Abstract

Visible light communication (VLC) can provide indoor illumination while achieving high network throughput. In order to mitigate the performance degradation caused by inter-cell interference (ICI) and support multiple users, this paper utilizes the white LED synthesized by multi-color light sources as indoor illumination and signal transmissions. Compared with ordinary LEDs, multi-color LEDs not only has excellent color rendering index, but also realize multi-channel parallel transmission, which greatly improves the transmission speed of VLC. Meanwhile, we propose a user-centric (UC) quality of experience (QoE) optimization scheduling scheme for the VLC down-link system. In contrast to the traditional network-centric (NC) design, the UC scheme is based on the user-centric dynamic construction and adjustment of the network model. Furthermore, in order to further analyze the performances of the illuminations and signal transmissions of the VLC system with multi-color LED, we consider the system model under two scenarios of 3-color and 4-color synthetic white LEDs. For these two different LED composition and optimization problems, we design a new greedy algorithm to allocate optical bandwidth, and dynamically searched for the optimal access point user equipment (AP-UE) link based on optimization of the UEs’ QoE values. In order to analyze the robustness of the algorithm, we further consider the influences of UEs on the transmission performance under different UEs’ spatial distributions, e.g., uniform and Poisson distributions. The simulation results illustrate that the proposed scheme guarantees the UEs’ QoE while offering illumination quality. Meanwhile, compared to ordinary LEDs and the traditional network-centric (NC) design, our proposed scheme can schedules more UEs.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Improvement of indoor VLC network downlink scheduling and resource allocation

Yan Chen, Anthony E. Kelly, and John H. Marsh
Opt. Express 24(23) 26838-26850 (2016)

Distributed user-centric scheduling for visible light communication networks

Lingjiao Chen, Jiaheng Wang, Jiantao Zhou, Derrick Wing Kwan Ng, Robert Schober, and Chunming Zhao
Opt. Express 24(14) 15570-15589 (2016)

Scheduling for indoor visible light communication based on graph theory

Yuyang Tao, Xiao Liang, Jiaheng Wang, and Chunming Zhao
Opt. Express 23(3) 2737-2752 (2015)

