Abstract

We theoretically study a tunable reflective focusing lens, based on graphene metasurface, which consists of rectangle aperture array. Dynamic control of either the focal intensity or focal length for terahertz circular polarized waves can be achieved by uniformly tuning the graphene Fermi energy. We demonstrate the graphene apertures with the same geometry; however, spatially varying orientations can only control the focal intensity. To change the focal length, the spatially varying aperture lengths are also required. A comparative study between the metalenses, which generate only geometric or both gradient and geometric phase changes, has shown that the apertures’ spatially varying length distribution is the key factor for determining the modulation level, rather than the focal length’s modulation range. This kind of metalens provides tunable, high-efficiency, broadband, and wide-angle off-axis focusing, thereby offering great application potential in lightweight and integrated terahertz devices.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dynamical tuning of terahertz meta-lens assisted by graphene

Zongduo Huang, Bin Hu, Weiguang Liu, Juan Liu, and Yongtian Wang
J. Opt. Soc. Am. B 34(9) 1848-1854 (2017)

All-dielectric metalens for terahertz wave imaging

Xue Jiang, Hao Chen, Zeyu Li, Hongkuan Yuan, Luyao Cao, Zhenfei Luo, Kun Zhang, Zhihai Zhang, Zhongquan Wen, Li-guo Zhu, Xun Zhou, Gaofeng Liang, Desheng Ruan, Lianghui Du, Lingfang Wang, and Gang Chen
Opt. Express 26(11) 14132-14142 (2018)

Out-of-plane focusing and manipulation of terahertz beams based on a silicon/copper grating covered by monolayer graphene

Jianli Jiang, Xiao Zhang, Wei Zhang, Shuang Liang, Hong Wu, Liyong Jiang, and Xiangyin Li
Opt. Express 25(14) 16867-16878 (2017)

References

  • View by:
  • |
  • |
  • |

  1. H. T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
    [Crossref] [PubMed]
  2. L. Zhang, S. T. Mei, K. Huang, and C. W. Qiu, “Advances in Full Control of Electromagnetic Waves with Metasurfaces,” Adv. Opt. Mater. 4(6), 818–833 (2016).
    [Crossref]
  3. V. C. Su, C. H. Chu, G. Sun, and D. P. Tsai, “Advances in optical metasurfaces: fabrication and applications [Invited],” Opt. Express 26(10), 13148–13182 (2018).
    [Crossref] [PubMed]
  4. M. Khorasaninejad and F. Capasso, “Metalenses: Versatile multifunctional photonic components,” Science 358(6367), 8100 (2017).
    [Crossref] [PubMed]
  5. P. Lalanne and P. Chavel, “Metalenses at visible wavelengths: past, present, perspectives,” Laser Photonics Rev. 11(3), 1600295 (2017).
    [Crossref]
  6. P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, “Recent advances in planar optics: from plasmonic to dielectric metasurfaces,” Optica 4(1), 139 (2017).
    [Crossref]
  7. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334(6054), 333–337 (2011).
    [Crossref] [PubMed]
  8. H. S. Ee and R. Agarwal, “Tunable Metasurface and Flat Optical Zoom Lens on a Stretchable Substrate,” Nano Lett. 16(4), 2818–2823 (2016).
    [Crossref] [PubMed]
  9. A. She, S. Y. Zhang, S. Shian, D. R. Clarke, and F. Capasso, “Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift,” Sci. Adv. 4(2), 9957 (2018).
  10. S. M. Kamali, E. Arbabi, A. Arbabi, Y. Horie, and A. Faraon, “Highly tunable elastic dielectric metasurface lenses,” Laser Photonics Rev. 10(6), 1002–1008 (2016).
    [Crossref]
  11. E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, M. Faraji-Dana, and A. Faraon, “MEMS-tunable dielectric metasurface lens,” Nat. Commun. 9(1), 812 (2018).
    [Crossref] [PubMed]
  12. T. Roy, S. Zhang, I. W. Jung, M. Troccoli, F. Capasso, and D. Lopez, “Dynamic metasurface lens based on MEMS technology,” APL Photonics 3(2), 021302 (2018).
    [Crossref]
  13. S. Colburn, A. Zhan, and A. Majumdar, “Varifocal zoom imaging with large area focal length adjustable metalenses,” Optica 5(7), 825 (2018).
    [Crossref]
  14. J. W. Zhong, N. An, N. B. Yi, M. X. Zhu, Q. H. Song, and S. M. Xiao, “Broadband and Tunable-Focus Flat Lens with Dielectric Metasurface,” Plasmonics 11(2), 537–541 (2016).
    [Crossref]
  15. J. W. He, Z. W. Xie, W. F. Sun, X. K. Wang, Y. D. Ji, S. Wang, Y. Lin, and Y. Zhang, “Terahertz Tunable Metasurface Lens Based on Vanadium Dioxide Phase Transition,” Plasmonics 11(5), 1285–1290 (2016).
    [Crossref]
  16. Y. Chen, X. Li, Y. Sonnefraud, A. I. Fernández-Domínguez, X. Luo, M. Hong, and S. A. Maier, “Engineering the Phase Front of Light With Phase-Change Material Based Planar Lenses,” Sci. Rep. 5(1), 8660 (2015).
    [Crossref] [PubMed]
  17. Q. Wang, E. T. F. Rogers, B. Gholipour, C. M. Wang, G. H. Yuan, J. H. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
    [Crossref]
  18. T. T. Kim, H. Kim, M. Kenney, H. S. Park, H. D. Kim, B. Min, and S. Zhang, “Amplitude Modulation of Anomalously Refracted Terahertz Waves with Gated-Graphene Metasurfaces,” Adv. Opt. Mater. 6(1), 1700507 (2018).
    [Crossref]
  19. Z. D. Huang, B. Hu, W. G. Liu, J. Liu, and Y. T. Wang, “Dynamical tuning of terahertz meta-lens assisted by graphene,” J. Opt. Soc. Am. B 34(9), 1848–1854 (2017).
    [Crossref]
  20. W. G. Liu, B. Hu, Z. D. Huang, H. Y. Guan, H. T. Li, X. K. Wang, Y. Zhang, H. X. Yin, X. L. Xiong, J. Liu, and Y. T. Wang, “Graphene-enabled electrically controlled terahertz meta-lens,” Photon. Res. 6(7), 703–708 (2018).
    [Crossref]
  21. Z. Zhang, X. Yan, L. J. Liang, D. Q. Wei, M. Wang, Y. R. Wang, and J. Q. Yao, “The novel hybrid metal-graphene metasurfaces for broadband focusing and beam-steering in farfield at the terahertz frequencies,” Carbon 132, 529–538 (2018).
    [Crossref]
  22. S. Colburn, A. Zhan, and A. Majumdar, “Tunable metasurfaces via subwavelength phase shifters with uniform amplitude,” Sci. Rep. 7(1), 40174 (2017).
    [Crossref] [PubMed]
  23. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
    [Crossref]
  24. F. J. García de Abajo, “Graphene plasmonics: challenges and opportunities,” ACS Photonics 1(3), 135–152 (2014).
    [Crossref]
  25. N. K. Emani, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Graphene: A Dynamic Platform for Electrical Control of Plasmonic Resonance,” Nanophotonics 4(1), 214–223 (2015).
    [Crossref]
  26. S. S. Xiao, X. L. Zhu, B. H. Li, and N. A. Mortensen, “Graphene-plasmon polaritons: From fundamental properties to potential applications,” Front. Phys. 11(2), 117801 (2016).
    [Crossref]
  27. Z. Q. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. H. An, Y. B. Zhang, and L. Zhou, “Widely Tunable Terahertz Phase Modulation with Gate-Controlled Graphene Metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
    [Crossref]
  28. Z. Su, X. Chen, J. Yin, and X. Zhao, “Graphene-based terahertz metasurface with tunable spectrum splitting,” Opt. Lett. 41(16), 3799–3802 (2016).
    [Crossref] [PubMed]
  29. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
    [Crossref] [PubMed]
  30. S. R. Biswas, C. E. Gutierrez, A. Nemilentsau, I. H. Lee, S. H. Oh, P. Avouris, and T. Low, “Tunable Graphene Metasurface Reflectarray for Cloaking, Illusion, and Focusing,” Phys. Rev. Appl. 9(3), 034021 (2018).
    [Crossref]
  31. S. AbdollahRamezani, K. Arik, S. Farajollahi, A. Khavasi, and Z. Kavehvash, “Beam manipulating by gate-tunable graphene-based metasurfaces,” Opt. Lett. 40(22), 5383–5386 (2015).
    [Crossref] [PubMed]
  32. S. Deng, A. K. Yetisen, K. Jiang, and H. Butt, “Computational modelling of a graphene Fresnel lens on different substrates,” RSC Advances 4(57), 30050–30058 (2014).
    [Crossref]
  33. X. T. Kong, A. A. Khan, P. R. Kidambi, S. Deng, A. K. Yetisen, B. Dlubak, P. Hiralal, Y. Montelongo, J. Bowen, S. Xavier, K. Jiang, G. A. J. Amaratunga, S. Hofmann, T. D. Wilkinson, Q. Dai, and H. Butt, “Graphene-Based Ultrathin Flat Lenses,” ACS Photonics 2(2), 200–207 (2015).
    [Crossref]
  34. S. Deng, H. Butt, K. Jiang, B. Dlubak, P. R. Kidambi, P. Seneor, S. Xavier, and A. K. Yetisen, “Graphene nanoribbon based plasmonic Fresnel zone plate lenses,” RSC Advances 7(27), 16594–16601 (2017).
    [Crossref]
  35. F. F. Lu, B. A. Liu, and S. Shen, “Infrared Wavefront Control Based on Graphene Metasurfaces,” Adv. Opt. Mater. 2(8), 794–799 (2014).
    [Crossref]
  36. H. H. Zhao, Z. H. Chen, F. Su, G. J. Ren, F. Liu, and J. Q. Yao, “Terahertz wavefront manipulating by double-layer graphene ribbons metasurface,” Opt. Commun. 402, 523–526 (2017).
    [Crossref]
  37. L. B. Luo, K. Y. Wang, K. Guo, F. Shen, X. D. Zhang, Z. P. Yin, and Z. Y. Guo, “Tunable manipulation of terahertz wavefront based on graphene metasurfaces,” J. Opt. 19(11), 115104 (2017).
    [Crossref]
  38. Z. Liu and B. Bai, “Ultra-thin and high-efficiency graphene metasurface for tunable terahertz wave manipulation,” Opt. Express 25(8), 8584–8592 (2017).
    [Crossref] [PubMed]
  39. W. Yao, L. L. Tang, J. Wang, C. H. Ji, X. Z. Wei, and Y. D. Jiang, “Spectrally and Spatially Tunable Terahertz Metasurface Lens Based on Graphene Surface Plasmons,” IEEE Photonics J. 10(4), 4800909 (2018).
    [Crossref]
  40. X. Hu, L. Wen, S. Song, and Q. Chen, “Tunable graphene metasurfaces by discontinuous Pancharatnam-Berry phase shift,” Nanotechnology 26(50), 505203 (2015).
    [Crossref] [PubMed]
  41. Z. Li, K. Yao, F. Xia, S. Shen, J. Tian, and Y. Liu, “Graphene Plasmonic Metasurfaces to Steer Infrared Light,” Sci. Rep. 5(1), 12423 (2015).
    [Crossref] [PubMed]
  42. W. Ma, Z. Huang, X. K. Bai, P. Zhan, and Y. M. Liu, “Dual-Band Light Focusing Using Stacked Graphene Metasurfaces,” ACS Photonics 4(7), 1770–1775 (2017).
    [Crossref]
  43. G. Wang, X. Liu, H. Lu, and C. Zeng, “Graphene plasmonic lens for manipulating energy flow,” Sci. Rep. 4(1), 4073 (2015).
    [Crossref] [PubMed]
  44. H. Nasari and M. S. Abrishamian, “Electrically tunable graded index planar lens based on graphene,” J. Appl. Phys. 116(8), 83106 (2014).
    [Crossref]
  45. B. Deng, Q. Guo, C. Li, H. Wang, X. Ling, D. B. Farmer, S. J. Han, J. Kong, and F. Xia, “Coupling-Enhanced Broadband Mid-infrared Light Absorption in Graphene Plasmonic Nanostructures,” ACS Nano 10(12), 11172–11178 (2016).
    [Crossref] [PubMed]
  46. A. Andryieuski and A. V. Lavrinenko, “Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach,” Opt. Express 21(7), 9144–9155 (2013).
    [Crossref] [PubMed]
  47. N. K. Emani, D. Wang, T. F. Chung, L. J. Prokopeva, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Plasmon resonance in multilayer graphene nanoribbons,” Laser Photonics Rev. 9(6), 650–655 (2015).
    [Crossref]
  48. N. K. Emani, T.-F. Chung, X. Ni, A. V. Kildishev, Y. P. Chen, and A. Boltasseva, “Electrically tunable damping of plasmonic resonances with graphene,” Nano Lett. 12(10), 5202–5206 (2012).
    [Crossref] [PubMed]
  49. Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated Tunability and Hybridization of Localized Plasmons in Nanostructured Graphene,” ACS Nano 7(3), 2388–2395 (2013).
    [Crossref] [PubMed]
  50. Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically Tunable Metasurface Perfect Absorbers for Ultrathin Mid-Infrared Optical Modulators,” Nano Lett. 14(11), 6526–6532 (2014).
    [Crossref] [PubMed]
  51. C. F. Chen, C. H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471(7340), 617–620 (2011).
    [Crossref] [PubMed]
  52. D. K. Efetov and P. Kim, “Controlling Electron-Phonon Interactions in Graphene at Ultrahigh Carrier Densities,” Phys. Rev. Lett. 105(25), 256805 (2010).
    [Crossref] [PubMed]
  53. X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
    [Crossref] [PubMed]
  54. Y. F. Li, J. Q. Zhang, S. B. Qu, J. F. Wang, L. Zheng, H. Zhou, Z. Xu, and A. X. Zhang, “Wide-band circular polarization-keeping reflection mediated by metasurface,” Chin. Phys. B 24(1), 014202 (2015).
    [Crossref]
  55. X. J. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light Sci. Appl. 2(4), e72 (2013).
    [Crossref]
  56. B. Hu, Q. J. Wang, and Y. Zhang, “Systematic study of the focal shift effect in planar plasmonic slit lenses,” Nanotechnology 23(44), 444002 (2012).
    [Crossref] [PubMed]
  57. Y. Jia, “Focal shift in metasurface based lenses,” Opt. Express 26(7), 8001–8015 (2018).
    [Crossref] [PubMed]
  58. A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6(1), 7069 (2015).
    [Crossref] [PubMed]
  59. D. L. Tang, C. T. Wang, Z. Y. Zhao, Y. Q. Wang, M. B. Pu, X. Li, P. Gao, and X. G. Luo, “Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing,” Laser Photonics Rev. 9(6), 713–719 (2015).
    [Crossref]

2018 (11)

V. C. Su, C. H. Chu, G. Sun, and D. P. Tsai, “Advances in optical metasurfaces: fabrication and applications [Invited],” Opt. Express 26(10), 13148–13182 (2018).
[Crossref] [PubMed]

A. She, S. Y. Zhang, S. Shian, D. R. Clarke, and F. Capasso, “Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift,” Sci. Adv. 4(2), 9957 (2018).

