Abstract

To date, most distributed Brillouin sensors for structural health monitoring have employed glass optical fibers as sensing fibers, but they are inherently fragile and cannot withstand strains of >3%. This means that the maximal detectable strain of glass-fiber-based Brillouin sensors was ~3%, which is far from being sufficient for monitoring the possible distortion caused by big earthquakes. To extend this strain dynamic range, polymer optical fibers (POFs) have been used as sensing fibers. As POFs can generally withstand even ~100% strain, at first, Brillouin scattering in POFs was expected to be useful in measuring such large strain. However, the maximal detectable strain using Brillouin scattering in POFs was found to be merely ~5%, because of a Brillouin-frequency-shift hopping phenomenon accompanied by a slimming effect peculiar to polymer materials. This conventional record of the strain dynamic range (5%) was still far from being sufficient. Here, we have thought of an idea that the strain dynamic range can be further extended by employing a POF with its whole length slimmed in advance and by avoiding the Brillouin-frequency-shift hopping. The experimental results reveal that, by applying 3.0% strain to a slimmed POF beforehand, we can achieve a >25% strain dynamic range, which is >5 times the conventional value and will greatly extend the application fields of fiber-optic Brillouin sensing.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Brillouin gain spectrum dependence on large strain in perfluorinated graded-index polymer optical fiber

Neisei Hayashi, Yosuke Mizuno, and Kentaro Nakamura
Opt. Express 20(19) 21101-21106 (2012)

Observation of stimulated Brillouin scattering in polymer optical fiber with pump–probe technique

Yosuke Mizuno, Masato Kishi, Kazuo Hotate, Takaaki Ishigure, and Kentaro Nakamura
Opt. Lett. 36(12) 2378-2380 (2011)

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  2. M. Niklès and F. Ravet, “Distributed fibre sensors: Depth and sensitivity,” Nat. Photonics 4(7), 431–432 (2010).
    [Crossref]
  3. T. Horiguchi and M. Tateda, “BOTDA–nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory,” J. Lightwave Technol. 7(8), 1170–1176 (1989).
    [Crossref]
  4. T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B(4), 382–390 (1993).
  5. A. Denisov, M. A. Soto, and L. Thévenaz, “Going beyond 1000000 resolved points in a Brillouin distributed fiber sensor: theoretical analysis and experimental demonstration,” Light Sci. Appl. 5(5), e16074 (2016).
    [Crossref] [PubMed]
  6. D. Zhou, Y. Dong, B. Wang, C. Pang, D. Ba, H. Zhang, Z. Lu, H. Li, and X. Bao, “Single-shot BOTDA based on an optical chirp chain probe wave for distributed ultra-fast measurement,” Light Sci. Appl. 7(1), 32 (2018).
    [Crossref]
  7. D. Garus, K. Krebber, F. Schliep, and T. Gogolla, “Distributed sensing technique based on Brillouin optical-fiber frequency-domain analysis,” Opt. Lett. 21(17), 1402–1404 (1996).
    [Crossref] [PubMed]
  8. Y. Antman, A. Clain, Y. London, and A. Zadok, “Optomechanical sensing of liquids outside standard fibers using forward stimulated Brillouin scattering,” Optica 3(5), 510–516 (2016).
    [Crossref]
  9. K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique–Proposal, experiment and simulation–,” IEICE Trans. Electron. E83-C(3), 405–412 (2000).
  10. Y. H. Kim, K. Lee, and K. Y. Song, “Brillouin optical correlation domain analysis with more than 1 million effective sensing points based on differential measurement,” Opt. Express 23(26), 33241–33248 (2015).
    [Crossref] [PubMed]
  11. Y. Mizuno, W. Zou, Z. He, and K. Hotate, “Proposal of Brillouin optical correlation-domain reflectometry (BOCDR),” Opt. Express 16(16), 12148–12153 (2008).
    [Crossref] [PubMed]
  12. Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light Sci. Appl. 5(12), e16184 (2016).
    [Crossref] [PubMed]
  13. Y. Dong, P. Xu, H. Zhang, Z. Lu, L. Chen, and X. Bao, “Characterization of evolution of mode coupling in a graded-index polymer optical fiber by using Brillouin optical time-domain analysis,” Opt. Express 22(22), 26510–26516 (2014).
    [Crossref] [PubMed]
  14. A. Minardo, R. Bernini, and L. Zeni, “Distributed temperature sensing in polymer optical fiber by BOFDA,” IEEE Photonics Technol. Lett. 26(4), 387–390 (2014).
    [Crossref]
  15. H. Ujihara, N. Hayashi, Y. Mizuno, and K. Nakamura, “Measurement of large-strain dependence of optical propagation loss in perfluorinated polymer fibers for use in seismic diagnosis,” IEICE Electron. Express 11(17), 20140707 (2014).
    [Crossref]
  16. T. Chen, J. Tu, X. Song, and Z. Li, “Sensor for measuring extremely large strain based on bending polymer optical fiber,” Instrum. Exp. Tech. 60(2), 301–306 (2017).
    [Crossref]
  17. D. Q. Ying, X. M. Tao, W. Zheng, and G. F. Wang, “Fabric strain sensor integrated with looped polymeric optical fiber with large angled V-shaped notches,” Smart Mater. Struct. 22(1), 015004 (2012).
    [Crossref]
  18. Y. Koike and M. Asai, “The future of plastic optical fiber,” NPG Asia Mater. 1(1), 22–28 (2009).
    [Crossref]
  19. Y. Mizuno and K. Nakamura, “Experimental study of Brillouin scattering in perfluorinated polymer optical fiber at telecommunication wavelength,” Appl. Phys. Lett. 97(2), 021103 (2010).
    [Crossref]
  20. Y. Mizuno and K. Nakamura, “Potential of Brillouin scattering in polymer optical fiber for strain-insensitive high-accuracy temperature sensing,” Opt. Lett. 35(23), 3985–3987 (2010).
    [Crossref] [PubMed]
  21. N. Hayashi, Y. Mizuno, and K. Nakamura, “Brillouin gain spectrum dependence on large strain in perfluorinated graded-index polymer optical fiber,” Opt. Express 20(19), 21101–21106 (2012).
    [Crossref] [PubMed]
  22. K. Minakawa, N. Hayashi, Y. Shinohara, M. Tahara, H. Hosoda, Y. Mizuno, and K. Nakamura, “Wide-range temperature dependences of Brillouin scattering properties in polymer optical fiber,” Jpn. J. Appl. Phys. 53(4), 042502 (2014).
    [Crossref]
  23. N. Hayashi, Y. Mizuno, and K. Nakamura, “Distributed Brillouin sensing with centimeter-order spatial resolution in polymer optical fibers,” J. Lightwave Technol. 32(21), 3999–4003 (2014).
    [Crossref]
  24. H. Lee, N. Hayashi, Y. Mizuno, and K. Nakamura, “Slope-assisted Brillouin optical correlation-domain reflectometry using polymer optical fibers with high propagation loss,” J. Lightwave Technol. 35(11), 2306–2310 (2017).
    [Crossref]
  25. N. Hayashi, Y. Mizuno, and K. Nakamura, “Simplified Brillouin optical correlation-domain reflectometry using polymer optical fiber,” IEEE Photonics J. 7(1), 6800407 (2015).
    [Crossref]
  26. N. Hayashi, K. Minakawa, Y. Mizuno, and K. Nakamura, “Brillouin frequency shift hopping in polymer optical fiber,” Appl. Phys. Lett. 105(9), 091113 (2014).
    [Crossref]
  27. T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photonics Technol. Lett. 1(5), 107–108 (1989).
    [Crossref]
  28. T. Kurashima, M. Tateda, and M. Tateda, “Thermal effects on the Brillouin frequency shift in jacketed optical silica fibers,” Appl. Opt. 29(15), 2219–2222 (1990).
    [Crossref] [PubMed]
  29. Y. Mizuno, N. Hayashi, H. Tanaka, K. Nakamura, and S. Todoroki, “Observation of polymer optical fiber fuse,” Appl. Phys. Lett. 104(4), 043302 (2014).
    [Crossref]
  30. Y. Mizuno, N. Hayashi, H. Tanaka, K. Nakamura, and S. Todoroki, “Propagation mechanism of polymer optical fiber fuse,” Sci. Rep. 4(1), 4800 (2014).
    [Crossref] [PubMed]
  31. N. Matsutani, H. Lee, Y. Mizuno, and K. Nakamura, “Long-term stability enhancement of Brillouin measurement in polymer optical fibers using amorphous fluoropolymer,” Jpn. J. Appl. Phys. 57(1), 018001 (2018).
    [Crossref]