References

  • View by:
  • |
  • |
  • |

  1. X. Bao, G. D. Yu, J. S. Dai, and X. R. Zhu, “Li-Fi: light fidelity-a survey,” Wirel. Netw. 21(6), 1879–1889 (2015).
    [Crossref]
  2. Y. Qiu, H. Chen, and W. Meng, “Channel modeling for visible light communications—a survey,” Wirel. Commun. Mob. Comput 16(14), 2016–2034 (2016).
    [Crossref]
  3. M. Ayyash, H. Elgala, and A. Khreishah, “Coexistence of WiFi and LiFi toward 5G: concepts, opportunities, and challenges,” IEEE Commun. Mag. 54(2), 64–71 (2016).
    [Crossref]
  4. L. Feng, R. Q. Hu, and J. Wang, “Applying VLC in 5G networks: architectures and key technologies,” IEEE Net. 30(6), 77–83 (2016).
    [Crossref]
  5. X. Li, R. Zhang, and L. Hanzo, “Cooperative load balancing in hybrid visible light communications and WiFi,” IEEE Trans. Commun 63(4), 1319–1329 (2015).
    [Crossref]
  6. C. Chen, N. Serafimovski, and H. Haas, “Fractional frequency reuse in optical wireless cellular networks,” in Proc. IEEE PIMRC.(2013), pp. 3594–3598.
  7. H.-S. Kim, D.-R. Kim, S.-H. Yang, Y.-H. Son, and S.-K. Han, “Mitigation of inter-cell interference utilizing carrier allocation in visible light communication system,” IEEE Commun. Lett. 16(4), 526–529 (2012).
    [Crossref]
  8. N. Le and Y. Jang, “Smart color channel allocation for visible light communication cell ID,” Opt. Switch. Netw. 15, 75–86 (2015).
    [Crossref]
  9. S. Shao, A. Khreishah, and I. Khalil, “Joint link scheduling and brightness control for greening VLC-based indoor access networks,” J. Opt. Commun. Netw. 8(3), 148–161 (2016).
    [Crossref]
  10. H. Liu, P. Xia, and Y. Chen, “Interference graph-based dynamic frequency reuse in optical attocell networks,” Opt. Commun. 402, 527–534 (2017).
    [Crossref]
  11. D. Bykhovsky and S. Arnon, “Multiple access resource allocation in visible light communication systems,” J. Lightwave Technol. 32(8), 1594–1600 (2014).
    [Crossref]
  12. T.-V. Pham, H. Le-Minh, and A.-T. Pham, “Multi-User visible light communication broadcast channels with zero-forcing precoding,” IEEE Trans. Commun. 65(6), 2509–2521 (2017).
    [Crossref]
  13. K. Zhou, C. Gong, Q. Gao, and Z. Xu, “Inter-cell interference coordination for multi-color visible light communication networks,” in Proc. IEEE Global Conf. Signal Inf. Process.(2016), pp. 6–10.
  14. K. Zhou, C. Gong, Q. Gao, and Z. Xu, “Color planning and intercell interference coordination for multicolor visible light communication networks,” J. Lightwave Technol. 35(22), 4980–4993 (2017).
    [Crossref]
  15. Y. Tao, X. Liang, J. Wang, and C. Zhao, “Scheduling for indoor visible light communication based on graph theory,” Opt. Express 23(3), 2737–2752 (2015).
    [Crossref] [PubMed]
  16. R. Zhang, J. Wang, Z. Wang, and L. Hanzo, “Visible light communication in heterogeneous networks:paving the way for user-centric design,” IEEE Wireless Commun. 22(2), 8–16 (2015).
    [Crossref]
  17. X. Li, F. Jin, R. Zhang, J.-H. Wang, Z.-Y. Xu, and L. Hanzo, “Users first: user-centric cluster formation for interference-mitigation in visible-light networks,” IEEE Trans. Wireless Commun. 15(1), 39–53 (2016).
    [Crossref]
  18. D. OBrien, R. Turnbull, H. Le Minh, G. Faulkner, O. Bouchet, P. Porcon, M. El Tabach, E. Gueutier, M. Wolf, L. Grobe, and J. Li, “High-speed optical wireless demonstrators: conclusions and future directions,” J. Lightwave Technol. 30(13), 2181–2187 (2012).
    [Crossref]
  19. T. Fath and H. Haas, “Performance comparison of MIMO techniques for optical wireless communications in indoor environments,” IEEE Trans. Commun. 61(2), 733–742 (2013).
    [Crossref]
  20. J. Kahn and J. Barry, “Wireless infrared communications,” Proc. IEEE 85(2), 265–298 (1994).
    [Crossref]
  21. F. Jin, R. Zhang, and L. Hanzo, “Resource allocation under delay-guarantee constraints for heterogeneous visible-light and RF femtocell,” IEEE Trans. Wireless Commun. 14(2), 1020–1034 (2015).
    [Crossref]
  22. J. Grubor, S. Randel, K. Langer, and J. Walewski, “Broadband information broadcasting using LED-based interior lighting,” J. Lightwave Technol. 26(24), 3883–3892 (2008)..
    [Crossref]
  23. T. Komine and M. Nakagawa, “Fundamental analysis for visible- light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
    [Crossref]
  24. R.-C. Streijl, S. Winkler, and D.-S. Hands, “Mean opinion score (MOS) revisited: methods and applications, limitations and alternatives,” Multimedia Syst. 22(2), 213–227 (2016).
    [Crossref]
  25. A. Anandkumar, N. Michael, and A.-K. Tang, “Distributed algorithms for learning and cognitive medium access with logarithmic regret,” IEEE J. Sel. Areas Commun. 29(4), 731-745 (2011).
    [Crossref]
  26. S. Sengupta, M. Chatterjee, and S. Ganguly, “Improving quality of VoIP streams over WiMax,” IEEE Trans. Comput. 57(2), 145–156 (2008).
    [Crossref]
  27. A.-B. Reis, J. Chakareski, A. Kassler, and S. Sargento, “Distortion optimized multi-service scheduling for next-generation wireless mesh networks,” in Proc. INFOCOM IEEE Conf. Computer Communications Workshops. (2010), pp. 1–6.
  28. F. Kelly, “Charging and rate control for elastic traffic,” Eur. Trans. Telecommun. 8(1), 33–37 (1997).
    [Crossref]
  29. IEEE 802.15.7-2011 - IEEE Standard for Local and Metropolitan Area Networks–Part 15.7: Short-Range Wireless Optical Communication Using Visible Light, pp. 1309 (2011).
  30. B. Bensaou, D. Tsang, and K. Chan, “Credit-based fair queueing (CBFQ): a simple service-scheduling algorithm for packet-switched networks,” IEEE/ACM Trans. Netw. 9(5), 591604 (2002).
    [Crossref]

2017 (3)

H. Liu, P. Xia, and Y. Chen, “Interference graph-based dynamic frequency reuse in optical attocell networks,” Opt. Commun. 402, 527–534 (2017).
[Crossref]

T.-V. Pham, H. Le-Minh, and A.-T. Pham, “Multi-User visible light communication broadcast channels with zero-forcing precoding,” IEEE Trans. Commun. 65(6), 2509–2521 (2017).
[Crossref]

K. Zhou, C. Gong, Q. Gao, and Z. Xu, “Color planning and intercell interference coordination for multicolor visible light communication networks,” J. Lightwave Technol. 35(22), 4980–4993 (2017).
[Crossref]

2016 (6)

X. Li, F. Jin, R. Zhang, J.-H. Wang, Z.-Y. Xu, and L. Hanzo, “Users first: user-centric cluster formation for interference-mitigation in visible-light networks,” IEEE Trans. Wireless Commun. 15(1), 39–53 (2016).
[Crossref]

S. Shao, A. Khreishah, and I. Khalil, “Joint link scheduling and brightness control for greening VLC-based indoor access networks,” J. Opt. Commun. Netw. 8(3), 148–161 (2016).
[Crossref]

Y. Qiu, H. Chen, and W. Meng, “Channel modeling for visible light communications—a survey,” Wirel. Commun. Mob. Comput 16(14), 2016–2034 (2016).
[Crossref]

M. Ayyash, H. Elgala, and A. Khreishah, “Coexistence of WiFi and LiFi toward 5G: concepts, opportunities, and challenges,” IEEE Commun. Mag. 54(2), 64–71 (2016).
[Crossref]

L. Feng, R. Q. Hu, and J. Wang, “Applying VLC in 5G networks: architectures and key technologies,” IEEE Net. 30(6), 77–83 (2016).
[Crossref]

