Abstract

In this work, a periodic bowtie structure based on black phosphorus (BP) is theoretically proposed and characterized. It is demonstrated that localized surface plasmons can be excited in the BP nanoantennas at terahertz (THz) frequencies. Numerical investigations, using the numerical method finite-difference time-domain (FDTD), have been utilized to analyze the the dimensions’ impact on absorption spectra. Furthermore, the electric field distribution is plotted and discussed to explain the resonance wavelength tuning by different geometrical sizes of the structure. Results reveal that the optimized BP bow-tie structure can be allowed for the realization of two-dimensional nanophotonics at terahertz frequencies.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Active tuning of the hybridization effects of mid-infrared surface plasmon resonance in a black phosphorus sheet array and a metal grating slit

Yan Huang, Yan Liu, Cizhe Fang, Yao Shao, Genquan Han, Jincheng Zhang, and Yue Hao
Opt. Mater. Express 10(1) 14-28 (2020)

Tailoring anisotropic perfect absorption in monolayer black phosphorus by critical coupling at terahertz frequencies

Ye Ming Qing, Hui Feng Ma, and Tie Jun Cui
Opt. Express 26(25) 32442-32450 (2018)

Nanostructured multiple-layer black phosphorus photodetector based on localized surface plasmon resonance

Yan Huang, Xinyi Liu, Yan Liu, Yao Shao, Siqing Zhang, Cizhe Fang, Genquan Han, Jincheng Zhang, and Yue Hao
Opt. Mater. Express 9(2) 739-750 (2019)

References

  • View by:
  • |
  • |
  • |

  1. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
  2. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
    [Crossref]
  3. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant Optical Antennas,” Science 308(5728), 1607–1609 (2005).
    [Crossref] [PubMed]
  4. J. C. Riboh, A. J. Haes, A. D. McFarland, C. Ranjit Yonzon, and R. P. Van Duyne, “A Nanoscale Optical Biosensor: Real-Time Immunoassay in Physiological Buffer Enabled by Improved Nanoparticle Adhesion,” J. Phys. Chem. B 107(8), 1772–1780 (2003).
    [Crossref]
  5. R. C. Mucic, J. J. Storhoff, C. A. Mirkin, and R. L. Letsinger, “DNA Directed Synthesis of Binary Nanoparticle Network Materials,” J. Am. Chem. Soc. 120(48), 12674–12675 (1998).
    [Crossref]
  6. L. Wu, Q. Wang, B. Ruan, J. Zhu, Q. You, X. Dai, and Y. Xiang, “High-Performance Lossy-Mode Resonance Sensor Based on Few-Layer Black Phosphorus,” J. Phys. Chem. C 122(13), 7368–7373 (2018).
    [Crossref]
  7. L. Wu, J. Guo, Q. Wang, S. Lu, X. Dai, Y. Xiang, and D. Fan, “Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor,” Sens. Actuators B Chem. 249, 542–548 (2017).
    [Crossref]
  8. Y. Yang, X. Jiang, B. Ruan, X. Dai, and Y. Xiang, “Tunable optical forces exerted on a black phosphorus coated dielectric particle by a Gaussian beam,” Opt. Mater. Express 8(2), 211–220 (2018).
    [Crossref]
  9. H. M. Hiep, T. Endo, K. Kerman, M. Chikae, D.-K. Kim, S. Yamamura, Y. Takamura, and E. Tamiya, “A Localized Surface Plasmon Resonance Based Immunosensor for the Detection of Casein in Milk,” Sci. Technol. Adv. Mater. 8(4), 331–338 (2007).
    [Crossref]
  10. B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
    [Crossref] [PubMed]
  11. H. Xu and M. Käll, “Surface-Plasmon-Enhanced Optical Forces in Silver Nanoaggregates,” Phys. Rev. Lett. 89(24), 246802 (2002).
    [Crossref] [PubMed]
  12. J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single Quantum Dot Coupled to a Scanning Optical Antenna: A Tunable Superemitter,” Phys. Rev. Lett. 95(1), 017402 (2005).
    [Crossref] [PubMed]
  13. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of Single-Molecule Fluorescence Using a Gold Nanoparticle as an Optical Nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
    [Crossref] [PubMed]
  14. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
    [Crossref] [PubMed]
  15. P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101(11), 116805 (2008).
    [Crossref] [PubMed]
  16. A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B Condens. Matter Mater. Phys. 72(16), 165409 (2005).
    [Crossref]
  17. K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
    [Crossref]
  18. J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2(4), 230–233 (2008).
    [Crossref]
  19. H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16(12), 9144–9154 (2008).
    [Crossref] [PubMed]
  20. V. Giannini, A. Berrier, S. A. Maier, J. A. Sánchez-Gil, and J. G. Rivas, “Scattering efficiency and near field enhancement of active semiconductor plasmonic antennas at terahertz frequencies,” Opt. Express 18(3), 2797–2807 (2010).
    [Crossref] [PubMed]
  21. T. Kalkbrenner, U. Håkanson, A. Schädle, S. Burger, C. Henkel, and V. Sandoghdar, “Optical Microscopy via Spectral Modifications of a Nanoantenna,” Phys. Rev. Lett. 95(20), 200801 (2005).
    [Crossref] [PubMed]
  22. W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and Sensing 10 nm Metal Nanoparticles Using Plasmonic Dipole Antennas,” Nano Lett. 10(3), 1006–1011 (2010).
    [Crossref] [PubMed]
  23. M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
    [Crossref]
  24. K. Şendur, W. Challener, and C. Peng, “Ridge waveguide as a near field aperture for high density data storage,” J. Appl. Phys. 96(5), 2743–2752 (2004).
    [Crossref]
  25. L. Wang and X. Xu, “High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging,” Appl. Phys. Lett. 90(26), 261105 (2007).
    [Crossref]
  26. L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography Using High Transmission Nanoscale Bowtie Apertures,” Nano Lett. 6(3), 361–364 (2006).
    [Crossref] [PubMed]
  27. G. Du, Q. Yang, F. Chen, Y. Lu, H. Bian, J. Yong, and X. Hou, “Localized surface plasmon resonances in core-embedded heterogeneous nano-bowtie antenna,” Appl. Phys. B 120(1), 47–51 (2015).
    [Crossref]
  28. . Ding, R. Bachelot, S. Kostcheev, P. Royer, and R. Espiau de Lamaestre, “Surface Plasmon Resonances in Silver Bowtie Nanoantennas with Varied Bow Angles,” J. Appl. Phys. 108(12), 124314 (2010).
    [Crossref]
  29. O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11(7), 573–584 (2012).
    [Crossref] [PubMed]
  30. A. Tsiatmas, A. R. Buckingham, V. A. Fedotov, S. Wang, Y. Chen, P. A. J. de Groot, and N. I. Zheludev, “Superconducting plasmonics and extraordinary transmission,” Appl. Phys. Lett. 97(11), 111106 (2010).
    [Crossref]
  31. P. Tassin, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics,” Nat. Photonics 6(4), 259–264 (2012).
    [Crossref]
  32. G. V. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi Rapid Res. Lett. 4(10), 295–297 (2010).
    [Crossref]
  33. F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
    [Crossref]
  34. F. H. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
    [Crossref] [PubMed]
  35. S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
    [Crossref] [PubMed]
  36. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
    [Crossref] [PubMed]
  37. S. Balendhran, S. Walia, H. Nili, S. Sriram, and M. Bhaskaran, “Elemental Analogues of Graphene: Silicene, Germanene, Stanene, and Phosphorene,” Small 11(6), 640–652 (2015).
    [Crossref] [PubMed]
  38. J. Qiao, X. Kong, Z. X. Hu, F. Yang, and W. Ji, “High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus,” Nat. Commun. 5(1), 4475 (2014).
    [Crossref] [PubMed]
  39. F. Xia, H. Wang, and Y. Jia, “Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics,” Nat. Commun. 5(1), 4458 (2014).
    [Crossref] [PubMed]
  40. T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and Screening in Monolayer and Multilayer Black Phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
    [Crossref] [PubMed]
  41. J. D. Wood, S. A. Wells, D. Jariwala, K. S. Chen, E. Cho, V. K. Sangwan, X. Liu, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Effective Passivation of Exfoliated Black Phosphorus Transistors against Ambient Degradation,” Nano Lett. 14(12), 6964–6970 (2014).
    [Crossref] [PubMed]
  42. A. S. Rodin, A. Carvalho, and A. H. Castro Neto, “Strain-induced gap modification in black phosphorus,” Phys. Rev. Lett. 112(17), 176801 (2014).
    [Crossref] [PubMed]
  43. R. Fei and L. Yang, “Strain-Engineering the Anisotropic Electrical Conductance of Few-Layer Black phosphorus,” Nano Lett. 14(5), 2884–2889 (2014).
    [Crossref] [PubMed]
  44. V. Tran, R. Soklaski, Y. Liang, and L. Yang, “Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus,” Phys. Rev. B Condens. Matter Mater. Phys. 89(23), 235319 (2014).
    [Crossref]
  45. X. Song, Z. Liu, Y. Xiang, and K. Aydin, “Biaxial hyperbolic metamaterials using anisotropic few-layer black phosphorus,” Opt. Express 26(5), 5469–5477 (2018).
    [Crossref] [PubMed]
  46. X. Wang, Q. Ma, L. Wu, J. Guo, S. Lu, X. Dai, and Y. Xiang, “Tunable terahertz/infrared coherent perfect absorption in a monolayer black phosphorus,” Opt. Express 26(5), 5488–5496 (2018).
    [Crossref] [PubMed]
  47. H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26(17), 2737–2743 (2014).
    [Crossref] [PubMed]
  48. Z. Liu and K. Aydin, “Localized Surface Plasmons in Nanostructured Monolayer Black Phosphorus,” Nano Lett. 16(6), 3457–3462 (2016).
    [Crossref] [PubMed]
  49. G. Ghosh, Handbook of thermo-optic coefficients of optical materials with applications (Orlando, 1998).
  50. M. Rahmani, A. E. Miroshnichenko, D. Y. Lei, B. Luk’yanchuk, M. I. Tribelsky, A. I. Kuznetsov, Y. S. Kivshar, Y. Francescato, V. Giannini, M. Hong, and S. A. Maier, “Beyond the hybridization effects in plasmonic nanoclusters: diffraction-induced enhanced absorption and scattering,” Small 10(3), 576–583 (2014).
    [Crossref] [PubMed]
  51. G. Li, X. Chen, L. Huang, J. Wang, W. Hu, and W. Lu, “The localized near-field enhancement of metallic periodic bowtie structure: An oscillating dipoles picture,” Physica B 407(12), 2223–2228 (2012).
    [Crossref]
  52. L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
    [Crossref] [PubMed]
  53. Z. Wang, H. Jia, X. Zheng, R. Yang, Z. Wang, G. J. Ye, X. H. Chen, J. Shan, and P. X. L. Feng, “Black phosphorus nanoelectromechanical resonators vibrating at very high frequencies,” Nanoscale 7(3), 877–884 (2015).
    [Crossref] [PubMed]
  54. M. Baba, F. Izumida, Y. Takeda, and A. Morita, “Preparation of Black Phosphorus Single Crystals by a Completely Closed Bismuth-Flux Method and Their Crystal Morphology,” Jpn. J. Appl. Phys. 28(6), 1019–1022 (1989).
    [Crossref]
  55. Z. Sofer, D. Bouša, J. Luxa, V. Mazanek, and M. Pumera, “Few-layer black phosphorus nanoparticles,” Chem. Commun. (Camb.) 52(8), 1563–1566 (2016).
    [Crossref] [PubMed]
  56. J. Sun, G. Zheng, H. W. Lee, N. Liu, H. Wang, H. Yao, W. Yang, and Y. Cui, “Formation of Stable Phosphorus-Carbon Bond for Enhanced Performance in Black Phosphorus Nanoparticle-Graphite Composite Battery Anodes,” Nano Lett. 14(8), 4573–4580 (2014).
    [Crossref] [PubMed]
  57. J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black Phosphorus: A Two-Dimension Saturable Absorption Material for Mid-Infrared Q-Switched and Mode-Locked Fiber Lasers,” Sci. Rep. 6(1), 30361 (2016).
    [Crossref] [PubMed]
  58. S. C. Dhanabalan, J. S. Ponraj, Z. Guo, S. Li, Q. Bao, and H. Zhang, “Emerging Trends in Phosphorene Fabrication towards Next Generation Devices,” Adv. Sci. (Weinh.) 4(6), 1600305 (2017).
    [Crossref] [PubMed]
  59. J. Ma, S. Lu, Z. Guo, X. Xu, H. Zhang, D. Tang, and D. Fan, “Few-layer black phosphorus based saturable absorber mirror for pulsed solid-state lasers,” Opt. Express 23(17), 22643–22648 (2015).
    [Crossref] [PubMed]
  60. X. Li, B. Deng, X. Wang, S. Chen, M. Vaisman, S. Karato, G. A. Pan, M. L. Lee, J. J Cha, H. Wang, and F. Xia, “Synthesis of thin-film black phosphorus on a flexible substrate,” arXiv. Mater. Sci. 2(3), 031002 (2015).
  61. Y. Du, H. Liu, Y. Deng, and P. D. Ye, “Device perspective for black phosphorus field-effect transistors: contact resistance, ambipolar behavior, and scaling,” ACS Nano 8(10), 10035–10042 (2014).
    [Crossref] [PubMed]
  62. A. A. Tseng, K. Chen, C. D. Chen, and K. J. Ma, “Electron beam lithography in nanoscale fabrication: recent development,” IEEE Trans. Electron. Packag. Manuf. 26(2), 141–149 (2003).
    [Crossref]
  63. J. Zhang, M. Irannejad, and B. Cui, “Bowtie Nanoantenna with Single-Digit Nanometer Gap for Surface-Enhanced Raman Scattering (SERS),” Plasmonics 10(4), 831–837 (2015).
    [Crossref]
  64. Y. Chen, J. Chen, X. Xu, and J. Chu, “Fabrication of bowtie aperture antennas for producing sub-20 nm optical spots,” Opt. Express 23(7), 9093–9099 (2015).
    [Crossref] [PubMed]
  65. H. Chen, A. M. Bhuiya, R. Liu, D. Wasserman, and K. C. Toussaint, “Design, Fabrication, and Characterization of Near-IR Gold Bowtie Nanoantenna Arrays,” J. Phys. Chem. C 118(35), 20553–20558 (2014).
    [Crossref]