2018 (2)

D. Zhou, Y. Dong, B. Wang, C. Pang, D. Ba, H. Zhang, Z. Lu, H. Li, and X. Bao, “Single-shot BOTDA based on an optical chirp chain probe wave for distributed ultra-fast measurement,” Light Sci. Appl. 7(1), 32 (2018).
[Crossref]

N. Matsutani, H. Lee, Y. Mizuno, and K. Nakamura, “Long-term stability enhancement of Brillouin measurement in polymer optical fibers using amorphous fluoropolymer,” Jpn. J. Appl. Phys. 57(1), 018001 (2018).
[Crossref]

2017 (2)

H. Lee, N. Hayashi, Y. Mizuno, and K. Nakamura, “Slope-assisted Brillouin optical correlation-domain reflectometry using polymer optical fibers with high propagation loss,” J. Lightwave Technol. 35(11), 2306–2310 (2017).
[Crossref]

T. Chen, J. Tu, X. Song, and Z. Li, “Sensor for measuring extremely large strain based on bending polymer optical fiber,” Instrum. Exp. Tech. 60(2), 301–306 (2017).
[Crossref]

2016 (3)

Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light Sci. Appl. 5(12), e16184 (2016).
[Crossref] [PubMed]

Y. Antman, A. Clain, Y. London, and A. Zadok, “Optomechanical sensing of liquids outside standard fibers using forward stimulated Brillouin scattering,” Optica 3(5), 510–516 (2016).
[Crossref]

A. Denisov, M. A. Soto, and L. Thévenaz, “Going beyond 1000000 resolved points in a Brillouin distributed fiber sensor: theoretical analysis and experimental demonstration,” Light Sci. Appl. 5(5), e16074 (2016).
[Crossref] [PubMed]

2015 (2)

Y. H. Kim, K. Lee, and K. Y. Song, “Brillouin optical correlation domain analysis with more than 1 million effective sensing points based on differential measurement,” Opt. Express 23(26), 33241–33248 (2015).
[Crossref] [PubMed]

N. Hayashi, Y. Mizuno, and K. Nakamura, “Simplified Brillouin optical correlation-domain reflectometry using polymer optical fiber,” IEEE Photonics J. 7(1), 6800407 (2015).
[Crossref]

2014 (8)

N. Hayashi, K. Minakawa, Y. Mizuno, and K. Nakamura, “Brillouin frequency shift hopping in polymer optical fiber,” Appl. Phys. Lett. 105(9), 091113 (2014).
[Crossref]