R.-C. Streijl, S. Winkler, and D.-S. Hands, “Mean opinion score (MOS) revisited: methods and applications, limitations and alternatives,” Multimedia Syst. 22(2), 213–227 (2016).
[Crossref]

2015 (6)

X. Bao, G. D. Yu, J. S. Dai, and X. R. Zhu, “Li-Fi: light fidelity-a survey,” Wirel. Netw. 21(6), 1879–1889 (2015).
[Crossref]

N. Le and Y. Jang, “Smart color channel allocation for visible light communication cell ID,” Opt. Switch. Netw. 15, 75–86 (2015).
[Crossref]

F. Jin, R. Zhang, and L. Hanzo, “Resource allocation under delay-guarantee constraints for heterogeneous visible-light and RF femtocell,” IEEE Trans. Wireless Commun. 14(2), 1020–1034 (2015).
[Crossref]

X. Li, R. Zhang, and L. Hanzo, “Cooperative load balancing in hybrid visible light communications and WiFi,” IEEE Trans. Commun 63(4), 1319–1329 (2015).
[Crossref]

Y. Tao, X. Liang, J. Wang, and C. Zhao, “Scheduling for indoor visible light communication based on graph theory,” Opt. Express 23(3), 2737–2752 (2015).
[Crossref] [PubMed]

R. Zhang, J. Wang, Z. Wang, and L. Hanzo, “Visible light communication in heterogeneous networks:paving the way for user-centric design,” IEEE Wireless Commun. 22(2), 8–16 (2015).
[Crossref]

2014 (1)

2013 (1)

T. Fath and H. Haas, “Performance comparison of MIMO techniques for optical wireless communications in indoor environments,” IEEE Trans. Commun. 61(2), 733–742 (2013).
[Crossref]

2012 (2)

H.-S. Kim, D.-R. Kim, S.-H. Yang, Y.-H. Son, and S.-K. Han, “Mitigation of inter-cell interference utilizing carrier allocation in visible light communication system,” IEEE Commun. Lett. 16(4), 526–529 (2012).
[Crossref]

D. OBrien, R. Turnbull, H. Le Minh, G. Faulkner, O. Bouchet, P. Porcon, M. El Tabach, E. Gueutier, M. Wolf, L. Grobe, and J. Li, “High-speed optical wireless demonstrators: conclusions and future directions,” J. Lightwave Technol. 30(13), 2181–2187 (2012).
[Crossref]

2011 (1)

A. Anandkumar, N. Michael, and A.-K. Tang, “Distributed algorithms for learning and cognitive medium access with logarithmic regret,” IEEE J. Sel. Areas Commun. 29(4), 731-745 (2011).
[Crossref]

2008 (2)

S. Sengupta, M. Chatterjee, and S. Ganguly, “Improving quality of VoIP streams over WiMax,” IEEE Trans. Comput. 57(2), 145–156 (2008).
[Crossref]

J. Grubor, S. Randel, K. Langer, and J. Walewski, “Broadband information broadcasting using LED-based interior lighting,” J. Lightwave Technol. 26(24), 3883–3892 (2008)..
[Crossref]

2004 (1)

T. Komine and M. Nakagawa, “Fundamental analysis for visible- light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[Crossref]

2002 (1)

B. Bensaou, D. Tsang, and K. Chan, “Credit-based fair queueing (CBFQ): a simple service-scheduling algorithm for packet-switched networks,” IEEE/ACM Trans. Netw. 9(5), 591604 (2002).
[Crossref]

1997 (1)

F. Kelly, “Charging and rate control for elastic traffic,” Eur. Trans. Telecommun. 8(1), 33–37 (1997).
[Crossref]

1994 (1)

J. Kahn and J. Barry, “Wireless infrared communications,” Proc. IEEE 85(2), 265–298 (1994).
[Crossref]

Anandkumar, A.

A. Anandkumar, N. Michael, and A.-K. Tang, “Distributed algorithms for learning and cognitive medium access with logarithmic regret,” IEEE J. Sel. Areas Commun. 29(4), 731-745 (2011).
[Crossref]

Arnon, S.

Ayyash, M.

M. Ayyash, H. Elgala, and A. Khreishah, “Coexistence of WiFi and LiFi toward 5G: concepts, opportunities, and challenges,” IEEE Commun. Mag. 54(2), 64–71 (2016).
[Crossref]

Bao, X.

X. Bao, G. D. Yu, J. S. Dai, and X. R. Zhu, “Li-Fi: light fidelity-a survey,” Wirel. Netw. 21(6), 1879–1889 (2015).
[Crossref]

Barry, J.

J. Kahn and J. Barry, “Wireless infrared communications,” Proc. IEEE 85(2), 265–298 (1994).
[Crossref]

Bensaou, B.

B. Bensaou, D. Tsang, and K. Chan, “Credit-based fair queueing (CBFQ): a simple service-scheduling algorithm for packet-switched networks,” IEEE/ACM Trans. Netw. 9(5), 591604 (2002).
[Crossref]

Bouchet, O.

Bykhovsky, D.

Chakareski, J.

A.-B. Reis, J. Chakareski, A. Kassler, and S. Sargento, “Distortion optimized multi-service scheduling for next-generation wireless mesh networks,” in Proc. INFOCOM IEEE Conf. Computer Communications Workshops. (2010), pp. 1–6.

Chan, K.