2018 (4)

2017 (2)

S. C. Dhanabalan, J. S. Ponraj, Z. Guo, S. Li, Q. Bao, and H. Zhang, “Emerging Trends in Phosphorene Fabrication towards Next Generation Devices,” Adv. Sci. (Weinh.) 4(6), 1600305 (2017).
[Crossref] [PubMed]

L. Wu, J. Guo, Q. Wang, S. Lu, X. Dai, Y. Xiang, and D. Fan, “Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor,” Sens. Actuators B Chem. 249, 542–548 (2017).
[Crossref]

2016 (3)

Z. Sofer, D. Bouša, J. Luxa, V. Mazanek, and M. Pumera, “Few-layer black phosphorus nanoparticles,” Chem. Commun. (Camb.) 52(8), 1563–1566 (2016).
[Crossref] [PubMed]

J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black Phosphorus: A Two-Dimension Saturable Absorption Material for Mid-Infrared Q-Switched and Mode-Locked Fiber Lasers,” Sci. Rep. 6(1), 30361 (2016).
[Crossref] [PubMed]

Z. Liu and K. Aydin, “Localized Surface Plasmons in Nanostructured Monolayer Black Phosphorus,” Nano Lett. 16(6), 3457–3462 (2016).
[Crossref] [PubMed]

2015 (7)

Z. Wang, H. Jia, X. Zheng, R. Yang, Z. Wang, G. J. Ye, X. H. Chen, J. Shan, and P. X. L. Feng, “Black phosphorus nanoelectromechanical resonators vibrating at very high frequencies,” Nanoscale 7(3), 877–884 (2015).
[Crossref] [PubMed]

S. Balendhran, S. Walia, H. Nili, S. Sriram, and M. Bhaskaran, “Elemental Analogues of Graphene: Silicene, Germanene, Stanene, and Phosphorene,” Small 11(6), 640–652 (2015).
[Crossref] [PubMed]

J. Ma, S. Lu, Z. Guo, X. Xu, H. Zhang, D. Tang, and D. Fan, “Few-layer black phosphorus based saturable absorber mirror for pulsed solid-state lasers,” Opt. Express 23(17), 22643–22648 (2015).
[Crossref] [PubMed]

X. Li, B. Deng, X. Wang, S. Chen, M. Vaisman, S. Karato, G. A. Pan, M. L. Lee, J. J Cha, H. Wang, and F. Xia, “Synthesis of thin-film black phosphorus on a flexible substrate,” arXiv. Mater. Sci. 2(3), 031002 (2015).

J. Zhang, M. Irannejad, and B. Cui, “Bowtie Nanoantenna with Single-Digit Nanometer Gap for Surface-Enhanced Raman Scattering (SERS),” Plasmonics 10(4), 831–837 (2015).
[Crossref]

Y. Chen, J. Chen, X. Xu, and J. Chu, “Fabrication of bowtie aperture antennas for producing sub-20 nm optical spots,” Opt. Express 23(7), 9093–9099 (2015).
[Crossref] [PubMed]

G. Du, Q. Yang, F. Chen, Y. Lu, H. Bian, J. Yong, and X. Hou, “Localized surface plasmon resonances in core-embedded heterogeneous nano-bowtie antenna,” Appl. Phys. B 120(1), 47–51 (2015).
[Crossref]

2014 (15)

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

F. H. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref] [PubMed]

H. Chen, A. M. Bhuiya, R. Liu, D. Wasserman, and K. C. Toussaint, “Design, Fabrication, and Characterization of Near-IR Gold Bowtie Nanoantenna Arrays,” J. Phys. Chem. C 118(35), 20553–20558 (2014).
[Crossref]

Y. Du, H. Liu, Y. Deng, and P. D. Ye, “Device perspective for black phosphorus field-effect transistors: contact resistance, ambipolar behavior, and scaling,” ACS Nano 8(10), 10035–10042 (2014).
[Crossref] [PubMed]

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref] [PubMed]

J. Sun, G. Zheng, H. W. Lee, N. Liu, H. Wang, H. Yao, W. Yang, and Y. Cui, “Formation of Stable Phosphorus-Carbon Bond for Enhanced Performance in Black Phosphorus Nanoparticle-Graphite Composite Battery Anodes,” Nano Lett. 14(8), 4573–4580 (2014).
[Crossref] [PubMed]

J. Qiao, X. Kong, Z. X. Hu, F. Yang, and W. Ji, “High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus,” Nat. Commun. 5(1), 4475 (2014).
[Crossref] [PubMed]

F. Xia, H. Wang, and Y. Jia, “Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics,” Nat. Commun. 5(1), 4458 (2014).
[Crossref] [PubMed]

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and Screening in Monolayer and Multilayer Black Phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
[Crossref] [PubMed]

J. D. Wood, S. A. Wells, D. Jariwala, K. S. Chen, E. Cho, V. K. Sangwan, X. Liu, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Effective Passivation of Exfoliated Black Phosphorus Transistors against Ambient Degradation,” Nano Lett. 14(12), 6964–6970 (2014).
[Crossref] [PubMed]

A. S. Rodin, A. Carvalho, and A. H. Castro Neto, “Strain-induced gap modification in black phosphorus,” Phys. Rev. Lett. 112(17), 176801 (2014).
[Crossref] [PubMed]

R. Fei and L. Yang, “Strain-Engineering the Anisotropic Electrical Conductance of Few-Layer Black phosphorus,” Nano Lett. 14(5), 2884–2889 (2014).
[Crossref] [PubMed]

V. Tran, R. Soklaski, Y. Liang, and L. Yang, “Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus,” Phys. Rev. B Condens. Matter Mater. Phys. 89(23), 235319 (2014).
[Crossref]

M. Rahmani, A. E. Miroshnichenko, D. Y. Lei, B. Luk’yanchuk, M. I. Tribelsky, A. I. Kuznetsov, Y. S. Kivshar, Y. Francescato, V. Giannini, M. Hong, and S. A. Maier, “Beyond the hybridization effects in plasmonic nanoclusters: diffraction-induced enhanced absorption and scattering,” Small 10(3), 576–583 (2014).
[Crossref] [PubMed]

H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26(17), 2737–2743 (2014).
[Crossref] [PubMed]

2013 (1)

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

2012 (5)

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11(7), 573–584 (2012).
[Crossref] [PubMed]

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref] [PubMed]

P. Tassin, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics,” Nat. Photonics 6(4), 259–264 (2012).
[Crossref]

G. Li, X. Chen, L. Huang, J. Wang, W. Hu, and W. Lu, “The localized near-field enhancement of metallic periodic bowtie structure: An oscillating dipoles picture,” Physica B 407(12), 2223–2228 (2012).
[Crossref]

2011 (1)

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

2010 (6)

V. Giannini, A. Berrier, S. A. Maier, J. A. Sánchez-Gil, and J. G. Rivas, “Scattering efficiency and near field enhancement of active semiconductor plasmonic antennas at terahertz frequencies,” Opt. Express 18(3), 2797–2807 (2010).
[Crossref] [PubMed]

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and Sensing 10 nm Metal Nanoparticles Using Plasmonic Dipole Antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[Crossref] [PubMed]

A. Tsiatmas, A. R. Buckingham, V. A. Fedotov, S. Wang, Y. Chen, P. A. J. de Groot, and N. I. Zheludev, “Superconducting plasmonics and extraordinary transmission,” Appl. Phys. Lett. 97(11), 111106 (2010).
[Crossref]

. Ding, R. Bachelot, S. Kostcheev, P. Royer, and R. Espiau de Lamaestre, “Surface Plasmon Resonances in Silver Bowtie Nanoantennas with Varied Bow Angles,” J. Appl. Phys. 108(12), 124314 (2010).
[Crossref]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

G. V. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi Rapid Res. Lett. 4(10), 295–297 (2010).
[Crossref]

2008 (3)

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101(11), 116805 (2008).
[Crossref] [PubMed]

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2(4), 230–233 (2008).
[Crossref]

H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16(12), 9144–9154 (2008).
[Crossref] [PubMed]

2007 (2)

H. M. Hiep, T. Endo, K. Kerman, M. Chikae, D.-K. Kim, S. Yamamura, Y. Takamura, and E. Tamiya, “A Localized Surface Plasmon Resonance Based Immunosensor for the Detection of Casein in Milk,” Sci. Technol. Adv. Mater. 8(4), 331–338 (2007).
[Crossref]

L. Wang and X. Xu, “High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging,” Appl. Phys. Lett. 90(26), 261105 (2007).
[Crossref]

2006 (2)

L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography Using High Transmission Nanoscale Bowtie Apertures,” Nano Lett. 6(3), 361–364 (2006).
[Crossref] [PubMed]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of Single-Molecule Fluorescence Using a Gold Nanoparticle as an Optical Nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[Crossref] [PubMed]

2005 (5)

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[Crossref] [PubMed]

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B Condens. Matter Mater. Phys. 72(16), 165409 (2005).
[Crossref]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant Optical Antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single Quantum Dot Coupled to a Scanning Optical Antenna: A Tunable Superemitter,” Phys. Rev. Lett. 95(1), 017402 (2005).
[Crossref] [PubMed]

T. Kalkbrenner, U. Håkanson, A. Schädle, S. Burger, C. Henkel, and V. Sandoghdar, “Optical Microscopy via Spectral Modifications of a Nanoantenna,” Phys. Rev. Lett. 95(20), 200801 (2005).
[Crossref] [PubMed]

2004 (1)

K. Şendur, W. Challener, and C. Peng, “Ridge waveguide as a near field aperture for high density data storage,” J. Appl. Phys. 96(5), 2743–2752 (2004).
[Crossref]

2003 (3)

J. C. Riboh, A. J. Haes, A. D. McFarland, C. Ranjit Yonzon, and R. P. Van Duyne, “A Nanoscale Optical Biosensor: Real-Time Immunoassay in Physiological Buffer Enabled by Improved Nanoparticle Adhesion,” J. Phys. Chem. B 107(8), 1772–1780 (2003).
[Crossref]

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[Crossref]

A. A. Tseng, K. Chen, C. D. Chen, and K. J. Ma, “Electron beam lithography in nanoscale fabrication: recent development,” IEEE Trans. Electron. Packag. Manuf. 26(2), 141–149 (2003).
[Crossref]

2002 (1)

H. Xu and M. Käll, “Surface-Plasmon-Enhanced Optical Forces in Silver Nanoaggregates,” Phys. Rev. Lett. 89(24), 246802 (2002).
[Crossref] [PubMed]

1998 (1)

R. C. Mucic, J. J. Storhoff, C. A. Mirkin, and R. L. Letsinger, “DNA Directed Synthesis of Binary Nanoparticle Network Materials,” J. Am. Chem. Soc. 120(48), 12674–12675 (1998).
[Crossref]

1989 (1)

M. Baba, F. Izumida, Y. Takeda, and A. Morita, “Preparation of Black Phosphorus Single Crystals by a Completely Closed Bismuth-Flux Method and Their Crystal Morphology,” Jpn. J. Appl. Phys. 28(6), 1019–1022 (1989).
[Crossref]

Avouris, P.

F. H. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref] [PubMed]

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and Screening in Monolayer and Multilayer Black Phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
[Crossref] [PubMed]

Aydin, K.

X. Song, Z. Liu, Y. Xiang, and K. Aydin, “Biaxial hyperbolic metamaterials using anisotropic few-layer black phosphorus,” Opt. Express 26(5), 5469–5477 (2018).
[Crossref] [PubMed]

Z. Liu and K. Aydin, “Localized Surface Plasmons in Nanostructured Monolayer Black Phosphorus,” Nano Lett. 16(6), 3457–3462 (2016).
[Crossref] [PubMed]

Baba, M.

M. Baba, F. Izumida, Y. Takeda, and A. Morita, “Preparation of Black Phosphorus Single Crystals by a Completely Closed Bismuth-Flux Method and Their Crystal Morphology,” Jpn. J. Appl. Phys. 28(6), 1019–1022 (1989).
[Crossref]

Bachelot, R.

. Ding, R. Bachelot, S. Kostcheev, P. Royer, and R. Espiau de Lamaestre, “Surface Plasmon Resonances in Silver Bowtie Nanoantennas with Varied Bow Angles,” J. Appl. Phys. 108(12), 124314 (2010).
[Crossref]

Balendhran, S.

S. Balendhran, S. Walia, H. Nili, S. Sriram, and M. Bhaskaran, “Elemental Analogues of Graphene: Silicene, Germanene, Stanene, and Phosphorene,” Small 11(6), 640–652 (2015).
[Crossref] [PubMed]

Bao, Q.

S. C. Dhanabalan, J. S. Ponraj, Z. Guo, S. Li, Q. Bao, and H. Zhang, “Emerging Trends in Phosphorene Fabrication towards Next Generation Devices,” Adv. Sci. (Weinh.) 4(6), 1600305 (2017).
[Crossref] [PubMed]

Berrier, A.