K. Minakawa, N. Hayashi, Y. Shinohara, M. Tahara, H. Hosoda, Y. Mizuno, and K. Nakamura, “Wide-range temperature dependences of Brillouin scattering properties in polymer optical fiber,” Jpn. J. Appl. Phys. 53(4), 042502 (2014).
[Crossref]

N. Hayashi, Y. Mizuno, and K. Nakamura, “Distributed Brillouin sensing with centimeter-order spatial resolution in polymer optical fibers,” J. Lightwave Technol. 32(21), 3999–4003 (2014).
[Crossref]

Y. Mizuno, N. Hayashi, H. Tanaka, K. Nakamura, and S. Todoroki, “Observation of polymer optical fiber fuse,” Appl. Phys. Lett. 104(4), 043302 (2014).
[Crossref]

Y. Mizuno, N. Hayashi, H. Tanaka, K. Nakamura, and S. Todoroki, “Propagation mechanism of polymer optical fiber fuse,” Sci. Rep. 4(1), 4800 (2014).
[Crossref] [PubMed]

Y. Dong, P. Xu, H. Zhang, Z. Lu, L. Chen, and X. Bao, “Characterization of evolution of mode coupling in a graded-index polymer optical fiber by using Brillouin optical time-domain analysis,” Opt. Express 22(22), 26510–26516 (2014).
[Crossref] [PubMed]

A. Minardo, R. Bernini, and L. Zeni, “Distributed temperature sensing in polymer optical fiber by BOFDA,” IEEE Photonics Technol. Lett. 26(4), 387–390 (2014).
[Crossref]

H. Ujihara, N. Hayashi, Y. Mizuno, and K. Nakamura, “Measurement of large-strain dependence of optical propagation loss in perfluorinated polymer fibers for use in seismic diagnosis,” IEICE Electron. Express 11(17), 20140707 (2014).
[Crossref]

2012 (2)

D. Q. Ying, X. M. Tao, W. Zheng, and G. F. Wang, “Fabric strain sensor integrated with looped polymeric optical fiber with large angled V-shaped notches,” Smart Mater. Struct. 22(1), 015004 (2012).
[Crossref]

N. Hayashi, Y. Mizuno, and K. Nakamura, “Brillouin gain spectrum dependence on large strain in perfluorinated graded-index polymer optical fiber,” Opt. Express 20(19), 21101–21106 (2012).
[Crossref] [PubMed]

2010 (3)

Y. Mizuno and K. Nakamura, “Experimental study of Brillouin scattering in perfluorinated polymer optical fiber at telecommunication wavelength,” Appl. Phys. Lett. 97(2), 021103 (2010).
[Crossref]

Y. Mizuno and K. Nakamura, “Potential of Brillouin scattering in polymer optical fiber for strain-insensitive high-accuracy temperature sensing,” Opt. Lett. 35(23), 3985–3987 (2010).
[Crossref] [PubMed]

M. Niklès and F. Ravet, “Distributed fibre sensors: Depth and sensitivity,” Nat. Photonics 4(7), 431–432 (2010).
[Crossref]

2009 (1)

Y. Koike and M. Asai, “The future of plastic optical fiber,” NPG Asia Mater. 1(1), 22–28 (2009).
[Crossref]

2008 (1)

2000 (1)

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique–Proposal, experiment and simulation–,” IEICE Trans. Electron. E83-C(3), 405–412 (2000).

1996 (1)

1993 (1)

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B(4), 382–390 (1993).

1990 (1)

1989 (2)

T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photonics Technol. Lett. 1(5), 107–108 (1989).
[Crossref]

T. Horiguchi and M. Tateda, “BOTDA–nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory,” J. Lightwave Technol. 7(8), 1170–1176 (1989).
[Crossref]

Antman, Y.

Asai, M.

Y. Koike and M. Asai, “The future of plastic optical fiber,” NPG Asia Mater. 1(1), 22–28 (2009).
[Crossref]

Ba, D.

D. Zhou, Y. Dong, B. Wang, C. Pang, D. Ba, H. Zhang, Z. Lu, H. Li, and X. Bao, “Single-shot BOTDA based on an optical chirp chain probe wave for distributed ultra-fast measurement,” Light Sci. Appl. 7(1), 32 (2018).
[Crossref]

Bao, X.

D. Zhou, Y. Dong, B. Wang, C. Pang, D. Ba, H. Zhang, Z. Lu, H. Li, and X. Bao, “Single-shot BOTDA based on an optical chirp chain probe wave for distributed ultra-fast measurement,” Light Sci. Appl. 7(1), 32 (2018).
[Crossref]

Y. Dong, P. Xu, H. Zhang, Z. Lu, L. Chen, and X. Bao, “Characterization of evolution of mode coupling in a graded-index polymer optical fiber by using Brillouin optical time-domain analysis,” Opt. Express 22(22), 26510–26516 (2014).
[Crossref] [PubMed]

Bernini, R.

A. Minardo, R. Bernini, and L. Zeni, “Distributed temperature sensing in polymer optical fiber by BOFDA,” IEEE Photonics Technol. Lett. 26(4), 387–390 (2014).
[Crossref]

Chen, L.

Chen, T.

T. Chen, J. Tu, X. Song, and Z. Li, “Sensor for measuring extremely large strain based on bending polymer optical fiber,” Instrum. Exp. Tech. 60(2), 301–306 (2017).
[Crossref]

Clain, A.

Denisov, A.

A. Denisov, M. A. Soto, and L. Thévenaz, “Going beyond 1000000 resolved points in a Brillouin distributed fiber sensor: theoretical analysis and experimental demonstration,” Light Sci. Appl. 5(5), e16074 (2016).
[Crossref] [PubMed]

Dong, Y.