B. Bensaou, D. Tsang, and K. Chan, “Credit-based fair queueing (CBFQ): a simple service-scheduling algorithm for packet-switched networks,” IEEE/ACM Trans. Netw. 9(5), 591604 (2002).
[Crossref]

Chatterjee, M.

S. Sengupta, M. Chatterjee, and S. Ganguly, “Improving quality of VoIP streams over WiMax,” IEEE Trans. Comput. 57(2), 145–156 (2008).
[Crossref]

Chen, C.

C. Chen, N. Serafimovski, and H. Haas, “Fractional frequency reuse in optical wireless cellular networks,” in Proc. IEEE PIMRC.(2013), pp. 3594–3598.

Chen, H.

Y. Qiu, H. Chen, and W. Meng, “Channel modeling for visible light communications—a survey,” Wirel. Commun. Mob. Comput 16(14), 2016–2034 (2016).
[Crossref]

Chen, Y.

H. Liu, P. Xia, and Y. Chen, “Interference graph-based dynamic frequency reuse in optical attocell networks,” Opt. Commun. 402, 527–534 (2017).
[Crossref]

Dai, J. S.

X. Bao, G. D. Yu, J. S. Dai, and X. R. Zhu, “Li-Fi: light fidelity-a survey,” Wirel. Netw. 21(6), 1879–1889 (2015).
[Crossref]

El Tabach, M.

Elgala, H.

M. Ayyash, H. Elgala, and A. Khreishah, “Coexistence of WiFi and LiFi toward 5G: concepts, opportunities, and challenges,” IEEE Commun. Mag. 54(2), 64–71 (2016).
[Crossref]

Fath, T.

T. Fath and H. Haas, “Performance comparison of MIMO techniques for optical wireless communications in indoor environments,” IEEE Trans. Commun. 61(2), 733–742 (2013).
[Crossref]

Faulkner, G.

Feng, L.

L. Feng, R. Q. Hu, and J. Wang, “Applying VLC in 5G networks: architectures and key technologies,” IEEE Net. 30(6), 77–83 (2016).
[Crossref]

Ganguly, S.

S. Sengupta, M. Chatterjee, and S. Ganguly, “Improving quality of VoIP streams over WiMax,” IEEE Trans. Comput. 57(2), 145–156 (2008).
[Crossref]

Gao, Q.

K. Zhou, C. Gong, Q. Gao, and Z. Xu, “Color planning and intercell interference coordination for multicolor visible light communication networks,” J. Lightwave Technol. 35(22), 4980–4993 (2017).
[Crossref]

K. Zhou, C. Gong, Q. Gao, and Z. Xu, “Inter-cell interference coordination for multi-color visible light communication networks,” in Proc. IEEE Global Conf. Signal Inf. Process.(2016), pp. 6–10.

Gong, C.

K. Zhou, C. Gong, Q. Gao, and Z. Xu, “Color planning and intercell interference coordination for multicolor visible light communication networks,” J. Lightwave Technol. 35(22), 4980–4993 (2017).
[Crossref]

K. Zhou, C. Gong, Q. Gao, and Z. Xu, “Inter-cell interference coordination for multi-color visible light communication networks,” in Proc. IEEE Global Conf. Signal Inf. Process.(2016), pp. 6–10.

Grobe, L.

Grubor, J.

Gueutier, E.

Haas, H.

T. Fath and H. Haas, “Performance comparison of MIMO techniques for optical wireless communications in indoor environments,” IEEE Trans. Commun. 61(2), 733–742 (2013).
[Crossref]

C. Chen, N. Serafimovski, and H. Haas, “Fractional frequency reuse in optical wireless cellular networks,” in Proc. IEEE PIMRC.(2013), pp. 3594–3598.

Han, S.-K.

H.-S. Kim, D.-R. Kim, S.-H. Yang, Y.-H. Son, and S.-K. Han, “Mitigation of inter-cell interference utilizing carrier allocation in visible light communication system,” IEEE Commun. Lett. 16(4), 526–529 (2012).
[Crossref]

Hands, D.-S.

R.-C. Streijl, S. Winkler, and D.-S. Hands, “Mean opinion score (MOS) revisited: methods and applications, limitations and alternatives,” Multimedia Syst. 22(2), 213–227 (2016).
[Crossref]

Hanzo, L.

X. Li, F. Jin, R. Zhang, J.-H. Wang, Z.-Y. Xu, and L. Hanzo, “Users first: user-centric cluster formation for interference-mitigation in visible-light networks,” IEEE Trans. Wireless Commun. 15(1), 39–53 (2016).
[Crossref]

R. Zhang, J. Wang, Z. Wang, and L. Hanzo, “Visible light communication in heterogeneous networks:paving the way for user-centric design,” IEEE Wireless Commun. 22(2), 8–16 (2015).
[Crossref]

F. Jin, R. Zhang, and L. Hanzo, “Resource allocation under delay-guarantee constraints for heterogeneous visible-light and RF femtocell,” IEEE Trans. Wireless Commun. 14(2), 1020–1034 (2015).
[Crossref]

X. Li, R. Zhang, and L. Hanzo, “Cooperative load balancing in hybrid visible light communications and WiFi,” IEEE Trans. Commun 63(4), 1319–1329 (2015).
[Crossref]

Hu, R. Q.

L. Feng, R. Q. Hu, and J. Wang, “Applying VLC in 5G networks: architectures and key technologies,” IEEE Net. 30(6), 77–83 (2016).
[Crossref]

Jang, Y.