Bhaskaran, M.

S. Balendhran, S. Walia, H. Nili, S. Sriram, and M. Bhaskaran, “Elemental Analogues of Graphene: Silicene, Germanene, Stanene, and Phosphorene,” Small 11(6), 640–652 (2015).
[Crossref] [PubMed]

Bhuiya, A. M.

H. Chen, A. M. Bhuiya, R. Liu, D. Wasserman, and K. C. Toussaint, “Design, Fabrication, and Characterization of Near-IR Gold Bowtie Nanoantenna Arrays,” J. Phys. Chem. C 118(35), 20553–20558 (2014).
[Crossref]

Bian, H.

G. Du, Q. Yang, F. Chen, Y. Lu, H. Bian, J. Yong, and X. Hou, “Localized surface plasmon resonances in core-embedded heterogeneous nano-bowtie antenna,” Appl. Phys. B 120(1), 47–51 (2015).
[Crossref]

Boltasseva, A.

G. V. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi Rapid Res. Lett. 4(10), 295–297 (2010).
[Crossref]

Boneberg, J.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2(4), 230–233 (2008).
[Crossref]

Bouša, D.

Z. Sofer, D. Bouša, J. Luxa, V. Mazanek, and M. Pumera, “Few-layer black phosphorus nanoparticles,” Chem. Commun. (Camb.) 52(8), 1563–1566 (2016).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

Bratschitsch, R.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2(4), 230–233 (2008).
[Crossref]

Buckingham, A. R.

A. Tsiatmas, A. R. Buckingham, V. A. Fedotov, S. Wang, Y. Chen, P. A. J. de Groot, and N. I. Zheludev, “Superconducting plasmonics and extraordinary transmission,” Appl. Phys. Lett. 97(11), 111106 (2010).
[Crossref]

Burger, S.

T. Kalkbrenner, U. Håkanson, A. Schädle, S. Burger, C. Henkel, and V. Sandoghdar, “Optical Microscopy via Spectral Modifications of a Nanoantenna,” Phys. Rev. Lett. 95(20), 200801 (2005).
[Crossref] [PubMed]

Butler, S. Z.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Cao, L.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Carvalho, A.

A. S. Rodin, A. Carvalho, and A. H. Castro Neto, “Strain-induced gap modification in black phosphorus,” Phys. Rev. Lett. 112(17), 176801 (2014).
[Crossref] [PubMed]

Castro Neto, A. H.

A. S. Rodin, A. Carvalho, and A. H. Castro Neto, “Strain-induced gap modification in black phosphorus,” Phys. Rev. Lett. 112(17), 176801 (2014).
[Crossref] [PubMed]

Cha, J. J

X. Li, B. Deng, X. Wang, S. Chen, M. Vaisman, S. Karato, G. A. Pan, M. L. Lee, J. J Cha, H. Wang, and F. Xia, “Synthesis of thin-film black phosphorus on a flexible substrate,” arXiv. Mater. Sci. 2(3), 031002 (2015).

Challener, W.

K. Şendur, W. Challener, and C. Peng, “Ridge waveguide as a near field aperture for high density data storage,” J. Appl. Phys. 96(5), 2743–2752 (2004).
[Crossref]

Chen, C. D.

A. A. Tseng, K. Chen, C. D. Chen, and K. J. Ma, “Electron beam lithography in nanoscale fabrication: recent development,” IEEE Trans. Electron. Packag. Manuf. 26(2), 141–149 (2003).
[Crossref]

Chen, F.

G. Du, Q. Yang, F. Chen, Y. Lu, H. Bian, J. Yong, and X. Hou, “Localized surface plasmon resonances in core-embedded heterogeneous nano-bowtie antenna,” Appl. Phys. B 120(1), 47–51 (2015).
[Crossref]

Chen, H.

H. Chen, A. M. Bhuiya, R. Liu, D. Wasserman, and K. C. Toussaint, “Design, Fabrication, and Characterization of Near-IR Gold Bowtie Nanoantenna Arrays,” J. Phys. Chem. C 118(35), 20553–20558 (2014).
[Crossref]

Chen, J.

Chen, K.

A. A. Tseng, K. Chen, C. D. Chen, and K. J. Ma, “Electron beam lithography in nanoscale fabrication: recent development,” IEEE Trans. Electron. Packag. Manuf. 26(2), 141–149 (2003).
[Crossref]

Chen, K. S.

J. D. Wood, S. A. Wells, D. Jariwala, K. S. Chen, E. Cho, V. K. Sangwan, X. Liu, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Effective Passivation of Exfoliated Black Phosphorus Transistors against Ambient Degradation,” Nano Lett. 14(12), 6964–6970 (2014).
[Crossref] [PubMed]

Chen, S.

X. Li, B. Deng, X. Wang, S. Chen, M. Vaisman, S. Karato, G. A. Pan, M. L. Lee, J. J Cha, H. Wang, and F. Xia, “Synthesis of thin-film black phosphorus on a flexible substrate,” arXiv. Mater. Sci. 2(3), 031002 (2015).

Chen, X.

G. Li, X. Chen, L. Huang, J. Wang, W. Hu, and W. Lu, “The localized near-field enhancement of metallic periodic bowtie structure: An oscillating dipoles picture,” Physica B 407(12), 2223–2228 (2012).
[Crossref]

Chen, X. H.

Z. Wang, H. Jia, X. Zheng, R. Yang, Z. Wang, G. J. Ye, X. H. Chen, J. Shan, and P. X. L. Feng, “Black phosphorus nanoelectromechanical resonators vibrating at very high frequencies,” Nanoscale 7(3), 877–884 (2015).
[Crossref] [PubMed]

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref] [PubMed]

Chen, Y.

Y. Chen, J. Chen, X. Xu, and J. Chu, “Fabrication of bowtie aperture antennas for producing sub-20 nm optical spots,” Opt. Express 23(7), 9093–9099 (2015).
[Crossref] [PubMed]

A. Tsiatmas, A. R. Buckingham, V. A. Fedotov, S. Wang, Y. Chen, P. A. J. de Groot, and N. I. Zheludev, “Superconducting plasmonics and extraordinary transmission,” Appl. Phys. Lett. 97(11), 111106 (2010).
[Crossref]

Cherukulappurath, S.

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101(11), 116805 (2008).
[Crossref] [PubMed]

Chikae, M.

H. M. Hiep, T. Endo, K. Kerman, M. Chikae, D.-K. Kim, S. Yamamura, Y. Takamura, and E. Tamiya, “A Localized Surface Plasmon Resonance Based Immunosensor for the Detection of Casein in Milk,” Sci. Technol. Adv. Mater. 8(4), 331–338 (2007).
[Crossref]

Cho, E.

J. D. Wood, S. A. Wells, D. Jariwala, K. S. Chen, E. Cho, V. K. Sangwan, X. Liu, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Effective Passivation of Exfoliated Black Phosphorus Transistors against Ambient Degradation,” Nano Lett. 14(12), 6964–6970 (2014).
[Crossref] [PubMed]

Chow, E. K. C.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref] [PubMed]

Chu, J.

Coleman, J. N.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

Crozier, K. B.

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B Condens. Matter Mater. Phys. 72(16), 165409 (2005).
[Crossref]

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[Crossref]

Cui, B.

J. Zhang, M. Irannejad, and B. Cui, “Bowtie Nanoantenna with Single-Digit Nanometer Gap for Surface-Enhanced Raman Scattering (SERS),” Plasmonics 10(4), 831–837 (2015).
[Crossref]

Cui, Y.

J. Sun, G. Zheng, H. W. Lee, N. Liu, H. Wang, H. Yao, W. Yang, and Y. Cui, “Formation of Stable Phosphorus-Carbon Bond for Enhanced Performance in Black Phosphorus Nanoparticle-Graphite Composite Battery Anodes,” Nano Lett. 14(8), 4573–4580 (2014).
[Crossref] [PubMed]

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Dai, X.

L. Wu, Q. Wang, B. Ruan, J. Zhu, Q. You, X. Dai, and Y. Xiang, “High-Performance Lossy-Mode Resonance Sensor Based on Few-Layer Black Phosphorus,” J. Phys. Chem. C 122(13), 7368–7373 (2018).
[Crossref]

Y. Yang, X. Jiang, B. Ruan, X. Dai, and Y. Xiang, “Tunable optical forces exerted on a black phosphorus coated dielectric particle by a Gaussian beam,” Opt. Mater. Express 8(2), 211–220 (2018).
[Crossref]

X. Wang, Q. Ma, L. Wu, J. Guo, S. Lu, X. Dai, and Y. Xiang, “Tunable terahertz/infrared coherent perfect absorption in a monolayer black phosphorus,” Opt. Express 26(5), 5488–5496 (2018).
[Crossref] [PubMed]

L. Wu, J. Guo, Q. Wang, S. Lu, X. Dai, Y. Xiang, and D. Fan, “Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor,” Sens. Actuators B Chem. 249, 542–548 (2017).
[Crossref]

de Groot, P. A. J.

A. Tsiatmas, A. R. Buckingham, V. A. Fedotov, S. Wang, Y. Chen, P. A. J. de Groot, and N. I. Zheludev, “Superconducting plasmonics and extraordinary transmission,” Appl. Phys. Lett. 97(11), 111106 (2010).
[Crossref]

Deng, B.

X. Li, B. Deng, X. Wang, S. Chen, M. Vaisman, S. Karato, G. A. Pan, M. L. Lee, J. J Cha, H. Wang, and F. Xia, “Synthesis of thin-film black phosphorus on a flexible substrate,” arXiv. Mater. Sci. 2(3), 031002 (2015).

Deng, Y.

Y. Du, H. Liu, Y. Deng, and P. D. Ye, “Device perspective for black phosphorus field-effect transistors: contact resistance, ambipolar behavior, and scaling,” ACS Nano 8(10), 10035–10042 (2014).
[Crossref] [PubMed]

Dhanabalan, S. C.

S. C. Dhanabalan, J. S. Ponraj, Z. Guo, S. Li, Q. Bao, and H. Zhang, “Emerging Trends in Phosphorene Fabrication towards Next Generation Devices,” Adv. Sci. (Weinh.) 4(6), 1600305 (2017).
[Crossref] [PubMed]

Ding, .

. Ding, R. Bachelot, S. Kostcheev, P. Royer, and R. Espiau de Lamaestre, “Surface Plasmon Resonances in Silver Bowtie Nanoantennas with Varied Bow Angles,” J. Appl. Phys. 108(12), 124314 (2010).
[Crossref]

Du, G.

G. Du, Q. Yang, F. Chen, Y. Lu, H. Bian, J. Yong, and X. Hou, “Localized surface plasmon resonances in core-embedded heterogeneous nano-bowtie antenna,” Appl. Phys. B 120(1), 47–51 (2015).
[Crossref]

Du, Y.

Y. Du, H. Liu, Y. Deng, and P. D. Ye, “Device perspective for black phosphorus field-effect transistors: contact resistance, ambipolar behavior, and scaling,” ACS Nano 8(10), 10035–10042 (2014).
[Crossref] [PubMed]

Dubey, M.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

Eisler, H.-J.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant Optical Antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single Quantum Dot Coupled to a Scanning Optical Antenna: A Tunable Superemitter,” Phys. Rev. Lett. 95(1), 017402 (2005).
[Crossref] [PubMed]

Endo, T.

H. M. Hiep, T. Endo, K. Kerman, M. Chikae, D.-K. Kim, S. Yamamura, Y. Takamura, and E. Tamiya, “A Localized Surface Plasmon Resonance Based Immunosensor for the Detection of Casein in Milk,” Sci. Technol. Adv. Mater. 8(4), 331–338 (2007).
[Crossref]

Espiau de Lamaestre, R.

. Ding, R. Bachelot, S. Kostcheev, P. Royer, and R. Espiau de Lamaestre, “Surface Plasmon Resonances in Silver Bowtie Nanoantennas with Varied Bow Angles,” J. Appl. Phys. 108(12), 124314 (2010).
[Crossref]

Fan, D.

L. Wu, J. Guo, Q. Wang, S. Lu, X. Dai, Y. Xiang, and D. Fan, “Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor,” Sens. Actuators B Chem. 249, 542–548 (2017).
[Crossref]

J. Ma, S. Lu, Z. Guo, X. Xu, H. Zhang, D. Tang, and D. Fan, “Few-layer black phosphorus based saturable absorber mirror for pulsed solid-state lasers,” Opt. Express 23(17), 22643–22648 (2015).
[Crossref] [PubMed]

Fang, N. X.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref] [PubMed]

Farahani, J. N.

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single Quantum Dot Coupled to a Scanning Optical Antenna: A Tunable Superemitter,” Phys. Rev. Lett. 95(1), 017402 (2005).
[Crossref] [PubMed]

Fedotov, V. A.

A. Tsiatmas, A. R. Buckingham, V. A. Fedotov, S. Wang, Y. Chen, P. A. J. de Groot, and N. I. Zheludev, “Superconducting plasmonics and extraordinary transmission,” Appl. Phys. Lett. 97(11), 111106 (2010).
[Crossref]

Fei, R.

R. Fei and L. Yang, “Strain-Engineering the Anisotropic Electrical Conductance of Few-Layer Black phosphorus,” Nano Lett. 14(5), 2884–2889 (2014).
[Crossref] [PubMed]

Feng, D.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref] [PubMed]

Feng, P. X. L.

Z. Wang, H. Jia, X. Zheng, R. Yang, Z. Wang, G. J. Ye, X. H. Chen, J. Shan, and P. X. L. Feng, “Black phosphorus nanoelectromechanical resonators vibrating at very high frequencies,” Nanoscale 7(3), 877–884 (2015).
[Crossref] [PubMed]

Ferrari, A. C.