D. Zhou, Y. Dong, B. Wang, C. Pang, D. Ba, H. Zhang, Z. Lu, H. Li, and X. Bao, “Single-shot BOTDA based on an optical chirp chain probe wave for distributed ultra-fast measurement,” Light Sci. Appl. 7(1), 32 (2018).
[Crossref]

Y. Dong, P. Xu, H. Zhang, Z. Lu, L. Chen, and X. Bao, “Characterization of evolution of mode coupling in a graded-index polymer optical fiber by using Brillouin optical time-domain analysis,” Opt. Express 22(22), 26510–26516 (2014).
[Crossref] [PubMed]

Fukuda, H.

Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light Sci. Appl. 5(12), e16184 (2016).
[Crossref] [PubMed]

Furukawa, S.

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B(4), 382–390 (1993).

Garus, D.

Gogolla, T.

Hasegawa, T.

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique–Proposal, experiment and simulation–,” IEICE Trans. Electron. E83-C(3), 405–412 (2000).

Hayashi, N.

H. Lee, N. Hayashi, Y. Mizuno, and K. Nakamura, “Slope-assisted Brillouin optical correlation-domain reflectometry using polymer optical fibers with high propagation loss,” J. Lightwave Technol. 35(11), 2306–2310 (2017).
[Crossref]

Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light Sci. Appl. 5(12), e16184 (2016).
[Crossref] [PubMed]

N. Hayashi, Y. Mizuno, and K. Nakamura, “Simplified Brillouin optical correlation-domain reflectometry using polymer optical fiber,” IEEE Photonics J. 7(1), 6800407 (2015).
[Crossref]

Y. Mizuno, N. Hayashi, H. Tanaka, K. Nakamura, and S. Todoroki, “Observation of polymer optical fiber fuse,” Appl. Phys. Lett. 104(4), 043302 (2014).
[Crossref]

N. Hayashi, Y. Mizuno, and K. Nakamura, “Distributed Brillouin sensing with centimeter-order spatial resolution in polymer optical fibers,” J. Lightwave Technol. 32(21), 3999–4003 (2014).
[Crossref]

N. Hayashi, K. Minakawa, Y. Mizuno, and K. Nakamura, “Brillouin frequency shift hopping in polymer optical fiber,” Appl. Phys. Lett. 105(9), 091113 (2014).
[Crossref]

H. Ujihara, N. Hayashi, Y. Mizuno, and K. Nakamura, “Measurement of large-strain dependence of optical propagation loss in perfluorinated polymer fibers for use in seismic diagnosis,” IEICE Electron. Express 11(17), 20140707 (2014).
[Crossref]

K. Minakawa, N. Hayashi, Y. Shinohara, M. Tahara, H. Hosoda, Y. Mizuno, and K. Nakamura, “Wide-range temperature dependences of Brillouin scattering properties in polymer optical fiber,” Jpn. J. Appl. Phys. 53(4), 042502 (2014).
[Crossref]

Y. Mizuno, N. Hayashi, H. Tanaka, K. Nakamura, and S. Todoroki, “Propagation mechanism of polymer optical fiber fuse,” Sci. Rep. 4(1), 4800 (2014).
[Crossref] [PubMed]

N. Hayashi, Y. Mizuno, and K. Nakamura, “Brillouin gain spectrum dependence on large strain in perfluorinated graded-index polymer optical fiber,” Opt. Express 20(19), 21101–21106 (2012).
[Crossref] [PubMed]

He, Z.

Horiguchi, T.

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B(4), 382–390 (1993).

T. Horiguchi and M. Tateda, “BOTDA–nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory,” J. Lightwave Technol. 7(8), 1170–1176 (1989).
[Crossref]

T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photonics Technol. Lett. 1(5), 107–108 (1989).
[Crossref]

Hosoda, H.

K. Minakawa, N. Hayashi, Y. Shinohara, M. Tahara, H. Hosoda, Y. Mizuno, and K. Nakamura, “Wide-range temperature dependences of Brillouin scattering properties in polymer optical fiber,” Jpn. J. Appl. Phys. 53(4), 042502 (2014).
[Crossref]

Hotate, K.

Y. Mizuno, W. Zou, Z. He, and K. Hotate, “Proposal of Brillouin optical correlation-domain reflectometry (BOCDR),” Opt. Express 16(16), 12148–12153 (2008).
[Crossref] [PubMed]

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique–Proposal, experiment and simulation–,” IEICE Trans. Electron. E83-C(3), 405–412 (2000).

Izumita, H.

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B(4), 382–390 (1993).

Kim, Y. H.

Koike, Y.

Y. Koike and M. Asai, “The future of plastic optical fiber,” NPG Asia Mater. 1(1), 22–28 (2009).
[Crossref]

Koyamada, Y.

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B(4), 382–390 (1993).

Krebber, K.

Kurashima, T.

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B(4), 382–390 (1993).

T. Kurashima, M. Tateda, and M. Tateda, “Thermal effects on the Brillouin frequency shift in jacketed optical silica fibers,” Appl. Opt. 29(15), 2219–2222 (1990).
[Crossref] [PubMed]

T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photonics Technol. Lett. 1(5), 107–108 (1989).
[Crossref]

Lee, H.

N. Matsutani, H. Lee, Y. Mizuno, and K. Nakamura, “Long-term stability enhancement of Brillouin measurement in polymer optical fibers using amorphous fluoropolymer,” Jpn. J. Appl. Phys. 57(1), 018001 (2018).
[Crossref]

H. Lee, N. Hayashi, Y. Mizuno, and K. Nakamura, “Slope-assisted Brillouin optical correlation-domain reflectometry using polymer optical fibers with high propagation loss,” J. Lightwave Technol. 35(11), 2306–2310 (2017).
[Crossref]

Lee, K.