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, M. Faraji-Dana, and A. Faraon, “MEMS-tunable dielectric metasurface lens,” Nat. Commun. 9(1), 812 (2018).
[Crossref] [PubMed]

T. Roy, S. Zhang, I. W. Jung, M. Troccoli, F. Capasso, and D. Lopez, “Dynamic metasurface lens based on MEMS technology,” APL Photonics 3(2), 021302 (2018).
[Crossref]

S. Colburn, A. Zhan, and A. Majumdar, “Varifocal zoom imaging with large area focal length adjustable metalenses,” Optica 5(7), 825 (2018).
[Crossref]

T. T. Kim, H. Kim, M. Kenney, H. S. Park, H. D. Kim, B. Min, and S. Zhang, “Amplitude Modulation of Anomalously Refracted Terahertz Waves with Gated-Graphene Metasurfaces,” Adv. Opt. Mater. 6(1), 1700507 (2018).
[Crossref]

W. G. Liu, B. Hu, Z. D. Huang, H. Y. Guan, H. T. Li, X. K. Wang, Y. Zhang, H. X. Yin, X. L. Xiong, J. Liu, and Y. T. Wang, “Graphene-enabled electrically controlled terahertz meta-lens,” Photon. Res. 6(7), 703–708 (2018).
[Crossref]

Z. Zhang, X. Yan, L. J. Liang, D. Q. Wei, M. Wang, Y. R. Wang, and J. Q. Yao, “The novel hybrid metal-graphene metasurfaces for broadband focusing and beam-steering in farfield at the terahertz frequencies,” Carbon 132, 529–538 (2018).
[Crossref]

S. R. Biswas, C. E. Gutierrez, A. Nemilentsau, I. H. Lee, S. H. Oh, P. Avouris, and T. Low, “Tunable Graphene Metasurface Reflectarray for Cloaking, Illusion, and Focusing,” Phys. Rev. Appl. 9(3), 034021 (2018).
[Crossref]

W. Yao, L. L. Tang, J. Wang, C. H. Ji, X. Z. Wei, and Y. D. Jiang, “Spectrally and Spatially Tunable Terahertz Metasurface Lens Based on Graphene Surface Plasmons,” IEEE Photonics J. 10(4), 4800909 (2018).
[Crossref]

Y. Jia, “Focal shift in metasurface based lenses,” Opt. Express 26(7), 8001–8015 (2018).
[Crossref] [PubMed]

2017 (10)

W. Ma, Z. Huang, X. K. Bai, P. Zhan, and Y. M. Liu, “Dual-Band Light Focusing Using Stacked Graphene Metasurfaces,” ACS Photonics 4(7), 1770–1775 (2017).
[Crossref]

S. Deng, H. Butt, K. Jiang, B. Dlubak, P. R. Kidambi, P. Seneor, S. Xavier, and A. K. Yetisen, “Graphene nanoribbon based plasmonic Fresnel zone plate lenses,” RSC Advances 7(27), 16594–16601 (2017).
[Crossref]

H. H. Zhao, Z. H. Chen, F. Su, G. J. Ren, F. Liu, and J. Q. Yao, “Terahertz wavefront manipulating by double-layer graphene ribbons metasurface,” Opt. Commun. 402, 523–526 (2017).
[Crossref]

L. B. Luo, K. Y. Wang, K. Guo, F. Shen, X. D. Zhang, Z. P. Yin, and Z. Y. Guo, “Tunable manipulation of terahertz wavefront based on graphene metasurfaces,” J. Opt. 19(11), 115104 (2017).
[Crossref]

Z. Liu and B. Bai, “Ultra-thin and high-efficiency graphene metasurface for tunable terahertz wave manipulation,” Opt. Express 25(8), 8584–8592 (2017).
[Crossref] [PubMed]

S. Colburn, A. Zhan, and A. Majumdar, “Tunable metasurfaces via subwavelength phase shifters with uniform amplitude,” Sci. Rep. 7(1), 40174 (2017).
[Crossref] [PubMed]

Z. D. Huang, B. Hu, W. G. Liu, J. Liu, and Y. T. Wang, “Dynamical tuning of terahertz meta-lens assisted by graphene,” J. Opt. Soc. Am. B 34(9), 1848–1854 (2017).
[Crossref]

M. Khorasaninejad and F. Capasso, “Metalenses: Versatile multifunctional photonic components,” Science 358(6367), 8100 (2017).
[Crossref] [PubMed]

P. Lalanne and P. Chavel, “Metalenses at visible wavelengths: past, present, perspectives,” Laser Photonics Rev. 11(3), 1600295 (2017).
[Crossref]

P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, “Recent advances in planar optics: from plasmonic to dielectric metasurfaces,” Optica 4(1), 139 (2017).
[Crossref]

2016 (10)

S. M. Kamali, E. Arbabi, A. Arbabi, Y. Horie, and A. Faraon, “Highly tunable elastic dielectric metasurface lenses,” Laser Photonics Rev. 10(6), 1002–1008 (2016).
[Crossref]

H. T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
[Crossref] [PubMed]

L. Zhang, S. T. Mei, K. Huang, and C. W. Qiu, “Advances in Full Control of Electromagnetic Waves with Metasurfaces,” Adv. Opt. Mater. 4(6), 818–833 (2016).
[Crossref]

H. S. Ee and R. Agarwal, “Tunable Metasurface and Flat Optical Zoom Lens on a Stretchable Substrate,” Nano Lett. 16(4), 2818–2823 (2016).
[Crossref] [PubMed]

Q. Wang, E. T. F. Rogers, B. Gholipour, C. M. Wang, G. H. Yuan, J. H. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

J. W. Zhong, N. An, N. B. Yi, M. X. Zhu, Q. H. Song, and S. M. Xiao, “Broadband and Tunable-Focus Flat Lens with Dielectric Metasurface,” Plasmonics 11(2), 537–541 (2016).
[Crossref]

J. W. He, Z. W. Xie, W. F. Sun, X. K. Wang, Y. D. Ji, S. Wang, Y. Lin, and Y. Zhang, “Terahertz Tunable Metasurface Lens Based on Vanadium Dioxide Phase Transition,” Plasmonics 11(5), 1285–1290 (2016).
[Crossref]

S. S. Xiao, X. L. Zhu, B. H. Li, and N. A. Mortensen, “Graphene-plasmon polaritons: From fundamental properties to potential applications,” Front. Phys. 11(2), 117801 (2016).
[Crossref]

Z. Su, X. Chen, J. Yin, and X. Zhao, “Graphene-based terahertz metasurface with tunable spectrum splitting,” Opt. Lett. 41(16), 3799–3802 (2016).
[Crossref] [PubMed]

B. Deng, Q. Guo, C. Li, H. Wang, X. Ling, D. B. Farmer, S. J. Han, J. Kong, and F. Xia, “Coupling-Enhanced Broadband Mid-infrared Light Absorption in Graphene Plasmonic Nanostructures,” ACS Nano 10(12), 11172–11178 (2016).
[Crossref] [PubMed]

2015 (12)

N. K. Emani, D. Wang, T. F. Chung, L. J. Prokopeva, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Plasmon resonance in multilayer graphene nanoribbons,” Laser Photonics Rev. 9(6), 650–655 (2015).
[Crossref]

G. Wang, X. Liu, H. Lu, and C. Zeng, “Graphene plasmonic lens for manipulating energy flow,” Sci. Rep. 4(1), 4073 (2015).
[Crossref] [PubMed]

X. Hu, L. Wen, S. Song, and Q. Chen, “Tunable graphene metasurfaces by discontinuous Pancharatnam-Berry phase shift,” Nanotechnology 26(50), 505203 (2015).
[Crossref] [PubMed]

Z. Li, K. Yao, F. Xia, S. Shen, J. Tian, and Y. Liu, “Graphene Plasmonic Metasurfaces to Steer Infrared Light,” Sci. Rep. 5(1), 12423 (2015).
[Crossref] [PubMed]

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6(1), 7069 (2015).
[Crossref] [PubMed]

D. L. Tang, C. T. Wang, Z. Y. Zhao, Y. Q. Wang, M. B. Pu, X. Li, P. Gao, and X. G. Luo, “Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing,” Laser Photonics Rev. 9(6), 713–719 (2015).
[Crossref]

Y. F. Li, J. Q. Zhang, S. B. Qu, J. F. Wang, L. Zheng, H. Zhou, Z. Xu, and A. X. Zhang, “Wide-band circular polarization-keeping reflection mediated by metasurface,” Chin. Phys. B 24(1), 014202 (2015).
[Crossref]

X. T. Kong, A. A. Khan, P. R. Kidambi, S. Deng, A. K. Yetisen, B. Dlubak, P. Hiralal, Y. Montelongo, J. Bowen, S. Xavier, K. Jiang, G. A. J. Amaratunga, S. Hofmann, T. D. Wilkinson, Q. Dai, and H. Butt, “Graphene-Based Ultrathin Flat Lenses,” ACS Photonics 2(2), 200–207 (2015).
[Crossref]

S. AbdollahRamezani, K. Arik, S. Farajollahi, A. Khavasi, and Z. Kavehvash, “Beam manipulating by gate-tunable graphene-based metasurfaces,” Opt. Lett. 40(22), 5383–5386 (2015).
[Crossref] [PubMed]

Z. Q. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. H. An, Y. B. Zhang, and L. Zhou, “Widely Tunable Terahertz Phase Modulation with Gate-Controlled Graphene Metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
[Crossref]

N. K. Emani, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Graphene: A Dynamic Platform for Electrical Control of Plasmonic Resonance,” Nanophotonics 4(1), 214–223 (2015).
[Crossref]

Y. Chen, X. Li, Y. Sonnefraud, A. I. Fernández-Domínguez, X. Luo, M. Hong, and S. A. Maier, “Engineering the Phase Front of Light With Phase-Change Material Based Planar Lenses,” Sci. Rep. 5(1), 8660 (2015).
[Crossref] [PubMed]

2014 (5)

F. J. García de Abajo, “Graphene plasmonics: challenges and opportunities,” ACS Photonics 1(3), 135–152 (2014).
[Crossref]

S. Deng, A. K. Yetisen, K. Jiang, and H. Butt, “Computational modelling of a graphene Fresnel lens on different substrates,” RSC Advances 4(57), 30050–30058 (2014).
[Crossref]

F. F. Lu, B. A. Liu, and S. Shen, “Infrared Wavefront Control Based on Graphene Metasurfaces,” Adv. Opt. Mater. 2(8), 794–799 (2014).
[Crossref]

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically Tunable Metasurface Perfect Absorbers for Ultrathin Mid-Infrared Optical Modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

H. Nasari and M. S. Abrishamian, “Electrically tunable graded index planar lens based on graphene,” J. Appl. Phys. 116(8), 83106 (2014).
[Crossref]

2013 (3)

A. Andryieuski and A. V. Lavrinenko, “Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach,” Opt. Express 21(7), 9144–9155 (2013).
[Crossref] [PubMed]

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated Tunability and Hybridization of Localized Plasmons in Nanostructured Graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref] [PubMed]

X. J. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light Sci. Appl. 2(4), e72 (2013).
[Crossref]

2012 (3)

B. Hu, Q. J. Wang, and Y. Zhang, “Systematic study of the focal shift effect in planar plasmonic slit lenses,” Nanotechnology 23(44), 444002 (2012).
[Crossref] [PubMed]

N. K. Emani, T.-F. Chung, X. Ni, A. V. Kildishev, Y. P. Chen, and A. Boltasseva, “Electrically tunable damping of plasmonic resonances with graphene,” Nano Lett. 12(10), 5202–5206 (2012).
[Crossref] [PubMed]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref] [PubMed]

2011 (3)

C. F. Chen, C. H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471(7340), 617–620 (2011).
[Crossref] [PubMed]

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

2010 (1)

D. K. Efetov and P. Kim, “Controlling Electron-Phonon Interactions in Graphene at Ultrahigh Carrier Densities,” Phys. Rev. Lett. 105(25), 256805 (2010).
[Crossref] [PubMed]

2009 (1)

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

AbdollahRamezani, S.

Abrishamian, M. S.

H. Nasari and M. S. Abrishamian, “Electrically tunable graded index planar lens based on graphene,” J. Appl. Phys. 116(8), 83106 (2014).
[Crossref]

Agarwal, R.

H. S. Ee and R. Agarwal, “Tunable Metasurface and Flat Optical Zoom Lens on a Stretchable Substrate,” Nano Lett. 16(4), 2818–2823 (2016).
[Crossref] [PubMed]

Aieta, F.