F. H. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref] [PubMed]

Fischer, H.

Francescato, Y.

M. Rahmani, A. E. Miroshnichenko, D. Y. Lei, B. Luk’yanchuk, M. I. Tribelsky, A. I. Kuznetsov, Y. S. Kivshar, Y. Francescato, V. Giannini, M. Hong, and S. A. Maier, “Beyond the hybridization effects in plasmonic nanoclusters: diffraction-induced enhanced absorption and scattering,” Small 10(3), 576–583 (2014).
[Crossref] [PubMed]

Fromm, D. P.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[Crossref] [PubMed]

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B Condens. Matter Mater. Phys. 72(16), 165409 (2005).
[Crossref]

Fung, K. H.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref] [PubMed]

Gan, Q.

H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26(17), 2737–2743 (2014).
[Crossref] [PubMed]

Ge, Q.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref] [PubMed]

Ghenuche, P.

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101(11), 116805 (2008).
[Crossref] [PubMed]

Giannini, V.

M. Rahmani, A. E. Miroshnichenko, D. Y. Lei, B. Luk’yanchuk, M. I. Tribelsky, A. I. Kuznetsov, Y. S. Kivshar, Y. Francescato, V. Giannini, M. Hong, and S. A. Maier, “Beyond the hybridization effects in plasmonic nanoclusters: diffraction-induced enhanced absorption and scattering,” Small 10(3), 576–583 (2014).
[Crossref] [PubMed]

V. Giannini, A. Berrier, S. A. Maier, J. A. Sánchez-Gil, and J. G. Rivas, “Scattering efficiency and near field enhancement of active semiconductor plasmonic antennas at terahertz frequencies,” Opt. Express 18(3), 2797–2807 (2010).
[Crossref] [PubMed]

Goldberger, J. E.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

Guinea, F.

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and Screening in Monolayer and Multilayer Black Phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
[Crossref] [PubMed]

Guo, J.

X. Wang, Q. Ma, L. Wu, J. Guo, S. Lu, X. Dai, and Y. Xiang, “Tunable terahertz/infrared coherent perfect absorption in a monolayer black phosphorus,” Opt. Express 26(5), 5488–5496 (2018).
[Crossref] [PubMed]

L. Wu, J. Guo, Q. Wang, S. Lu, X. Dai, Y. Xiang, and D. Fan, “Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor,” Sens. Actuators B Chem. 249, 542–548 (2017).
[Crossref]

Guo, L.

H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26(17), 2737–2743 (2014).
[Crossref] [PubMed]

Guo, Z.

S. C. Dhanabalan, J. S. Ponraj, Z. Guo, S. Li, Q. Bao, and H. Zhang, “Emerging Trends in Phosphorene Fabrication towards Next Generation Devices,” Adv. Sci. (Weinh.) 4(6), 1600305 (2017).
[Crossref] [PubMed]

J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black Phosphorus: A Two-Dimension Saturable Absorption Material for Mid-Infrared Q-Switched and Mode-Locked Fiber Lasers,” Sci. Rep. 6(1), 30361 (2016).
[Crossref] [PubMed]

J. Ma, S. Lu, Z. Guo, X. Xu, H. Zhang, D. Tang, and D. Fan, “Few-layer black phosphorus based saturable absorber mirror for pulsed solid-state lasers,” Opt. Express 23(17), 22643–22648 (2015).
[Crossref] [PubMed]

Gupta, J. A.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Gutiérrez, H. R.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Haes, A. J.

J. C. Riboh, A. J. Haes, A. D. McFarland, C. Ranjit Yonzon, and R. P. Van Duyne, “A Nanoscale Optical Biosensor: Real-Time Immunoassay in Physiological Buffer Enabled by Improved Nanoparticle Adhesion,” J. Phys. Chem. B 107(8), 1772–1780 (2003).
[Crossref]

Håkanson, U.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of Single-Molecule Fluorescence Using a Gold Nanoparticle as an Optical Nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[Crossref] [PubMed]

T. Kalkbrenner, U. Håkanson, A. Schädle, S. Burger, C. Henkel, and V. Sandoghdar, “Optical Microscopy via Spectral Modifications of a Nanoantenna,” Phys. Rev. Lett. 95(20), 200801 (2005).
[Crossref] [PubMed]

Halm, A.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2(4), 230–233 (2008).
[Crossref]

Hamm, J. M.

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11(7), 573–584 (2012).
[Crossref] [PubMed]

Hecht, B.

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single Quantum Dot Coupled to a Scanning Optical Antenna: A Tunable Superemitter,” Phys. Rev. Lett. 95(1), 017402 (2005).
[Crossref] [PubMed]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant Optical Antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Heinz, T. F.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Henkel, C.

T. Kalkbrenner, U. Håkanson, A. Schädle, S. Burger, C. Henkel, and V. Sandoghdar, “Optical Microscopy via Spectral Modifications of a Nanoantenna,” Phys. Rev. Lett. 95(20), 200801 (2005).
[Crossref] [PubMed]

Hersam, M. C.

J. D. Wood, S. A. Wells, D. Jariwala, K. S. Chen, E. Cho, V. K. Sangwan, X. Liu, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Effective Passivation of Exfoliated Black Phosphorus Transistors against Ambient Degradation,” Nano Lett. 14(12), 6964–6970 (2014).
[Crossref] [PubMed]

Hess, O.

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11(7), 573–584 (2012).
[Crossref] [PubMed]

Hiep, H. M.

H. M. Hiep, T. Endo, K. Kerman, M. Chikae, D.-K. Kim, S. Yamamura, Y. Takamura, and E. Tamiya, “A Localized Surface Plasmon Resonance Based Immunosensor for the Detection of Casein in Milk,” Sci. Technol. Adv. Mater. 8(4), 331–338 (2007).
[Crossref]

Hollen, S. M.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Hong, M.

M. Rahmani, A. E. Miroshnichenko, D. Y. Lei, B. Luk’yanchuk, M. I. Tribelsky, A. I. Kuznetsov, Y. S. Kivshar, Y. Francescato, V. Giannini, M. Hong, and S. A. Maier, “Beyond the hybridization effects in plasmonic nanoclusters: diffraction-induced enhanced absorption and scattering,” Small 10(3), 576–583 (2014).
[Crossref] [PubMed]

Hong, S. S.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Hou, X.

G. Du, Q. Yang, F. Chen, Y. Lu, H. Bian, J. Yong, and X. Hou, “Localized surface plasmon resonances in core-embedded heterogeneous nano-bowtie antenna,” Appl. Phys. B 120(1), 47–51 (2015).
[Crossref]

Hu, H.

H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26(17), 2737–2743 (2014).
[Crossref] [PubMed]

Hu, W.

G. Li, X. Chen, L. Huang, J. Wang, W. Hu, and W. Lu, “The localized near-field enhancement of metallic periodic bowtie structure: An oscillating dipoles picture,” Physica B 407(12), 2223–2228 (2012).
[Crossref]

Hu, Z. X.

J. Qiao, X. Kong, Z. X. Hu, F. Yang, and W. Ji, “High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus,” Nat. Commun. 5(1), 4475 (2014).
[Crossref] [PubMed]

Huang, J.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Huang, L.

G. Li, X. Chen, L. Huang, J. Wang, W. Hu, and W. Lu, “The localized near-field enhancement of metallic periodic bowtie structure: An oscillating dipoles picture,” Physica B 407(12), 2223–2228 (2012).
[Crossref]

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and Sensing 10 nm Metal Nanoparticles Using Plasmonic Dipole Antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[Crossref] [PubMed]

Irannejad, M.

J. Zhang, M. Irannejad, and B. Cui, “Bowtie Nanoantenna with Single-Digit Nanometer Gap for Surface-Enhanced Raman Scattering (SERS),” Plasmonics 10(4), 831–837 (2015).
[Crossref]

Ismach, A. F.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Izumida, F.

M. Baba, F. Izumida, Y. Takeda, and A. Morita, “Preparation of Black Phosphorus Single Crystals by a Completely Closed Bismuth-Flux Method and Their Crystal Morphology,” Jpn. J. Appl. Phys. 28(6), 1019–1022 (1989).
[Crossref]

Jariwala, D.

J. D. Wood, S. A. Wells, D. Jariwala, K. S. Chen, E. Cho, V. K. Sangwan, X. Liu, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Effective Passivation of Exfoliated Black Phosphorus Transistors against Ambient Degradation,” Nano Lett. 14(12), 6964–6970 (2014).
[Crossref] [PubMed]

Ji, D.

H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26(17), 2737–2743 (2014).
[Crossref] [PubMed]

Ji, W.

J. Qiao, X. Kong, Z. X. Hu, F. Yang, and W. Ji, “High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus,” Nat. Commun. 5(1), 4475 (2014).
[Crossref] [PubMed]

Jia, H.

Z. Wang, H. Jia, X. Zheng, R. Yang, Z. Wang, G. J. Ye, X. H. Chen, J. Shan, and P. X. L. Feng, “Black phosphorus nanoelectromechanical resonators vibrating at very high frequencies,” Nanoscale 7(3), 877–884 (2015).
[Crossref] [PubMed]

Jia, Y.

F. Xia, H. Wang, and Y. Jia, “Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics,” Nat. Commun. 5(1), 4458 (2014).
[Crossref] [PubMed]

Jiang, S.

H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26(17), 2737–2743 (2014).
[Crossref] [PubMed]

Jiang, X.

Jin, E. X.

L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography Using High Transmission Nanoscale Bowtie Apertures,” Nano Lett. 6(3), 361–364 (2006).
[Crossref] [PubMed]

Johnston-Halperin, E.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Juan, M. L.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

Kafesaki, M.

P. Tassin, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics,” Nat. Photonics 6(4), 259–264 (2012).
[Crossref]

Kahl, M.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2(4), 230–233 (2008).
[Crossref]

Kalantar-Zadeh, K.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

Kalkbrenner, T.

T. Kalkbrenner, U. Håkanson, A. Schädle, S. Burger, C. Henkel, and V. Sandoghdar, “Optical Microscopy via Spectral Modifications of a Nanoantenna,” Phys. Rev. Lett. 95(20), 200801 (2005).
[Crossref] [PubMed]

Käll, M.

H. Xu and M. Käll, “Surface-Plasmon-Enhanced Optical Forces in Silver Nanoaggregates,” Phys. Rev. Lett. 89(24), 246802 (2002).
[Crossref] [PubMed]

Karato, S.

X. Li, B. Deng, X. Wang, S. Chen, M. Vaisman, S. Karato, G. A. Pan, M. L. Lee, J. J Cha, H. Wang, and F. Xia, “Synthesis of thin-film black phosphorus on a flexible substrate,” arXiv. Mater. Sci. 2(3), 031002 (2015).

Kerman, K.

H. M. Hiep, T. Endo, K. Kerman, M. Chikae, D.-K. Kim, S. Yamamura, Y. Takamura, and E. Tamiya, “A Localized Surface Plasmon Resonance Based Immunosensor for the Detection of Casein in Milk,” Sci. Technol. Adv. Mater. 8(4), 331–338 (2007).
[Crossref]

Kim, D.-K.

H. M. Hiep, T. Endo, K. Kerman, M. Chikae, D.-K. Kim, S. Yamamura, Y. Takamura, and E. Tamiya, “A Localized Surface Plasmon Resonance Based Immunosensor for the Detection of Casein in Milk,” Sci. Technol. Adv. Mater. 8(4), 331–338 (2007).
[Crossref]

Kino, G. S.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[Crossref] [PubMed]

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B Condens. Matter Mater. Phys. 72(16), 165409 (2005).
[Crossref]

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[Crossref]

Kis, A.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

Kivshar, Y. S.

M. Rahmani, A. E. Miroshnichenko, D. Y. Lei, B. Luk’yanchuk, M. I. Tribelsky, A. I. Kuznetsov, Y. S. Kivshar, Y. Francescato, V. Giannini, M. Hong, and S. A. Maier, “Beyond the hybridization effects in plasmonic nanoclusters: diffraction-induced enhanced absorption and scattering,” Small 10(3), 576–583 (2014).
[Crossref] [PubMed]

Ko, K. D.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref] [PubMed]

Kong, X.

J. Qiao, X. Kong, Z. X. Hu, F. Yang, and W. Ji, “High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus,” Nat. Commun. 5(1), 4475 (2014).
[Crossref] [PubMed]

Koppens, F. H.

F. H. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref] [PubMed]

Koschny, T.

P. Tassin, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics,” Nat. Photonics 6(4), 259–264 (2012).
[Crossref]

Kostcheev, S.

. Ding, R. Bachelot, S. Kostcheev, P. Royer, and R. Espiau de Lamaestre, “Surface Plasmon Resonances in Silver Bowtie Nanoantennas with Varied Bow Angles,” J. Appl. Phys. 108(12), 124314 (2010).
[Crossref]

Kühn, S.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of Single-Molecule Fluorescence Using a Gold Nanoparticle as an Optical Nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[Crossref] [PubMed]

Kumar, A.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref] [PubMed]

Kuno, M.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Kuznetsov, A. I.

M. Rahmani, A. E. Miroshnichenko, D. Y. Lei, B. Luk’yanchuk, M. I. Tribelsky, A. I. Kuznetsov, Y. S. Kivshar, Y. Francescato, V. Giannini, M. Hong, and S. A. Maier, “Beyond the hybridization effects in plasmonic nanoclusters: diffraction-induced enhanced absorption and scattering,” Small 10(3), 576–583 (2014).
[Crossref] [PubMed]

Lauhon, L. J.