Li, H.

D. Zhou, Y. Dong, B. Wang, C. Pang, D. Ba, H. Zhang, Z. Lu, H. Li, and X. Bao, “Single-shot BOTDA based on an optical chirp chain probe wave for distributed ultra-fast measurement,” Light Sci. Appl. 7(1), 32 (2018).
[Crossref]

Li, Z.

T. Chen, J. Tu, X. Song, and Z. Li, “Sensor for measuring extremely large strain based on bending polymer optical fiber,” Instrum. Exp. Tech. 60(2), 301–306 (2017).
[Crossref]

London, Y.

Lu, Z.

D. Zhou, Y. Dong, B. Wang, C. Pang, D. Ba, H. Zhang, Z. Lu, H. Li, and X. Bao, “Single-shot BOTDA based on an optical chirp chain probe wave for distributed ultra-fast measurement,” Light Sci. Appl. 7(1), 32 (2018).
[Crossref]

Y. Dong, P. Xu, H. Zhang, Z. Lu, L. Chen, and X. Bao, “Characterization of evolution of mode coupling in a graded-index polymer optical fiber by using Brillouin optical time-domain analysis,” Opt. Express 22(22), 26510–26516 (2014).
[Crossref] [PubMed]

Matsutani, N.

N. Matsutani, H. Lee, Y. Mizuno, and K. Nakamura, “Long-term stability enhancement of Brillouin measurement in polymer optical fibers using amorphous fluoropolymer,” Jpn. J. Appl. Phys. 57(1), 018001 (2018).
[Crossref]

Minakawa, K.

K. Minakawa, N. Hayashi, Y. Shinohara, M. Tahara, H. Hosoda, Y. Mizuno, and K. Nakamura, “Wide-range temperature dependences of Brillouin scattering properties in polymer optical fiber,” Jpn. J. Appl. Phys. 53(4), 042502 (2014).
[Crossref]

N. Hayashi, K. Minakawa, Y. Mizuno, and K. Nakamura, “Brillouin frequency shift hopping in polymer optical fiber,” Appl. Phys. Lett. 105(9), 091113 (2014).
[Crossref]

Minardo, A.

A. Minardo, R. Bernini, and L. Zeni, “Distributed temperature sensing in polymer optical fiber by BOFDA,” IEEE Photonics Technol. Lett. 26(4), 387–390 (2014).
[Crossref]

Mizuno, Y.

N. Matsutani, H. Lee, Y. Mizuno, and K. Nakamura, “Long-term stability enhancement of Brillouin measurement in polymer optical fibers using amorphous fluoropolymer,” Jpn. J. Appl. Phys. 57(1), 018001 (2018).
[Crossref]

H. Lee, N. Hayashi, Y. Mizuno, and K. Nakamura, “Slope-assisted Brillouin optical correlation-domain reflectometry using polymer optical fibers with high propagation loss,” J. Lightwave Technol. 35(11), 2306–2310 (2017).
[Crossref]

Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light Sci. Appl. 5(12), e16184 (2016).
[Crossref] [PubMed]

N. Hayashi, Y. Mizuno, and K. Nakamura, “Simplified Brillouin optical correlation-domain reflectometry using polymer optical fiber,” IEEE Photonics J. 7(1), 6800407 (2015).
[Crossref]

N. Hayashi, K. Minakawa, Y. Mizuno, and K. Nakamura, “Brillouin frequency shift hopping in polymer optical fiber,” Appl. Phys. Lett. 105(9), 091113 (2014).
[Crossref]

K. Minakawa, N. Hayashi, Y. Shinohara, M. Tahara, H. Hosoda, Y. Mizuno, and K. Nakamura, “Wide-range temperature dependences of Brillouin scattering properties in polymer optical fiber,” Jpn. J. Appl. Phys. 53(4), 042502 (2014).
[Crossref]

N. Hayashi, Y. Mizuno, and K. Nakamura, “Distributed Brillouin sensing with centimeter-order spatial resolution in polymer optical fibers,” J. Lightwave Technol. 32(21), 3999–4003 (2014).
[Crossref]

H. Ujihara, N. Hayashi, Y. Mizuno, and K. Nakamura, “Measurement of large-strain dependence of optical propagation loss in perfluorinated polymer fibers for use in seismic diagnosis,” IEICE Electron. Express 11(17), 20140707 (2014).
[Crossref]

Y. Mizuno, N. Hayashi, H. Tanaka, K. Nakamura, and S. Todoroki, “Observation of polymer optical fiber fuse,” Appl. Phys. Lett. 104(4), 043302 (2014).
[Crossref]

Y. Mizuno, N. Hayashi, H. Tanaka, K. Nakamura, and S. Todoroki, “Propagation mechanism of polymer optical fiber fuse,” Sci. Rep. 4(1), 4800 (2014).
[Crossref] [PubMed]

N. Hayashi, Y. Mizuno, and K. Nakamura, “Brillouin gain spectrum dependence on large strain in perfluorinated graded-index polymer optical fiber,” Opt. Express 20(19), 21101–21106 (2012).
[Crossref] [PubMed]

Y. Mizuno and K. Nakamura, “Potential of Brillouin scattering in polymer optical fiber for strain-insensitive high-accuracy temperature sensing,” Opt. Lett. 35(23), 3985–3987 (2010).
[Crossref] [PubMed]

Y. Mizuno and K. Nakamura, “Experimental study of Brillouin scattering in perfluorinated polymer optical fiber at telecommunication wavelength,” Appl. Phys. Lett. 97(2), 021103 (2010).
[Crossref]

Y. Mizuno, W. Zou, Z. He, and K. Hotate, “Proposal of Brillouin optical correlation-domain reflectometry (BOCDR),” Opt. Express 16(16), 12148–12153 (2008).
[Crossref] [PubMed]

Nakamura, K.

