Abstract

Longitudinally polarized optical needles are beams that exhibit ultra-long depth of field, subwavelength transverse confinement, and polarization oriented along the longitudinal direction. Although several techniques have been proposed to generate such needles, their scarce experimental observations have been indirect and incomplete. Here, we demonstrate the creation and full three-dimensional verification of a longitudinally polarized optical needle. This needle is produced by generating a radially polarized Bessel-Gauss beam at the focus of a high numerical aperture microscope objective. Using three-dimensional spatial mapping of second-harmonic generation from a single vertically aligned GaAs nanowire, we directly verify such a longitudinally polarized optical needle’s properties, which are formed at the focus. The needle exhibits a dominant polarization, which is oriented along the longitudinal direction, an ultra-long depth of field (30 λ), and high spatial homogeneity. These are in agreement with corresponding focal field calculations that use vector diffraction theory. Our findings open new opportunities for manipulation and utilization of longitudinally polarized optical needles.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Nonlinear microscopy using cylindrical vector beams: Applications to three-dimensional imaging of nanostructures

Godofredo Bautista, Joona-Pekko Kakko, Veer Dhaka, Xiaorun Zang, Lasse Karvonen, Hua Jiang, Esko Kauppinen, Harri Lipsanen, and Martti Kauranen
Opt. Express 25(11) 12463-12468 (2017)

Nonlinear imaging of nanostructures using beams with binary phase modulation

Léo Turquet, Joona-Pekko Kakko, Hua Jiang, Tero J. Isotalo, Teppo Huhtio, Tapio Niemi, Esko Kauppinen, Harri Lipsanen, Martti Kauranen, and Godofredo Bautista
Opt. Express 25(9) 10441-10448 (2017)

Effects of surface plasmon polariton-mediated interactions on second harmonic generation from assemblies of pyramidal metallic nano-cavities

Radoslaw Kolkowski, Justyna Szeszko, Benjamin Dwir, Eli Kapon, and Joseph Zyss
Opt. Express 22(25) 30592-30606 (2014)