J. D. Wood, S. A. Wells, D. Jariwala, K. S. Chen, E. Cho, V. K. Sangwan, X. Liu, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Effective Passivation of Exfoliated Black Phosphorus Transistors against Ambient Degradation,” Nano Lett. 14(12), 6964–6970 (2014).
[Crossref] [PubMed]

Lee, H. W.

J. Sun, G. Zheng, H. W. Lee, N. Liu, H. Wang, H. Yao, W. Yang, and Y. Cui, “Formation of Stable Phosphorus-Carbon Bond for Enhanced Performance in Black Phosphorus Nanoparticle-Graphite Composite Battery Anodes,” Nano Lett. 14(8), 4573–4580 (2014).
[Crossref] [PubMed]

Lee, M. L.

X. Li, B. Deng, X. Wang, S. Chen, M. Vaisman, S. Karato, G. A. Pan, M. L. Lee, J. J Cha, H. Wang, and F. Xia, “Synthesis of thin-film black phosphorus on a flexible substrate,” arXiv. Mater. Sci. 2(3), 031002 (2015).

Lei, D. Y.

M. Rahmani, A. E. Miroshnichenko, D. Y. Lei, B. Luk’yanchuk, M. I. Tribelsky, A. I. Kuznetsov, Y. S. Kivshar, Y. Francescato, V. Giannini, M. Hong, and S. A. Maier, “Beyond the hybridization effects in plasmonic nanoclusters: diffraction-induced enhanced absorption and scattering,” Small 10(3), 576–583 (2014).
[Crossref] [PubMed]

Leiderer, P.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2(4), 230–233 (2008).
[Crossref]

Leitenstorfer, A.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2(4), 230–233 (2008).
[Crossref]

Letsinger, R. L.

R. C. Mucic, J. J. Storhoff, C. A. Mirkin, and R. L. Letsinger, “DNA Directed Synthesis of Binary Nanoparticle Network Materials,” J. Am. Chem. Soc. 120(48), 12674–12675 (1998).
[Crossref]

Li, G.

G. Li, X. Chen, L. Huang, J. Wang, W. Hu, and W. Lu, “The localized near-field enhancement of metallic periodic bowtie structure: An oscillating dipoles picture,” Physica B 407(12), 2223–2228 (2012).
[Crossref]

Li, J.

J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black Phosphorus: A Two-Dimension Saturable Absorption Material for Mid-Infrared Q-Switched and Mode-Locked Fiber Lasers,” Sci. Rep. 6(1), 30361 (2016).
[Crossref] [PubMed]

Li, L.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref] [PubMed]

Li, S.

S. C. Dhanabalan, J. S. Ponraj, Z. Guo, S. Li, Q. Bao, and H. Zhang, “Emerging Trends in Phosphorene Fabrication towards Next Generation Devices,” Adv. Sci. (Weinh.) 4(6), 1600305 (2017).
[Crossref] [PubMed]

Li, X.

X. Li, B. Deng, X. Wang, S. Chen, M. Vaisman, S. Karato, G. A. Pan, M. L. Lee, J. J Cha, H. Wang, and F. Xia, “Synthesis of thin-film black phosphorus on a flexible substrate,” arXiv. Mater. Sci. 2(3), 031002 (2015).

Liang, Y.

V. Tran, R. Soklaski, Y. Liang, and L. Yang, “Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus,” Phys. Rev. B Condens. Matter Mater. Phys. 89(23), 235319 (2014).
[Crossref]

Liu, G. L.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref] [PubMed]

Liu, H.

Y. Du, H. Liu, Y. Deng, and P. D. Ye, “Device perspective for black phosphorus field-effect transistors: contact resistance, ambipolar behavior, and scaling,” ACS Nano 8(10), 10035–10042 (2014).
[Crossref] [PubMed]

Liu, K.

H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26(17), 2737–2743 (2014).
[Crossref] [PubMed]

Liu, N.

J. Sun, G. Zheng, H. W. Lee, N. Liu, H. Wang, H. Yao, W. Yang, and Y. Cui, “Formation of Stable Phosphorus-Carbon Bond for Enhanced Performance in Black Phosphorus Nanoparticle-Graphite Composite Battery Anodes,” Nano Lett. 14(8), 4573–4580 (2014).
[Crossref] [PubMed]

Liu, R.

H. Chen, A. M. Bhuiya, R. Liu, D. Wasserman, and K. C. Toussaint, “Design, Fabrication, and Characterization of Near-IR Gold Bowtie Nanoantenna Arrays,” J. Phys. Chem. C 118(35), 20553–20558 (2014).
[Crossref]

Liu, X.

J. D. Wood, S. A. Wells, D. Jariwala, K. S. Chen, E. Cho, V. K. Sangwan, X. Liu, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Effective Passivation of Exfoliated Black Phosphorus Transistors against Ambient Degradation,” Nano Lett. 14(12), 6964–6970 (2014).
[Crossref] [PubMed]

Liu, Y.

J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black Phosphorus: A Two-Dimension Saturable Absorption Material for Mid-Infrared Q-Switched and Mode-Locked Fiber Lasers,” Sci. Rep. 6(1), 30361 (2016).
[Crossref] [PubMed]

Liu, Z.

X. Song, Z. Liu, Y. Xiang, and K. Aydin, “Biaxial hyperbolic metamaterials using anisotropic few-layer black phosphorus,” Opt. Express 26(5), 5469–5477 (2018).
[Crossref] [PubMed]

Z. Liu and K. Aydin, “Localized Surface Plasmons in Nanostructured Monolayer Black Phosphorus,” Nano Lett. 16(6), 3457–3462 (2016).
[Crossref] [PubMed]

H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26(17), 2737–2743 (2014).
[Crossref] [PubMed]

Low, T.

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and Screening in Monolayer and Multilayer Black Phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
[Crossref] [PubMed]

Lu, R.

J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black Phosphorus: A Two-Dimension Saturable Absorption Material for Mid-Infrared Q-Switched and Mode-Locked Fiber Lasers,” Sci. Rep. 6(1), 30361 (2016).
[Crossref] [PubMed]

Lu, S.

Lu, W.

G. Li, X. Chen, L. Huang, J. Wang, W. Hu, and W. Lu, “The localized near-field enhancement of metallic periodic bowtie structure: An oscillating dipoles picture,” Physica B 407(12), 2223–2228 (2012).
[Crossref]

Lu, Y.

G. Du, Q. Yang, F. Chen, Y. Lu, H. Bian, J. Yong, and X. Hou, “Localized surface plasmon resonances in core-embedded heterogeneous nano-bowtie antenna,” Appl. Phys. B 120(1), 47–51 (2015).
[Crossref]

Luk’yanchuk, B.

M. Rahmani, A. E. Miroshnichenko, D. Y. Lei, B. Luk’yanchuk, M. I. Tribelsky, A. I. Kuznetsov, Y. S. Kivshar, Y. Francescato, V. Giannini, M. Hong, and S. A. Maier, “Beyond the hybridization effects in plasmonic nanoclusters: diffraction-induced enhanced absorption and scattering,” Small 10(3), 576–583 (2014).
[Crossref] [PubMed]

Luo, H.

J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black Phosphorus: A Two-Dimension Saturable Absorption Material for Mid-Infrared Q-Switched and Mode-Locked Fiber Lasers,” Sci. Rep. 6(1), 30361 (2016).
[Crossref] [PubMed]

Luxa, J.

Z. Sofer, D. Bouša, J. Luxa, V. Mazanek, and M. Pumera, “Few-layer black phosphorus nanoparticles,” Chem. Commun. (Camb.) 52(8), 1563–1566 (2016).
[Crossref] [PubMed]

Ma, J.

Ma, K. J.

A. A. Tseng, K. Chen, C. D. Chen, and K. J. Ma, “Electron beam lithography in nanoscale fabrication: recent development,” IEEE Trans. Electron. Packag. Manuf. 26(2), 141–149 (2003).
[Crossref]

Ma, Q.

Maier, S. A.

M. Rahmani, A. E. Miroshnichenko, D. Y. Lei, B. Luk’yanchuk, M. I. Tribelsky, A. I. Kuznetsov, Y. S. Kivshar, Y. Francescato, V. Giannini, M. Hong, and S. A. Maier, “Beyond the hybridization effects in plasmonic nanoclusters: diffraction-induced enhanced absorption and scattering,” Small 10(3), 576–583 (2014).
[Crossref] [PubMed]

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11(7), 573–584 (2012).
[Crossref] [PubMed]

V. Giannini, A. Berrier, S. A. Maier, J. A. Sánchez-Gil, and J. G. Rivas, “Scattering efficiency and near field enhancement of active semiconductor plasmonic antennas at terahertz frequencies,” Opt. Express 18(3), 2797–2807 (2010).
[Crossref] [PubMed]

Marks, T. J.

J. D. Wood, S. A. Wells, D. Jariwala, K. S. Chen, E. Cho, V. K. Sangwan, X. Liu, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Effective Passivation of Exfoliated Black Phosphorus Transistors against Ambient Degradation,” Nano Lett. 14(12), 6964–6970 (2014).
[Crossref] [PubMed]

Martin, O. J. F.

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and Sensing 10 nm Metal Nanoparticles Using Plasmonic Dipole Antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[Crossref] [PubMed]

H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16(12), 9144–9154 (2008).
[Crossref] [PubMed]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant Optical Antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Mazanek, V.

Z. Sofer, D. Bouša, J. Luxa, V. Mazanek, and M. Pumera, “Few-layer black phosphorus nanoparticles,” Chem. Commun. (Camb.) 52(8), 1563–1566 (2016).
[Crossref] [PubMed]

McFarland, A. D.

J. C. Riboh, A. J. Haes, A. D. McFarland, C. Ranjit Yonzon, and R. P. Van Duyne, “A Nanoscale Optical Biosensor: Real-Time Immunoassay in Physiological Buffer Enabled by Improved Nanoparticle Adhesion,” J. Phys. Chem. B 107(8), 1772–1780 (2003).
[Crossref]

Merlein, J.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2(4), 230–233 (2008).
[Crossref]

Mirkin, C. A.

R. C. Mucic, J. J. Storhoff, C. A. Mirkin, and R. L. Letsinger, “DNA Directed Synthesis of Binary Nanoparticle Network Materials,” J. Am. Chem. Soc. 120(48), 12674–12675 (1998).
[Crossref]

Miroshnichenko, A. E.

M. Rahmani, A. E. Miroshnichenko, D. Y. Lei, B. Luk’yanchuk, M. I. Tribelsky, A. I. Kuznetsov, Y. S. Kivshar, Y. Francescato, V. Giannini, M. Hong, and S. A. Maier, “Beyond the hybridization effects in plasmonic nanoclusters: diffraction-induced enhanced absorption and scattering,” Small 10(3), 576–583 (2014).
[Crossref] [PubMed]

Moerner, W. E.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[Crossref] [PubMed]

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B Condens. Matter Mater. Phys. 72(16), 165409 (2005).
[Crossref]

Moreno, L. M.

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and Screening in Monolayer and Multilayer Black Phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
[Crossref] [PubMed]

Morita, A.

M. Baba, F. Izumida, Y. Takeda, and A. Morita, “Preparation of Black Phosphorus Single Crystals by a Completely Closed Bismuth-Flux Method and Their Crystal Morphology,” Jpn. J. Appl. Phys. 28(6), 1019–1022 (1989).
[Crossref]

Mucic, R. C.

R. C. Mucic, J. J. Storhoff, C. A. Mirkin, and R. L. Letsinger, “DNA Directed Synthesis of Binary Nanoparticle Network Materials,” J. Am. Chem. Soc. 120(48), 12674–12675 (1998).
[Crossref]

Mueller, T.

F. H. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref] [PubMed]

Mühlschlegel, P.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant Optical Antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Naik, G. V.

G. V. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi Rapid Res. Lett. 4(10), 295–297 (2010).
[Crossref]

Nili, H.

S. Balendhran, S. Walia, H. Nili, S. Sriram, and M. Bhaskaran, “Elemental Analogues of Graphene: Silicene, Germanene, Stanene, and Phosphorene,” Small 11(6), 640–652 (2015).
[Crossref] [PubMed]

Ou, X.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref] [PubMed]

Oulton, R. F.

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11(7), 573–584 (2012).
[Crossref] [PubMed]

Pan, G. A.

X. Li, B. Deng, X. Wang, S. Chen, M. Vaisman, S. Karato, G. A. Pan, M. L. Lee, J. J Cha, H. Wang, and F. Xia, “Synthesis of thin-film black phosphorus on a flexible substrate,” arXiv. Mater. Sci. 2(3), 031002 (2015).

Pendry, J. B.

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11(7), 573–584 (2012).
[Crossref] [PubMed]

Peng, C.

K. Şendur, W. Challener, and C. Peng, “Ridge waveguide as a near field aperture for high density data storage,” J. Appl. Phys. 96(5), 2743–2752 (2004).
[Crossref]

Plashnitsa, V. V.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Pohl, D. W.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant Optical Antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single Quantum Dot Coupled to a Scanning Optical Antenna: A Tunable Superemitter,” Phys. Rev. Lett. 95(1), 017402 (2005).
[Crossref] [PubMed]

Polini, M.

F. H. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref] [PubMed]

Ponraj, J. S.

S. C. Dhanabalan, J. S. Ponraj, Z. Guo, S. Li, Q. Bao, and H. Zhang, “Emerging Trends in Phosphorene Fabrication towards Next Generation Devices,” Adv. Sci. (Weinh.) 4(6), 1600305 (2017).
[Crossref] [PubMed]

Pumera, M.