P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, “Recent advances in planar optics: from plasmonic to dielectric metasurfaces,” Optica 4(1), 139 (2017).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Ajayan, P. M.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated Tunability and Hybridization of Localized Plasmons in Nanostructured Graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref] [PubMed]

Amaratunga, G. A. J.

X. T. Kong, A. A. Khan, P. R. Kidambi, S. Deng, A. K. Yetisen, B. Dlubak, P. Hiralal, Y. Montelongo, J. Bowen, S. Xavier, K. Jiang, G. A. J. Amaratunga, S. Hofmann, T. D. Wilkinson, Q. Dai, and H. Butt, “Graphene-Based Ultrathin Flat Lenses,” ACS Photonics 2(2), 200–207 (2015).
[Crossref]

An, N.

J. W. Zhong, N. An, N. B. Yi, M. X. Zhu, Q. H. Song, and S. M. Xiao, “Broadband and Tunable-Focus Flat Lens with Dielectric Metasurface,” Plasmonics 11(2), 537–541 (2016).
[Crossref]

An, Z. H.

Z. Q. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. H. An, Y. B. Zhang, and L. Zhou, “Widely Tunable Terahertz Phase Modulation with Gate-Controlled Graphene Metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
[Crossref]

Andryieuski, A.

Arbabi, A.

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, M. Faraji-Dana, and A. Faraon, “MEMS-tunable dielectric metasurface lens,” Nat. Commun. 9(1), 812 (2018).
[Crossref] [PubMed]

S. M. Kamali, E. Arbabi, A. Arbabi, Y. Horie, and A. Faraon, “Highly tunable elastic dielectric metasurface lenses,” Laser Photonics Rev. 10(6), 1002–1008 (2016).
[Crossref]

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6(1), 7069 (2015).
[Crossref] [PubMed]

Arbabi, E.

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, M. Faraji-Dana, and A. Faraon, “MEMS-tunable dielectric metasurface lens,” Nat. Commun. 9(1), 812 (2018).
[Crossref] [PubMed]

S. M. Kamali, E. Arbabi, A. Arbabi, Y. Horie, and A. Faraon, “Highly tunable elastic dielectric metasurface lenses,” Laser Photonics Rev. 10(6), 1002–1008 (2016).
[Crossref]

Arik, K.

Avouris, P.

S. R. Biswas, C. E. Gutierrez, A. Nemilentsau, I. H. Lee, S. H. Oh, P. Avouris, and T. Low, “Tunable Graphene Metasurface Reflectarray for Cloaking, Illusion, and Focusing,” Phys. Rev. Appl. 9(3), 034021 (2018).
[Crossref]

Bagheri, M.

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6(1), 7069 (2015).
[Crossref] [PubMed]

Bai, B.

Z. Liu and B. Bai, “Ultra-thin and high-efficiency graphene metasurface for tunable terahertz wave manipulation,” Opt. Express 25(8), 8584–8592 (2017).
[Crossref] [PubMed]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref] [PubMed]

Bai, X. K.

W. Ma, Z. Huang, X. K. Bai, P. Zhan, and Y. M. Liu, “Dual-Band Light Focusing Using Stacked Graphene Metasurfaces,” ACS Photonics 4(7), 1770–1775 (2017).
[Crossref]

Ball, A. J.

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6(1), 7069 (2015).
[Crossref] [PubMed]

Bechtel, H. A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Biswas, S. R.

S. R. Biswas, C. E. Gutierrez, A. Nemilentsau, I. H. Lee, S. H. Oh, P. Avouris, and T. Low, “Tunable Graphene Metasurface Reflectarray for Cloaking, Illusion, and Focusing,” Phys. Rev. Appl. 9(3), 034021 (2018).
[Crossref]

Boltasseva, A.

N. K. Emani, D. Wang, T. F. Chung, L. J. Prokopeva, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Plasmon resonance in multilayer graphene nanoribbons,” Laser Photonics Rev. 9(6), 650–655 (2015).
[Crossref]

N. K. Emani, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Graphene: A Dynamic Platform for Electrical Control of Plasmonic Resonance,” Nanophotonics 4(1), 214–223 (2015).
[Crossref]

N. K. Emani, T.-F. Chung, X. Ni, A. V. Kildishev, Y. P. Chen, and A. Boltasseva, “Electrically tunable damping of plasmonic resonances with graphene,” Nano Lett. 12(10), 5202–5206 (2012).
[Crossref] [PubMed]

Boudouris, B. W.

C. F. Chen, C. H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471(7340), 617–620 (2011).
[Crossref] [PubMed]

Bowen, J.

X. T. Kong, A. A. Khan, P. R. Kidambi, S. Deng, A. K. Yetisen, B. Dlubak, P. Hiralal, Y. Montelongo, J. Bowen, S. Xavier, K. Jiang, G. A. J. Amaratunga, S. Hofmann, T. D. Wilkinson, Q. Dai, and H. Butt, “Graphene-Based Ultrathin Flat Lenses,” ACS Photonics 2(2), 200–207 (2015).
[Crossref]

Butt, H.

S. Deng, H. Butt, K. Jiang, B. Dlubak, P. R. Kidambi, P. Seneor, S. Xavier, and A. K. Yetisen, “Graphene nanoribbon based plasmonic Fresnel zone plate lenses,” RSC Advances 7(27), 16594–16601 (2017).
[Crossref]

X. T. Kong, A. A. Khan, P. R. Kidambi, S. Deng, A. K. Yetisen, B. Dlubak, P. Hiralal, Y. Montelongo, J. Bowen, S. Xavier, K. Jiang, G. A. J. Amaratunga, S. Hofmann, T. D. Wilkinson, Q. Dai, and H. Butt, “Graphene-Based Ultrathin Flat Lenses,” ACS Photonics 2(2), 200–207 (2015).
[Crossref]

S. Deng, A. K. Yetisen, K. Jiang, and H. Butt, “Computational modelling of a graphene Fresnel lens on different substrates,” RSC Advances 4(57), 30050–30058 (2014).
[Crossref]

Capasso, F.

T. Roy, S. Zhang, I. W. Jung, M. Troccoli, F. Capasso, and D. Lopez, “Dynamic metasurface lens based on MEMS technology,” APL Photonics 3(2), 021302 (2018).
[Crossref]

A. She, S. Y. Zhang, S. Shian, D. R. Clarke, and F. Capasso, “Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift,” Sci. Adv. 4(2), 9957 (2018).

P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, “Recent advances in planar optics: from plasmonic to dielectric metasurfaces,” Optica 4(1), 139 (2017).
[Crossref]

M. Khorasaninejad and F. Capasso, “Metalenses: Versatile multifunctional photonic components,” Science 358(6367), 8100 (2017).
[Crossref] [PubMed]

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically Tunable Metasurface Perfect Absorbers for Ultrathin Mid-Infrared Optical Modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Castro Neto, A. H.

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

Chavel, P.

P. Lalanne and P. Chavel, “Metalenses at visible wavelengths: past, present, perspectives,” Laser Photonics Rev. 11(3), 1600295 (2017).
[Crossref]

Chen, C. F.

C. F. Chen, C. H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471(7340), 617–620 (2011).
[Crossref] [PubMed]

Chen, H. T.

H. T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
[Crossref] [PubMed]

Chen, Q.

X. Hu, L. Wen, S. Song, and Q. Chen, “Tunable graphene metasurfaces by discontinuous Pancharatnam-Berry phase shift,” Nanotechnology 26(50), 505203 (2015).
[Crossref] [PubMed]

Chen, X.

Z. Su, X. Chen, J. Yin, and X. Zhao, “Graphene-based terahertz metasurface with tunable spectrum splitting,” Opt. Lett. 41(16), 3799–3802 (2016).
[Crossref] [PubMed]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref] [PubMed]

Chen, Y.

Y. Chen, X. Li, Y. Sonnefraud, A. I. Fernández-Domínguez, X. Luo, M. Hong, and S. A. Maier, “Engineering the Phase Front of Light With Phase-Change Material Based Planar Lenses,” Sci. Rep. 5(1), 8660 (2015).
[Crossref] [PubMed]

Chen, Y. P.

N. K. Emani, D. Wang, T. F. Chung, L. J. Prokopeva, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Plasmon resonance in multilayer graphene nanoribbons,” Laser Photonics Rev. 9(6), 650–655 (2015).
[Crossref]

N. K. Emani, T.-F. Chung, X. Ni, A. V. Kildishev, Y. P. Chen, and A. Boltasseva, “Electrically tunable damping of plasmonic resonances with graphene,” Nano Lett. 12(10), 5202–5206 (2012).
[Crossref] [PubMed]

Chen, Z. H.

H. H. Zhao, Z. H. Chen, F. Su, G. J. Ren, F. Liu, and J. Q. Yao, “Terahertz wavefront manipulating by double-layer graphene ribbons metasurface,” Opt. Commun. 402, 523–526 (2017).
[Crossref]

Chu, C. H.

Chung, T. F.

N. K. Emani, D. Wang, T. F. Chung, L. J. Prokopeva, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Plasmon resonance in multilayer graphene nanoribbons,” Laser Photonics Rev. 9(6), 650–655 (2015).
[Crossref]

Chung, T.-F.

N. K. Emani, T.-F. Chung, X. Ni, A. V. Kildishev, Y. P. Chen, and A. Boltasseva, “Electrically tunable damping of plasmonic resonances with graphene,” Nano Lett. 12(10), 5202–5206 (2012).
[Crossref] [PubMed]

Clarke, D. R.

A. She, S. Y. Zhang, S. Shian, D. R. Clarke, and F. Capasso, “Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift,” Sci. Adv. 4(2), 9957 (2018).

Colburn, S.

S. Colburn, A. Zhan, and A. Majumdar, “Varifocal zoom imaging with large area focal length adjustable metalenses,” Optica 5(7), 825 (2018).
[Crossref]

S. Colburn, A. Zhan, and A. Majumdar, “Tunable metasurfaces via subwavelength phase shifters with uniform amplitude,” Sci. Rep. 7(1), 40174 (2017).
[Crossref] [PubMed]

Crommie, M. F.

C. F. Chen, C. H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471(7340), 617–620 (2011).
[Crossref] [PubMed]

Dai, Q.

X. T. Kong, A. A. Khan, P. R. Kidambi, S. Deng, A. K. Yetisen, B. Dlubak, P. Hiralal, Y. Montelongo, J. Bowen, S. Xavier, K. Jiang, G. A. J. Amaratunga, S. Hofmann, T. D. Wilkinson, Q. Dai, and H. Butt, “Graphene-Based Ultrathin Flat Lenses,” ACS Photonics 2(2), 200–207 (2015).
[Crossref]

Deng, B.

B. Deng, Q. Guo, C. Li, H. Wang, X. Ling, D. B. Farmer, S. J. Han, J. Kong, and F. Xia, “Coupling-Enhanced Broadband Mid-infrared Light Absorption in Graphene Plasmonic Nanostructures,” ACS Nano 10(12), 11172–11178 (2016).
[Crossref] [PubMed]

Deng, S.

S. Deng, H. Butt, K. Jiang, B. Dlubak, P. R. Kidambi, P. Seneor, S. Xavier, and A. K. Yetisen, “Graphene nanoribbon based plasmonic Fresnel zone plate lenses,” RSC Advances 7(27), 16594–16601 (2017).
[Crossref]

X. T. Kong, A. A. Khan, P. R. Kidambi, S. Deng, A. K. Yetisen, B. Dlubak, P. Hiralal, Y. Montelongo, J. Bowen, S. Xavier, K. Jiang, G. A. J. Amaratunga, S. Hofmann, T. D. Wilkinson, Q. Dai, and H. Butt, “Graphene-Based Ultrathin Flat Lenses,” ACS Photonics 2(2), 200–207 (2015).
[Crossref]

S. Deng, A. K. Yetisen, K. Jiang, and H. Butt, “Computational modelling of a graphene Fresnel lens on different substrates,” RSC Advances 4(57), 30050–30058 (2014).
[Crossref]

Devlin, R.

Ding, K.

Z. Q. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. H. An, Y. B. Zhang, and L. Zhou, “Widely Tunable Terahertz Phase Modulation with Gate-Controlled Graphene Metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
[Crossref]

Dlubak, B.

S. Deng, H. Butt, K. Jiang, B. Dlubak, P. R. Kidambi, P. Seneor, S. Xavier, and A. K. Yetisen, “Graphene nanoribbon based plasmonic Fresnel zone plate lenses,” RSC Advances 7(27), 16594–16601 (2017).
[Crossref]

X. T. Kong, A. A. Khan, P. R. Kidambi, S. Deng, A. K. Yetisen, B. Dlubak, P. Hiralal, Y. Montelongo, J. Bowen, S. Xavier, K. Jiang, G. A. J. Amaratunga, S. Hofmann, T. D. Wilkinson, Q. Dai, and H. Butt, “Graphene-Based Ultrathin Flat Lenses,” ACS Photonics 2(2), 200–207 (2015).
[Crossref]

Ee, H. S.

H. S. Ee and R. Agarwal, “Tunable Metasurface and Flat Optical Zoom Lens on a Stretchable Substrate,” Nano Lett. 16(4), 2818–2823 (2016).
[Crossref] [PubMed]

Efetov, D. K.

D. K. Efetov and P. Kim, “Controlling Electron-Phonon Interactions in Graphene at Ultrahigh Carrier Densities,” Phys. Rev. Lett. 105(25), 256805 (2010).
[Crossref] [PubMed]

Emani, N. K.

N. K. Emani, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Graphene: A Dynamic Platform for Electrical Control of Plasmonic Resonance,” Nanophotonics 4(1), 214–223 (2015).
[Crossref]

N. K. Emani, D. Wang, T. F. Chung, L. J. Prokopeva, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Plasmon resonance in multilayer graphene nanoribbons,” Laser Photonics Rev. 9(6), 650–655 (2015).
[Crossref]

N. K. Emani, T.-F. Chung, X. Ni, A. V. Kildishev, Y. P. Chen, and A. Boltasseva, “Electrically tunable damping of plasmonic resonances with graphene,” Nano Lett. 12(10), 5202–5206 (2012).
[Crossref] [PubMed]

Fang, Z.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated Tunability and Hybridization of Localized Plasmons in Nanostructured Graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref] [PubMed]

Faraji-Dana, M.