References

  • View by:
  • |
  • |
  • |

  1. Z. Bouchal and M. Olivík, “Non-diffractive vector Bessel beams,” J. Mod. Opt. 42(8), 1555–1566 (1995).
    [Crossref]
  2. R. H. Jordan and D. G. Hall, “Free-space azimuthal paraxial wave equation: the azimuthal Bessel-Gauss beam solution,” Opt. Lett. 19(7), 427–429 (1994).
    [Crossref] [PubMed]
  3. C. J. R. Sheppard and T. Wilson, “Gaussian-beam theory of lenses with annular aperture,” IEE J. Microwaves, Opt. Acoust. 2(4), 105 (1978).
    [Crossref]
  4. J. Durnin, J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
    [Crossref] [PubMed]
  5. J. Durnin, “Exact solutions for nondiffracting beams I The scalar theory,” J. Opt. Soc. Am. A 4(4), 651–654 (1987).
    [Crossref]
  6. A. Dudley, Y. Li, T. Mhlanga, M. Escuti, and A. Forbes, “Generating and measuring nondiffracting vector Bessel beams,” Opt. Lett. 38(17), 3429–3432 (2013).
    [Crossref] [PubMed]
  7. G. Wu, F. Wang, and Y. Cai, “Generation and self-healing of a radially polarized Bessel-Gauss beam,” Phys. Rev. A 89(4), 043807 (2014).
    [Crossref]
  8. Y. Zhang, L. Wang, and C. Zheng, “Vector propagation of radially polarized Gaussian beams diffracted by an axicon,” J. Opt. Soc. Am. A 22(11), 2542–2546 (2005).
    [Crossref] [PubMed]
  9. D. N. Schimpf, W. P. Putnam, M. D. W. Grogan, S. Ramachandran, and F. X. Kärtner, “Radially polarized Bessel-Gauss beams: decentered Gaussian beam analysis and experimental verification,” Opt. Express 21(15), 18469–18483 (2013).
    [Crossref] [PubMed]
  10. S. Vyas, Y. Kozawa, and S. Sato, “Generation of radially polarized Bessel-Gaussian beams from c-cut Nd:YVO4 laser,” Opt. Lett. 39(4), 1101–1104 (2014).
    [Crossref] [PubMed]
  11. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
    [Crossref]
  12. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2012).
  13. K. Youngworth and T. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000).
    [Crossref] [PubMed]
  14. Q. Zhan and J. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express 10(7), 324–331 (2002).
    [Crossref] [PubMed]
  15. H. Dehez, A. April, and M. Piché, “Needles of longitudinally polarized light: guidelines for minimum spot size and tunable axial extent,” Opt. Express 20(14), 14891–14905 (2012).
    [Crossref] [PubMed]
  16. T. G. Brown, “Unconventional polarization states: beam propagation, focusing, and imaging,” Prog. Opt. 56, 81–129 (2011).
    [Crossref]
  17. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
    [Crossref] [PubMed]
  18. G. Bautista and M. Kauranen, “Vector-field nonlinear microscopy of nanostructures,” ACS Photonics 3(8), 1351–1370 (2016).
    [Crossref]
  19. F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics 4(11), 780–785 (2010).
    [Crossref]
  20. C. J. Sheppard and T. Wilson, “Depth of field in the scanning microscope,” Opt. Lett. 3(3), 115–117 (1978).
    [Crossref] [PubMed]
  21. N. Vuillemin, P. Mahou, D. Débarre, T. Gacoin, P.-L. Tharaux, M.-C. Schanne-Klein, W. Supatto, and E. Beaurepaire, “Efficient second-harmonic imaging of collagen in histological slides using Bessel beam excitation,” Sci. Rep. 6(1), 29863 (2016).
    [Crossref] [PubMed]
  22. Y. Zhang and J. Bai, “Improving the recording ability of a near-field optical storage system by higher-order radially polarized beams,” Opt. Express 17(5), 3698–3706 (2009).
    [Crossref] [PubMed]
  23. V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
    [Crossref] [PubMed]
  24. Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12(15), 3377–3382 (2004).
    [Crossref] [PubMed]
  25. H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
    [Crossref]
  26. Z. Nie, G. Shi, X. Zhang, Y. Wang, and Y. Song, “Generation of super-resolution longitudinally polarized beam with ultra-long depth of focus using radially polarized hollow Gaussian beam,” Opt. Commun. 331, 87–93 (2014).
    [Crossref]
  27. K. Huang, P. Shi, X. L. Kang, X. Zhang, and Y. P. Li, “Design of DOE for generating a needle of a strong longitudinally polarized field,” Opt. Lett. 35(7), 965–967 (2010).
    [Crossref] [PubMed]
  28. K. B. Rajesh, N. V. Suresh, P. M. Anbarasan, K. Gokulakrishnan, and G. Mahadevan, “Tight focusing of double ring shaped radially polarized beam with high NA lens axicon,” Opt. Laser Technol. 43(7), 1037–1040 (2011).
    [Crossref]
  29. Y. Zha, J. Wei, H. Wang, and F. Gan, “Creation of an ultra-long depth of focus super-resolution longitudinally polarized beam with a ternary optical element,” J. Opt. 15(7), 075703 (2013).
    [Crossref]
  30. L. Yang, X. Xie, S. Wang, and J. Zhou, “Minimized spot of annular radially polarized focusing beam,” Opt. Lett. 38(8), 1331–1333 (2013).
    [Crossref] [PubMed]
  31. K. Kitamura, K. Sakai, and S. Noda, “Sub-wavelength focal spot with long depth of focus generated by radially polarized, narrow-width annular beam,” Opt. Express 18(5), 4518–4525 (2010).
    [Crossref] [PubMed]
  32. J. Wang, W. Chen, and Q. Zhan, “Engineering of high purity ultra-long optical needle field through reversing the electric dipole array radiation,” Opt. Express 18(21), 21965–21972 (2010).
    [Crossref] [PubMed]
  33. K. B. R. K. B. Rajesh and P. M. A. P. M. Anbarasan, “Generation of sub-wavelength and super-resolution longitudinally polarized non-diffraction beam using lens axicon,” Chin. Opt. Lett. 6(10), 785–787 (2008)).
    [Crossref]
  34. T. Grosjean, D. Courjon, and C. Bainier, “Smallest lithographic marks generated by optical focusing systems,” Opt. Lett. 32(8), 976–978 (2007).
    [Crossref] [PubMed]
  35. T. Grosjean and D. Courjon, “Photopolymers as vectorial sensors of the electric field,” Opt. Express 14(6), 2203–2210 (2006).
    [Crossref] [PubMed]
  36. G. Bautista, J. Mäkitalo, Y. Chen, V. Dhaka, M. Grasso, L. Karvonen, H. Jiang, M. J. Huttunen, T. Huhtio, H. Lipsanen, and M. Kauranen, “Second-harmonic generation imaging of semiconductor nanowires with focused vector beams,” Nano Lett. 15(3), 1564–1569 (2015).
    [Crossref] [PubMed]
  37. L. Turquet, J.-P. Kakko, X. Zang, L. Naskali, L. Karvonen, H. Jiang, T. Huhtio, E. Kauppinen, H. Lipsanen, M. Kauranen, and G. Bautista, “Tailorable second-harmonic generation from an individual nanowire using spatially phase-shaped beams,” Laser Photonics Rev. 11(1), 1600175 (2017).
    [Crossref]
  38. L. Turquet, J.-P. J.-P. Kakko, H. Jiang, T. J. T. J. Isotalo, T. Huhtio, T. Niemi, E. Kauppinen, H. Lipsanen, M. Kauranen, and G. Bautista, “Nonlinear imaging of nanostructures using beams with binary phase modulation,” Opt. Express 25(9), 10441–10448 (2017).
    [Crossref] [PubMed]
  39. L. Turquet, J.-P. Kakko, L. Karvonen, H. Jiang, E. Kauppinen, H. Lipsanen, M. Kauranen, and G. Bautista, “Probing the longitudinal electric field of Bessel beams using second-harmonic generation from nano-objects,” J. Opt. 19(8), 084011 (2017).
    [Crossref]
  40. G. Bautista, J.-P. Kakko, V. Dhaka, X. Zang, L. Karvonen, H. Jiang, E. Kauppinen, H. Lipsanen, and M. Kauranen, “Nonlinear microscopy using cylindrical vector beams: Applications to three-dimensional imaging of nanostructures,” Opt. Express 25(11), 12463–12468 (2017).
    [Crossref] [PubMed]
  41. G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams,” Nano Lett. 12(6), 3207–3212 (2012).
    [Crossref] [PubMed]
  42. G. Bautista, C. Dreser, X. Zang, D. P. Kern, M. Kauranen, and M. Fleischer, “Collective effects in second-harmonic generation from plasmonic oligomers,” Nano Lett. 18(4), 2571–2580 (2018).
    [Crossref] [PubMed]
  43. J.-P. Kakko, T. Haggrén, V. Dhaka, T. Huhtio, A. Peltonen, H. Jiang, E. Kauppinen, and H. Lipsanen, “Fabrication of dual-type nanowire arrays on a single substrate,” Nano Lett. 15(3), 1679–1683 (2015).
    [Crossref] [PubMed]
  44. T. Grosjean and D. Courjon, “Smallest focal spots,” Opt. Commun. 272(2), 314–319 (2007).
    [Crossref]
  45. M. Ornigotti and A. Aiello, “Radially and azimuthally polarized nonparaxial Bessel beams made simple,” Opt. Express 21(13), 15530–15537 (2013).
    [Crossref] [PubMed]
  46. G. Milione, A. Dudley, T. A. Nguyen, O. Chakraborty, E. Karimi, A. Forbes, and R. R. Alfano, “Measuring the self-healing of the spatially inhomogeneous states of polarization of vector Bessel beams,” J. Opt. 17(3), 035617 (2015).
    [Crossref]
  47. S. Vyas, Y. Kozawa, and S. Sato, “Self-healing of tightly focused scalar and vector Bessel-Gauss beams at the focal plane,” J. Opt. Soc. Am. A 28(5), 837–843 (2011).
    [Crossref] [PubMed]
  48. E. Yew and C. Sheppard, “Effects of axial field components on second harmonic generation microscopy,” Opt. Express 14(3), 1167–1174 (2006).
    [Crossref] [PubMed]
  49. O. Brzobohatý, T. Cizmár, and P. Zemánek, “High quality quasi-Bessel beam generated by round-tip axicon,” Opt. Express 16(17), 12688–12700 (2008).
    [Crossref] [PubMed]
  50. T. Čižmár and K. Dholakia, “Tunable Bessel light modes: engineering the axial propagation,” Opt. Express 17(18), 15558–15570 (2009).
    [Crossref] [PubMed]
  51. T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, “Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams,” Nat. Photonics 8(1), 23–27 (2014).
    [Crossref]

2018 (1)

G. Bautista, C. Dreser, X. Zang, D. P. Kern, M. Kauranen, and M. Fleischer, “Collective effects in second-harmonic generation from plasmonic oligomers,” Nano Lett. 18(4), 2571–2580 (2018).
[Crossref] [PubMed]

2017 (4)

L. Turquet, J.-P. Kakko, X. Zang, L. Naskali, L. Karvonen, H. Jiang, T. Huhtio, E. Kauppinen, H. Lipsanen, M. Kauranen, and G. Bautista, “Tailorable second-harmonic generation from an individual nanowire using spatially phase-shaped beams,” Laser Photonics Rev. 11(1), 1600175 (2017).
[Crossref]

L. Turquet, J.-P. J.-P. Kakko, H. Jiang, T. J. T. J. Isotalo, T. Huhtio, T. Niemi, E. Kauppinen, H. Lipsanen, M. Kauranen, and G. Bautista, “Nonlinear imaging of nanostructures using beams with binary phase modulation,” Opt. Express 25(9), 10441–10448 (2017).
[Crossref] [PubMed]

L. Turquet, J.-P. Kakko, L. Karvonen, H. Jiang, E. Kauppinen, H. Lipsanen, M. Kauranen, and G. Bautista, “Probing the longitudinal electric field of Bessel beams using second-harmonic generation from nano-objects,” J. Opt. 19(8), 084011 (2017).
[Crossref]

G. Bautista, J.-P. Kakko, V. Dhaka, X. Zang, L. Karvonen, H. Jiang, E. Kauppinen, H. Lipsanen, and M. Kauranen, “Nonlinear microscopy using cylindrical vector beams: Applications to three-dimensional imaging of nanostructures,” Opt. Express 25(11), 12463–12468 (2017).
[Crossref] [PubMed]

2016 (2)