Z. Sofer, D. Bouša, J. Luxa, V. Mazanek, and M. Pumera, “Few-layer black phosphorus nanoparticles,” Chem. Commun. (Camb.) 52(8), 1563–1566 (2016).
[Crossref] [PubMed]

Qiao, J.

J. Qiao, X. Kong, Z. X. Hu, F. Yang, and W. Ji, “High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus,” Nat. Commun. 5(1), 4475 (2014).
[Crossref] [PubMed]

Quate, C. F.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[Crossref]

Quidant, R.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101(11), 116805 (2008).
[Crossref] [PubMed]

Rahmani, M.

M. Rahmani, A. E. Miroshnichenko, D. Y. Lei, B. Luk’yanchuk, M. I. Tribelsky, A. I. Kuznetsov, Y. S. Kivshar, Y. Francescato, V. Giannini, M. Hong, and S. A. Maier, “Beyond the hybridization effects in plasmonic nanoclusters: diffraction-induced enhanced absorption and scattering,” Small 10(3), 576–583 (2014).
[Crossref] [PubMed]

Ramasubramaniam, A.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

Ranjit Yonzon, C.

J. C. Riboh, A. J. Haes, A. D. McFarland, C. Ranjit Yonzon, and R. P. Van Duyne, “A Nanoscale Optical Biosensor: Real-Time Immunoassay in Physiological Buffer Enabled by Improved Nanoparticle Adhesion,” J. Phys. Chem. B 107(8), 1772–1780 (2003).
[Crossref]

Riboh, J. C.

J. C. Riboh, A. J. Haes, A. D. McFarland, C. Ranjit Yonzon, and R. P. Van Duyne, “A Nanoscale Optical Biosensor: Real-Time Immunoassay in Physiological Buffer Enabled by Improved Nanoparticle Adhesion,” J. Phys. Chem. B 107(8), 1772–1780 (2003).
[Crossref]

Righini, M.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

Rivas, J. G.

Robinson, R. D.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Rodin, A. S.

A. S. Rodin, A. Carvalho, and A. H. Castro Neto, “Strain-induced gap modification in black phosphorus,” Phys. Rev. Lett. 112(17), 176801 (2014).
[Crossref] [PubMed]

Rogobete, L.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of Single-Molecule Fluorescence Using a Gold Nanoparticle as an Optical Nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[Crossref] [PubMed]

Roldán, R.

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and Screening in Monolayer and Multilayer Black Phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
[Crossref] [PubMed]

Roxworthy, B. J.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref] [PubMed]

Royer, P.

. Ding, R. Bachelot, S. Kostcheev, P. Royer, and R. Espiau de Lamaestre, “Surface Plasmon Resonances in Silver Bowtie Nanoantennas with Varied Bow Angles,” J. Appl. Phys. 108(12), 124314 (2010).
[Crossref]

Ruan, B.

L. Wu, Q. Wang, B. Ruan, J. Zhu, Q. You, X. Dai, and Y. Xiang, “High-Performance Lossy-Mode Resonance Sensor Based on Few-Layer Black Phosphorus,” J. Phys. Chem. C 122(13), 7368–7373 (2018).
[Crossref]

Y. Yang, X. Jiang, B. Ruan, X. Dai, and Y. Xiang, “Tunable optical forces exerted on a black phosphorus coated dielectric particle by a Gaussian beam,” Opt. Mater. Express 8(2), 211–220 (2018).
[Crossref]

Ruoff, R. S.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Salahuddin, S.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Sánchez-Gil, J. A.

Sandoghdar, V.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of Single-Molecule Fluorescence Using a Gold Nanoparticle as an Optical Nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[Crossref] [PubMed]

T. Kalkbrenner, U. Håkanson, A. Schädle, S. Burger, C. Henkel, and V. Sandoghdar, “Optical Microscopy via Spectral Modifications of a Nanoantenna,” Phys. Rev. Lett. 95(20), 200801 (2005).
[Crossref] [PubMed]

Sangwan, V. K.

J. D. Wood, S. A. Wells, D. Jariwala, K. S. Chen, E. Cho, V. K. Sangwan, X. Liu, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Effective Passivation of Exfoliated Black Phosphorus Transistors against Ambient Degradation,” Nano Lett. 14(12), 6964–6970 (2014).
[Crossref] [PubMed]

Santschi, C.

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and Sensing 10 nm Metal Nanoparticles Using Plasmonic Dipole Antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[Crossref] [PubMed]

Schädle, A.

T. Kalkbrenner, U. Håkanson, A. Schädle, S. Burger, C. Henkel, and V. Sandoghdar, “Optical Microscopy via Spectral Modifications of a Nanoantenna,” Phys. Rev. Lett. 95(20), 200801 (2005).
[Crossref] [PubMed]

Schuck, P. J.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[Crossref] [PubMed]

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B Condens. Matter Mater. Phys. 72(16), 165409 (2005).
[Crossref]

Sell, A.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2(4), 230–233 (2008).
[Crossref]

Sendur, K.

K. Şendur, W. Challener, and C. Peng, “Ridge waveguide as a near field aperture for high density data storage,” J. Appl. Phys. 96(5), 2743–2752 (2004).
[Crossref]

Shan, J.

Z. Wang, H. Jia, X. Zheng, R. Yang, Z. Wang, G. J. Ye, X. H. Chen, J. Shan, and P. X. L. Feng, “Black phosphorus nanoelectromechanical resonators vibrating at very high frequencies,” Nanoscale 7(3), 877–884 (2015).
[Crossref] [PubMed]

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Shi, L.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Sofer, Z.

Z. Sofer, D. Bouša, J. Luxa, V. Mazanek, and M. Pumera, “Few-layer black phosphorus nanoparticles,” Chem. Commun. (Camb.) 52(8), 1563–1566 (2016).
[Crossref] [PubMed]

Soklaski, R.

V. Tran, R. Soklaski, Y. Liang, and L. Yang, “Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus,” Phys. Rev. B Condens. Matter Mater. Phys. 89(23), 235319 (2014).
[Crossref]

Song, H.

H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26(17), 2737–2743 (2014).
[Crossref] [PubMed]

Song, X.

Soukoulis, C. M.

P. Tassin, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics,” Nat. Photonics 6(4), 259–264 (2012).
[Crossref]

Spencer, M. G.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Sriram, S.

S. Balendhran, S. Walia, H. Nili, S. Sriram, and M. Bhaskaran, “Elemental Analogues of Graphene: Silicene, Germanene, Stanene, and Phosphorene,” Small 11(6), 640–652 (2015).
[Crossref] [PubMed]

Storhoff, J. J.

R. C. Mucic, J. J. Storhoff, C. A. Mirkin, and R. L. Letsinger, “DNA Directed Synthesis of Binary Nanoparticle Network Materials,” J. Am. Chem. Soc. 120(48), 12674–12675 (1998).
[Crossref]

Strano, M. S.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

Sun, J.

J. Sun, G. Zheng, H. W. Lee, N. Liu, H. Wang, H. Yao, W. Yang, and Y. Cui, “Formation of Stable Phosphorus-Carbon Bond for Enhanced Performance in Black Phosphorus Nanoparticle-Graphite Composite Battery Anodes,” Nano Lett. 14(8), 4573–4580 (2014).
[Crossref] [PubMed]

Sundaramurthy, A.

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B Condens. Matter Mater. Phys. 72(16), 165409 (2005).
[Crossref]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[Crossref] [PubMed]

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[Crossref]

Takamura, Y.

H. M. Hiep, T. Endo, K. Kerman, M. Chikae, D.-K. Kim, S. Yamamura, Y. Takamura, and E. Tamiya, “A Localized Surface Plasmon Resonance Based Immunosensor for the Detection of Casein in Milk,” Sci. Technol. Adv. Mater. 8(4), 331–338 (2007).
[Crossref]

Takeda, Y.

M. Baba, F. Izumida, Y. Takeda, and A. Morita, “Preparation of Black Phosphorus Single Crystals by a Completely Closed Bismuth-Flux Method and Their Crystal Morphology,” Jpn. J. Appl. Phys. 28(6), 1019–1022 (1989).
[Crossref]

Taminiau, T. H.

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101(11), 116805 (2008).
[Crossref] [PubMed]

Tamiya, E.

H. M. Hiep, T. Endo, K. Kerman, M. Chikae, D.-K. Kim, S. Yamamura, Y. Takamura, and E. Tamiya, “A Localized Surface Plasmon Resonance Based Immunosensor for the Detection of Casein in Milk,” Sci. Technol. Adv. Mater. 8(4), 331–338 (2007).
[Crossref]

Tang, D.

Tassin, P.

P. Tassin, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics,” Nat. Photonics 6(4), 259–264 (2012).
[Crossref]

Terrones, M.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Toussaint, K. C.

H. Chen, A. M. Bhuiya, R. Liu, D. Wasserman, and K. C. Toussaint, “Design, Fabrication, and Characterization of Near-IR Gold Bowtie Nanoantenna Arrays,” J. Phys. Chem. C 118(35), 20553–20558 (2014).
[Crossref]

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref] [PubMed]

Tran, V.

V. Tran, R. Soklaski, Y. Liang, and L. Yang, “Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus,” Phys. Rev. B Condens. Matter Mater. Phys. 89(23), 235319 (2014).
[Crossref]

Tribelsky, M. I.

M. Rahmani, A. E. Miroshnichenko, D. Y. Lei, B. Luk’yanchuk, M. I. Tribelsky, A. I. Kuznetsov, Y. S. Kivshar, Y. Francescato, V. Giannini, M. Hong, and S. A. Maier, “Beyond the hybridization effects in plasmonic nanoclusters: diffraction-induced enhanced absorption and scattering,” Small 10(3), 576–583 (2014).
[Crossref] [PubMed]

Tsakmakidis, K. L.

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11(7), 573–584 (2012).
[Crossref] [PubMed]

Tseng, A. A.

A. A. Tseng, K. Chen, C. D. Chen, and K. J. Ma, “Electron beam lithography in nanoscale fabrication: recent development,” IEEE Trans. Electron. Packag. Manuf. 26(2), 141–149 (2003).
[Crossref]

Tsiatmas, A.

A. Tsiatmas, A. R. Buckingham, V. A. Fedotov, S. Wang, Y. Chen, P. A. J. de Groot, and N. I. Zheludev, “Superconducting plasmonics and extraordinary transmission,” Appl. Phys. Lett. 97(11), 111106 (2010).
[Crossref]

Uppuluri, S. M.

L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography Using High Transmission Nanoscale Bowtie Apertures,” Nano Lett. 6(3), 361–364 (2006).
[Crossref] [PubMed]

Vaisman, M.

X. Li, B. Deng, X. Wang, S. Chen, M. Vaisman, S. Karato, G. A. Pan, M. L. Lee, J. J Cha, H. Wang, and F. Xia, “Synthesis of thin-film black phosphorus on a flexible substrate,” arXiv. Mater. Sci. 2(3), 031002 (2015).

Van Duyne, R. P.

J. C. Riboh, A. J. Haes, A. D. McFarland, C. Ranjit Yonzon, and R. P. Van Duyne, “A Nanoscale Optical Biosensor: Real-Time Immunoassay in Physiological Buffer Enabled by Improved Nanoparticle Adhesion,” J. Phys. Chem. B 107(8), 1772–1780 (2003).
[Crossref]

van Hulst, N. F.

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101(11), 116805 (2008).
[Crossref] [PubMed]

Vitiello, M. S.

F. H. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref] [PubMed]

Walia, S.

S. Balendhran, S. Walia, H. Nili, S. Sriram, and M. Bhaskaran, “Elemental Analogues of Graphene: Silicene, Germanene, Stanene, and Phosphorene,” Small 11(6), 640–652 (2015).
[Crossref] [PubMed]

Wang, H.

X. Li, B. Deng, X. Wang, S. Chen, M. Vaisman, S. Karato, G. A. Pan, M. L. Lee, J. J Cha, H. Wang, and F. Xia, “Synthesis of thin-film black phosphorus on a flexible substrate,” arXiv. Mater. Sci. 2(3), 031002 (2015).

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and Screening in Monolayer and Multilayer Black Phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
[Crossref] [PubMed]

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

F. Xia, H. Wang, and Y. Jia, “Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics,” Nat. Commun. 5(1), 4458 (2014).
[Crossref] [PubMed]

J. Sun, G. Zheng, H. W. Lee, N. Liu, H. Wang, H. Yao, W. Yang, and Y. Cui, “Formation of Stable Phosphorus-Carbon Bond for Enhanced Performance in Black Phosphorus Nanoparticle-Graphite Composite Battery Anodes,” Nano Lett. 14(8), 4573–4580 (2014).
[Crossref] [PubMed]

Wang, J.

G. Li, X. Chen, L. Huang, J. Wang, W. Hu, and W. Lu, “The localized near-field enhancement of metallic periodic bowtie structure: An oscillating dipoles picture,” Physica B 407(12), 2223–2228 (2012).
[Crossref]

Wang, L.

L. Wang and X. Xu, “High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging,” Appl. Phys. Lett. 90(26), 261105 (2007).
[Crossref]

L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography Using High Transmission Nanoscale Bowtie Apertures,” Nano Lett. 6(3), 361–364 (2006).
[Crossref] [PubMed]

Wang, Q.

L. Wu, Q. Wang, B. Ruan, J. Zhu, Q. You, X. Dai, and Y. Xiang, “High-Performance Lossy-Mode Resonance Sensor Based on Few-Layer Black Phosphorus,” J. Phys. Chem. C 122(13), 7368–7373 (2018).
[Crossref]

L. Wu, J. Guo, Q. Wang, S. Lu, X. Dai, Y. Xiang, and D. Fan, “Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor,” Sens. Actuators B Chem. 249, 542–548 (2017).
[Crossref]

Wang, Q. H.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

Wang, S.