N. Le and Y. Jang, “Smart color channel allocation for visible light communication cell ID,” Opt. Switch. Netw. 15, 75–86 (2015).
[Crossref]

Jin, F.

X. Li, F. Jin, R. Zhang, J.-H. Wang, Z.-Y. Xu, and L. Hanzo, “Users first: user-centric cluster formation for interference-mitigation in visible-light networks,” IEEE Trans. Wireless Commun. 15(1), 39–53 (2016).
[Crossref]

F. Jin, R. Zhang, and L. Hanzo, “Resource allocation under delay-guarantee constraints for heterogeneous visible-light and RF femtocell,” IEEE Trans. Wireless Commun. 14(2), 1020–1034 (2015).
[Crossref]

Kahn, J.

J. Kahn and J. Barry, “Wireless infrared communications,” Proc. IEEE 85(2), 265–298 (1994).
[Crossref]

Kassler, A.

A.-B. Reis, J. Chakareski, A. Kassler, and S. Sargento, “Distortion optimized multi-service scheduling for next-generation wireless mesh networks,” in Proc. INFOCOM IEEE Conf. Computer Communications Workshops. (2010), pp. 1–6.

Kelly, F.

F. Kelly, “Charging and rate control for elastic traffic,” Eur. Trans. Telecommun. 8(1), 33–37 (1997).
[Crossref]

Khalil, I.

Khreishah, A.

S. Shao, A. Khreishah, and I. Khalil, “Joint link scheduling and brightness control for greening VLC-based indoor access networks,” J. Opt. Commun. Netw. 8(3), 148–161 (2016).
[Crossref]

M. Ayyash, H. Elgala, and A. Khreishah, “Coexistence of WiFi and LiFi toward 5G: concepts, opportunities, and challenges,” IEEE Commun. Mag. 54(2), 64–71 (2016).
[Crossref]

Kim, D.-R.

H.-S. Kim, D.-R. Kim, S.-H. Yang, Y.-H. Son, and S.-K. Han, “Mitigation of inter-cell interference utilizing carrier allocation in visible light communication system,” IEEE Commun. Lett. 16(4), 526–529 (2012).
[Crossref]

Kim, H.-S.

H.-S. Kim, D.-R. Kim, S.-H. Yang, Y.-H. Son, and S.-K. Han, “Mitigation of inter-cell interference utilizing carrier allocation in visible light communication system,” IEEE Commun. Lett. 16(4), 526–529 (2012).
[Crossref]

Komine, T.

T. Komine and M. Nakagawa, “Fundamental analysis for visible- light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[Crossref]

Langer, K.

Le, N.

N. Le and Y. Jang, “Smart color channel allocation for visible light communication cell ID,” Opt. Switch. Netw. 15, 75–86 (2015).
[Crossref]

Le-Minh, H.

T.-V. Pham, H. Le-Minh, and A.-T. Pham, “Multi-User visible light communication broadcast channels with zero-forcing precoding,” IEEE Trans. Commun. 65(6), 2509–2521 (2017).
[Crossref]

Li, J.

Li, X.

X. Li, F. Jin, R. Zhang, J.-H. Wang, Z.-Y. Xu, and L. Hanzo, “Users first: user-centric cluster formation for interference-mitigation in visible-light networks,” IEEE Trans. Wireless Commun. 15(1), 39–53 (2016).
[Crossref]

X. Li, R. Zhang, and L. Hanzo, “Cooperative load balancing in hybrid visible light communications and WiFi,” IEEE Trans. Commun 63(4), 1319–1329 (2015).
[Crossref]

Liang, X.

Liu, H.

H. Liu, P. Xia, and Y. Chen, “Interference graph-based dynamic frequency reuse in optical attocell networks,” Opt. Commun. 402, 527–534 (2017).
[Crossref]

Meng, W.

Y. Qiu, H. Chen, and W. Meng, “Channel modeling for visible light communications—a survey,” Wirel. Commun. Mob. Comput 16(14), 2016–2034 (2016).
[Crossref]

Michael, N.

A. Anandkumar, N. Michael, and A.-K. Tang, “Distributed algorithms for learning and cognitive medium access with logarithmic regret,” IEEE J. Sel. Areas Commun. 29(4), 731-745 (2011).
[Crossref]

Minh, H. Le

Nakagawa, M.

T. Komine and M. Nakagawa, “Fundamental analysis for visible- light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[Crossref]

OBrien, D.

Pham, A.-T.

T.-V. Pham, H. Le-Minh, and A.-T. Pham, “Multi-User visible light communication broadcast channels with zero-forcing precoding,” IEEE Trans. Commun. 65(6), 2509–2521 (2017).
[Crossref]

Pham, T.-V.

T.-V. Pham, H. Le-Minh, and A.-T. Pham, “Multi-User visible light communication broadcast channels with zero-forcing precoding,” IEEE Trans. Commun. 65(6), 2509–2521 (2017).
[Crossref]

Porcon, P.

Qiu, Y.

Y. Qiu, H. Chen, and W. Meng, “Channel modeling for visible light communications—a survey,” Wirel. Commun. Mob. Comput 16(14), 2016–2034 (2016).
[Crossref]

Randel, S.

Reis, A.-B.

A.-B. Reis, J. Chakareski, A. Kassler, and S. Sargento, “Distortion optimized multi-service scheduling for next-generation wireless mesh networks,” in Proc. INFOCOM IEEE Conf. Computer Communications Workshops. (2010), pp. 1–6.