N. Vuillemin, P. Mahou, D. Débarre, T. Gacoin, P.-L. Tharaux, M.-C. Schanne-Klein, W. Supatto, and E. Beaurepaire, “Efficient second-harmonic imaging of collagen in histological slides using Bessel beam excitation,” Sci. Rep. 6(1), 29863 (2016).
[Crossref] [PubMed]

G. Bautista and M. Kauranen, “Vector-field nonlinear microscopy of nanostructures,” ACS Photonics 3(8), 1351–1370 (2016).
[Crossref]

2015 (3)

G. Bautista, J. Mäkitalo, Y. Chen, V. Dhaka, M. Grasso, L. Karvonen, H. Jiang, M. J. Huttunen, T. Huhtio, H. Lipsanen, and M. Kauranen, “Second-harmonic generation imaging of semiconductor nanowires with focused vector beams,” Nano Lett. 15(3), 1564–1569 (2015).
[Crossref] [PubMed]

J.-P. Kakko, T. Haggrén, V. Dhaka, T. Huhtio, A. Peltonen, H. Jiang, E. Kauppinen, and H. Lipsanen, “Fabrication of dual-type nanowire arrays on a single substrate,” Nano Lett. 15(3), 1679–1683 (2015).
[Crossref] [PubMed]

G. Milione, A. Dudley, T. A. Nguyen, O. Chakraborty, E. Karimi, A. Forbes, and R. R. Alfano, “Measuring the self-healing of the spatially inhomogeneous states of polarization of vector Bessel beams,” J. Opt. 17(3), 035617 (2015).
[Crossref]

2014 (4)

T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, “Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams,” Nat. Photonics 8(1), 23–27 (2014).
[Crossref]

Z. Nie, G. Shi, X. Zhang, Y. Wang, and Y. Song, “Generation of super-resolution longitudinally polarized beam with ultra-long depth of focus using radially polarized hollow Gaussian beam,” Opt. Commun. 331, 87–93 (2014).
[Crossref]

S. Vyas, Y. Kozawa, and S. Sato, “Generation of radially polarized Bessel-Gaussian beams from c-cut Nd:YVO4 laser,” Opt. Lett. 39(4), 1101–1104 (2014).
[Crossref] [PubMed]

G. Wu, F. Wang, and Y. Cai, “Generation and self-healing of a radially polarized Bessel-Gauss beam,” Phys. Rev. A 89(4), 043807 (2014).
[Crossref]

2013 (5)

2012 (2)

G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams,” Nano Lett. 12(6), 3207–3212 (2012).
[Crossref] [PubMed]

H. Dehez, A. April, and M. Piché, “Needles of longitudinally polarized light: guidelines for minimum spot size and tunable axial extent,” Opt. Express 20(14), 14891–14905 (2012).
[Crossref] [PubMed]

2011 (3)

T. G. Brown, “Unconventional polarization states: beam propagation, focusing, and imaging,” Prog. Opt. 56, 81–129 (2011).
[Crossref]

K. B. Rajesh, N. V. Suresh, P. M. Anbarasan, K. Gokulakrishnan, and G. Mahadevan, “Tight focusing of double ring shaped radially polarized beam with high NA lens axicon,” Opt. Laser Technol. 43(7), 1037–1040 (2011).
[Crossref]

S. Vyas, Y. Kozawa, and S. Sato, “Self-healing of tightly focused scalar and vector Bessel-Gauss beams at the focal plane,” J. Opt. Soc. Am. A 28(5), 837–843 (2011).
[Crossref] [PubMed]

2010 (4)

2009 (2)

2008 (3)

2007 (2)

2006 (2)

2005 (1)

2004 (1)

2003 (1)

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

2002 (2)

Q. Zhan and J. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express 10(7), 324–331 (2002).
[Crossref] [PubMed]

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[Crossref] [PubMed]

2000 (1)

1995 (1)

Z. Bouchal and M. Olivík, “Non-diffractive vector Bessel beams,” J. Mod. Opt. 42(8), 1555–1566 (1995).
[Crossref]

1994 (1)

1987 (2)

J. Durnin, J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[Crossref] [PubMed]

J. Durnin, “Exact solutions for nondiffracting beams I The scalar theory,” J. Opt. Soc. Am. A 4(4), 651–654 (1987).
[Crossref]

1978 (2)

C. J. R. Sheppard and T. Wilson, “Gaussian-beam theory of lenses with annular aperture,” IEE J. Microwaves, Opt. Acoust. 2(4), 105 (1978).
[Crossref]

C. J. Sheppard and T. Wilson, “Depth of field in the scanning microscope,” Opt. Lett. 3(3), 115–117 (1978).
[Crossref] [PubMed]

1959 (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[Crossref]

Aiello, A.

Alfano, R. R.

G. Milione, A. Dudley, T. A. Nguyen, O. Chakraborty, E. Karimi, A. Forbes, and R. R. Alfano, “Measuring the self-healing of the spatially inhomogeneous states of polarization of vector Bessel beams,” J. Opt. 17(3), 035617 (2015).
[Crossref]

Anbarasan, P. M.

K. B. Rajesh, N. V. Suresh, P. M. Anbarasan, K. Gokulakrishnan, and G. Mahadevan, “Tight focusing of double ring shaped radially polarized beam with high NA lens axicon,” Opt. Laser Technol. 43(7), 1037–1040 (2011).
[Crossref]

April, A.

Bai, J.

Bainier, C.

Banzer, P.

T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, “Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams,” Nat. Photonics 8(1), 23–27 (2014).
[Crossref]

Bauer, T.

T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, “Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams,” Nat. Photonics 8(1), 23–27 (2014).
[Crossref]

Bautista, G.

G. Bautista, C. Dreser, X. Zang, D. P. Kern, M. Kauranen, and M. Fleischer, “Collective effects in second-harmonic generation from plasmonic oligomers,” Nano Lett. 18(4), 2571–2580 (2018).
[Crossref] [PubMed]

L. Turquet, J.-P. Kakko, L. Karvonen, H. Jiang, E. Kauppinen, H. Lipsanen, M. Kauranen, and G. Bautista, “Probing the longitudinal electric field of Bessel beams using second-harmonic generation from nano-objects,” J. Opt. 19(8), 084011 (2017).
[Crossref]

G. Bautista, J.-P. Kakko, V. Dhaka, X. Zang, L. Karvonen, H. Jiang, E. Kauppinen, H. Lipsanen, and M. Kauranen, “Nonlinear microscopy using cylindrical vector beams: Applications to three-dimensional imaging of nanostructures,” Opt. Express 25(11), 12463–12468 (2017).
[Crossref] [PubMed]

L. Turquet, J.-P. Kakko, X. Zang, L. Naskali, L. Karvonen, H. Jiang, T. Huhtio, E. Kauppinen, H. Lipsanen, M. Kauranen, and G. Bautista, “Tailorable second-harmonic generation from an individual nanowire using spatially phase-shaped beams,” Laser Photonics Rev. 11(1), 1600175 (2017).
[Crossref]

L. Turquet, J.-P. J.-P. Kakko, H. Jiang, T. J. T. J. Isotalo, T. Huhtio, T. Niemi, E. Kauppinen, H. Lipsanen, M. Kauranen, and G. Bautista, “Nonlinear imaging of nanostructures using beams with binary phase modulation,” Opt. Express 25(9), 10441–10448 (2017).
[Crossref] [PubMed]

G. Bautista and M. Kauranen, “Vector-field nonlinear microscopy of nanostructures,” ACS Photonics 3(8), 1351–1370 (2016).
[Crossref]

G. Bautista, J. Mäkitalo, Y. Chen, V. Dhaka, M. Grasso, L. Karvonen, H. Jiang, M. J. Huttunen, T. Huhtio, H. Lipsanen, and M. Kauranen, “Second-harmonic generation imaging of semiconductor nanowires with focused vector beams,” Nano Lett. 15(3), 1564–1569 (2015).
[Crossref] [PubMed]

G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams,” Nano Lett. 12(6), 3207–3212 (2012).
[Crossref] [PubMed]

Beaurepaire, E.