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, M. Faraji-Dana, and A. Faraon, “MEMS-tunable dielectric metasurface lens,” Nat. Commun. 9(1), 812 (2018).
[Crossref] [PubMed]

Farajollahi, S.

Faraon, A.

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, M. Faraji-Dana, and A. Faraon, “MEMS-tunable dielectric metasurface lens,” Nat. Commun. 9(1), 812 (2018).
[Crossref] [PubMed]

S. M. Kamali, E. Arbabi, A. Arbabi, Y. Horie, and A. Faraon, “Highly tunable elastic dielectric metasurface lenses,” Laser Photonics Rev. 10(6), 1002–1008 (2016).
[Crossref]

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6(1), 7069 (2015).
[Crossref] [PubMed]

Farmer, D. B.

B. Deng, Q. Guo, C. Li, H. Wang, X. Ling, D. B. Farmer, S. J. Han, J. Kong, and F. Xia, “Coupling-Enhanced Broadband Mid-infrared Light Absorption in Graphene Plasmonic Nanostructures,” ACS Nano 10(12), 11172–11178 (2016).
[Crossref] [PubMed]

Fernández-Domínguez, A. I.

Y. Chen, X. Li, Y. Sonnefraud, A. I. Fernández-Domínguez, X. Luo, M. Hong, and S. A. Maier, “Engineering the Phase Front of Light With Phase-Change Material Based Planar Lenses,” Sci. Rep. 5(1), 8660 (2015).
[Crossref] [PubMed]

Gaburro, Z.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Gao, P.

D. L. Tang, C. T. Wang, Z. Y. Zhao, Y. Q. Wang, M. B. Pu, X. Li, P. Gao, and X. G. Luo, “Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing,” Laser Photonics Rev. 9(6), 713–719 (2015).
[Crossref]

García de Abajo, F. J.

F. J. García de Abajo, “Graphene plasmonics: challenges and opportunities,” ACS Photonics 1(3), 135–152 (2014).
[Crossref]

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated Tunability and Hybridization of Localized Plasmons in Nanostructured Graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref] [PubMed]

Geim, A. K.

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

Genevet, P.

P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, “Recent advances in planar optics: from plasmonic to dielectric metasurfaces,” Optica 4(1), 139 (2017).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Geng, B.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

C. F. Chen, C. H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471(7340), 617–620 (2011).
[Crossref] [PubMed]

Gholipour, B.

Q. Wang, E. T. F. Rogers, B. Gholipour, C. M. Wang, G. H. Yuan, J. H. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

Girit, C.

C. F. Chen, C. H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471(7340), 617–620 (2011).
[Crossref] [PubMed]

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Guan, H. Y.

Guinea, F.

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

Guo, K.

L. B. Luo, K. Y. Wang, K. Guo, F. Shen, X. D. Zhang, Z. P. Yin, and Z. Y. Guo, “Tunable manipulation of terahertz wavefront based on graphene metasurfaces,” J. Opt. 19(11), 115104 (2017).
[Crossref]

Guo, Q.

B. Deng, Q. Guo, C. Li, H. Wang, X. Ling, D. B. Farmer, S. J. Han, J. Kong, and F. Xia, “Coupling-Enhanced Broadband Mid-infrared Light Absorption in Graphene Plasmonic Nanostructures,” ACS Nano 10(12), 11172–11178 (2016).
[Crossref] [PubMed]

Guo, Z. Y.

L. B. Luo, K. Y. Wang, K. Guo, F. Shen, X. D. Zhang, Z. P. Yin, and Z. Y. Guo, “Tunable manipulation of terahertz wavefront based on graphene metasurfaces,” J. Opt. 19(11), 115104 (2017).
[Crossref]

Gutierrez, C. E.

S. R. Biswas, C. E. Gutierrez, A. Nemilentsau, I. H. Lee, S. H. Oh, P. Avouris, and T. Low, “Tunable Graphene Metasurface Reflectarray for Cloaking, Illusion, and Focusing,” Phys. Rev. Appl. 9(3), 034021 (2018).
[Crossref]

Halas, N. J.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated Tunability and Hybridization of Localized Plasmons in Nanostructured Graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref] [PubMed]

Han, S. J.

B. Deng, Q. Guo, C. Li, H. Wang, X. Ling, D. B. Farmer, S. J. Han, J. Kong, and F. Xia, “Coupling-Enhanced Broadband Mid-infrared Light Absorption in Graphene Plasmonic Nanostructures,” ACS Nano 10(12), 11172–11178 (2016).
[Crossref] [PubMed]

Hao, Z.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

He, J. W.

J. W. He, Z. W. Xie, W. F. Sun, X. K. Wang, Y. D. Ji, S. Wang, Y. Lin, and Y. Zhang, “Terahertz Tunable Metasurface Lens Based on Vanadium Dioxide Phase Transition,” Plasmonics 11(5), 1285–1290 (2016).
[Crossref]

He, Q.

Z. Q. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. H. An, Y. B. Zhang, and L. Zhou, “Widely Tunable Terahertz Phase Modulation with Gate-Controlled Graphene Metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
[Crossref]

Hiralal, P.

X. T. Kong, A. A. Khan, P. R. Kidambi, S. Deng, A. K. Yetisen, B. Dlubak, P. Hiralal, Y. Montelongo, J. Bowen, S. Xavier, K. Jiang, G. A. J. Amaratunga, S. Hofmann, T. D. Wilkinson, Q. Dai, and H. Butt, “Graphene-Based Ultrathin Flat Lenses,” ACS Photonics 2(2), 200–207 (2015).
[Crossref]

Hofmann, S.

X. T. Kong, A. A. Khan, P. R. Kidambi, S. Deng, A. K. Yetisen, B. Dlubak, P. Hiralal, Y. Montelongo, J. Bowen, S. Xavier, K. Jiang, G. A. J. Amaratunga, S. Hofmann, T. D. Wilkinson, Q. Dai, and H. Butt, “Graphene-Based Ultrathin Flat Lenses,” ACS Photonics 2(2), 200–207 (2015).
[Crossref]

Hong, M.

Y. Chen, X. Li, Y. Sonnefraud, A. I. Fernández-Domínguez, X. Luo, M. Hong, and S. A. Maier, “Engineering the Phase Front of Light With Phase-Change Material Based Planar Lenses,” Sci. Rep. 5(1), 8660 (2015).
[Crossref] [PubMed]

Horie, Y.

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, M. Faraji-Dana, and A. Faraon, “MEMS-tunable dielectric metasurface lens,” Nat. Commun. 9(1), 812 (2018).
[Crossref] [PubMed]

S. M. Kamali, E. Arbabi, A. Arbabi, Y. Horie, and A. Faraon, “Highly tunable elastic dielectric metasurface lenses,” Laser Photonics Rev. 10(6), 1002–1008 (2016).
[Crossref]

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6(1), 7069 (2015).
[Crossref] [PubMed]

Horng, J.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

C. F. Chen, C. H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471(7340), 617–620 (2011).
[Crossref] [PubMed]

Hu, B.

Hu, X.

X. Hu, L. Wen, S. Song, and Q. Chen, “Tunable graphene metasurfaces by discontinuous Pancharatnam-Berry phase shift,” Nanotechnology 26(50), 505203 (2015).
[Crossref] [PubMed]

Huang, K.

L. Zhang, S. T. Mei, K. Huang, and C. W. Qiu, “Advances in Full Control of Electromagnetic Waves with Metasurfaces,” Adv. Opt. Mater. 4(6), 818–833 (2016).
[Crossref]

Huang, L.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref] [PubMed]

Huang, Z.

W. Ma, Z. Huang, X. K. Bai, P. Zhan, and Y. M. Liu, “Dual-Band Light Focusing Using Stacked Graphene Metasurfaces,” ACS Photonics 4(7), 1770–1775 (2017).
[Crossref]

Huang, Z. D.

Ishii, S.

X. J. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light Sci. Appl. 2(4), e72 (2013).
[Crossref]

Ji, C. H.

W. Yao, L. L. Tang, J. Wang, C. H. Ji, X. Z. Wei, and Y. D. Jiang, “Spectrally and Spatially Tunable Terahertz Metasurface Lens Based on Graphene Surface Plasmons,” IEEE Photonics J. 10(4), 4800909 (2018).
[Crossref]

Ji, Y. D.

J. W. He, Z. W. Xie, W. F. Sun, X. K. Wang, Y. D. Ji, S. Wang, Y. Lin, and Y. Zhang, “Terahertz Tunable Metasurface Lens Based on Vanadium Dioxide Phase Transition,” Plasmonics 11(5), 1285–1290 (2016).
[Crossref]

Jia, Y.

Jiang, K.

S. Deng, H. Butt, K. Jiang, B. Dlubak, P. R. Kidambi, P. Seneor, S. Xavier, and A. K. Yetisen, “Graphene nanoribbon based plasmonic Fresnel zone plate lenses,” RSC Advances 7(27), 16594–16601 (2017).
[Crossref]

X. T. Kong, A. A. Khan, P. R. Kidambi, S. Deng, A. K. Yetisen, B. Dlubak, P. Hiralal, Y. Montelongo, J. Bowen, S. Xavier, K. Jiang, G. A. J. Amaratunga, S. Hofmann, T. D. Wilkinson, Q. Dai, and H. Butt, “Graphene-Based Ultrathin Flat Lenses,” ACS Photonics 2(2), 200–207 (2015).
[Crossref]

S. Deng, A. K. Yetisen, K. Jiang, and H. Butt, “Computational modelling of a graphene Fresnel lens on different substrates,” RSC Advances 4(57), 30050–30058 (2014).
[Crossref]

Jiang, Y. D.

W. Yao, L. L. Tang, J. Wang, C. H. Ji, X. Z. Wei, and Y. D. Jiang, “Spectrally and Spatially Tunable Terahertz Metasurface Lens Based on Graphene Surface Plasmons,” IEEE Photonics J. 10(4), 4800909 (2018).
[Crossref]

Jin, G.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref] [PubMed]

Ju, L.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Jung, I. W.

T. Roy, S. Zhang, I. W. Jung, M. Troccoli, F. Capasso, and D. Lopez, “Dynamic metasurface lens based on MEMS technology,” APL Photonics 3(2), 021302 (2018).
[Crossref]

Kamali, S. M.

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, M. Faraji-Dana, and A. Faraon, “MEMS-tunable dielectric metasurface lens,” Nat. Commun. 9(1), 812 (2018).
[Crossref] [PubMed]

S. M. Kamali, E. Arbabi, A. Arbabi, Y. Horie, and A. Faraon, “Highly tunable elastic dielectric metasurface lenses,” Laser Photonics Rev. 10(6), 1002–1008 (2016).
[Crossref]

Kats, M. A.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically Tunable Metasurface Perfect Absorbers for Ultrathin Mid-Infrared Optical Modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Kavehvash, Z.

Kenney, M.

T. T. Kim, H. Kim, M. Kenney, H. S. Park, H. D. Kim, B. Min, and S. Zhang, “Amplitude Modulation of Anomalously Refracted Terahertz Waves with Gated-Graphene Metasurfaces,” Adv. Opt. Mater. 6(1), 1700507 (2018).
[Crossref]

Khan, A. A.

X. T. Kong, A. A. Khan, P. R. Kidambi, S. Deng, A. K. Yetisen, B. Dlubak, P. Hiralal, Y. Montelongo, J. Bowen, S. Xavier, K. Jiang, G. A. J. Amaratunga, S. Hofmann, T. D. Wilkinson, Q. Dai, and H. Butt, “Graphene-Based Ultrathin Flat Lenses,” ACS Photonics 2(2), 200–207 (2015).
[Crossref]

Khavasi, A.

Khorasaninejad, M.

Kidambi, P. R.

S. Deng, H. Butt, K. Jiang, B. Dlubak, P. R. Kidambi, P. Seneor, S. Xavier, and A. K. Yetisen, “Graphene nanoribbon based plasmonic Fresnel zone plate lenses,” RSC Advances 7(27), 16594–16601 (2017).
[Crossref]

X. T. Kong, A. A. Khan, P. R. Kidambi, S. Deng, A. K. Yetisen, B. Dlubak, P. Hiralal, Y. Montelongo, J. Bowen, S. Xavier, K. Jiang, G. A. J. Amaratunga, S. Hofmann, T. D. Wilkinson, Q. Dai, and H. Butt, “Graphene-Based Ultrathin Flat Lenses,” ACS Photonics 2(2), 200–207 (2015).
[Crossref]

Kildishev, A. V.

N. K. Emani, D. Wang, T. F. Chung, L. J. Prokopeva, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Plasmon resonance in multilayer graphene nanoribbons,” Laser Photonics Rev. 9(6), 650–655 (2015).
[Crossref]

N. K. Emani, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Graphene: A Dynamic Platform for Electrical Control of Plasmonic Resonance,” Nanophotonics 4(1), 214–223 (2015).
[Crossref]

X. J. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light Sci. Appl. 2(4), e72 (2013).
[Crossref]

N. K. Emani, T.-F. Chung, X. Ni, A. V. Kildishev, Y. P. Chen, and A. Boltasseva, “Electrically tunable damping of plasmonic resonances with graphene,” Nano Lett. 12(10), 5202–5206 (2012).
[Crossref] [PubMed]

Kim, H.

T. T. Kim, H. Kim, M. Kenney, H. S. Park, H. D. Kim, B. Min, and S. Zhang, “Amplitude Modulation of Anomalously Refracted Terahertz Waves with Gated-Graphene Metasurfaces,” Adv. Opt. Mater. 6(1), 1700507 (2018).
[Crossref]

Kim, H. D.