Sargento, S.

A.-B. Reis, J. Chakareski, A. Kassler, and S. Sargento, “Distortion optimized multi-service scheduling for next-generation wireless mesh networks,” in Proc. INFOCOM IEEE Conf. Computer Communications Workshops. (2010), pp. 1–6.

Sengupta, S.

S. Sengupta, M. Chatterjee, and S. Ganguly, “Improving quality of VoIP streams over WiMax,” IEEE Trans. Comput. 57(2), 145–156 (2008).
[Crossref]

Serafimovski, N.

C. Chen, N. Serafimovski, and H. Haas, “Fractional frequency reuse in optical wireless cellular networks,” in Proc. IEEE PIMRC.(2013), pp. 3594–3598.

Shao, S.

Son, Y.-H.

H.-S. Kim, D.-R. Kim, S.-H. Yang, Y.-H. Son, and S.-K. Han, “Mitigation of inter-cell interference utilizing carrier allocation in visible light communication system,” IEEE Commun. Lett. 16(4), 526–529 (2012).
[Crossref]

Streijl, R.-C.

R.-C. Streijl, S. Winkler, and D.-S. Hands, “Mean opinion score (MOS) revisited: methods and applications, limitations and alternatives,” Multimedia Syst. 22(2), 213–227 (2016).
[Crossref]

Tang, A.-K.

A. Anandkumar, N. Michael, and A.-K. Tang, “Distributed algorithms for learning and cognitive medium access with logarithmic regret,” IEEE J. Sel. Areas Commun. 29(4), 731-745 (2011).
[Crossref]

Tao, Y.

Tsang, D.

B. Bensaou, D. Tsang, and K. Chan, “Credit-based fair queueing (CBFQ): a simple service-scheduling algorithm for packet-switched networks,” IEEE/ACM Trans. Netw. 9(5), 591604 (2002).
[Crossref]

Turnbull, R.

Walewski, J.

Wang, J.

L. Feng, R. Q. Hu, and J. Wang, “Applying VLC in 5G networks: architectures and key technologies,” IEEE Net. 30(6), 77–83 (2016).
[Crossref]

R. Zhang, J. Wang, Z. Wang, and L. Hanzo, “Visible light communication in heterogeneous networks:paving the way for user-centric design,” IEEE Wireless Commun. 22(2), 8–16 (2015).
[Crossref]

Y. Tao, X. Liang, J. Wang, and C. Zhao, “Scheduling for indoor visible light communication based on graph theory,” Opt. Express 23(3), 2737–2752 (2015).
[Crossref] [PubMed]

Wang, J.-H.

X. Li, F. Jin, R. Zhang, J.-H. Wang, Z.-Y. Xu, and L. Hanzo, “Users first: user-centric cluster formation for interference-mitigation in visible-light networks,” IEEE Trans. Wireless Commun. 15(1), 39–53 (2016).
[Crossref]

Wang, Z.

R. Zhang, J. Wang, Z. Wang, and L. Hanzo, “Visible light communication in heterogeneous networks:paving the way for user-centric design,” IEEE Wireless Commun. 22(2), 8–16 (2015).
[Crossref]

Winkler, S.

R.-C. Streijl, S. Winkler, and D.-S. Hands, “Mean opinion score (MOS) revisited: methods and applications, limitations and alternatives,” Multimedia Syst. 22(2), 213–227 (2016).
[Crossref]

Wolf, M.

Xia, P.

H. Liu, P. Xia, and Y. Chen, “Interference graph-based dynamic frequency reuse in optical attocell networks,” Opt. Commun. 402, 527–534 (2017).
[Crossref]

Xu, Z.

K. Zhou, C. Gong, Q. Gao, and Z. Xu, “Color planning and intercell interference coordination for multicolor visible light communication networks,” J. Lightwave Technol. 35(22), 4980–4993 (2017).
[Crossref]

K. Zhou, C. Gong, Q. Gao, and Z. Xu, “Inter-cell interference coordination for multi-color visible light communication networks,” in Proc. IEEE Global Conf. Signal Inf. Process.(2016), pp. 6–10.

Xu, Z.-Y.

X. Li, F. Jin, R. Zhang, J.-H. Wang, Z.-Y. Xu, and L. Hanzo, “Users first: user-centric cluster formation for interference-mitigation in visible-light networks,” IEEE Trans. Wireless Commun. 15(1), 39–53 (2016).
[Crossref]

Yang, S.-H.

H.-S. Kim, D.-R. Kim, S.-H. Yang, Y.-H. Son, and S.-K. Han, “Mitigation of inter-cell interference utilizing carrier allocation in visible light communication system,” IEEE Commun. Lett. 16(4), 526–529 (2012).
[Crossref]

Yu, G. D.

X. Bao, G. D. Yu, J. S. Dai, and X. R. Zhu, “Li-Fi: light fidelity-a survey,” Wirel. Netw. 21(6), 1879–1889 (2015).
[Crossref]

Zhang, R.

