (2005).

1999 (1)

J. W. Alexander, S. Lee, and C. Chen, “Pointing and tracking concepts for deep-space missions,” Proc. SPIE 3615, 230–249 (1999).
[Crossref]

1981 (1)

B. K. P. Horn and B. G. Schunck, “Determining optical flow,” Artif. Intell. 17(1), 185–203 (1981).
[Crossref]

Alexander, J. W.

J. W. Alexander, S. Lee, and C. Chen, “Pointing and tracking concepts for deep-space missions,” Proc. SPIE 3615, 230–249 (1999).
[Crossref]

Arai, K.

T. Jono, Y. Takayama, K. Shiratama, I. Mase, B. Demelenne, Z. Sodnik, A. Bird, M. Toyoshima, H. Kunimori, D. Giggenbach, N. Perlot, M. Knapek, and K. Arai, “Overview of the inter-orbit and the orbit-to-ground laser communication demonstration by OICETS,” Proc. SPIE 6457, 645702 (2007).
[Crossref]

Bird, A.

T. Jono, Y. Takayama, K. Shiratama, I. Mase, B. Demelenne, Z. Sodnik, A. Bird, M. Toyoshima, H. Kunimori, D. Giggenbach, N. Perlot, M. Knapek, and K. Arai, “Overview of the inter-orbit and the orbit-to-ground laser communication demonstration by OICETS,” Proc. SPIE 6457, 645702 (2007).
[Crossref]

Boroson, D. M.

D. M. Boroson and B. S. Robinson, “The lunar laser communication demonstration: NASA’s first step toward very high data rate support of science and exploration missions,” Space Sci. Rev. 185(1), 115–128 (2014).
[Crossref]

Chen, C.

J. W. Alexander, S. Lee, and C. Chen, “Pointing and tracking concepts for deep-space missions,” Proc. SPIE 3615, 230–249 (1999).
[Crossref]

Chen, X.

X. Chen, Y. Zheng, and Y. Wang, “Influence of spot noise in inter-satellite optical communications and suppression algorithm,” Chin. J. Lasers 37(03), 743–747 (2010).
[Crossref]

Demelenne, B.

T. Jono, Y. Takayama, K. Shiratama, I. Mase, B. Demelenne, Z. Sodnik, A. Bird, M. Toyoshima, H. Kunimori, D. Giggenbach, N. Perlot, M. Knapek, and K. Arai, “Overview of the inter-orbit and the orbit-to-ground laser communication demonstration by OICETS,” Proc. SPIE 6457, 645702 (2007).
[Crossref]

Giggenbach, D.

T. Jono, Y. Takayama, K. Shiratama, I. Mase, B. Demelenne, Z. Sodnik, A. Bird, M. Toyoshima, H. Kunimori, D. Giggenbach, N. Perlot, M. Knapek, and K. Arai, “Overview of the inter-orbit and the orbit-to-ground laser communication demonstration by OICETS,” Proc. SPIE 6457, 645702 (2007).
[Crossref]

Han, Q.

Q. Han, J. Ma, and L. Tan, “Influences of stellar background noise on tracking and pointing subsystem of inter-satellite optical communications,” Opt. Technol. 32(03), 444–448 (2006).

Q. Han, J. Ma, and L. Tan, “Analysis of stellar background noise and study of restraining methods in satellite optical communication,” Opt. Technol. 31(03), 330–334 (2005).

Horn, B. K. P.

B. K. P. Horn and B. G. Schunck, “Determining optical flow,” Artif. Intell. 17(1), 185–203 (1981).
[Crossref]

Jono, T.

T. Jono, Y. Takayama, K. Shiratama, I. Mase, B. Demelenne, Z. Sodnik, A. Bird, M. Toyoshima, H. Kunimori, D. Giggenbach, N. Perlot, M. Knapek, and K. Arai, “Overview of the inter-orbit and the orbit-to-ground laser communication demonstration by OICETS,” Proc. SPIE 6457, 645702 (2007).
[Crossref]

Knapek, M.

T. Jono, Y. Takayama, K. Shiratama, I. Mase, B. Demelenne, Z. Sodnik, A. Bird, M. Toyoshima, H. Kunimori, D. Giggenbach, N. Perlot, M. Knapek, and K. Arai, “Overview of the inter-orbit and the orbit-to-ground laser communication demonstration by OICETS,” Proc. SPIE 6457, 645702 (2007).
[Crossref]

Kunimori, H.