A. Tsiatmas, A. R. Buckingham, V. A. Fedotov, S. Wang, Y. Chen, P. A. J. de Groot, and N. I. Zheludev, “Superconducting plasmonics and extraordinary transmission,” Appl. Phys. Lett. 97(11), 111106 (2010).
[Crossref]

Wang, X.

X. Wang, Q. Ma, L. Wu, J. Guo, S. Lu, X. Dai, and Y. Xiang, “Tunable terahertz/infrared coherent perfect absorption in a monolayer black phosphorus,” Opt. Express 26(5), 5488–5496 (2018).
[Crossref] [PubMed]

X. Li, B. Deng, X. Wang, S. Chen, M. Vaisman, S. Karato, G. A. Pan, M. L. Lee, J. J Cha, H. Wang, and F. Xia, “Synthesis of thin-film black phosphorus on a flexible substrate,” arXiv. Mater. Sci. 2(3), 031002 (2015).

Wang, Z.

Z. Wang, H. Jia, X. Zheng, R. Yang, Z. Wang, G. J. Ye, X. H. Chen, J. Shan, and P. X. L. Feng, “Black phosphorus nanoelectromechanical resonators vibrating at very high frequencies,” Nanoscale 7(3), 877–884 (2015).
[Crossref] [PubMed]

Z. Wang, H. Jia, X. Zheng, R. Yang, Z. Wang, G. J. Ye, X. H. Chen, J. Shan, and P. X. L. Feng, “Black phosphorus nanoelectromechanical resonators vibrating at very high frequencies,” Nanoscale 7(3), 877–884 (2015).
[Crossref] [PubMed]

Wasserman, D.

H. Chen, A. M. Bhuiya, R. Liu, D. Wasserman, and K. C. Toussaint, “Design, Fabrication, and Characterization of Near-IR Gold Bowtie Nanoantenna Arrays,” J. Phys. Chem. C 118(35), 20553–20558 (2014).
[Crossref]

Wells, S. A.

J. D. Wood, S. A. Wells, D. Jariwala, K. S. Chen, E. Cho, V. K. Sangwan, X. Liu, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Effective Passivation of Exfoliated Black Phosphorus Transistors against Ambient Degradation,” Nano Lett. 14(12), 6964–6970 (2014).
[Crossref] [PubMed]

Windl, W.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Wood, J. D.

J. D. Wood, S. A. Wells, D. Jariwala, K. S. Chen, E. Cho, V. K. Sangwan, X. Liu, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Effective Passivation of Exfoliated Black Phosphorus Transistors against Ambient Degradation,” Nano Lett. 14(12), 6964–6970 (2014).
[Crossref] [PubMed]

Wu, H.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref] [PubMed]

Wu, L.

L. Wu, Q. Wang, B. Ruan, J. Zhu, Q. You, X. Dai, and Y. Xiang, “High-Performance Lossy-Mode Resonance Sensor Based on Few-Layer Black Phosphorus,” J. Phys. Chem. C 122(13), 7368–7373 (2018).
[Crossref]

X. Wang, Q. Ma, L. Wu, J. Guo, S. Lu, X. Dai, and Y. Xiang, “Tunable terahertz/infrared coherent perfect absorption in a monolayer black phosphorus,” Opt. Express 26(5), 5488–5496 (2018).
[Crossref] [PubMed]

L. Wu, J. Guo, Q. Wang, S. Lu, X. Dai, Y. Xiang, and D. Fan, “Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor,” Sens. Actuators B Chem. 249, 542–548 (2017).
[Crossref]

Xia, F.

X. Li, B. Deng, X. Wang, S. Chen, M. Vaisman, S. Karato, G. A. Pan, M. L. Lee, J. J Cha, H. Wang, and F. Xia, “Synthesis of thin-film black phosphorus on a flexible substrate,” arXiv. Mater. Sci. 2(3), 031002 (2015).

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and Screening in Monolayer and Multilayer Black Phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
[Crossref] [PubMed]

F. Xia, H. Wang, and Y. Jia, “Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics,” Nat. Commun. 5(1), 4458 (2014).
[Crossref] [PubMed]

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

Xiang, Y.

L. Wu, Q. Wang, B. Ruan, J. Zhu, Q. You, X. Dai, and Y. Xiang, “High-Performance Lossy-Mode Resonance Sensor Based on Few-Layer Black Phosphorus,” J. Phys. Chem. C 122(13), 7368–7373 (2018).
[Crossref]

X. Song, Z. Liu, Y. Xiang, and K. Aydin, “Biaxial hyperbolic metamaterials using anisotropic few-layer black phosphorus,” Opt. Express 26(5), 5469–5477 (2018).
[Crossref] [PubMed]

Y. Yang, X. Jiang, B. Ruan, X. Dai, and Y. Xiang, “Tunable optical forces exerted on a black phosphorus coated dielectric particle by a Gaussian beam,” Opt. Mater. Express 8(2), 211–220 (2018).
[Crossref]

X. Wang, Q. Ma, L. Wu, J. Guo, S. Lu, X. Dai, and Y. Xiang, “Tunable terahertz/infrared coherent perfect absorption in a monolayer black phosphorus,” Opt. Express 26(5), 5488–5496 (2018).
[Crossref] [PubMed]

L. Wu, J. Guo, Q. Wang, S. Lu, X. Dai, Y. Xiang, and D. Fan, “Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor,” Sens. Actuators B Chem. 249, 542–548 (2017).
[Crossref]

Xiao, D.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

Xu, H.

H. Xu and M. Käll, “Surface-Plasmon-Enhanced Optical Forces in Silver Nanoaggregates,” Phys. Rev. Lett. 89(24), 246802 (2002).
[Crossref] [PubMed]

Xu, X.

J. Ma, S. Lu, Z. Guo, X. Xu, H. Zhang, D. Tang, and D. Fan, “Few-layer black phosphorus based saturable absorber mirror for pulsed solid-state lasers,” Opt. Express 23(17), 22643–22648 (2015).
[Crossref] [PubMed]

Y. Chen, J. Chen, X. Xu, and J. Chu, “Fabrication of bowtie aperture antennas for producing sub-20 nm optical spots,” Opt. Express 23(7), 9093–9099 (2015).
[Crossref] [PubMed]

L. Wang and X. Xu, “High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging,” Appl. Phys. Lett. 90(26), 261105 (2007).
[Crossref]

L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography Using High Transmission Nanoscale Bowtie Apertures,” Nano Lett. 6(3), 361–364 (2006).
[Crossref] [PubMed]

Yamamura, S.

H. M. Hiep, T. Endo, K. Kerman, M. Chikae, D.-K. Kim, S. Yamamura, Y. Takamura, and E. Tamiya, “A Localized Surface Plasmon Resonance Based Immunosensor for the Detection of Casein in Milk,” Sci. Technol. Adv. Mater. 8(4), 331–338 (2007).
[Crossref]

Yang, F.

J. Qiao, X. Kong, Z. X. Hu, F. Yang, and W. Ji, “High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus,” Nat. Commun. 5(1), 4475 (2014).
[Crossref] [PubMed]

Yang, L.

R. Fei and L. Yang, “Strain-Engineering the Anisotropic Electrical Conductance of Few-Layer Black phosphorus,” Nano Lett. 14(5), 2884–2889 (2014).
[Crossref] [PubMed]

V. Tran, R. Soklaski, Y. Liang, and L. Yang, “Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus,” Phys. Rev. B Condens. Matter Mater. Phys. 89(23), 235319 (2014).
[Crossref]

Yang, Q.

G. Du, Q. Yang, F. Chen, Y. Lu, H. Bian, J. Yong, and X. Hou, “Localized surface plasmon resonances in core-embedded heterogeneous nano-bowtie antenna,” Appl. Phys. B 120(1), 47–51 (2015).
[Crossref]

Yang, R.

Z. Wang, H. Jia, X. Zheng, R. Yang, Z. Wang, G. J. Ye, X. H. Chen, J. Shan, and P. X. L. Feng, “Black phosphorus nanoelectromechanical resonators vibrating at very high frequencies,” Nanoscale 7(3), 877–884 (2015).
[Crossref] [PubMed]

Yang, W.

J. Sun, G. Zheng, H. W. Lee, N. Liu, H. Wang, H. Yao, W. Yang, and Y. Cui, “Formation of Stable Phosphorus-Carbon Bond for Enhanced Performance in Black Phosphorus Nanoparticle-Graphite Composite Battery Anodes,” Nano Lett. 14(8), 4573–4580 (2014).
[Crossref] [PubMed]

Yang, Y.

Yao, H.

J. Sun, G. Zheng, H. W. Lee, N. Liu, H. Wang, H. Yao, W. Yang, and Y. Cui, “Formation of Stable Phosphorus-Carbon Bond for Enhanced Performance in Black Phosphorus Nanoparticle-Graphite Composite Battery Anodes,” Nano Lett. 14(8), 4573–4580 (2014).
[Crossref] [PubMed]

Ye, G. J.

Z. Wang, H. Jia, X. Zheng, R. Yang, Z. Wang, G. J. Ye, X. H. Chen, J. Shan, and P. X. L. Feng, “Black phosphorus nanoelectromechanical resonators vibrating at very high frequencies,” Nanoscale 7(3), 877–884 (2015).
[Crossref] [PubMed]

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref] [PubMed]

Ye, P. D.

Y. Du, H. Liu, Y. Deng, and P. D. Ye, “Device perspective for black phosphorus field-effect transistors: contact resistance, ambipolar behavior, and scaling,” ACS Nano 8(10), 10035–10042 (2014).
[Crossref] [PubMed]

Yong, J.

G. Du, Q. Yang, F. Chen, Y. Lu, H. Bian, J. Yong, and X. Hou, “Localized surface plasmon resonances in core-embedded heterogeneous nano-bowtie antenna,” Appl. Phys. B 120(1), 47–51 (2015).
[Crossref]

You, Q.

L. Wu, Q. Wang, B. Ruan, J. Zhu, Q. You, X. Dai, and Y. Xiang, “High-Performance Lossy-Mode Resonance Sensor Based on Few-Layer Black Phosphorus,” J. Phys. Chem. C 122(13), 7368–7373 (2018).
[Crossref]

Yu, Y.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref] [PubMed]

Zeng, X.

H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26(17), 2737–2743 (2014).
[Crossref] [PubMed]

Zhai, B.

J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black Phosphorus: A Two-Dimension Saturable Absorption Material for Mid-Infrared Q-Switched and Mode-Locked Fiber Lasers,” Sci. Rep. 6(1), 30361 (2016).
[Crossref] [PubMed]

Zhang, H.

S. C. Dhanabalan, J. S. Ponraj, Z. Guo, S. Li, Q. Bao, and H. Zhang, “Emerging Trends in Phosphorene Fabrication towards Next Generation Devices,” Adv. Sci. (Weinh.) 4(6), 1600305 (2017).
[Crossref] [PubMed]

J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black Phosphorus: A Two-Dimension Saturable Absorption Material for Mid-Infrared Q-Switched and Mode-Locked Fiber Lasers,” Sci. Rep. 6(1), 30361 (2016).
[Crossref] [PubMed]

J. Ma, S. Lu, Z. Guo, X. Xu, H. Zhang, D. Tang, and D. Fan, “Few-layer black phosphorus based saturable absorber mirror for pulsed solid-state lasers,” Opt. Express 23(17), 22643–22648 (2015).
[Crossref] [PubMed]

Zhang, J.

J. Zhang, M. Irannejad, and B. Cui, “Bowtie Nanoantenna with Single-Digit Nanometer Gap for Surface-Enhanced Raman Scattering (SERS),” Plasmonics 10(4), 831–837 (2015).
[Crossref]

Zhang, N.

H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26(17), 2737–2743 (2014).
[Crossref] [PubMed]

Zhang, W.

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and Sensing 10 nm Metal Nanoparticles Using Plasmonic Dipole Antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[Crossref] [PubMed]

Zhang, Y.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref] [PubMed]

Zheludev, N. I.

A. Tsiatmas, A. R. Buckingham, V. A. Fedotov, S. Wang, Y. Chen, P. A. J. de Groot, and N. I. Zheludev, “Superconducting plasmonics and extraordinary transmission,” Appl. Phys. Lett. 97(11), 111106 (2010).
[Crossref]

Zheng, G.

J. Sun, G. Zheng, H. W. Lee, N. Liu, H. Wang, H. Yao, W. Yang, and Y. Cui, “Formation of Stable Phosphorus-Carbon Bond for Enhanced Performance in Black Phosphorus Nanoparticle-Graphite Composite Battery Anodes,” Nano Lett. 14(8), 4573–4580 (2014).
[Crossref] [PubMed]

Zheng, X.

Z. Wang, H. Jia, X. Zheng, R. Yang, Z. Wang, G. J. Ye, X. H. Chen, J. Shan, and P. X. L. Feng, “Black phosphorus nanoelectromechanical resonators vibrating at very high frequencies,” Nanoscale 7(3), 877–884 (2015).
[Crossref] [PubMed]

Zhu, J.