N. Vuillemin, P. Mahou, D. Débarre, T. Gacoin, P.-L. Tharaux, M.-C. Schanne-Klein, W. Supatto, and E. Beaurepaire, “Efficient second-harmonic imaging of collagen in histological slides using Bessel beam excitation,” Sci. Rep. 6(1), 29863 (2016).
[Crossref] [PubMed]

Bouchal, Z.

Z. Bouchal and M. Olivík, “Non-diffractive vector Bessel beams,” J. Mod. Opt. 42(8), 1555–1566 (1995).
[Crossref]

Brown, T.

Brown, T. G.

T. G. Brown, “Unconventional polarization states: beam propagation, focusing, and imaging,” Prog. Opt. 56, 81–129 (2011).
[Crossref]

Brzobohatý, O.

Cai, Y.

G. Wu, F. Wang, and Y. Cai, “Generation and self-healing of a radially polarized Bessel-Gauss beam,” Phys. Rev. A 89(4), 043807 (2014).
[Crossref]

Chakraborty, O.

G. Milione, A. Dudley, T. A. Nguyen, O. Chakraborty, E. Karimi, A. Forbes, and R. R. Alfano, “Measuring the self-healing of the spatially inhomogeneous states of polarization of vector Bessel beams,” J. Opt. 17(3), 035617 (2015).
[Crossref]

Chen, W.

Chen, Y.

G. Bautista, J. Mäkitalo, Y. Chen, V. Dhaka, M. Grasso, L. Karvonen, H. Jiang, M. J. Huttunen, T. Huhtio, H. Lipsanen, and M. Kauranen, “Second-harmonic generation imaging of semiconductor nanowires with focused vector beams,” Nano Lett. 15(3), 1564–1569 (2015).
[Crossref] [PubMed]

Chong, C. T.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[Crossref]

Cizmár, T.

Cižmár, T.

Courjon, D.

Débarre, D.

N. Vuillemin, P. Mahou, D. Débarre, T. Gacoin, P.-L. Tharaux, M.-C. Schanne-Klein, W. Supatto, and E. Beaurepaire, “Efficient second-harmonic imaging of collagen in histological slides using Bessel beam excitation,” Sci. Rep. 6(1), 29863 (2016).
[Crossref] [PubMed]

Dehez, H.

Dhaka, V.

G. Bautista, J.-P. Kakko, V. Dhaka, X. Zang, L. Karvonen, H. Jiang, E. Kauppinen, H. Lipsanen, and M. Kauranen, “Nonlinear microscopy using cylindrical vector beams: Applications to three-dimensional imaging of nanostructures,” Opt. Express 25(11), 12463–12468 (2017).
[Crossref] [PubMed]

J.-P. Kakko, T. Haggrén, V. Dhaka, T. Huhtio, A. Peltonen, H. Jiang, E. Kauppinen, and H. Lipsanen, “Fabrication of dual-type nanowire arrays on a single substrate,” Nano Lett. 15(3), 1679–1683 (2015).
[Crossref] [PubMed]

G. Bautista, J. Mäkitalo, Y. Chen, V. Dhaka, M. Grasso, L. Karvonen, H. Jiang, M. J. Huttunen, T. Huhtio, H. Lipsanen, and M. Kauranen, “Second-harmonic generation imaging of semiconductor nanowires with focused vector beams,” Nano Lett. 15(3), 1564–1569 (2015).
[Crossref] [PubMed]

Dholakia, K.

T. Čižmár and K. Dholakia, “Tunable Bessel light modes: engineering the axial propagation,” Opt. Express 17(18), 15558–15570 (2009).
[Crossref] [PubMed]

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[Crossref] [PubMed]

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

Dreser, C.

G. Bautista, C. Dreser, X. Zang, D. P. Kern, M. Kauranen, and M. Fleischer, “Collective effects in second-harmonic generation from plasmonic oligomers,” Nano Lett. 18(4), 2571–2580 (2018).
[Crossref] [PubMed]

Dudley, A.

G. Milione, A. Dudley, T. A. Nguyen, O. Chakraborty, E. Karimi, A. Forbes, and R. R. Alfano, “Measuring the self-healing of the spatially inhomogeneous states of polarization of vector Bessel beams,” J. Opt. 17(3), 035617 (2015).
[Crossref]

A. Dudley, Y. Li, T. Mhlanga, M. Escuti, and A. Forbes, “Generating and measuring nondiffracting vector Bessel beams,” Opt. Lett. 38(17), 3429–3432 (2013).
[Crossref] [PubMed]

Durnin, J.

J. Durnin, “Exact solutions for nondiffracting beams I The scalar theory,” J. Opt. Soc. Am. A 4(4), 651–654 (1987).
[Crossref]

J. Durnin, J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[Crossref] [PubMed]

Eberly, J. H.

J. Durnin, J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[Crossref] [PubMed]

Escuti, M.

Fahrbach, F. O.

F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics 4(11), 780–785 (2010).
[Crossref]

Fleischer, M.

G. Bautista, C. Dreser, X. Zang, D. P. Kern, M. Kauranen, and M. Fleischer, “Collective effects in second-harmonic generation from plasmonic oligomers,” Nano Lett. 18(4), 2571–2580 (2018).
[Crossref] [PubMed]

Forbes, A.

G. Milione, A. Dudley, T. A. Nguyen, O. Chakraborty, E. Karimi, A. Forbes, and R. R. Alfano, “Measuring the self-healing of the spatially inhomogeneous states of polarization of vector Bessel beams,” J. Opt. 17(3), 035617 (2015).
[Crossref]

A. Dudley, Y. Li, T. Mhlanga, M. Escuti, and A. Forbes, “Generating and measuring nondiffracting vector Bessel beams,” Opt. Lett. 38(17), 3429–3432 (2013).
[Crossref] [PubMed]

Gacoin, T.

N. Vuillemin, P. Mahou, D. Débarre, T. Gacoin, P.-L. Tharaux, M.-C. Schanne-Klein, W. Supatto, and E. Beaurepaire, “Efficient second-harmonic imaging of collagen in histological slides using Bessel beam excitation,” Sci. Rep. 6(1), 29863 (2016).
[Crossref] [PubMed]

Gan, F.

Y. Zha, J. Wei, H. Wang, and F. Gan, “Creation of an ultra-long depth of focus super-resolution longitudinally polarized beam with a ternary optical element,” J. Opt. 15(7), 075703 (2013).
[Crossref]

Garcés-Chávez, V.

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[Crossref] [PubMed]

Gokulakrishnan, K.

K. B. Rajesh, N. V. Suresh, P. M. Anbarasan, K. Gokulakrishnan, and G. Mahadevan, “Tight focusing of double ring shaped radially polarized beam with high NA lens axicon,” Opt. Laser Technol. 43(7), 1037–1040 (2011).
[Crossref]

Grasso, M.