T. Jono, Y. Takayama, K. Shiratama, I. Mase, B. Demelenne, Z. Sodnik, A. Bird, M. Toyoshima, H. Kunimori, D. Giggenbach, N. Perlot, M. Knapek, and K. Arai, “Overview of the inter-orbit and the orbit-to-ground laser communication demonstration by OICETS,” Proc. SPIE 6457, 645702 (2007).
[Crossref]

Lee, S.

J. W. Alexander, S. Lee, and C. Chen, “Pointing and tracking concepts for deep-space missions,” Proc. SPIE 3615, 230–249 (1999).
[Crossref]

Ma, J.

Ma, Z.

Mase, I.

T. Jono, Y. Takayama, K. Shiratama, I. Mase, B. Demelenne, Z. Sodnik, A. Bird, M. Toyoshima, H. Kunimori, D. Giggenbach, N. Perlot, M. Knapek, and K. Arai, “Overview of the inter-orbit and the orbit-to-ground laser communication demonstration by OICETS,” Proc. SPIE 6457, 645702 (2007).
[Crossref]

Perlot, N.

T. Jono, Y. Takayama, K. Shiratama, I. Mase, B. Demelenne, Z. Sodnik, A. Bird, M. Toyoshima, H. Kunimori, D. Giggenbach, N. Perlot, M. Knapek, and K. Arai, “Overview of the inter-orbit and the orbit-to-ground laser communication demonstration by OICETS,” Proc. SPIE 6457, 645702 (2007).
[Crossref]

Robinson, B. S.

D. M. Boroson and B. S. Robinson, “The lunar laser communication demonstration: NASA’s first step toward very high data rate support of science and exploration missions,” Space Sci. Rev. 185(1), 115–128 (2014).
[Crossref]

Schunck, B. G.

B. K. P. Horn and B. G. Schunck, “Determining optical flow,” Artif. Intell. 17(1), 185–203 (1981).
[Crossref]

Shiratama, K.

T. Jono, Y. Takayama, K. Shiratama, I. Mase, B. Demelenne, Z. Sodnik, A. Bird, M. Toyoshima, H. Kunimori, D. Giggenbach, N. Perlot, M. Knapek, and K. Arai, “Overview of the inter-orbit and the orbit-to-ground laser communication demonstration by OICETS,” Proc. SPIE 6457, 645702 (2007).
[Crossref]

Sodnik, Z.

T. Jono, Y. Takayama, K. Shiratama, I. Mase, B. Demelenne, Z. Sodnik, A. Bird, M. Toyoshima, H. Kunimori, D. Giggenbach, N. Perlot, M. Knapek, and K. Arai, “Overview of the inter-orbit and the orbit-to-ground laser communication demonstration by OICETS,” Proc. SPIE 6457, 645702 (2007).
[Crossref]

Takayama, Y.

T. Jono, Y. Takayama, K. Shiratama, I. Mase, B. Demelenne, Z. Sodnik, A. Bird, M. Toyoshima, H. Kunimori, D. Giggenbach, N. Perlot, M. Knapek, and K. Arai, “Overview of the inter-orbit and the orbit-to-ground laser communication demonstration by OICETS,” Proc. SPIE 6457, 645702 (2007).
[Crossref]

Tan, L.

Toyoshima, M.

T. Jono, Y. Takayama, K. Shiratama, I. Mase, B. Demelenne, Z. Sodnik, A. Bird, M. Toyoshima, H. Kunimori, D. Giggenbach, N. Perlot, M. Knapek, and K. Arai, “Overview of the inter-orbit and the orbit-to-ground laser communication demonstration by OICETS,” Proc. SPIE 6457, 645702 (2007).
[Crossref]

Wang, Q.

Wang, Y.

X. Chen, Y. Zheng, and Y. Wang, “Influence of spot noise in inter-satellite optical communications and suppression algorithm,” Chin. J. Lasers 37(03), 743–747 (2010).
[Crossref]

Wu, F.

Xu, Q.

Q. Xu, J. Yu, and Y. Zhou, “Decreasing earth background radiation in satellite-ground communication,” Infrared Laser Eng. 43(07), 2300–2306 (2014).

Yu, J.

Q. Xu, J. Yu, and Y. Zhou, “Decreasing earth background radiation in satellite-ground communication,” Infrared Laser Eng. 43(07), 2300–2306 (2014).