X. Li, F. Jin, R. Zhang, J.-H. Wang, Z.-Y. Xu, and L. Hanzo, “Users first: user-centric cluster formation for interference-mitigation in visible-light networks,” IEEE Trans. Wireless Commun. 15(1), 39–53 (2016).
[Crossref]

R. Zhang, J. Wang, Z. Wang, and L. Hanzo, “Visible light communication in heterogeneous networks:paving the way for user-centric design,” IEEE Wireless Commun. 22(2), 8–16 (2015).
[Crossref]

F. Jin, R. Zhang, and L. Hanzo, “Resource allocation under delay-guarantee constraints for heterogeneous visible-light and RF femtocell,” IEEE Trans. Wireless Commun. 14(2), 1020–1034 (2015).
[Crossref]

X. Li, R. Zhang, and L. Hanzo, “Cooperative load balancing in hybrid visible light communications and WiFi,” IEEE Trans. Commun 63(4), 1319–1329 (2015).
[Crossref]

Zhao, C.

Zhou, K.

K. Zhou, C. Gong, Q. Gao, and Z. Xu, “Color planning and intercell interference coordination for multicolor visible light communication networks,” J. Lightwave Technol. 35(22), 4980–4993 (2017).
[Crossref]

K. Zhou, C. Gong, Q. Gao, and Z. Xu, “Inter-cell interference coordination for multi-color visible light communication networks,” in Proc. IEEE Global Conf. Signal Inf. Process.(2016), pp. 6–10.

Zhu, X. R.

X. Bao, G. D. Yu, J. S. Dai, and X. R. Zhu, “Li-Fi: light fidelity-a survey,” Wirel. Netw. 21(6), 1879–1889 (2015).
[Crossref]

Eur. Trans. Telecommun. (1)

F. Kelly, “Charging and rate control for elastic traffic,” Eur. Trans. Telecommun. 8(1), 33–37 (1997).
[Crossref]

IEEE Commun. Lett. (1)

H.-S. Kim, D.-R. Kim, S.-H. Yang, Y.-H. Son, and S.-K. Han, “Mitigation of inter-cell interference utilizing carrier allocation in visible light communication system,” IEEE Commun. Lett. 16(4), 526–529 (2012).
[Crossref]

IEEE Commun. Mag. (1)

M. Ayyash, H. Elgala, and A. Khreishah, “Coexistence of WiFi and LiFi toward 5G: concepts, opportunities, and challenges,” IEEE Commun. Mag. 54(2), 64–71 (2016).
[Crossref]

IEEE J. Sel. Areas Commun. (1)

A. Anandkumar, N. Michael, and A.-K. Tang, “Distributed algorithms for learning and cognitive medium access with logarithmic regret,” IEEE J. Sel. Areas Commun. 29(4), 731-745 (2011).
[Crossref]

IEEE Net. (1)

L. Feng, R. Q. Hu, and J. Wang, “Applying VLC in 5G networks: architectures and key technologies,” IEEE Net. 30(6), 77–83 (2016).
[Crossref]

IEEE Trans. Commun (1)

X. Li, R. Zhang, and L. Hanzo, “Cooperative load balancing in hybrid visible light communications and WiFi,” IEEE Trans. Commun 63(4), 1319–1329 (2015).
[Crossref]

IEEE Trans. Commun. (2)

T.-V. Pham, H. Le-Minh, and A.-T. Pham, “Multi-User visible light communication broadcast channels with zero-forcing precoding,” IEEE Trans. Commun. 65(6), 2509–2521 (2017).
[Crossref]

T. Fath and H. Haas, “Performance comparison of MIMO techniques for optical wireless communications in indoor environments,” IEEE Trans. Commun. 61(2), 733–742 (2013).
[Crossref]

IEEE Trans. Comput. (1)

S. Sengupta, M. Chatterjee, and S. Ganguly, “Improving quality of VoIP streams over WiMax,” IEEE Trans. Comput. 57(2), 145–156 (2008).
[Crossref]

IEEE Trans. Consum. Electron. (1)

T. Komine and M. Nakagawa, “Fundamental analysis for visible- light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[Crossref]

IEEE Trans. Wireless Commun. (2)

F. Jin, R. Zhang, and L. Hanzo, “Resource allocation under delay-guarantee constraints for heterogeneous visible-light and RF femtocell,” IEEE Trans. Wireless Commun. 14(2), 1020–1034 (2015).
[Crossref]

X. Li, F. Jin, R. Zhang, J.-H. Wang, Z.-Y. Xu, and L. Hanzo, “Users first: user-centric cluster formation for interference-mitigation in visible-light networks,” IEEE Trans. Wireless Commun. 15(1), 39–53 (2016).
[Crossref]

IEEE Wireless Commun. (1)

R. Zhang, J. Wang, Z. Wang, and L. Hanzo, “Visible light communication in heterogeneous networks:paving the way for user-centric design,” IEEE Wireless Commun. 22(2), 8–16 (2015).
[Crossref]

IEEE/ACM Trans. Netw. (1)

B. Bensaou, D. Tsang, and K. Chan, “Credit-based fair queueing (CBFQ): a simple service-scheduling algorithm for packet-switched networks,” IEEE/ACM Trans. Netw. 9(5), 591604 (2002).
[Crossref]

J. Lightwave Technol. (4)

J. Opt. Commun. Netw. (1)

Multimedia Syst. (1)

R.-C. Streijl, S. Winkler, and D.-S. Hands, “Mean opinion score (MOS) revisited: methods and applications, limitations and alternatives,” Multimedia Syst. 22(2), 213–227 (2016).
[Crossref]

Opt. Commun. (1)

H. Liu, P. Xia, and Y. Chen, “Interference graph-based dynamic frequency reuse in optical attocell networks,” Opt. Commun. 402, 527–534 (2017).
[Crossref]