T. T. Kim, H. Kim, M. Kenney, H. S. Park, H. D. Kim, B. Min, and S. Zhang, “Amplitude Modulation of Anomalously Refracted Terahertz Waves with Gated-Graphene Metasurfaces,” Adv. Opt. Mater. 6(1), 1700507 (2018).
[Crossref]

Kim, P.

D. K. Efetov and P. Kim, “Controlling Electron-Phonon Interactions in Graphene at Ultrahigh Carrier Densities,” Phys. Rev. Lett. 105(25), 256805 (2010).
[Crossref] [PubMed]

Kim, T. T.

T. T. Kim, H. Kim, M. Kenney, H. S. Park, H. D. Kim, B. Min, and S. Zhang, “Amplitude Modulation of Anomalously Refracted Terahertz Waves with Gated-Graphene Metasurfaces,” Adv. Opt. Mater. 6(1), 1700507 (2018).
[Crossref]

Kong, J.

B. Deng, Q. Guo, C. Li, H. Wang, X. Ling, D. B. Farmer, S. J. Han, J. Kong, and F. Xia, “Coupling-Enhanced Broadband Mid-infrared Light Absorption in Graphene Plasmonic Nanostructures,” ACS Nano 10(12), 11172–11178 (2016).
[Crossref] [PubMed]

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically Tunable Metasurface Perfect Absorbers for Ultrathin Mid-Infrared Optical Modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

Kong, X. T.

X. T. Kong, A. A. Khan, P. R. Kidambi, S. Deng, A. K. Yetisen, B. Dlubak, P. Hiralal, Y. Montelongo, J. Bowen, S. Xavier, K. Jiang, G. A. J. Amaratunga, S. Hofmann, T. D. Wilkinson, Q. Dai, and H. Butt, “Graphene-Based Ultrathin Flat Lenses,” ACS Photonics 2(2), 200–207 (2015).
[Crossref]

Lalanne, P.

P. Lalanne and P. Chavel, “Metalenses at visible wavelengths: past, present, perspectives,” Laser Photonics Rev. 11(3), 1600295 (2017).
[Crossref]

Lavrinenko, A. V.

Lee, I. H.

S. R. Biswas, C. E. Gutierrez, A. Nemilentsau, I. H. Lee, S. H. Oh, P. Avouris, and T. Low, “Tunable Graphene Metasurface Reflectarray for Cloaking, Illusion, and Focusing,” Phys. Rev. Appl. 9(3), 034021 (2018).
[Crossref]

Li, B. H.

S. S. Xiao, X. L. Zhu, B. H. Li, and N. A. Mortensen, “Graphene-plasmon polaritons: From fundamental properties to potential applications,” Front. Phys. 11(2), 117801 (2016).
[Crossref]

Li, C.

B. Deng, Q. Guo, C. Li, H. Wang, X. Ling, D. B. Farmer, S. J. Han, J. Kong, and F. Xia, “Coupling-Enhanced Broadband Mid-infrared Light Absorption in Graphene Plasmonic Nanostructures,” ACS Nano 10(12), 11172–11178 (2016).
[Crossref] [PubMed]

Li, G.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref] [PubMed]

Li, H. T.

Li, X.

Y. Chen, X. Li, Y. Sonnefraud, A. I. Fernández-Domínguez, X. Luo, M. Hong, and S. A. Maier, “Engineering the Phase Front of Light With Phase-Change Material Based Planar Lenses,” Sci. Rep. 5(1), 8660 (2015).
[Crossref] [PubMed]

Z. Q. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. H. An, Y. B. Zhang, and L. Zhou, “Widely Tunable Terahertz Phase Modulation with Gate-Controlled Graphene Metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
[Crossref]

D. L. Tang, C. T. Wang, Z. Y. Zhao, Y. Q. Wang, M. B. Pu, X. Li, P. Gao, and X. G. Luo, “Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing,” Laser Photonics Rev. 9(6), 713–719 (2015).
[Crossref]

Li, Y. F.

Y. F. Li, J. Q. Zhang, S. B. Qu, J. F. Wang, L. Zheng, H. Zhou, Z. Xu, and A. X. Zhang, “Wide-band circular polarization-keeping reflection mediated by metasurface,” Chin. Phys. B 24(1), 014202 (2015).
[Crossref]

Li, Z.

Z. Li, K. Yao, F. Xia, S. Shen, J. Tian, and Y. Liu, “Graphene Plasmonic Metasurfaces to Steer Infrared Light,” Sci. Rep. 5(1), 12423 (2015).
[Crossref] [PubMed]

Liang, L. J.

Z. Zhang, X. Yan, L. J. Liang, D. Q. Wei, M. Wang, Y. R. Wang, and J. Q. Yao, “The novel hybrid metal-graphene metasurfaces for broadband focusing and beam-steering in farfield at the terahertz frequencies,” Carbon 132, 529–538 (2018).
[Crossref]

Liang, X.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Lin, Y.

J. W. He, Z. W. Xie, W. F. Sun, X. K. Wang, Y. D. Ji, S. Wang, Y. Lin, and Y. Zhang, “Terahertz Tunable Metasurface Lens Based on Vanadium Dioxide Phase Transition,” Plasmonics 11(5), 1285–1290 (2016).
[Crossref]

Ling, X.

B. Deng, Q. Guo, C. Li, H. Wang, X. Ling, D. B. Farmer, S. J. Han, J. Kong, and F. Xia, “Coupling-Enhanced Broadband Mid-infrared Light Absorption in Graphene Plasmonic Nanostructures,” ACS Nano 10(12), 11172–11178 (2016).
[Crossref] [PubMed]

Liu, B. A.

F. F. Lu, B. A. Liu, and S. Shen, “Infrared Wavefront Control Based on Graphene Metasurfaces,” Adv. Opt. Mater. 2(8), 794–799 (2014).
[Crossref]

Liu, F.

H. H. Zhao, Z. H. Chen, F. Su, G. J. Ren, F. Liu, and J. Q. Yao, “Terahertz wavefront manipulating by double-layer graphene ribbons metasurface,” Opt. Commun. 402, 523–526 (2017).
[Crossref]

Liu, J.

Liu, W. G.

Liu, X.

G. Wang, X. Liu, H. Lu, and C. Zeng, “Graphene plasmonic lens for manipulating energy flow,” Sci. Rep. 4(1), 4073 (2015).
[Crossref] [PubMed]

Liu, Y.

Z. Li, K. Yao, F. Xia, S. Shen, J. Tian, and Y. Liu, “Graphene Plasmonic Metasurfaces to Steer Infrared Light,” Sci. Rep. 5(1), 12423 (2015).
[Crossref] [PubMed]

Liu, Y. M.

W. Ma, Z. Huang, X. K. Bai, P. Zhan, and Y. M. Liu, “Dual-Band Light Focusing Using Stacked Graphene Metasurfaces,” ACS Photonics 4(7), 1770–1775 (2017).
[Crossref]

Liu, Z.

Z. Liu and B. Bai, “Ultra-thin and high-efficiency graphene metasurface for tunable terahertz wave manipulation,” Opt. Express 25(8), 8584–8592 (2017).
[Crossref] [PubMed]

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated Tunability and Hybridization of Localized Plasmons in Nanostructured Graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref] [PubMed]

Loncar, M.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically Tunable Metasurface Perfect Absorbers for Ultrathin Mid-Infrared Optical Modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

Lopez, D.

T. Roy, S. Zhang, I. W. Jung, M. Troccoli, F. Capasso, and D. Lopez, “Dynamic metasurface lens based on MEMS technology,” APL Photonics 3(2), 021302 (2018).
[Crossref]

Louie, S. G.

C. F. Chen, C. H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471(7340), 617–620 (2011).
[Crossref] [PubMed]

Low, T.

S. R. Biswas, C. E. Gutierrez, A. Nemilentsau, I. H. Lee, S. H. Oh, P. Avouris, and T. Low, “Tunable Graphene Metasurface Reflectarray for Cloaking, Illusion, and Focusing,” Phys. Rev. Appl. 9(3), 034021 (2018).
[Crossref]

Lu, F. F.

F. F. Lu, B. A. Liu, and S. Shen, “Infrared Wavefront Control Based on Graphene Metasurfaces,” Adv. Opt. Mater. 2(8), 794–799 (2014).
[Crossref]

Lu, H.

G. Wang, X. Liu, H. Lu, and C. Zeng, “Graphene plasmonic lens for manipulating energy flow,” Sci. Rep. 4(1), 4073 (2015).
[Crossref] [PubMed]

Luo, L. B.

L. B. Luo, K. Y. Wang, K. Guo, F. Shen, X. D. Zhang, Z. P. Yin, and Z. Y. Guo, “Tunable manipulation of terahertz wavefront based on graphene metasurfaces,” J. Opt. 19(11), 115104 (2017).
[Crossref]

Luo, X.

Y. Chen, X. Li, Y. Sonnefraud, A. I. Fernández-Domínguez, X. Luo, M. Hong, and S. A. Maier, “Engineering the Phase Front of Light With Phase-Change Material Based Planar Lenses,” Sci. Rep. 5(1), 8660 (2015).
[Crossref] [PubMed]

Luo, X. G.

D. L. Tang, C. T. Wang, Z. Y. Zhao, Y. Q. Wang, M. B. Pu, X. Li, P. Gao, and X. G. Luo, “Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing,” Laser Photonics Rev. 9(6), 713–719 (2015).
[Crossref]

Ma, L.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated Tunability and Hybridization of Localized Plasmons in Nanostructured Graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref] [PubMed]

Ma, W.

W. Ma, Z. Huang, X. K. Bai, P. Zhan, and Y. M. Liu, “Dual-Band Light Focusing Using Stacked Graphene Metasurfaces,” ACS Photonics 4(7), 1770–1775 (2017).
[Crossref]

Maier, S. A.

Y. Chen, X. Li, Y. Sonnefraud, A. I. Fernández-Domínguez, X. Luo, M. Hong, and S. A. Maier, “Engineering the Phase Front of Light With Phase-Change Material Based Planar Lenses,” Sci. Rep. 5(1), 8660 (2015).
[Crossref] [PubMed]

Majumdar, A.

S. Colburn, A. Zhan, and A. Majumdar, “Varifocal zoom imaging with large area focal length adjustable metalenses,” Optica 5(7), 825 (2018).
[Crossref]

S. Colburn, A. Zhan, and A. Majumdar, “Tunable metasurfaces via subwavelength phase shifters with uniform amplitude,” Sci. Rep. 7(1), 40174 (2017).
[Crossref] [PubMed]

Martin, M.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Mei, S. T.

L. Zhang, S. T. Mei, K. Huang, and C. W. Qiu, “Advances in Full Control of Electromagnetic Waves with Metasurfaces,” Adv. Opt. Mater. 4(6), 818–833 (2016).
[Crossref]

Miao, Z. Q.

Z. Q. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. H. An, Y. B. Zhang, and L. Zhou, “Widely Tunable Terahertz Phase Modulation with Gate-Controlled Graphene Metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
[Crossref]

Min, B.

T. T. Kim, H. Kim, M. Kenney, H. S. Park, H. D. Kim, B. Min, and S. Zhang, “Amplitude Modulation of Anomalously Refracted Terahertz Waves with Gated-Graphene Metasurfaces,” Adv. Opt. Mater. 6(1), 1700507 (2018).
[Crossref]

Montelongo, Y.

X. T. Kong, A. A. Khan, P. R. Kidambi, S. Deng, A. K. Yetisen, B. Dlubak, P. Hiralal, Y. Montelongo, J. Bowen, S. Xavier, K. Jiang, G. A. J. Amaratunga, S. Hofmann, T. D. Wilkinson, Q. Dai, and H. Butt, “Graphene-Based Ultrathin Flat Lenses,” ACS Photonics 2(2), 200–207 (2015).
[Crossref]

Mortensen, N. A.

S. S. Xiao, X. L. Zhu, B. H. Li, and N. A. Mortensen, “Graphene-plasmon polaritons: From fundamental properties to potential applications,” Front. Phys. 11(2), 117801 (2016).
[Crossref]

Mühlenbernd, H.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref] [PubMed]

Nasari, H.

H. Nasari and M. S. Abrishamian, “Electrically tunable graded index planar lens based on graphene,” J. Appl. Phys. 116(8), 83106 (2014).
[Crossref]

Nemilentsau, A.

S. R. Biswas, C. E. Gutierrez, A. Nemilentsau, I. H. Lee, S. H. Oh, P. Avouris, and T. Low, “Tunable Graphene Metasurface Reflectarray for Cloaking, Illusion, and Focusing,” Phys. Rev. Appl. 9(3), 034021 (2018).
[Crossref]

Ni, X.

N. K. Emani, T.-F. Chung, X. Ni, A. V. Kildishev, Y. P. Chen, and A. Boltasseva, “Electrically tunable damping of plasmonic resonances with graphene,” Nano Lett. 12(10), 5202–5206 (2012).
[Crossref] [PubMed]

Ni, X. J.

X. J. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light Sci. Appl. 2(4), e72 (2013).
[Crossref]

Nordlander, P.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated Tunability and Hybridization of Localized Plasmons in Nanostructured Graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref] [PubMed]

Novoselov, K. S.

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

Oh, S. H.

S. R. Biswas, C. E. Gutierrez, A. Nemilentsau, I. H. Lee, S. H. Oh, P. Avouris, and T. Low, “Tunable Graphene Metasurface Reflectarray for Cloaking, Illusion, and Focusing,” Phys. Rev. Appl. 9(3), 034021 (2018).
[Crossref]

Park, C. H.

C. F. Chen, C. H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471(7340), 617–620 (2011).
[Crossref] [PubMed]

Park, H. S.

T. T. Kim, H. Kim, M. Kenney, H. S. Park, H. D. Kim, B. Min, and S. Zhang, “Amplitude Modulation of Anomalously Refracted Terahertz Waves with Gated-Graphene Metasurfaces,” Adv. Opt. Mater. 6(1), 1700507 (2018).
[Crossref]

Peres, N. M. R.