G. Bautista, J. Mäkitalo, Y. Chen, V. Dhaka, M. Grasso, L. Karvonen, H. Jiang, M. J. Huttunen, T. Huhtio, H. Lipsanen, and M. Kauranen, “Second-harmonic generation imaging of semiconductor nanowires with focused vector beams,” Nano Lett. 15(3), 1564–1569 (2015).
[Crossref] [PubMed]

Grogan, M. D. W.

Grosjean, T.

Haggrén, T.

J.-P. Kakko, T. Haggrén, V. Dhaka, T. Huhtio, A. Peltonen, H. Jiang, E. Kauppinen, and H. Lipsanen, “Fabrication of dual-type nanowire arrays on a single substrate,” Nano Lett. 15(3), 1679–1683 (2015).
[Crossref] [PubMed]

Hall, D. G.

Huang, K.

Huhtio, T.

L. Turquet, J.-P. J.-P. Kakko, H. Jiang, T. J. T. J. Isotalo, T. Huhtio, T. Niemi, E. Kauppinen, H. Lipsanen, M. Kauranen, and G. Bautista, “Nonlinear imaging of nanostructures using beams with binary phase modulation,” Opt. Express 25(9), 10441–10448 (2017).
[Crossref] [PubMed]

L. Turquet, J.-P. Kakko, X. Zang, L. Naskali, L. Karvonen, H. Jiang, T. Huhtio, E. Kauppinen, H. Lipsanen, M. Kauranen, and G. Bautista, “Tailorable second-harmonic generation from an individual nanowire using spatially phase-shaped beams,” Laser Photonics Rev. 11(1), 1600175 (2017).
[Crossref]

G. Bautista, J. Mäkitalo, Y. Chen, V. Dhaka, M. Grasso, L. Karvonen, H. Jiang, M. J. Huttunen, T. Huhtio, H. Lipsanen, and M. Kauranen, “Second-harmonic generation imaging of semiconductor nanowires with focused vector beams,” Nano Lett. 15(3), 1564–1569 (2015).
[Crossref] [PubMed]

J.-P. Kakko, T. Haggrén, V. Dhaka, T. Huhtio, A. Peltonen, H. Jiang, E. Kauppinen, and H. Lipsanen, “Fabrication of dual-type nanowire arrays on a single substrate,” Nano Lett. 15(3), 1679–1683 (2015).
[Crossref] [PubMed]

Huttunen, M. J.

G. Bautista, J. Mäkitalo, Y. Chen, V. Dhaka, M. Grasso, L. Karvonen, H. Jiang, M. J. Huttunen, T. Huhtio, H. Lipsanen, and M. Kauranen, “Second-harmonic generation imaging of semiconductor nanowires with focused vector beams,” Nano Lett. 15(3), 1564–1569 (2015).
[Crossref] [PubMed]

G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams,” Nano Lett. 12(6), 3207–3212 (2012).
[Crossref] [PubMed]

Isotalo, T. J. T. J.

Jiang, H.

L. Turquet, J.-P. J.-P. Kakko, H. Jiang, T. J. T. J. Isotalo, T. Huhtio, T. Niemi, E. Kauppinen, H. Lipsanen, M. Kauranen, and G. Bautista, “Nonlinear imaging of nanostructures using beams with binary phase modulation,” Opt. Express 25(9), 10441–10448 (2017).
[Crossref] [PubMed]

L. Turquet, J.-P. Kakko, X. Zang, L. Naskali, L. Karvonen, H. Jiang, T. Huhtio, E. Kauppinen, H. Lipsanen, M. Kauranen, and G. Bautista, “Tailorable second-harmonic generation from an individual nanowire using spatially phase-shaped beams,” Laser Photonics Rev. 11(1), 1600175 (2017).
[Crossref]

G. Bautista, J.-P. Kakko, V. Dhaka, X. Zang, L. Karvonen, H. Jiang, E. Kauppinen, H. Lipsanen, and M. Kauranen, “Nonlinear microscopy using cylindrical vector beams: Applications to three-dimensional imaging of nanostructures,” Opt. Express 25(11), 12463–12468 (2017).
[Crossref] [PubMed]

L. Turquet, J.-P. Kakko, L. Karvonen, H. Jiang, E. Kauppinen, H. Lipsanen, M. Kauranen, and G. Bautista, “Probing the longitudinal electric field of Bessel beams using second-harmonic generation from nano-objects,” J. Opt. 19(8), 084011 (2017).
[Crossref]

J.-P. Kakko, T. Haggrén, V. Dhaka, T. Huhtio, A. Peltonen, H. Jiang, E. Kauppinen, and H. Lipsanen, “Fabrication of dual-type nanowire arrays on a single substrate,” Nano Lett. 15(3), 1679–1683 (2015).
[Crossref] [PubMed]

G. Bautista, J. Mäkitalo, Y. Chen, V. Dhaka, M. Grasso, L. Karvonen, H. Jiang, M. J. Huttunen, T. Huhtio, H. Lipsanen, and M. Kauranen, “Second-harmonic generation imaging of semiconductor nanowires with focused vector beams,” Nano Lett. 15(3), 1564–1569 (2015).
[Crossref] [PubMed]

Jordan, R. H.

K. B. Rajesh, K. B. R.

Kakko, J.-P.

L. Turquet, J.-P. Kakko, X. Zang, L. Naskali, L. Karvonen, H. Jiang, T. Huhtio, E. Kauppinen, H. Lipsanen, M. Kauranen, and G. Bautista, “Tailorable second-harmonic generation from an individual nanowire using spatially phase-shaped beams,” Laser Photonics Rev. 11(1), 1600175 (2017).
[Crossref]

L. Turquet, J.-P. Kakko, L. Karvonen, H. Jiang, E. Kauppinen, H. Lipsanen, M. Kauranen, and G. Bautista, “Probing the longitudinal electric field of Bessel beams using second-harmonic generation from nano-objects,” J. Opt. 19(8), 084011 (2017).
[Crossref]

G. Bautista, J.-P. Kakko, V. Dhaka, X. Zang, L. Karvonen, H. Jiang, E. Kauppinen, H. Lipsanen, and M. Kauranen, “Nonlinear microscopy using cylindrical vector beams: Applications to three-dimensional imaging of nanostructures,” Opt. Express 25(11), 12463–12468 (2017).
[Crossref] [PubMed]

J.-P. Kakko, T. Haggrén, V. Dhaka, T. Huhtio, A. Peltonen, H. Jiang, E. Kauppinen, and H. Lipsanen, “Fabrication of dual-type nanowire arrays on a single substrate,” Nano Lett. 15(3), 1679–1683 (2015).
[Crossref] [PubMed]

Kakko, J.-P. J.-P.

Kang, X. L.

Karimi, E.

G. Milione, A. Dudley, T. A. Nguyen, O. Chakraborty, E. Karimi, A. Forbes, and R. R. Alfano, “Measuring the self-healing of the spatially inhomogeneous states of polarization of vector Bessel beams,” J. Opt. 17(3), 035617 (2015).
[Crossref]

Kärtner, F. X.

Karvonen, L.