N. Matsutani, H. Lee, Y. Mizuno, and K. Nakamura, “Long-term stability enhancement of Brillouin measurement in polymer optical fibers using amorphous fluoropolymer,” Jpn. J. Appl. Phys. 57(1), 018001 (2018).
[Crossref]

H. Lee, N. Hayashi, Y. Mizuno, and K. Nakamura, “Slope-assisted Brillouin optical correlation-domain reflectometry using polymer optical fibers with high propagation loss,” J. Lightwave Technol. 35(11), 2306–2310 (2017).
[Crossref]

Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light Sci. Appl. 5(12), e16184 (2016).
[Crossref] [PubMed]

N. Hayashi, Y. Mizuno, and K. Nakamura, “Simplified Brillouin optical correlation-domain reflectometry using polymer optical fiber,” IEEE Photonics J. 7(1), 6800407 (2015).
[Crossref]

Y. Mizuno, N. Hayashi, H. Tanaka, K. Nakamura, and S. Todoroki, “Observation of polymer optical fiber fuse,” Appl. Phys. Lett. 104(4), 043302 (2014).
[Crossref]

N. Hayashi, Y. Mizuno, and K. Nakamura, “Distributed Brillouin sensing with centimeter-order spatial resolution in polymer optical fibers,” J. Lightwave Technol. 32(21), 3999–4003 (2014).
[Crossref]

K. Minakawa, N. Hayashi, Y. Shinohara, M. Tahara, H. Hosoda, Y. Mizuno, and K. Nakamura, “Wide-range temperature dependences of Brillouin scattering properties in polymer optical fiber,” Jpn. J. Appl. Phys. 53(4), 042502 (2014).
[Crossref]

N. Hayashi, K. Minakawa, Y. Mizuno, and K. Nakamura, “Brillouin frequency shift hopping in polymer optical fiber,” Appl. Phys. Lett. 105(9), 091113 (2014).
[Crossref]

H. Ujihara, N. Hayashi, Y. Mizuno, and K. Nakamura, “Measurement of large-strain dependence of optical propagation loss in perfluorinated polymer fibers for use in seismic diagnosis,” IEICE Electron. Express 11(17), 20140707 (2014).
[Crossref]

Y. Mizuno, N. Hayashi, H. Tanaka, K. Nakamura, and S. Todoroki, “Propagation mechanism of polymer optical fiber fuse,” Sci. Rep. 4(1), 4800 (2014).
[Crossref] [PubMed]

N. Hayashi, Y. Mizuno, and K. Nakamura, “Brillouin gain spectrum dependence on large strain in perfluorinated graded-index polymer optical fiber,” Opt. Express 20(19), 21101–21106 (2012).
[Crossref] [PubMed]

Y. Mizuno and K. Nakamura, “Potential of Brillouin scattering in polymer optical fiber for strain-insensitive high-accuracy temperature sensing,” Opt. Lett. 35(23), 3985–3987 (2010).
[Crossref] [PubMed]

Y. Mizuno and K. Nakamura, “Experimental study of Brillouin scattering in perfluorinated polymer optical fiber at telecommunication wavelength,” Appl. Phys. Lett. 97(2), 021103 (2010).
[Crossref]

Niklès, M.

M. Niklès and F. Ravet, “Distributed fibre sensors: Depth and sensitivity,” Nat. Photonics 4(7), 431–432 (2010).
[Crossref]

Pang, C.

D. Zhou, Y. Dong, B. Wang, C. Pang, D. Ba, H. Zhang, Z. Lu, H. Li, and X. Bao, “Single-shot BOTDA based on an optical chirp chain probe wave for distributed ultra-fast measurement,” Light Sci. Appl. 7(1), 32 (2018).
[Crossref]

Ravet, F.

M. Niklès and F. Ravet, “Distributed fibre sensors: Depth and sensitivity,” Nat. Photonics 4(7), 431–432 (2010).
[Crossref]

Schliep, F.

Shinohara, Y.

K. Minakawa, N. Hayashi, Y. Shinohara, M. Tahara, H. Hosoda, Y. Mizuno, and K. Nakamura, “Wide-range temperature dependences of Brillouin scattering properties in polymer optical fiber,” Jpn. J. Appl. Phys. 53(4), 042502 (2014).
[Crossref]

Song, K. Y.

Song, X.

T. Chen, J. Tu, X. Song, and Z. Li, “Sensor for measuring extremely large strain based on bending polymer optical fiber,” Instrum. Exp. Tech. 60(2), 301–306 (2017).
[Crossref]

Soto, M. A.

A. Denisov, M. A. Soto, and L. Thévenaz, “Going beyond 1000000 resolved points in a Brillouin distributed fiber sensor: theoretical analysis and experimental demonstration,” Light Sci. Appl. 5(5), e16074 (2016).
[Crossref] [PubMed]

Tahara, M.

K. Minakawa, N. Hayashi, Y. Shinohara, M. Tahara, H. Hosoda, Y. Mizuno, and K. Nakamura, “Wide-range temperature dependences of Brillouin scattering properties in polymer optical fiber,” Jpn. J. Appl. Phys. 53(4), 042502 (2014).
[Crossref]

Tanaka, H.