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

Prokopeva, L. J.

N. K. Emani, D. Wang, T. F. Chung, L. J. Prokopeva, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Plasmon resonance in multilayer graphene nanoribbons,” Laser Photonics Rev. 9(6), 650–655 (2015).
[Crossref]

Pu, M. B.

D. L. Tang, C. T. Wang, Z. Y. Zhao, Y. Q. Wang, M. B. Pu, X. Li, P. Gao, and X. G. Luo, “Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing,” Laser Photonics Rev. 9(6), 713–719 (2015).
[Crossref]

Qiu, C. W.

L. Zhang, S. T. Mei, K. Huang, and C. W. Qiu, “Advances in Full Control of Electromagnetic Waves with Metasurfaces,” Adv. Opt. Mater. 4(6), 818–833 (2016).
[Crossref]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref] [PubMed]

Qu, S. B.

Y. F. Li, J. Q. Zhang, S. B. Qu, J. F. Wang, L. Zheng, H. Zhou, Z. Xu, and A. X. Zhang, “Wide-band circular polarization-keeping reflection mediated by metasurface,” Chin. Phys. B 24(1), 014202 (2015).
[Crossref]

Ren, G. J.

H. H. Zhao, Z. H. Chen, F. Su, G. J. Ren, F. Liu, and J. Q. Yao, “Terahertz wavefront manipulating by double-layer graphene ribbons metasurface,” Opt. Commun. 402, 523–526 (2017).
[Crossref]

Rogers, E. T. F.

Q. Wang, E. T. F. Rogers, B. Gholipour, C. M. Wang, G. H. Yuan, J. H. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

Roy, T.

T. Roy, S. Zhang, I. W. Jung, M. Troccoli, F. Capasso, and D. Lopez, “Dynamic metasurface lens based on MEMS technology,” APL Photonics 3(2), 021302 (2018).
[Crossref]

Schlather, A.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated Tunability and Hybridization of Localized Plasmons in Nanostructured Graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref] [PubMed]

Segalman, R. A.

C. F. Chen, C. H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471(7340), 617–620 (2011).
[Crossref] [PubMed]

Seneor, P.

S. Deng, H. Butt, K. Jiang, B. Dlubak, P. R. Kidambi, P. Seneor, S. Xavier, and A. K. Yetisen, “Graphene nanoribbon based plasmonic Fresnel zone plate lenses,” RSC Advances 7(27), 16594–16601 (2017).
[Crossref]

Shalaev, V. M.

N. K. Emani, D. Wang, T. F. Chung, L. J. Prokopeva, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Plasmon resonance in multilayer graphene nanoribbons,” Laser Photonics Rev. 9(6), 650–655 (2015).
[Crossref]

N. K. Emani, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Graphene: A Dynamic Platform for Electrical Control of Plasmonic Resonance,” Nanophotonics 4(1), 214–223 (2015).
[Crossref]

X. J. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light Sci. Appl. 2(4), e72 (2013).
[Crossref]

Shankar, R.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically Tunable Metasurface Perfect Absorbers for Ultrathin Mid-Infrared Optical Modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

She, A.

A. She, S. Y. Zhang, S. Shian, D. R. Clarke, and F. Capasso, “Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift,” Sci. Adv. 4(2), 9957 (2018).

Shen, F.

L. B. Luo, K. Y. Wang, K. Guo, F. Shen, X. D. Zhang, Z. P. Yin, and Z. Y. Guo, “Tunable manipulation of terahertz wavefront based on graphene metasurfaces,” J. Opt. 19(11), 115104 (2017).
[Crossref]

Shen, S.

Z. Li, K. Yao, F. Xia, S. Shen, J. Tian, and Y. Liu, “Graphene Plasmonic Metasurfaces to Steer Infrared Light,” Sci. Rep. 5(1), 12423 (2015).
[Crossref] [PubMed]

F. F. Lu, B. A. Liu, and S. Shen, “Infrared Wavefront Control Based on Graphene Metasurfaces,” Adv. Opt. Mater. 2(8), 794–799 (2014).
[Crossref]

Shen, Y. R.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Shian, S.

A. She, S. Y. Zhang, S. Shian, D. R. Clarke, and F. Capasso, “Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift,” Sci. Adv. 4(2), 9957 (2018).

Song, Q. H.

J. W. Zhong, N. An, N. B. Yi, M. X. Zhu, Q. H. Song, and S. M. Xiao, “Broadband and Tunable-Focus Flat Lens with Dielectric Metasurface,” Plasmonics 11(2), 537–541 (2016).
[Crossref]

Song, S.

X. Hu, L. Wen, S. Song, and Q. Chen, “Tunable graphene metasurfaces by discontinuous Pancharatnam-Berry phase shift,” Nanotechnology 26(50), 505203 (2015).
[Crossref] [PubMed]

Song, Y.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically Tunable Metasurface Perfect Absorbers for Ultrathin Mid-Infrared Optical Modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

Sonnefraud, Y.

Y. Chen, X. Li, Y. Sonnefraud, A. I. Fernández-Domínguez, X. Luo, M. Hong, and S. A. Maier, “Engineering the Phase Front of Light With Phase-Change Material Based Planar Lenses,” Sci. Rep. 5(1), 8660 (2015).
[Crossref] [PubMed]

Su, F.

H. H. Zhao, Z. H. Chen, F. Su, G. J. Ren, F. Liu, and J. Q. Yao, “Terahertz wavefront manipulating by double-layer graphene ribbons metasurface,” Opt. Commun. 402, 523–526 (2017).
[Crossref]

Su, V. C.

Su, Z.

Sun, G.

Sun, W. F.

J. W. He, Z. W. Xie, W. F. Sun, X. K. Wang, Y. D. Ji, S. Wang, Y. Lin, and Y. Zhang, “Terahertz Tunable Metasurface Lens Based on Vanadium Dioxide Phase Transition,” Plasmonics 11(5), 1285–1290 (2016).
[Crossref]

Tan, Q.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref] [PubMed]

Tang, D. L.

D. L. Tang, C. T. Wang, Z. Y. Zhao, Y. Q. Wang, M. B. Pu, X. Li, P. Gao, and X. G. Luo, “Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing,” Laser Photonics Rev. 9(6), 713–719 (2015).
[Crossref]

Tang, L. L.

W. Yao, L. L. Tang, J. Wang, C. H. Ji, X. Z. Wei, and Y. D. Jiang, “Spectrally and Spatially Tunable Terahertz Metasurface Lens Based on Graphene Surface Plasmons,” IEEE Photonics J. 10(4), 4800909 (2018).
[Crossref]

Taylor, A. J.

H. T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
[Crossref] [PubMed]

Teng, J. H.

Q. Wang, E. T. F. Rogers, B. Gholipour, C. M. Wang, G. H. Yuan, J. H. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

Tetienne, J. P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Thongrattanasiri, S.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated Tunability and Hybridization of Localized Plasmons in Nanostructured Graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref] [PubMed]

Tian, J.

Z. Li, K. Yao, F. Xia, S. Shen, J. Tian, and Y. Liu, “Graphene Plasmonic Metasurfaces to Steer Infrared Light,” Sci. Rep. 5(1), 12423 (2015).
[Crossref] [PubMed]

Troccoli, M.

T. Roy, S. Zhang, I. W. Jung, M. Troccoli, F. Capasso, and D. Lopez, “Dynamic metasurface lens based on MEMS technology,” APL Photonics 3(2), 021302 (2018).
[Crossref]

Tsai, D. P.

Wang, C. M.

Q. Wang, E. T. F. Rogers, B. Gholipour, C. M. Wang, G. H. Yuan, J. H. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

Wang, C. T.

D. L. Tang, C. T. Wang, Z. Y. Zhao, Y. Q. Wang, M. B. Pu, X. Li, P. Gao, and X. G. Luo, “Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing,” Laser Photonics Rev. 9(6), 713–719 (2015).
[Crossref]

Wang, D.

N. K. Emani, D. Wang, T. F. Chung, L. J. Prokopeva, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Plasmon resonance in multilayer graphene nanoribbons,” Laser Photonics Rev. 9(6), 650–655 (2015).
[Crossref]

Wang, F.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

C. F. Chen, C. H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471(7340), 617–620 (2011).
[Crossref] [PubMed]

Wang, G.

G. Wang, X. Liu, H. Lu, and C. Zeng, “Graphene plasmonic lens for manipulating energy flow,” Sci. Rep. 4(1), 4073 (2015).
[Crossref] [PubMed]

Wang, H.

B. Deng, Q. Guo, C. Li, H. Wang, X. Ling, D. B. Farmer, S. J. Han, J. Kong, and F. Xia, “Coupling-Enhanced Broadband Mid-infrared Light Absorption in Graphene Plasmonic Nanostructures,” ACS Nano 10(12), 11172–11178 (2016).
[Crossref] [PubMed]

Wang, J.

W. Yao, L. L. Tang, J. Wang, C. H. Ji, X. Z. Wei, and Y. D. Jiang, “Spectrally and Spatially Tunable Terahertz Metasurface Lens Based on Graphene Surface Plasmons,” IEEE Photonics J. 10(4), 4800909 (2018).
[Crossref]

Wang, J. F.

Y. F. Li, J. Q. Zhang, S. B. Qu, J. F. Wang, L. Zheng, H. Zhou, Z. Xu, and A. X. Zhang, “Wide-band circular polarization-keeping reflection mediated by metasurface,” Chin. Phys. B 24(1), 014202 (2015).
[Crossref]

Wang, K. Y.

L. B. Luo, K. Y. Wang, K. Guo, F. Shen, X. D. Zhang, Z. P. Yin, and Z. Y. Guo, “Tunable manipulation of terahertz wavefront based on graphene metasurfaces,” J. Opt. 19(11), 115104 (2017).
[Crossref]

Wang, M.

Z. Zhang, X. Yan, L. J. Liang, D. Q. Wei, M. Wang, Y. R. Wang, and J. Q. Yao, “The novel hybrid metal-graphene metasurfaces for broadband focusing and beam-steering in farfield at the terahertz frequencies,” Carbon 132, 529–538 (2018).
[Crossref]

Wang, Q.

Q. Wang, E. T. F. Rogers, B. Gholipour, C. M. Wang, G. H. Yuan, J. H. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

Wang, Q. J.

B. Hu, Q. J. Wang, and Y. Zhang, “Systematic study of the focal shift effect in planar plasmonic slit lenses,” Nanotechnology 23(44), 444002 (2012).
[Crossref] [PubMed]

Wang, S.

J. W. He, Z. W. Xie, W. F. Sun, X. K. Wang, Y. D. Ji, S. Wang, Y. Lin, and Y. Zhang, “Terahertz Tunable Metasurface Lens Based on Vanadium Dioxide Phase Transition,” Plasmonics 11(5), 1285–1290 (2016).
[Crossref]

Wang, X. K.

W. G. Liu, B. Hu, Z. D. Huang, H. Y. Guan, H. T. Li, X. K. Wang, Y. Zhang, H. X. Yin, X. L. Xiong, J. Liu, and Y. T. Wang, “Graphene-enabled electrically controlled terahertz meta-lens,” Photon. Res. 6(7), 703–708 (2018).
[Crossref]

J. W. He, Z. W. Xie, W. F. Sun, X. K. Wang, Y. D. Ji, S. Wang, Y. Lin, and Y. Zhang, “Terahertz Tunable Metasurface Lens Based on Vanadium Dioxide Phase Transition,” Plasmonics 11(5), 1285–1290 (2016).
[Crossref]

Wang, Y.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated Tunability and Hybridization of Localized Plasmons in Nanostructured Graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref] [PubMed]

Wang, Y. Q.

D. L. Tang, C. T. Wang, Z. Y. Zhao, Y. Q. Wang, M. B. Pu, X. Li, P. Gao, and X. G. Luo, “Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing,” Laser Photonics Rev. 9(6), 713–719 (2015).
[Crossref]

Wang, Y. R.

Z. Zhang, X. Yan, L. J. Liang, D. Q. Wei, M. Wang, Y. R. Wang, and J. Q. Yao, “The novel hybrid metal-graphene metasurfaces for broadband focusing and beam-steering in farfield at the terahertz frequencies,” Carbon 132, 529–538 (2018).
[Crossref]

Wang, Y. T.

Wei, D. Q.

Z. Zhang, X. Yan, L. J. Liang, D. Q. Wei, M. Wang, Y. R. Wang, and J. Q. Yao, “The novel hybrid metal-graphene metasurfaces for broadband focusing and beam-steering in farfield at the terahertz frequencies,” Carbon 132, 529–538 (2018).
[Crossref]

Wei, X. Z.

W. Yao, L. L. Tang, J. Wang, C. H. Ji, X. Z. Wei, and Y. D. Jiang, “Spectrally and Spatially Tunable Terahertz Metasurface Lens Based on Graphene Surface Plasmons,” IEEE Photonics J. 10(4), 4800909 (2018).
[Crossref]

Wen, L.

X. Hu, L. Wen, S. Song, and Q. Chen, “Tunable graphene metasurfaces by discontinuous Pancharatnam-Berry phase shift,” Nanotechnology 26(50), 505203 (2015).
[Crossref] [PubMed]

Wilkinson, T. D.

X. T. Kong, A. A. Khan, P. R. Kidambi, S. Deng, A. K. Yetisen, B. Dlubak, P. Hiralal, Y. Montelongo, J. Bowen, S. Xavier, K. Jiang, G. A. J. Amaratunga, S. Hofmann, T. D. Wilkinson, Q. Dai, and H. Butt, “Graphene-Based Ultrathin Flat Lenses,” ACS Photonics 2(2), 200–207 (2015).
[Crossref]

Wu, Q.

Z. Q. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. H. An, Y. B. Zhang, and L. Zhou, “Widely Tunable Terahertz Phase Modulation with Gate-Controlled Graphene Metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
[Crossref]

Xavier, S.