Opt. Express (1)

Opt. Switch. Netw. (1)

N. Le and Y. Jang, “Smart color channel allocation for visible light communication cell ID,” Opt. Switch. Netw. 15, 75–86 (2015).
[Crossref]

Proc. IEEE (1)

J. Kahn and J. Barry, “Wireless infrared communications,” Proc. IEEE 85(2), 265–298 (1994).
[Crossref]

Wirel. Commun. Mob. Comput (1)

Y. Qiu, H. Chen, and W. Meng, “Channel modeling for visible light communications—a survey,” Wirel. Commun. Mob. Comput 16(14), 2016–2034 (2016).
[Crossref]

Wirel. Netw. (1)

X. Bao, G. D. Yu, J. S. Dai, and X. R. Zhu, “Li-Fi: light fidelity-a survey,” Wirel. Netw. 21(6), 1879–1889 (2015).
[Crossref]

Other (4)

C. Chen, N. Serafimovski, and H. Haas, “Fractional frequency reuse in optical wireless cellular networks,” in Proc. IEEE PIMRC.(2013), pp. 3594–3598.

K. Zhou, C. Gong, Q. Gao, and Z. Xu, “Inter-cell interference coordination for multi-color visible light communication networks,” in Proc. IEEE Global Conf. Signal Inf. Process.(2016), pp. 6–10.

A.-B. Reis, J. Chakareski, A. Kassler, and S. Sargento, “Distortion optimized multi-service scheduling for next-generation wireless mesh networks,” in Proc. INFOCOM IEEE Conf. Computer Communications Workshops. (2010), pp. 1–6.

IEEE 802.15.7-2011 - IEEE Standard for Local and Metropolitan Area Networks–Part 15.7: Short-Range Wireless Optical Communication Using Visible Light, pp. 1309 (2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Multi-color light source synthesis white light and transmission system model.
Fig. 2
Fig. 2 (a) UEs are scattered as a uniform distribution in the room (b) UEs are scattered as a Poisson distributions in the room. ◦ stands for VLC AP, 4 denotes the UE.
Fig. 3
Fig. 3 (a) The complexity of the exhaustive search for finding the optimal scheduling schemes and (b) the complexity of the proposed QoE based greedy algorithm.
Fig. 4
Fig. 4 (a) The average QoE per UE provided by different transmission schemes for various FOV and for 25 UEs, the UEs are obey uniform distribution. (b) Average scheduling number of UEs versus FOV. The total number of UEs is 25 and the UEs are obey uniform distribution. (c) The average QoE per UE provided by different transmission schemes for various FOV and for 25 UEs, the UEs are obey Poisson distribution. (d) Average scheduling number of UEs versus FOV and the UEs are obey Poisson distribution.
Fig. 5
Fig. 5 (a) The average QoE and (b) average scheduling number of UEs versus total number of UEs. The UEs are obey randomly distributed. (c) The average QoE and (d) average scheduling number of UEs versus total number of UEs and the UEs obey Poisson distribution. The FOV is 120°.
Fig. 6
Fig. 6 Indicates the number of users and the impact of different scheduling methods on the Service Fairness Indicators (SFI).

Tables (3)

Tables Icon

Algorithm 1 Proposed QoE based greedy RGB-algorithm

Tables Icon

Table 1 Simulation parameters

Tables Icon

Algorithm 2 Proposed QoE based greedy RGBC-algorithm

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

h = { ( m + 1 ) A 2 π D p 2 cos m ( ϕ ) T s ( ψ ) g ( ψ ) cos ( ψ ) 0 ψ Ψ F 0 ψ > Ψ F
y = γ P t h x + n 0
N = δ s h o t 2 + δ t h e r m a l 2
δ s h o t 2 = 2 q ς P r B w + 2 q I b g I 1 B w
δ t h e r m a l 2 = 8 π T k G η A I 1 B w 2 + 16 π 2 T k Γ g m η 2 A 2 I 2 B w 3
{ x = w = 1 N t P w , i x w y = w = 1 N t P w , i y w 1 = w = 1 N t P w , i P w , i > 0 , w { 1 , , N t }
j ν U Q j = j ν U [ a 1 log ( a 2 j ν A g i , j w k j , w r i , j w ) ] = j ν U { a 1 log [ a 2 j ν A g i , j w k j , w ( B w log ( 1 + ( γ P i , j w ) 2 N i , j w ) ) ] } = j ν U { a 1 log [ a 2 j ν A g i , j w k j , w ( B w log ( 1 + ( γ H 0 ( i , j ) P w , i ) 2 N i , j w ) ) ] }
J = max { g i , j , k j , w } j N u Q j s . t . g i , j , k j , w { 0 , 1 } j N u w { 1 , , N t } P i , j w = P i max
Q i = i = 1 4 p a ( i , w ) a 1 log { a 2 B w log [ 1 + ( γ H 0 ( i , p n ( i , w ) ) P w ) 2 N ] }
Q i = w = 1 4 p a ( i , w ) a 1 a 2 B w ln { a 2 B w log [ 1 + γ ( H 0 ( i , p n ( i , w ) ) P w ) 2 N ] } γ { H 0 [ i , p n ( i , w ) ] } 2 2 P w P w N ln { 1 + γ [ H 0 ( i , p n ( i , w ) ) P w ] 2 N }
SFI = max Q ( i ) min Q ( j ) Number of scheduled users , i , j { 1 , , N u }

Metrics