Y. Mizuno, N. Hayashi, H. Tanaka, K. Nakamura, and S. Todoroki, “Observation of polymer optical fiber fuse,” Appl. Phys. Lett. 104(4), 043302 (2014).
[Crossref]

Y. Mizuno, N. Hayashi, H. Tanaka, K. Nakamura, and S. Todoroki, “Propagation mechanism of polymer optical fiber fuse,” Sci. Rep. 4(1), 4800 (2014).
[Crossref] [PubMed]

Tao, X. M.

D. Q. Ying, X. M. Tao, W. Zheng, and G. F. Wang, “Fabric strain sensor integrated with looped polymeric optical fiber with large angled V-shaped notches,” Smart Mater. Struct. 22(1), 015004 (2012).
[Crossref]

Tateda, M.

T. Kurashima, M. Tateda, and M. Tateda, “Thermal effects on the Brillouin frequency shift in jacketed optical silica fibers,” Appl. Opt. 29(15), 2219–2222 (1990).
[Crossref] [PubMed]

T. Kurashima, M. Tateda, and M. Tateda, “Thermal effects on the Brillouin frequency shift in jacketed optical silica fibers,” Appl. Opt. 29(15), 2219–2222 (1990).
[Crossref] [PubMed]

T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photonics Technol. Lett. 1(5), 107–108 (1989).
[Crossref]

T. Horiguchi and M. Tateda, “BOTDA–nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory,” J. Lightwave Technol. 7(8), 1170–1176 (1989).
[Crossref]

Thévenaz, L.

A. Denisov, M. A. Soto, and L. Thévenaz, “Going beyond 1000000 resolved points in a Brillouin distributed fiber sensor: theoretical analysis and experimental demonstration,” Light Sci. Appl. 5(5), e16074 (2016).
[Crossref] [PubMed]

Todoroki, S.

Y. Mizuno, N. Hayashi, H. Tanaka, K. Nakamura, and S. Todoroki, “Observation of polymer optical fiber fuse,” Appl. Phys. Lett. 104(4), 043302 (2014).
[Crossref]

Y. Mizuno, N. Hayashi, H. Tanaka, K. Nakamura, and S. Todoroki, “Propagation mechanism of polymer optical fiber fuse,” Sci. Rep. 4(1), 4800 (2014).
[Crossref] [PubMed]

Tu, J.

T. Chen, J. Tu, X. Song, and Z. Li, “Sensor for measuring extremely large strain based on bending polymer optical fiber,” Instrum. Exp. Tech. 60(2), 301–306 (2017).
[Crossref]

Ujihara, H.

H. Ujihara, N. Hayashi, Y. Mizuno, and K. Nakamura, “Measurement of large-strain dependence of optical propagation loss in perfluorinated polymer fibers for use in seismic diagnosis,” IEICE Electron. Express 11(17), 20140707 (2014).
[Crossref]

Wang, B.

D. Zhou, Y. Dong, B. Wang, C. Pang, D. Ba, H. Zhang, Z. Lu, H. Li, and X. Bao, “Single-shot BOTDA based on an optical chirp chain probe wave for distributed ultra-fast measurement,” Light Sci. Appl. 7(1), 32 (2018).
[Crossref]

Wang, G. F.

D. Q. Ying, X. M. Tao, W. Zheng, and G. F. Wang, “Fabric strain sensor integrated with looped polymeric optical fiber with large angled V-shaped notches,” Smart Mater. Struct. 22(1), 015004 (2012).
[Crossref]

Xu, P.

Ying, D. Q.

D. Q. Ying, X. M. Tao, W. Zheng, and G. F. Wang, “Fabric strain sensor integrated with looped polymeric optical fiber with large angled V-shaped notches,” Smart Mater. Struct. 22(1), 015004 (2012).
[Crossref]

Zadok, A.

Zeni, L.

A. Minardo, R. Bernini, and L. Zeni, “Distributed temperature sensing in polymer optical fiber by BOFDA,” IEEE Photonics Technol. Lett. 26(4), 387–390 (2014).
[Crossref]

Zhang, H.

D. Zhou, Y. Dong, B. Wang, C. Pang, D. Ba, H. Zhang, Z. Lu, H. Li, and X. Bao, “Single-shot BOTDA based on an optical chirp chain probe wave for distributed ultra-fast measurement,” Light Sci. Appl. 7(1), 32 (2018).
[Crossref]

Y. Dong, P. Xu, H. Zhang, Z. Lu, L. Chen, and X. Bao, “Characterization of evolution of mode coupling in a graded-index polymer optical fiber by using Brillouin optical time-domain analysis,” Opt. Express 22(22), 26510–26516 (2014).
[Crossref] [PubMed]

Zheng, W.

D. Q. Ying, X. M. Tao, W. Zheng, and G. F. Wang, “Fabric strain sensor integrated with looped polymeric optical fiber with large angled V-shaped notches,” Smart Mater. Struct. 22(1), 015004 (2012).
[Crossref]

Zhou, D.

D. Zhou, Y. Dong, B. Wang, C. Pang, D. Ba, H. Zhang, Z. Lu, H. Li, and X. Bao, “Single-shot BOTDA based on an optical chirp chain probe wave for distributed ultra-fast measurement,” Light Sci. Appl. 7(1), 32 (2018).
[Crossref]

Zou, W.