S. Deng, H. Butt, K. Jiang, B. Dlubak, P. R. Kidambi, P. Seneor, S. Xavier, and A. K. Yetisen, “Graphene nanoribbon based plasmonic Fresnel zone plate lenses,” RSC Advances 7(27), 16594–16601 (2017).
[Crossref]

X. T. Kong, A. A. Khan, P. R. Kidambi, S. Deng, A. K. Yetisen, B. Dlubak, P. Hiralal, Y. Montelongo, J. Bowen, S. Xavier, K. Jiang, G. A. J. Amaratunga, S. Hofmann, T. D. Wilkinson, Q. Dai, and H. Butt, “Graphene-Based Ultrathin Flat Lenses,” ACS Photonics 2(2), 200–207 (2015).
[Crossref]

Xia, F.

B. Deng, Q. Guo, C. Li, H. Wang, X. Ling, D. B. Farmer, S. J. Han, J. Kong, and F. Xia, “Coupling-Enhanced Broadband Mid-infrared Light Absorption in Graphene Plasmonic Nanostructures,” ACS Nano 10(12), 11172–11178 (2016).
[Crossref] [PubMed]

Z. Li, K. Yao, F. Xia, S. Shen, J. Tian, and Y. Liu, “Graphene Plasmonic Metasurfaces to Steer Infrared Light,” Sci. Rep. 5(1), 12423 (2015).
[Crossref] [PubMed]

Xiao, S. M.

J. W. Zhong, N. An, N. B. Yi, M. X. Zhu, Q. H. Song, and S. M. Xiao, “Broadband and Tunable-Focus Flat Lens with Dielectric Metasurface,” Plasmonics 11(2), 537–541 (2016).
[Crossref]

Xiao, S. S.

S. S. Xiao, X. L. Zhu, B. H. Li, and N. A. Mortensen, “Graphene-plasmon polaritons: From fundamental properties to potential applications,” Front. Phys. 11(2), 117801 (2016).
[Crossref]

Xie, Z. W.

J. W. He, Z. W. Xie, W. F. Sun, X. K. Wang, Y. D. Ji, S. Wang, Y. Lin, and Y. Zhang, “Terahertz Tunable Metasurface Lens Based on Vanadium Dioxide Phase Transition,” Plasmonics 11(5), 1285–1290 (2016).
[Crossref]

Xiong, X. L.

Xu, Z.

Y. F. Li, J. Q. Zhang, S. B. Qu, J. F. Wang, L. Zheng, H. Zhou, Z. Xu, and A. X. Zhang, “Wide-band circular polarization-keeping reflection mediated by metasurface,” Chin. Phys. B 24(1), 014202 (2015).
[Crossref]

Yan, X.

Z. Zhang, X. Yan, L. J. Liang, D. Q. Wei, M. Wang, Y. R. Wang, and J. Q. Yao, “The novel hybrid metal-graphene metasurfaces for broadband focusing and beam-steering in farfield at the terahertz frequencies,” Carbon 132, 529–538 (2018).
[Crossref]

Yao, J. Q.

Z. Zhang, X. Yan, L. J. Liang, D. Q. Wei, M. Wang, Y. R. Wang, and J. Q. Yao, “The novel hybrid metal-graphene metasurfaces for broadband focusing and beam-steering in farfield at the terahertz frequencies,” Carbon 132, 529–538 (2018).
[Crossref]

H. H. Zhao, Z. H. Chen, F. Su, G. J. Ren, F. Liu, and J. Q. Yao, “Terahertz wavefront manipulating by double-layer graphene ribbons metasurface,” Opt. Commun. 402, 523–526 (2017).
[Crossref]

Yao, K.

Z. Li, K. Yao, F. Xia, S. Shen, J. Tian, and Y. Liu, “Graphene Plasmonic Metasurfaces to Steer Infrared Light,” Sci. Rep. 5(1), 12423 (2015).
[Crossref] [PubMed]

Yao, W.

W. Yao, L. L. Tang, J. Wang, C. H. Ji, X. Z. Wei, and Y. D. Jiang, “Spectrally and Spatially Tunable Terahertz Metasurface Lens Based on Graphene Surface Plasmons,” IEEE Photonics J. 10(4), 4800909 (2018).
[Crossref]

Yao, Y.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically Tunable Metasurface Perfect Absorbers for Ultrathin Mid-Infrared Optical Modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

Yetisen, A. K.

S. Deng, H. Butt, K. Jiang, B. Dlubak, P. R. Kidambi, P. Seneor, S. Xavier, and A. K. Yetisen, “Graphene nanoribbon based plasmonic Fresnel zone plate lenses,” RSC Advances 7(27), 16594–16601 (2017).
[Crossref]

X. T. Kong, A. A. Khan, P. R. Kidambi, S. Deng, A. K. Yetisen, B. Dlubak, P. Hiralal, Y. Montelongo, J. Bowen, S. Xavier, K. Jiang, G. A. J. Amaratunga, S. Hofmann, T. D. Wilkinson, Q. Dai, and H. Butt, “Graphene-Based Ultrathin Flat Lenses,” ACS Photonics 2(2), 200–207 (2015).
[Crossref]

S. Deng, A. K. Yetisen, K. Jiang, and H. Butt, “Computational modelling of a graphene Fresnel lens on different substrates,” RSC Advances 4(57), 30050–30058 (2014).
[Crossref]

Yi, N. B.

J. W. Zhong, N. An, N. B. Yi, M. X. Zhu, Q. H. Song, and S. M. Xiao, “Broadband and Tunable-Focus Flat Lens with Dielectric Metasurface,” Plasmonics 11(2), 537–541 (2016).
[Crossref]

Yin, H. X.

Yin, J.

Yin, Z. P.

L. B. Luo, K. Y. Wang, K. Guo, F. Shen, X. D. Zhang, Z. P. Yin, and Z. Y. Guo, “Tunable manipulation of terahertz wavefront based on graphene metasurfaces,” J. Opt. 19(11), 115104 (2017).
[Crossref]

Yu, N.

H. T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Yuan, G. H.

Q. Wang, E. T. F. Rogers, B. Gholipour, C. M. Wang, G. H. Yuan, J. H. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

Zeng, C.

G. Wang, X. Liu, H. Lu, and C. Zeng, “Graphene plasmonic lens for manipulating energy flow,” Sci. Rep. 4(1), 4073 (2015).
[Crossref] [PubMed]

Zentgraf, T.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref] [PubMed]

Zettl, A.

C. F. Chen, C. H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471(7340), 617–620 (2011).
[Crossref] [PubMed]

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Zhan, A.

S. Colburn, A. Zhan, and A. Majumdar, “Varifocal zoom imaging with large area focal length adjustable metalenses,” Optica 5(7), 825 (2018).
[Crossref]

S. Colburn, A. Zhan, and A. Majumdar, “Tunable metasurfaces via subwavelength phase shifters with uniform amplitude,” Sci. Rep. 7(1), 40174 (2017).
[Crossref] [PubMed]

Zhan, P.

W. Ma, Z. Huang, X. K. Bai, P. Zhan, and Y. M. Liu, “Dual-Band Light Focusing Using Stacked Graphene Metasurfaces,” ACS Photonics 4(7), 1770–1775 (2017).
[Crossref]

Zhang, A. X.

Y. F. Li, J. Q. Zhang, S. B. Qu, J. F. Wang, L. Zheng, H. Zhou, Z. Xu, and A. X. Zhang, “Wide-band circular polarization-keeping reflection mediated by metasurface,” Chin. Phys. B 24(1), 014202 (2015).
[Crossref]

Zhang, J. Q.

Y. F. Li, J. Q. Zhang, S. B. Qu, J. F. Wang, L. Zheng, H. Zhou, Z. Xu, and A. X. Zhang, “Wide-band circular polarization-keeping reflection mediated by metasurface,” Chin. Phys. B 24(1), 014202 (2015).
[Crossref]

Zhang, L.

L. Zhang, S. T. Mei, K. Huang, and C. W. Qiu, “Advances in Full Control of Electromagnetic Waves with Metasurfaces,” Adv. Opt. Mater. 4(6), 818–833 (2016).
[Crossref]

Zhang, S.

T. Roy, S. Zhang, I. W. Jung, M. Troccoli, F. Capasso, and D. Lopez, “Dynamic metasurface lens based on MEMS technology,” APL Photonics 3(2), 021302 (2018).
[Crossref]

T. T. Kim, H. Kim, M. Kenney, H. S. Park, H. D. Kim, B. Min, and S. Zhang, “Amplitude Modulation of Anomalously Refracted Terahertz Waves with Gated-Graphene Metasurfaces,” Adv. Opt. Mater. 6(1), 1700507 (2018).
[Crossref]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref] [PubMed]

Zhang, S. Y.

A. She, S. Y. Zhang, S. Shian, D. R. Clarke, and F. Capasso, “Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift,” Sci. Adv. 4(2), 9957 (2018).

Zhang, X. D.

L. B. Luo, K. Y. Wang, K. Guo, F. Shen, X. D. Zhang, Z. P. Yin, and Z. Y. Guo, “Tunable manipulation of terahertz wavefront based on graphene metasurfaces,” J. Opt. 19(11), 115104 (2017).
[Crossref]

Zhang, Y.

W. G. Liu, B. Hu, Z. D. Huang, H. Y. Guan, H. T. Li, X. K. Wang, Y. Zhang, H. X. Yin, X. L. Xiong, J. Liu, and Y. T. Wang, “Graphene-enabled electrically controlled terahertz meta-lens,” Photon. Res. 6(7), 703–708 (2018).
[Crossref]

J. W. He, Z. W. Xie, W. F. Sun, X. K. Wang, Y. D. Ji, S. Wang, Y. Lin, and Y. Zhang, “Terahertz Tunable Metasurface Lens Based on Vanadium Dioxide Phase Transition,” Plasmonics 11(5), 1285–1290 (2016).
[Crossref]

B. Hu, Q. J. Wang, and Y. Zhang, “Systematic study of the focal shift effect in planar plasmonic slit lenses,” Nanotechnology 23(44), 444002 (2012).
[Crossref] [PubMed]

Zhang, Y. B.

Z. Q. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. H. An, Y. B. Zhang, and L. Zhou, “Widely Tunable Terahertz Phase Modulation with Gate-Controlled Graphene Metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
[Crossref]

Zhang, Z.

Z. Zhang, X. Yan, L. J. Liang, D. Q. Wei, M. Wang, Y. R. Wang, and J. Q. Yao, “The novel hybrid metal-graphene metasurfaces for broadband focusing and beam-steering in farfield at the terahertz frequencies,” Carbon 132, 529–538 (2018).
[Crossref]

Zhao, H. H.

H. H. Zhao, Z. H. Chen, F. Su, G. J. Ren, F. Liu, and J. Q. Yao, “Terahertz wavefront manipulating by double-layer graphene ribbons metasurface,” Opt. Commun. 402, 523–526 (2017).
[Crossref]

Zhao, X.

Zhao, Z. Y.

D. L. Tang, C. T. Wang, Z. Y. Zhao, Y. Q. Wang, M. B. Pu, X. Li, P. Gao, and X. G. Luo, “Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing,” Laser Photonics Rev. 9(6), 713–719 (2015).
[Crossref]

Zheludev, N. I.

Q. Wang, E. T. F. Rogers, B. Gholipour, C. M. Wang, G. H. Yuan, J. H. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

Zheng, L.

Y. F. Li, J. Q. Zhang, S. B. Qu, J. F. Wang, L. Zheng, H. Zhou, Z. Xu, and A. X. Zhang, “Wide-band circular polarization-keeping reflection mediated by metasurface,” Chin. Phys. B 24(1), 014202 (2015).
[Crossref]

Zhong, J. W.

J. W. Zhong, N. An, N. B. Yi, M. X. Zhu, Q. H. Song, and S. M. Xiao, “Broadband and Tunable-Focus Flat Lens with Dielectric Metasurface,” Plasmonics 11(2), 537–541 (2016).
[Crossref]

Zhou, H.

Y. F. Li, J. Q. Zhang, S. B. Qu, J. F. Wang, L. Zheng, H. Zhou, Z. Xu, and A. X. Zhang, “Wide-band circular polarization-keeping reflection mediated by metasurface,” Chin. Phys. B 24(1), 014202 (2015).
[Crossref]

Zhou, L.

Z. Q. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. H. An, Y. B. Zhang, and L. Zhou, “Widely Tunable Terahertz Phase Modulation with Gate-Controlled Graphene Metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
[Crossref]

Zhu, M. X.

J. W. Zhong, N. An, N. B. Yi, M. X. Zhu, Q. H. Song, and S. M. Xiao, “Broadband and Tunable-Focus Flat Lens with Dielectric Metasurface,” Plasmonics 11(2), 537–541 (2016).
[Crossref]

Zhu, X. L.