L. Wu, Q. Wang, B. Ruan, J. Zhu, Q. You, X. Dai, and Y. Xiang, “High-Performance Lossy-Mode Resonance Sensor Based on Few-Layer Black Phosphorus,” J. Phys. Chem. C 122(13), 7368–7373 (2018).
[Crossref]

Zuschlag, A.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2(4), 230–233 (2008).
[Crossref]

ACS Nano (2)

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Y. Du, H. Liu, Y. Deng, and P. D. Ye, “Device perspective for black phosphorus field-effect transistors: contact resistance, ambipolar behavior, and scaling,” ACS Nano 8(10), 10035–10042 (2014).
[Crossref] [PubMed]

Adv. Mater. (1)

H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26(17), 2737–2743 (2014).
[Crossref] [PubMed]

Adv. Sci. (Weinh.) (1)

S. C. Dhanabalan, J. S. Ponraj, Z. Guo, S. Li, Q. Bao, and H. Zhang, “Emerging Trends in Phosphorene Fabrication towards Next Generation Devices,” Adv. Sci. (Weinh.) 4(6), 1600305 (2017).
[Crossref] [PubMed]

Appl. Phys. B (1)

G. Du, Q. Yang, F. Chen, Y. Lu, H. Bian, J. Yong, and X. Hou, “Localized surface plasmon resonances in core-embedded heterogeneous nano-bowtie antenna,” Appl. Phys. B 120(1), 47–51 (2015).
[Crossref]

Appl. Phys. Lett. (2)

L. Wang and X. Xu, “High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging,” Appl. Phys. Lett. 90(26), 261105 (2007).
[Crossref]

A. Tsiatmas, A. R. Buckingham, V. A. Fedotov, S. Wang, Y. Chen, P. A. J. de Groot, and N. I. Zheludev, “Superconducting plasmonics and extraordinary transmission,” Appl. Phys. Lett. 97(11), 111106 (2010).
[Crossref]

arXiv. Mater. Sci. (1)

X. Li, B. Deng, X. Wang, S. Chen, M. Vaisman, S. Karato, G. A. Pan, M. L. Lee, J. J Cha, H. Wang, and F. Xia, “Synthesis of thin-film black phosphorus on a flexible substrate,” arXiv. Mater. Sci. 2(3), 031002 (2015).

Chem. Commun. (Camb.) (1)

Z. Sofer, D. Bouša, J. Luxa, V. Mazanek, and M. Pumera, “Few-layer black phosphorus nanoparticles,” Chem. Commun. (Camb.) 52(8), 1563–1566 (2016).
[Crossref] [PubMed]

IEEE Trans. Electron. Packag. Manuf. (1)

A. A. Tseng, K. Chen, C. D. Chen, and K. J. Ma, “Electron beam lithography in nanoscale fabrication: recent development,” IEEE Trans. Electron. Packag. Manuf. 26(2), 141–149 (2003).
[Crossref]

J. Am. Chem. Soc. (1)

R. C. Mucic, J. J. Storhoff, C. A. Mirkin, and R. L. Letsinger, “DNA Directed Synthesis of Binary Nanoparticle Network Materials,” J. Am. Chem. Soc. 120(48), 12674–12675 (1998).
[Crossref]

J. Appl. Phys. (3)

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[Crossref]

. Ding, R. Bachelot, S. Kostcheev, P. Royer, and R. Espiau de Lamaestre, “Surface Plasmon Resonances in Silver Bowtie Nanoantennas with Varied Bow Angles,” J. Appl. Phys. 108(12), 124314 (2010).
[Crossref]

K. Şendur, W. Challener, and C. Peng, “Ridge waveguide as a near field aperture for high density data storage,” J. Appl. Phys. 96(5), 2743–2752 (2004).
[Crossref]

J. Phys. Chem. B (1)

J. C. Riboh, A. J. Haes, A. D. McFarland, C. Ranjit Yonzon, and R. P. Van Duyne, “A Nanoscale Optical Biosensor: Real-Time Immunoassay in Physiological Buffer Enabled by Improved Nanoparticle Adhesion,” J. Phys. Chem. B 107(8), 1772–1780 (2003).
[Crossref]

J. Phys. Chem. C (2)

L. Wu, Q. Wang, B. Ruan, J. Zhu, Q. You, X. Dai, and Y. Xiang, “High-Performance Lossy-Mode Resonance Sensor Based on Few-Layer Black Phosphorus,” J. Phys. Chem. C 122(13), 7368–7373 (2018).
[Crossref]

H. Chen, A. M. Bhuiya, R. Liu, D. Wasserman, and K. C. Toussaint, “Design, Fabrication, and Characterization of Near-IR Gold Bowtie Nanoantenna Arrays,” J. Phys. Chem. C 118(35), 20553–20558 (2014).
[Crossref]

Jpn. J. Appl. Phys. (1)

M. Baba, F. Izumida, Y. Takeda, and A. Morita, “Preparation of Black Phosphorus Single Crystals by a Completely Closed Bismuth-Flux Method and Their Crystal Morphology,” Jpn. J. Appl. Phys. 28(6), 1019–1022 (1989).
[Crossref]

Nano Lett. (7)

J. Sun, G. Zheng, H. W. Lee, N. Liu, H. Wang, H. Yao, W. Yang, and Y. Cui, “Formation of Stable Phosphorus-Carbon Bond for Enhanced Performance in Black Phosphorus Nanoparticle-Graphite Composite Battery Anodes,” Nano Lett. 14(8), 4573–4580 (2014).
[Crossref] [PubMed]

Z. Liu and K. Aydin, “Localized Surface Plasmons in Nanostructured Monolayer Black Phosphorus,” Nano Lett. 16(6), 3457–3462 (2016).
[Crossref] [PubMed]

J. D. Wood, S. A. Wells, D. Jariwala, K. S. Chen, E. Cho, V. K. Sangwan, X. Liu, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Effective Passivation of Exfoliated Black Phosphorus Transistors against Ambient Degradation,” Nano Lett. 14(12), 6964–6970 (2014).
[Crossref] [PubMed]

R. Fei and L. Yang, “Strain-Engineering the Anisotropic Electrical Conductance of Few-Layer Black phosphorus,” Nano Lett. 14(5), 2884–2889 (2014).
[Crossref] [PubMed]

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref] [PubMed]

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and Sensing 10 nm Metal Nanoparticles Using Plasmonic Dipole Antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[Crossref] [PubMed]

L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography Using High Transmission Nanoscale Bowtie Apertures,” Nano Lett. 6(3), 361–364 (2006).
[Crossref] [PubMed]

Nanoscale (1)

Z. Wang, H. Jia, X. Zheng, R. Yang, Z. Wang, G. J. Ye, X. H. Chen, J. Shan, and P. X. L. Feng, “Black phosphorus nanoelectromechanical resonators vibrating at very high frequencies,” Nanoscale 7(3), 877–884 (2015).
[Crossref] [PubMed]

Nat. Commun. (2)

J. Qiao, X. Kong, Z. X. Hu, F. Yang, and W. Ji, “High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus,” Nat. Commun. 5(1), 4475 (2014).
[Crossref] [PubMed]

F. Xia, H. Wang, and Y. Jia, “Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics,” Nat. Commun. 5(1), 4458 (2014).
[Crossref] [PubMed]

Nat. Mater. (1)

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11(7), 573–584 (2012).
[Crossref] [PubMed]

Nat. Nanotechnol. (3)

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

F. H. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref] [PubMed]

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref] [PubMed]

Nat. Photonics (5)

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

P. Tassin, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics,” Nat. Photonics 6(4), 259–264 (2012).
[Crossref]

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2(4), 230–233 (2008).
[Crossref]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

Opt. Express (6)

Opt. Mater. Express (1)

Phys. Rev. B Condens. Matter Mater. Phys. (2)

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B Condens. Matter Mater. Phys. 72(16), 165409 (2005).
[Crossref]

V. Tran, R. Soklaski, Y. Liang, and L. Yang, “Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus,” Phys. Rev. B Condens. Matter Mater. Phys. 89(23), 235319 (2014).
[Crossref]

Phys. Rev. Lett. (8)

A. S. Rodin, A. Carvalho, and A. H. Castro Neto, “Strain-induced gap modification in black phosphorus,” Phys. Rev. Lett. 112(17), 176801 (2014).
[Crossref] [PubMed]

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and Screening in Monolayer and Multilayer Black Phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
[Crossref] [PubMed]

T. Kalkbrenner, U. Håkanson, A. Schädle, S. Burger, C. Henkel, and V. Sandoghdar, “Optical Microscopy via Spectral Modifications of a Nanoantenna,” Phys. Rev. Lett. 95(20), 200801 (2005).
[Crossref] [PubMed]

H. Xu and M. Käll, “Surface-Plasmon-Enhanced Optical Forces in Silver Nanoaggregates,” Phys. Rev. Lett. 89(24), 246802 (2002).
[Crossref] [PubMed]

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single Quantum Dot Coupled to a Scanning Optical Antenna: A Tunable Superemitter,” Phys. Rev. Lett. 95(1), 017402 (2005).
[Crossref] [PubMed]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of Single-Molecule Fluorescence Using a Gold Nanoparticle as an Optical Nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[Crossref] [PubMed]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[Crossref] [PubMed]

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101(11), 116805 (2008).
[Crossref] [PubMed]

Phys. Status Solidi Rapid Res. Lett. (1)

G. V. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi Rapid Res. Lett. 4(10), 295–297 (2010).
[Crossref]

Physica B (1)

G. Li, X. Chen, L. Huang, J. Wang, W. Hu, and W. Lu, “The localized near-field enhancement of metallic periodic bowtie structure: An oscillating dipoles picture,” Physica B 407(12), 2223–2228 (2012).
[Crossref]

Plasmonics (1)

J. Zhang, M. Irannejad, and B. Cui, “Bowtie Nanoantenna with Single-Digit Nanometer Gap for Surface-Enhanced Raman Scattering (SERS),” Plasmonics 10(4), 831–837 (2015).
[Crossref]

Sci. Rep. (1)

J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black Phosphorus: A Two-Dimension Saturable Absorption Material for Mid-Infrared Q-Switched and Mode-Locked Fiber Lasers,” Sci. Rep. 6(1), 30361 (2016).
[Crossref] [PubMed]

Sci. Technol. Adv. Mater. (1)

H. M. Hiep, T. Endo, K. Kerman, M. Chikae, D.-K. Kim, S. Yamamura, Y. Takamura, and E. Tamiya, “A Localized Surface Plasmon Resonance Based Immunosensor for the Detection of Casein in Milk,” Sci. Technol. Adv. Mater. 8(4), 331–338 (2007).
[Crossref]

Science (1)

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant Optical Antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Sens. Actuators B Chem. (1)

L. Wu, J. Guo, Q. Wang, S. Lu, X. Dai, Y. Xiang, and D. Fan, “Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor,” Sens. Actuators B Chem. 249, 542–548 (2017).
[Crossref]

Small (2)

S. Balendhran, S. Walia, H. Nili, S. Sriram, and M. Bhaskaran, “Elemental Analogues of Graphene: Silicene, Germanene, Stanene, and Phosphorene,” Small 11(6), 640–652 (2015).
[Crossref] [PubMed]

M. Rahmani, A. E. Miroshnichenko, D. Y. Lei, B. Luk’yanchuk, M. I. Tribelsky, A. I. Kuznetsov, Y. S. Kivshar, Y. Francescato, V. Giannini, M. Hong, and S. A. Maier, “Beyond the hybridization effects in plasmonic nanoclusters: diffraction-induced enhanced absorption and scattering,” Small 10(3), 576–583 (2014).
[Crossref] [PubMed]

Other (2)

G. Ghosh, Handbook of thermo-optic coefficients of optical materials with applications (Orlando, 1998).

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 A schematic diagram of the proposed bowtie structure. The angle of the bowtie, the gap between the antenna arms, the length of the antenna arm, and the thickness of dielectric layer are denoted by θ, g, L, and t, respectively.
Fig. 2
Fig. 2 Modeled the absorption spectra as a function of the dielectric thickness with θ = 100°, g = 10nm, and L = 100nm, respectively. (a) x-polarized light, (b) y-polarized light. Electric field intensity distributions with two fixed thicknesses for y case. (c) t = 5.7μm, (d) t = 11.4μm. Inset of (c) is the side view of the bowtie structure.
Fig. 3
Fig. 3 Modeled the absorption spectrum as a function of the bow angle, θ. (a) x-polarized light, (b) y-polarized light. L and g are fixed at 100nm and 10nm, respectively.
Fig. 4
Fig. 4 (a)-(c) Normalized field distributions for different θ at corresponding wavelengths of 31.8/23.6/29.7μm for x-polarized light. (d)-(f) Normalized field distributions for different θ at corresponding wavelengths of 24.4/30.3/38.3μm for y-polarized light. (g) Normalized field distributions at X-Z plane for x-polarized light. The distributions of the Poynting vector for (h) x-polarized and (i) y-polarized incidences, respectively. The color of the arrows indicates the power intensity.
Fig. 5
Fig. 5 Modeled the absorption spectrum as a function of the gap, g. (a) x-polarized light, (b) y-polarized light. θ and L are fixed at 90° and 100nm, respectively.
Fig. 6
Fig. 6 (a)-(c) Normalized field distributions for different g at corresponding wavelengths of 34.7/33.8/34.7μm for y-polarized light. (d) and (e) show the normalized field distributions for different g at corresponding wavelengths of 28.4/28.1 for x-polarized light. (f) The distribution of the Poynting vector at g = 8nm for x-polarized light. The color of the arrows indicates the power intensity.
Fig. 7
Fig. 7 Modeled the absorption spectrum as a function of the length of the antenna arm, L. (a) x-polarized light, (b) y-polarized light. g is set as 10nm and the distance between two edges is set as 280nm.
Fig. 8
Fig. 8 (a)-(c) Normalized field distributions for different L at corresponding wavelengths of 32.6/31.8/31.4μm for x-polarized light. (d)-(f) show the normalized field distributions for different L at corresponding wavelengths of 45.5/44.0/42.6μm for y-polarized light.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ε j = ε r + i σ j ε 0 ωa .
ω p,j ( q )= ( D j / 2π ε 0 k )q , D j =π e 2 i n i m j i ,

Metrics