L. Turquet, J.-P. Kakko, X. Zang, L. Naskali, L. Karvonen, H. Jiang, T. Huhtio, E. Kauppinen, H. Lipsanen, M. Kauranen, and G. Bautista, “Tailorable second-harmonic generation from an individual nanowire using spatially phase-shaped beams,” Laser Photonics Rev. 11(1), 1600175 (2017).
[Crossref]

L. Turquet, J.-P. Kakko, L. Karvonen, H. Jiang, E. Kauppinen, H. Lipsanen, M. Kauranen, and G. Bautista, “Probing the longitudinal electric field of Bessel beams using second-harmonic generation from nano-objects,” J. Opt. 19(8), 084011 (2017).
[Crossref]

G. Bautista, J.-P. Kakko, V. Dhaka, X. Zang, L. Karvonen, H. Jiang, E. Kauppinen, H. Lipsanen, and M. Kauranen, “Nonlinear microscopy using cylindrical vector beams: Applications to three-dimensional imaging of nanostructures,” Opt. Express 25(11), 12463–12468 (2017).
[Crossref] [PubMed]

G. Bautista, J. Mäkitalo, Y. Chen, V. Dhaka, M. Grasso, L. Karvonen, H. Jiang, M. J. Huttunen, T. Huhtio, H. Lipsanen, and M. Kauranen, “Second-harmonic generation imaging of semiconductor nanowires with focused vector beams,” Nano Lett. 15(3), 1564–1569 (2015).
[Crossref] [PubMed]

Kauppinen, E.

L. Turquet, J.-P. Kakko, X. Zang, L. Naskali, L. Karvonen, H. Jiang, T. Huhtio, E. Kauppinen, H. Lipsanen, M. Kauranen, and G. Bautista, “Tailorable second-harmonic generation from an individual nanowire using spatially phase-shaped beams,” Laser Photonics Rev. 11(1), 1600175 (2017).
[Crossref]

L. Turquet, J.-P. J.-P. Kakko, H. Jiang, T. J. T. J. Isotalo, T. Huhtio, T. Niemi, E. Kauppinen, H. Lipsanen, M. Kauranen, and G. Bautista, “Nonlinear imaging of nanostructures using beams with binary phase modulation,” Opt. Express 25(9), 10441–10448 (2017).
[Crossref] [PubMed]

G. Bautista, J.-P. Kakko, V. Dhaka, X. Zang, L. Karvonen, H. Jiang, E. Kauppinen, H. Lipsanen, and M. Kauranen, “Nonlinear microscopy using cylindrical vector beams: Applications to three-dimensional imaging of nanostructures,” Opt. Express 25(11), 12463–12468 (2017).
[Crossref] [PubMed]

L. Turquet, J.-P. Kakko, L. Karvonen, H. Jiang, E. Kauppinen, H. Lipsanen, M. Kauranen, and G. Bautista, “Probing the longitudinal electric field of Bessel beams using second-harmonic generation from nano-objects,” J. Opt. 19(8), 084011 (2017).
[Crossref]

J.-P. Kakko, T. Haggrén, V. Dhaka, T. Huhtio, A. Peltonen, H. Jiang, E. Kauppinen, and H. Lipsanen, “Fabrication of dual-type nanowire arrays on a single substrate,” Nano Lett. 15(3), 1679–1683 (2015).
[Crossref] [PubMed]

Kauranen, M.

G. Bautista, C. Dreser, X. Zang, D. P. Kern, M. Kauranen, and M. Fleischer, “Collective effects in second-harmonic generation from plasmonic oligomers,” Nano Lett. 18(4), 2571–2580 (2018).
[Crossref] [PubMed]

L. Turquet, J.-P. J.-P. Kakko, H. Jiang, T. J. T. J. Isotalo, T. Huhtio, T. Niemi, E. Kauppinen, H. Lipsanen, M. Kauranen, and G. Bautista, “Nonlinear imaging of nanostructures using beams with binary phase modulation,” Opt. Express 25(9), 10441–10448 (2017).
[Crossref] [PubMed]

L. Turquet, J.-P. Kakko, L. Karvonen, H. Jiang, E. Kauppinen, H. Lipsanen, M. Kauranen, and G. Bautista, “Probing the longitudinal electric field of Bessel beams using second-harmonic generation from nano-objects,” J. Opt. 19(8), 084011 (2017).
[Crossref]

G. Bautista, J.-P. Kakko, V. Dhaka, X. Zang, L. Karvonen, H. Jiang, E. Kauppinen, H. Lipsanen, and M. Kauranen, “Nonlinear microscopy using cylindrical vector beams: Applications to three-dimensional imaging of nanostructures,” Opt. Express 25(11), 12463–12468 (2017).
[Crossref] [PubMed]

L. Turquet, J.-P. Kakko, X. Zang, L. Naskali, L. Karvonen, H. Jiang, T. Huhtio, E. Kauppinen, H. Lipsanen, M. Kauranen, and G. Bautista, “Tailorable second-harmonic generation from an individual nanowire using spatially phase-shaped beams,” Laser Photonics Rev. 11(1), 1600175 (2017).
[Crossref]

G. Bautista and M. Kauranen, “Vector-field nonlinear microscopy of nanostructures,” ACS Photonics 3(8), 1351–1370 (2016).
[Crossref]

G. Bautista, J. Mäkitalo, Y. Chen, V. Dhaka, M. Grasso, L. Karvonen, H. Jiang, M. J. Huttunen, T. Huhtio, H. Lipsanen, and M. Kauranen, “Second-harmonic generation imaging of semiconductor nanowires with focused vector beams,” Nano Lett. 15(3), 1564–1569 (2015).
[Crossref] [PubMed]

G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams,” Nano Lett. 12(6), 3207–3212 (2012).
[Crossref] [PubMed]

Kern, D. P.

G. Bautista, C. Dreser, X. Zang, D. P. Kern, M. Kauranen, and M. Fleischer, “Collective effects in second-harmonic generation from plasmonic oligomers,” Nano Lett. 18(4), 2571–2580 (2018).
[Crossref] [PubMed]

Kitamura, K.

Kontio, J. M.

G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams,” Nano Lett. 12(6), 3207–3212 (2012).
[Crossref] [PubMed]

Kozawa, Y.

Leger, J.

Leuchs, G.

T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, “Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams,” Nat. Photonics 8(1), 23–27 (2014).
[Crossref]

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

Li, Y.

Li, Y. P.

Lipsanen, H.

L. Turquet, J.-P. Kakko, X. Zang, L. Naskali, L. Karvonen, H. Jiang, T. Huhtio, E. Kauppinen, H. Lipsanen, M. Kauranen, and G. Bautista, “Tailorable second-harmonic generation from an individual nanowire using spatially phase-shaped beams,” Laser Photonics Rev. 11(1), 1600175 (2017).
[Crossref]

L. Turquet, J.-P. J.-P. Kakko, H. Jiang, T. J. T. J. Isotalo, T. Huhtio, T. Niemi, E. Kauppinen, H. Lipsanen, M. Kauranen, and G. Bautista, “Nonlinear imaging of nanostructures using beams with binary phase modulation,” Opt. Express 25(9), 10441–10448 (2017).
[Crossref] [PubMed]

G. Bautista, J.-P. Kakko, V. Dhaka, X. Zang, L. Karvonen, H. Jiang, E. Kauppinen, H. Lipsanen, and M. Kauranen, “Nonlinear microscopy using cylindrical vector beams: Applications to three-dimensional imaging of nanostructures,” Opt. Express 25(11), 12463–12468 (2017).
[Crossref] [PubMed]

L. Turquet, J.-P. Kakko, L. Karvonen, H. Jiang, E. Kauppinen, H. Lipsanen, M. Kauranen, and G. Bautista, “Probing the longitudinal electric field of Bessel beams using second-harmonic generation from nano-objects,” J. Opt. 19(8), 084011 (2017).
[Crossref]

J.-P. Kakko, T. Haggrén, V. Dhaka, T. Huhtio, A. Peltonen, H. Jiang, E. Kauppinen, and H. Lipsanen, “Fabrication of dual-type nanowire arrays on a single substrate,” Nano Lett. 15(3), 1679–1683 (2015).
[Crossref] [PubMed]

G. Bautista, J. Mäkitalo, Y. Chen, V. Dhaka, M. Grasso, L. Karvonen, H. Jiang, M. J. Huttunen, T. Huhtio, H. Lipsanen, and M. Kauranen, “Second-harmonic generation imaging of semiconductor nanowires with focused vector beams,” Nano Lett. 15(3), 1564–1569 (2015).
[Crossref] [PubMed]

Lukyanchuk, B.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[Crossref]

Mahadevan, G.