S. S. Xiao, X. L. Zhu, B. H. Li, and N. A. Mortensen, “Graphene-plasmon polaritons: From fundamental properties to potential applications,” Front. Phys. 11(2), 117801 (2016).
[Crossref]

ACS Nano (2)

B. Deng, Q. Guo, C. Li, H. Wang, X. Ling, D. B. Farmer, S. J. Han, J. Kong, and F. Xia, “Coupling-Enhanced Broadband Mid-infrared Light Absorption in Graphene Plasmonic Nanostructures,” ACS Nano 10(12), 11172–11178 (2016).
[Crossref] [PubMed]

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated Tunability and Hybridization of Localized Plasmons in Nanostructured Graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref] [PubMed]

ACS Photonics (3)

W. Ma, Z. Huang, X. K. Bai, P. Zhan, and Y. M. Liu, “Dual-Band Light Focusing Using Stacked Graphene Metasurfaces,” ACS Photonics 4(7), 1770–1775 (2017).
[Crossref]

F. J. García de Abajo, “Graphene plasmonics: challenges and opportunities,” ACS Photonics 1(3), 135–152 (2014).
[Crossref]

X. T. Kong, A. A. Khan, P. R. Kidambi, S. Deng, A. K. Yetisen, B. Dlubak, P. Hiralal, Y. Montelongo, J. Bowen, S. Xavier, K. Jiang, G. A. J. Amaratunga, S. Hofmann, T. D. Wilkinson, Q. Dai, and H. Butt, “Graphene-Based Ultrathin Flat Lenses,” ACS Photonics 2(2), 200–207 (2015).
[Crossref]

Adv. Opt. Mater. (3)

F. F. Lu, B. A. Liu, and S. Shen, “Infrared Wavefront Control Based on Graphene Metasurfaces,” Adv. Opt. Mater. 2(8), 794–799 (2014).
[Crossref]

L. Zhang, S. T. Mei, K. Huang, and C. W. Qiu, “Advances in Full Control of Electromagnetic Waves with Metasurfaces,” Adv. Opt. Mater. 4(6), 818–833 (2016).
[Crossref]

T. T. Kim, H. Kim, M. Kenney, H. S. Park, H. D. Kim, B. Min, and S. Zhang, “Amplitude Modulation of Anomalously Refracted Terahertz Waves with Gated-Graphene Metasurfaces,” Adv. Opt. Mater. 6(1), 1700507 (2018).
[Crossref]

APL Photonics (1)

T. Roy, S. Zhang, I. W. Jung, M. Troccoli, F. Capasso, and D. Lopez, “Dynamic metasurface lens based on MEMS technology,” APL Photonics 3(2), 021302 (2018).
[Crossref]

Carbon (1)

Z. Zhang, X. Yan, L. J. Liang, D. Q. Wei, M. Wang, Y. R. Wang, and J. Q. Yao, “The novel hybrid metal-graphene metasurfaces for broadband focusing and beam-steering in farfield at the terahertz frequencies,” Carbon 132, 529–538 (2018).
[Crossref]

Chin. Phys. B (1)

Y. F. Li, J. Q. Zhang, S. B. Qu, J. F. Wang, L. Zheng, H. Zhou, Z. Xu, and A. X. Zhang, “Wide-band circular polarization-keeping reflection mediated by metasurface,” Chin. Phys. B 24(1), 014202 (2015).
[Crossref]

Front. Phys. (1)

S. S. Xiao, X. L. Zhu, B. H. Li, and N. A. Mortensen, “Graphene-plasmon polaritons: From fundamental properties to potential applications,” Front. Phys. 11(2), 117801 (2016).
[Crossref]

IEEE Photonics J. (1)

W. Yao, L. L. Tang, J. Wang, C. H. Ji, X. Z. Wei, and Y. D. Jiang, “Spectrally and Spatially Tunable Terahertz Metasurface Lens Based on Graphene Surface Plasmons,” IEEE Photonics J. 10(4), 4800909 (2018).
[Crossref]

J. Appl. Phys. (1)

H. Nasari and M. S. Abrishamian, “Electrically tunable graded index planar lens based on graphene,” J. Appl. Phys. 116(8), 83106 (2014).
[Crossref]

J. Opt. (1)

L. B. Luo, K. Y. Wang, K. Guo, F. Shen, X. D. Zhang, Z. P. Yin, and Z. Y. Guo, “Tunable manipulation of terahertz wavefront based on graphene metasurfaces,” J. Opt. 19(11), 115104 (2017).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (4)

P. Lalanne and P. Chavel, “Metalenses at visible wavelengths: past, present, perspectives,” Laser Photonics Rev. 11(3), 1600295 (2017).
[Crossref]

S. M. Kamali, E. Arbabi, A. Arbabi, Y. Horie, and A. Faraon, “Highly tunable elastic dielectric metasurface lenses,” Laser Photonics Rev. 10(6), 1002–1008 (2016).
[Crossref]

N. K. Emani, D. Wang, T. F. Chung, L. J. Prokopeva, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Plasmon resonance in multilayer graphene nanoribbons,” Laser Photonics Rev. 9(6), 650–655 (2015).
[Crossref]

D. L. Tang, C. T. Wang, Z. Y. Zhao, Y. Q. Wang, M. B. Pu, X. Li, P. Gao, and X. G. Luo, “Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing,” Laser Photonics Rev. 9(6), 713–719 (2015).
[Crossref]

Light Sci. Appl. (1)

X. J. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light Sci. Appl. 2(4), e72 (2013).
[Crossref]

Nano Lett. (3)

N. K. Emani, T.-F. Chung, X. Ni, A. V. Kildishev, Y. P. Chen, and A. Boltasseva, “Electrically tunable damping of plasmonic resonances with graphene,” Nano Lett. 12(10), 5202–5206 (2012).
[Crossref] [PubMed]

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically Tunable Metasurface Perfect Absorbers for Ultrathin Mid-Infrared Optical Modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

H. S. Ee and R. Agarwal, “Tunable Metasurface and Flat Optical Zoom Lens on a Stretchable Substrate,” Nano Lett. 16(4), 2818–2823 (2016).
[Crossref] [PubMed]

Nanophotonics (1)

N. K. Emani, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Graphene: A Dynamic Platform for Electrical Control of Plasmonic Resonance,” Nanophotonics 4(1), 214–223 (2015).
[Crossref]

Nanotechnology (2)

X. Hu, L. Wen, S. Song, and Q. Chen, “Tunable graphene metasurfaces by discontinuous Pancharatnam-Berry phase shift,” Nanotechnology 26(50), 505203 (2015).
[Crossref] [PubMed]

B. Hu, Q. J. Wang, and Y. Zhang, “Systematic study of the focal shift effect in planar plasmonic slit lenses,” Nanotechnology 23(44), 444002 (2012).
[Crossref] [PubMed]

Nat. Commun. (3)

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6(1), 7069 (2015).
[Crossref] [PubMed]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref] [PubMed]

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, M. Faraji-Dana, and A. Faraon, “MEMS-tunable dielectric metasurface lens,” Nat. Commun. 9(1), 812 (2018).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Nat. Photonics (1)

Q. Wang, E. T. F. Rogers, B. Gholipour, C. M. Wang, G. H. Yuan, J. H. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

Nature (1)

C. F. Chen, C. H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471(7340), 617–620 (2011).
[Crossref] [PubMed]

Opt. Commun. (1)

H. H. Zhao, Z. H. Chen, F. Su, G. J. Ren, F. Liu, and J. Q. Yao, “Terahertz wavefront manipulating by double-layer graphene ribbons metasurface,” Opt. Commun. 402, 523–526 (2017).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Optica (2)

Photon. Res. (1)

Phys. Rev. Appl. (1)

S. R. Biswas, C. E. Gutierrez, A. Nemilentsau, I. H. Lee, S. H. Oh, P. Avouris, and T. Low, “Tunable Graphene Metasurface Reflectarray for Cloaking, Illusion, and Focusing,” Phys. Rev. Appl. 9(3), 034021 (2018).
[Crossref]

Phys. Rev. Lett. (1)

D. K. Efetov and P. Kim, “Controlling Electron-Phonon Interactions in Graphene at Ultrahigh Carrier Densities,” Phys. Rev. Lett. 105(25), 256805 (2010).
[Crossref] [PubMed]

Phys. Rev. X (1)

Z. Q. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. H. An, Y. B. Zhang, and L. Zhou, “Widely Tunable Terahertz Phase Modulation with Gate-Controlled Graphene Metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
[Crossref]

Plasmonics (2)

J. W. Zhong, N. An, N. B. Yi, M. X. Zhu, Q. H. Song, and S. M. Xiao, “Broadband and Tunable-Focus Flat Lens with Dielectric Metasurface,” Plasmonics 11(2), 537–541 (2016).
[Crossref]

J. W. He, Z. W. Xie, W. F. Sun, X. K. Wang, Y. D. Ji, S. Wang, Y. Lin, and Y. Zhang, “Terahertz Tunable Metasurface Lens Based on Vanadium Dioxide Phase Transition,” Plasmonics 11(5), 1285–1290 (2016).
[Crossref]

Rep. Prog. Phys. (1)

H. T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

RSC Advances (2)

S. Deng, A. K. Yetisen, K. Jiang, and H. Butt, “Computational modelling of a graphene Fresnel lens on different substrates,” RSC Advances 4(57), 30050–30058 (2014).
[Crossref]

S. Deng, H. Butt, K. Jiang, B. Dlubak, P. R. Kidambi, P. Seneor, S. Xavier, and A. K. Yetisen, “Graphene nanoribbon based plasmonic Fresnel zone plate lenses,” RSC Advances 7(27), 16594–16601 (2017).
[Crossref]

Sci. Adv. (1)

A. She, S. Y. Zhang, S. Shian, D. R. Clarke, and F. Capasso, “Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift,” Sci. Adv. 4(2), 9957 (2018).

Sci. Rep. (4)

Y. Chen, X. Li, Y. Sonnefraud, A. I. Fernández-Domínguez, X. Luo, M. Hong, and S. A. Maier, “Engineering the Phase Front of Light With Phase-Change Material Based Planar Lenses,” Sci. Rep. 5(1), 8660 (2015).
[Crossref] [PubMed]

S. Colburn, A. Zhan, and A. Majumdar, “Tunable metasurfaces via subwavelength phase shifters with uniform amplitude,” Sci. Rep. 7(1), 40174 (2017).
[Crossref] [PubMed]

G. Wang, X. Liu, H. Lu, and C. Zeng, “Graphene plasmonic lens for manipulating energy flow,” Sci. Rep. 4(1), 4073 (2015).
[Crossref] [PubMed]

Z. Li, K. Yao, F. Xia, S. Shen, J. Tian, and Y. Liu, “Graphene Plasmonic Metasurfaces to Steer Infrared Light,” Sci. Rep. 5(1), 12423 (2015).
[Crossref] [PubMed]

Science (2)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

M. Khorasaninejad and F. Capasso, “Metalenses: Versatile multifunctional photonic components,” Science 358(6367), 8100 (2017).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic view of the tunable graphene metasurface lens. The inset shows the top view of one unit cell of the metasurface, where the geometry parameters of the aperture are defined. For the proposed metalens, the thickness of SiO2 spacing layer, the period of the aperture array, and the width of aperture are fixed at 8.5 um, 8 um, and 3 um, respectively.
Fig. 2
Fig. 2 (a) Simulated reflection spectrum of the graphene metasurface on the dielectric/metal substrate. RLR and RLL represent the RCP and LCP components of the reflected wave when a LCP wave is normally incident. (b) Amplitude and phase shift of the reflected LCP wave as a function of the rotation angle of the graphene aperture at the incident frequency of f0 = 5 THz.
Fig. 3
Fig. 3 (a) Phase distributions p(x)of the metalens with a focal length of F = 150 um (p1) and 190 um (p2), respectively, at the incident frequency of f0 = 5 THz. The phase difference between the two lenses ( p 2 p 1 ) along the x axis is also illustrated. (b) E-field intensity distribution of the reflection field on the x-z plane for the metalens with a designed focal length F = 150 um at f0 = 5 THz for Ef = 1.0 eV. The simulated focal length is 140 um. (c) E-field intensity distribution of the reflected wave along the z-axis for different Ef. The simulated focal lengths remain unchanged. (d) The corresponding E-field intensity distributions of the reflected wave on the focal plane (z = 140 um) for different Ef.
Fig. 4
Fig. 4 (a) and (b) Amplitude and phase of the LCP reflected wave as a function of the aperture length b for different Ef at f0 = 5 THz. Here, Δ p 0.6eV1.0eV (b)represents the phase change of the aperture with a length of b ( b[ 4,7 ]um) as Ef varies from 0.6 to 1.0 eV. (c) Normalized Δ p 0.6eV1.0eV (b) as a function of the aperture length b, which is calculated by Δ p 0.6eV1.0eV (b)Δ p 0.6eV1.0eV (b=7um)and represents the phase change of the aperture with a length of b relative to that with a length of b = 7 um.
Fig. 5
Fig. 5 (a) Length and rotation angle distributions of the apertures along the x-axis for the metalens with a designed focal length of F = 150 um. (b) E-field intensity distribution of the reflected wave along the z-axis for the metalens with uncorrected rotation angles at different Ef. (c) and (d) E-field intensity distribution of the reflection field in x-z plane for the metalens with uncorrected rotation angles as Ef = 1.0 eV and 0.7 eV, respectively. The incident frequency is f0 = 5 THz.
Fig. 6
Fig. 6 (a) E-field intensity distribution of the reflected wave along the z-axis for the metalens with corrected rotation angles for different Ef. (b) Focal position and focusing efficiency as a function of Ef for the metalens with the uncorrected or corrected rotation angles. The designed focal shift from F = 150 um to 190 um is also provided for comparison. The dotted lines are the results of linear fitting. The incident frequency is f0 = 5 THz.
Fig. 7
Fig. 7 (a) E-field intensity distribution of the reflected wave along the z-axis for the improved metalens with different Ef at the incident frequency of f0 = 4.8 THz. (b) Tuning range of the focus for the improved metalens at different incident frequency, when Ef is decreased from 1.0 to 0.6 eV for f0 = 4.2, 4.4, 4.6 4.8 and 5 THz, and from 1.0 to 0.7 eV for f0 = 5.2 and 5.4 THz.
Fig. 8
Fig. 8 Focusing effect of the improved graphene metalens with Ef = 1.0 eV at different incident angle of the CP wave. The incident frequency is 5THz. The incident angle is 0°, 20°, 40°, and 60°, respectively.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

σ( ω )= 2 e 2 ω T π i ω+i τ 1 log[ 2cosh( ω f 2 ω T ) ]+ e 2 4 [ H( ω 2 )+i 2ω π 0 H( ω' 2 )H( ω 2 ) ω 2 ω ' 2 dω' ],
p(x)= 2π λ 0 (F F 2 + x 2 ),
φ(x)= p(x)/ 2.
φ(x)= p F=150um (x) 2 p E f =1.0eV (x,b) p E f =1.0eV (x=0,b=7um) 2 ,