Appl. Opt. (1)

Appl. Phys. Lett. (3)

Y. Mizuno, N. Hayashi, H. Tanaka, K. Nakamura, and S. Todoroki, “Observation of polymer optical fiber fuse,” Appl. Phys. Lett. 104(4), 043302 (2014).
[Crossref]

Y. Mizuno and K. Nakamura, “Experimental study of Brillouin scattering in perfluorinated polymer optical fiber at telecommunication wavelength,” Appl. Phys. Lett. 97(2), 021103 (2010).
[Crossref]

N. Hayashi, K. Minakawa, Y. Mizuno, and K. Nakamura, “Brillouin frequency shift hopping in polymer optical fiber,” Appl. Phys. Lett. 105(9), 091113 (2014).
[Crossref]

IEEE Photonics J. (1)

N. Hayashi, Y. Mizuno, and K. Nakamura, “Simplified Brillouin optical correlation-domain reflectometry using polymer optical fiber,” IEEE Photonics J. 7(1), 6800407 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (2)

T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photonics Technol. Lett. 1(5), 107–108 (1989).
[Crossref]

A. Minardo, R. Bernini, and L. Zeni, “Distributed temperature sensing in polymer optical fiber by BOFDA,” IEEE Photonics Technol. Lett. 26(4), 387–390 (2014).
[Crossref]

IEICE Electron. Express (1)

H. Ujihara, N. Hayashi, Y. Mizuno, and K. Nakamura, “Measurement of large-strain dependence of optical propagation loss in perfluorinated polymer fibers for use in seismic diagnosis,” IEICE Electron. Express 11(17), 20140707 (2014).
[Crossref]

IEICE Trans. Commun. (1)

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B(4), 382–390 (1993).

IEICE Trans. Electron. (1)

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique–Proposal, experiment and simulation–,” IEICE Trans. Electron. E83-C(3), 405–412 (2000).

Instrum. Exp. Tech. (1)

T. Chen, J. Tu, X. Song, and Z. Li, “Sensor for measuring extremely large strain based on bending polymer optical fiber,” Instrum. Exp. Tech. 60(2), 301–306 (2017).
[Crossref]

J. Lightwave Technol. (3)

T. Horiguchi and M. Tateda, “BOTDA–nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory,” J. Lightwave Technol. 7(8), 1170–1176 (1989).
[Crossref]

N. Hayashi, Y. Mizuno, and K. Nakamura, “Distributed Brillouin sensing with centimeter-order spatial resolution in polymer optical fibers,” J. Lightwave Technol. 32(21), 3999–4003 (2014).
[Crossref]

H. Lee, N. Hayashi, Y. Mizuno, and K. Nakamura, “Slope-assisted Brillouin optical correlation-domain reflectometry using polymer optical fibers with high propagation loss,” J. Lightwave Technol. 35(11), 2306–2310 (2017).
[Crossref]

Jpn. J. Appl. Phys. (2)

K. Minakawa, N. Hayashi, Y. Shinohara, M. Tahara, H. Hosoda, Y. Mizuno, and K. Nakamura, “Wide-range temperature dependences of Brillouin scattering properties in polymer optical fiber,” Jpn. J. Appl. Phys. 53(4), 042502 (2014).
[Crossref]

N. Matsutani, H. Lee, Y. Mizuno, and K. Nakamura, “Long-term stability enhancement of Brillouin measurement in polymer optical fibers using amorphous fluoropolymer,” Jpn. J. Appl. Phys. 57(1), 018001 (2018).
[Crossref]

Light Sci. Appl. (3)

Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light Sci. Appl. 5(12), e16184 (2016).
[Crossref] [PubMed]

A. Denisov, M. A. Soto, and L. Thévenaz, “Going beyond 1000000 resolved points in a Brillouin distributed fiber sensor: theoretical analysis and experimental demonstration,” Light Sci. Appl. 5(5), e16074 (2016).
[Crossref] [PubMed]

D. Zhou, Y. Dong, B. Wang, C. Pang, D. Ba, H. Zhang, Z. Lu, H. Li, and X. Bao, “Single-shot BOTDA based on an optical chirp chain probe wave for distributed ultra-fast measurement,” Light Sci. Appl. 7(1), 32 (2018).
[Crossref]

Nat. Photonics (1)

M. Niklès and F. Ravet, “Distributed fibre sensors: Depth and sensitivity,” Nat. Photonics 4(7), 431–432 (2010).
[Crossref]

NPG Asia Mater. (1)

Y. Koike and M. Asai, “The future of plastic optical fiber,” NPG Asia Mater. 1(1), 22–28 (2009).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Optica (1)

Sci. Rep. (1)

Y. Mizuno, N. Hayashi, H. Tanaka, K. Nakamura, and S. Todoroki, “Propagation mechanism of polymer optical fiber fuse,” Sci. Rep. 4(1), 4800 (2014).
[Crossref] [PubMed]

Smart Mater. Struct. (1)

D. Q. Ying, X. M. Tao, W. Zheng, and G. F. Wang, “Fabric strain sensor integrated with looped polymeric optical fiber with large angled V-shaped notches,” Smart Mater. Struct. 22(1), 015004 (2012).
[Crossref]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Experimental setup for investigating the strain dependence of the BFS in a slimmed POF. EDFA: erbium-doped fiber amplifier, ESA: electrical spectrum analyzer, LD: laser diode, PD: photodetector.
Fig. 2
Fig. 2 BGS measured at 0.4% strain; raw data and its Lorentzian fit.
Fig. 3
Fig. 3 Strain dependencies of the normalized Lorentzian-fitted BGSs measured in the strain ranges of (a) 0–2% and (b) 5–30%.
Fig. 4
Fig. 4 BFS dependence on strain in the slimed POF. The colored regions indicate the three strain ranges magnified in Figs. 5(a)–(c).
Fig. 5
Fig. 5 Magnified views of the BFS dependence on strain in the slimed POF in the strain ranges of (a) 0–1.25%, (b) 1.25–3.0%, and (c) 3.0–30.0%. The solid lines in (a) and (c) are linear fits.
Fig. 6
Fig. 6 Measured stress-strain curves of the POF in the strain ranges of (a) 0–85% and (b) 83–140%.

Metrics