K. B. Rajesh, N. V. Suresh, P. M. Anbarasan, K. Gokulakrishnan, and G. Mahadevan, “Tight focusing of double ring shaped radially polarized beam with high NA lens axicon,” Opt. Laser Technol. 43(7), 1037–1040 (2011).
[Crossref]

Mahou, P.

N. Vuillemin, P. Mahou, D. Débarre, T. Gacoin, P.-L. Tharaux, M.-C. Schanne-Klein, W. Supatto, and E. Beaurepaire, “Efficient second-harmonic imaging of collagen in histological slides using Bessel beam excitation,” Sci. Rep. 6(1), 29863 (2016).
[Crossref] [PubMed]

Mäkitalo, J.

G. Bautista, J. Mäkitalo, Y. Chen, V. Dhaka, M. Grasso, L. Karvonen, H. Jiang, M. J. Huttunen, T. Huhtio, H. Lipsanen, and M. Kauranen, “Second-harmonic generation imaging of semiconductor nanowires with focused vector beams,” Nano Lett. 15(3), 1564–1569 (2015).
[Crossref] [PubMed]

G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams,” Nano Lett. 12(6), 3207–3212 (2012).
[Crossref] [PubMed]

McGloin, D.

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[Crossref] [PubMed]

Melville, H.

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[Crossref] [PubMed]

Mhlanga, T.

Miceli, J.

J. Durnin, J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[Crossref] [PubMed]

Milione, G.

G. Milione, A. Dudley, T. A. Nguyen, O. Chakraborty, E. Karimi, A. Forbes, and R. R. Alfano, “Measuring the self-healing of the spatially inhomogeneous states of polarization of vector Bessel beams,” J. Opt. 17(3), 035617 (2015).
[Crossref]

Naskali, L.

L. Turquet, J.-P. Kakko, X. Zang, L. Naskali, L. Karvonen, H. Jiang, T. Huhtio, E. Kauppinen, H. Lipsanen, M. Kauranen, and G. Bautista, “Tailorable second-harmonic generation from an individual nanowire using spatially phase-shaped beams,” Laser Photonics Rev. 11(1), 1600175 (2017).
[Crossref]

Nguyen, T. A.

G. Milione, A. Dudley, T. A. Nguyen, O. Chakraborty, E. Karimi, A. Forbes, and R. R. Alfano, “Measuring the self-healing of the spatially inhomogeneous states of polarization of vector Bessel beams,” J. Opt. 17(3), 035617 (2015).
[Crossref]

Nie, Z.

Z. Nie, G. Shi, X. Zhang, Y. Wang, and Y. Song, “Generation of super-resolution longitudinally polarized beam with ultra-long depth of focus using radially polarized hollow Gaussian beam,” Opt. Commun. 331, 87–93 (2014).
[Crossref]

Niemi, T.

Noda, S.

Olivík, M.

Z. Bouchal and M. Olivík, “Non-diffractive vector Bessel beams,” J. Mod. Opt. 42(8), 1555–1566 (1995).
[Crossref]

Orlov, S.

T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, “Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams,” Nat. Photonics 8(1), 23–27 (2014).
[Crossref]

Ornigotti, M.

P. M. Anbarasan, P. M. A.

Peltonen, A.

J.-P. Kakko, T. Haggrén, V. Dhaka, T. Huhtio, A. Peltonen, H. Jiang, E. Kauppinen, and H. Lipsanen, “Fabrication of dual-type nanowire arrays on a single substrate,” Nano Lett. 15(3), 1679–1683 (2015).
[Crossref] [PubMed]

Peschel, U.

T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, “Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams,” Nat. Photonics 8(1), 23–27 (2014).
[Crossref]

Piché, M.

Putnam, W. P.

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

Rajesh, K. B.

K. B. Rajesh, N. V. Suresh, P. M. Anbarasan, K. Gokulakrishnan, and G. Mahadevan, “Tight focusing of double ring shaped radially polarized beam with high NA lens axicon,” Opt. Laser Technol. 43(7), 1037–1040 (2011).
[Crossref]

Ramachandran, S.

Richards, B.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[Crossref]

Rohrbach, A.

F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics 4(11), 780–785 (2010).
[Crossref]

Sakai, K.

Sato, S.

Schanne-Klein, M.-C.

N. Vuillemin, P. Mahou, D. Débarre, T. Gacoin, P.-L. Tharaux, M.-C. Schanne-Klein, W. Supatto, and E. Beaurepaire, “Efficient second-harmonic imaging of collagen in histological slides using Bessel beam excitation,” Sci. Rep. 6(1), 29863 (2016).
[Crossref] [PubMed]

Schimpf, D. N.

Sheppard, C.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[Crossref]

E. Yew and C. Sheppard, “Effects of axial field components on second harmonic generation microscopy,” Opt. Express 14(3), 1167–1174 (2006).
[Crossref] [PubMed]

Sheppard, C. J.

Sheppard, C. J. R.

C. J. R. Sheppard and T. Wilson, “Gaussian-beam theory of lenses with annular aperture,” IEE J. Microwaves, Opt. Acoust. 2(4), 105 (1978).
[Crossref]

Shi, G.

Z. Nie, G. Shi, X. Zhang, Y. Wang, and Y. Song, “Generation of super-resolution longitudinally polarized beam with ultra-long depth of focus using radially polarized hollow Gaussian beam,” Opt. Commun. 331, 87–93 (2014).
[Crossref]

Shi, L.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[Crossref]

Shi, P.

Sibbett, W.

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[Crossref] [PubMed]

Simon, P.

F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics 4(11), 780–785 (2010).
[Crossref]

Simonen, J.

G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams,” Nano Lett. 12(6), 3207–3212 (2012).
[Crossref] [PubMed]

Song, Y.

Z. Nie, G. Shi, X. Zhang, Y. Wang, and Y. Song, “Generation of super-resolution longitudinally polarized beam with ultra-long depth of focus using radially polarized hollow Gaussian beam,” Opt. Commun. 331, 87–93 (2014).
[Crossref]

Supatto, W.

N. Vuillemin, P. Mahou, D. Débarre, T. Gacoin, P.-L. Tharaux, M.-C. Schanne-Klein, W. Supatto, and E. Beaurepaire, “Efficient second-harmonic imaging of collagen in histological slides using Bessel beam excitation,” Sci. Rep. 6(1), 29863 (2016).
[Crossref] [PubMed]

Suresh, N. V.