Yu, S.

Zhai, C.

Zheng, Y.

X. Chen, Y. Zheng, and Y. Wang, “Influence of spot noise in inter-satellite optical communications and suppression algorithm,” Chin. J. Lasers 37(03), 743–747 (2010).
[Crossref]

Zhou, Y.

Q. Xu, J. Yu, and Y. Zhou, “Decreasing earth background radiation in satellite-ground communication,” Infrared Laser Eng. 43(07), 2300–2306 (2014).

Appl. Opt. (1)

Artif. Intell. (1)

B. K. P. Horn and B. G. Schunck, “Determining optical flow,” Artif. Intell. 17(1), 185–203 (1981).
[Crossref]

Chin. J. Lasers (1)

X. Chen, Y. Zheng, and Y. Wang, “Influence of spot noise in inter-satellite optical communications and suppression algorithm,” Chin. J. Lasers 37(03), 743–747 (2010).
[Crossref]

Infrared Laser Eng. (1)

Q. Xu, J. Yu, and Y. Zhou, “Decreasing earth background radiation in satellite-ground communication,” Infrared Laser Eng. 43(07), 2300–2306 (2014).

Opt. Express (2)

Opt. Technol. (2)

Q. Han, J. Ma, and L. Tan, “Analysis of stellar background noise and study of restraining methods in satellite optical communication,” Opt. Technol. 31(03), 330–334 (2005).

Q. Han, J. Ma, and L. Tan, “Influences of stellar background noise on tracking and pointing subsystem of inter-satellite optical communications,” Opt. Technol. 32(03), 444–448 (2006).

Proc. SPIE (2)

J. W. Alexander, S. Lee, and C. Chen, “Pointing and tracking concepts for deep-space missions,” Proc. SPIE 3615, 230–249 (1999).
[Crossref]

T. Jono, Y. Takayama, K. Shiratama, I. Mase, B. Demelenne, Z. Sodnik, A. Bird, M. Toyoshima, H. Kunimori, D. Giggenbach, N. Perlot, M. Knapek, and K. Arai, “Overview of the inter-orbit and the orbit-to-ground laser communication demonstration by OICETS,” Proc. SPIE 6457, 645702 (2007).
[Crossref]

Space Sci. Rev. (1)

D. M. Boroson and B. S. Robinson, “The lunar laser communication demonstration: NASA’s first step toward very high data rate support of science and exploration missions,” Space Sci. Rev. 185(1), 115–128 (2014).
[Crossref]

Other (1)

G. R. Bradski and A. Kaehler, Learning Open CV (Tsinghua University, 2009), 356–371.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 Schematic of the connected domains.
Fig. 2
Fig. 2 Window setting and spot tracking.
Fig. 3
Fig. 3 First frame collecting image.
Fig. 4
Fig. 4 Tracking result in the third image.
Fig. 5
Fig. 5 Tracking result in the 11th image.
Fig. 6
Fig. 6 Tracking result in the fifth frame.
Fig. 7
Fig. 7 Tracking result in the 18th frame.
Fig. 8
Fig. 8 Collecting image in the 32nd frame.
Fig. 9
Fig. 9 Connected domain of the collecting image in the 32nd frame.
Fig. 10
Fig. 10 Tracking result for the 32nd frame image.
Fig. 11
Fig. 11 Process flow of the new algorithm.
Fig. 12
Fig. 12 Configuration of the experimental set-up.
Fig. 13
Fig. 13 Photograph of the image processing.
Fig. 14
Fig. 14 Experimental results.

Tables (2)

Tables Icon

Table 1 Parameters of the Experimental System

Tables Icon

Table 2 Comparative Analysis of Two Tracking Methods

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

f( i,j )={ f( i,j ),f( i,j )T 0,f( i,j )<T .
f(x,y)=255×exp( (x x 0 ) 2 + (y y 0 ) 2 σ 2 ),
X k = i,j i×f( i,j ) i,j f( i,j ) ,(k=1,2,...,n).
Y k = i,j j×f( i,j ) i,j f( i,j ) ,(k=1,2,...,n).
S=M×N=(m+2 y b )×(n+2 x b ).
I t =0.
I x dx dt + I y dy dt + I t =0,
D(u,v)= i=1 n j=1 m | T 1 (x+i,y+j) T 0 (x+i+u,y+j+v) | .
C k = C k1 + d k1 .