K. B. Rajesh, N. V. Suresh, P. M. Anbarasan, K. Gokulakrishnan, and G. Mahadevan, “Tight focusing of double ring shaped radially polarized beam with high NA lens axicon,” Opt. Laser Technol. 43(7), 1037–1040 (2011).
[Crossref]

Tharaux, P.-L.

N. Vuillemin, P. Mahou, D. Débarre, T. Gacoin, P.-L. Tharaux, M.-C. Schanne-Klein, W. Supatto, and E. Beaurepaire, “Efficient second-harmonic imaging of collagen in histological slides using Bessel beam excitation,” Sci. Rep. 6(1), 29863 (2016).
[Crossref] [PubMed]

Turquet, L.

L. Turquet, J.-P. Kakko, L. Karvonen, H. Jiang, E. Kauppinen, H. Lipsanen, M. Kauranen, and G. Bautista, “Probing the longitudinal electric field of Bessel beams using second-harmonic generation from nano-objects,” J. Opt. 19(8), 084011 (2017).
[Crossref]

L. Turquet, J.-P. J.-P. Kakko, H. Jiang, T. J. T. J. Isotalo, T. Huhtio, T. Niemi, E. Kauppinen, H. Lipsanen, M. Kauranen, and G. Bautista, “Nonlinear imaging of nanostructures using beams with binary phase modulation,” Opt. Express 25(9), 10441–10448 (2017).
[Crossref] [PubMed]

L. Turquet, J.-P. Kakko, X. Zang, L. Naskali, L. Karvonen, H. Jiang, T. Huhtio, E. Kauppinen, H. Lipsanen, M. Kauranen, and G. Bautista, “Tailorable second-harmonic generation from an individual nanowire using spatially phase-shaped beams,” Laser Photonics Rev. 11(1), 1600175 (2017).
[Crossref]

Vuillemin, N.

N. Vuillemin, P. Mahou, D. Débarre, T. Gacoin, P.-L. Tharaux, M.-C. Schanne-Klein, W. Supatto, and E. Beaurepaire, “Efficient second-harmonic imaging of collagen in histological slides using Bessel beam excitation,” Sci. Rep. 6(1), 29863 (2016).
[Crossref] [PubMed]

Vyas, S.

Wang, F.

G. Wu, F. Wang, and Y. Cai, “Generation and self-healing of a radially polarized Bessel-Gauss beam,” Phys. Rev. A 89(4), 043807 (2014).
[Crossref]

Wang, H.

Y. Zha, J. Wei, H. Wang, and F. Gan, “Creation of an ultra-long depth of focus super-resolution longitudinally polarized beam with a ternary optical element,” J. Opt. 15(7), 075703 (2013).
[Crossref]

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[Crossref]

Wang, J.

Wang, L.

Wang, S.

Wang, Y.

Z. Nie, G. Shi, X. Zhang, Y. Wang, and Y. Song, “Generation of super-resolution longitudinally polarized beam with ultra-long depth of focus using radially polarized hollow Gaussian beam,” Opt. Commun. 331, 87–93 (2014).
[Crossref]

Wei, J.

Y. Zha, J. Wei, H. Wang, and F. Gan, “Creation of an ultra-long depth of focus super-resolution longitudinally polarized beam with a ternary optical element,” J. Opt. 15(7), 075703 (2013).
[Crossref]

Wilson, T.

C. J. R. Sheppard and T. Wilson, “Gaussian-beam theory of lenses with annular aperture,” IEE J. Microwaves, Opt. Acoust. 2(4), 105 (1978).
[Crossref]

C. J. Sheppard and T. Wilson, “Depth of field in the scanning microscope,” Opt. Lett. 3(3), 115–117 (1978).
[Crossref] [PubMed]

Wolf, E.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[Crossref]

Wu, G.

G. Wu, F. Wang, and Y. Cai, “Generation and self-healing of a radially polarized Bessel-Gauss beam,” Phys. Rev. A 89(4), 043807 (2014).
[Crossref]

Xie, X.

Yang, L.

Yew, E.

Youngworth, K.

Zang, X.

G. Bautista, C. Dreser, X. Zang, D. P. Kern, M. Kauranen, and M. Fleischer, “Collective effects in second-harmonic generation from plasmonic oligomers,” Nano Lett. 18(4), 2571–2580 (2018).
[Crossref] [PubMed]

G. Bautista, J.-P. Kakko, V. Dhaka, X. Zang, L. Karvonen, H. Jiang, E. Kauppinen, H. Lipsanen, and M. Kauranen, “Nonlinear microscopy using cylindrical vector beams: Applications to three-dimensional imaging of nanostructures,” Opt. Express 25(11), 12463–12468 (2017).
[Crossref] [PubMed]

L. Turquet, J.-P. Kakko, X. Zang, L. Naskali, L. Karvonen, H. Jiang, T. Huhtio, E. Kauppinen, H. Lipsanen, M. Kauranen, and G. Bautista, “Tailorable second-harmonic generation from an individual nanowire using spatially phase-shaped beams,” Laser Photonics Rev. 11(1), 1600175 (2017).
[Crossref]

Zemánek, P.

Zha, Y.

Y. Zha, J. Wei, H. Wang, and F. Gan, “Creation of an ultra-long depth of focus super-resolution longitudinally polarized beam with a ternary optical element,” J. Opt. 15(7), 075703 (2013).
[Crossref]

Zhan, Q.

Zhang, X.

Z. Nie, G. Shi, X. Zhang, Y. Wang, and Y. Song, “Generation of super-resolution longitudinally polarized beam with ultra-long depth of focus using radially polarized hollow Gaussian beam,” Opt. Commun. 331, 87–93 (2014).
[Crossref]

K. Huang, P. Shi, X. L. Kang, X. Zhang, and Y. P. Li, “Design of DOE for generating a needle of a strong longitudinally polarized field,” Opt. Lett. 35(7), 965–967 (2010).
[Crossref] [PubMed]

Zhang, Y.

Zheng, C.

Zhou, J.

ACS Photonics (1)

G. Bautista and M. Kauranen, “Vector-field nonlinear microscopy of nanostructures,” ACS Photonics 3(8), 1351–1370 (2016).
[Crossref]

Chin. Opt. Lett. (1)

IEE J. Microwaves, Opt. Acoust. (1)

C. J. R. Sheppard and T. Wilson, “Gaussian-beam theory of lenses with annular aperture,” IEE J. Microwaves, Opt. Acoust. 2(4), 105 (1978).
[Crossref]

J. Mod. Opt. (1)

Z. Bouchal and M. Olivík, “Non-diffractive vector Bessel beams,” J. Mod. Opt. 42(8), 1555–1566 (1995).
[Crossref]

J. Opt. (3)

Y. Zha, J. Wei, H. Wang, and F. Gan, “Creation of an ultra-long depth of focus super-resolution longitudinally polarized beam with a ternary optical element,” J. Opt. 15(7), 075703 (2013).
[Crossref]

L. Turquet, J.-P. Kakko, L. Karvonen, H. Jiang, E. Kauppinen, H. Lipsanen, M. Kauranen, and G. Bautista, “Probing the longitudinal electric field of Bessel beams using second-harmonic generation from nano-objects,” J. Opt. 19(8), 084011 (2017).
[Crossref]

G. Milione, A. Dudley, T. A. Nguyen, O. Chakraborty, E. Karimi, A. Forbes, and R. R. Alfano, “Measuring the self-healing of the spatially inhomogeneous states of polarization of vector Bessel beams,” J. Opt. 17(3), 035617 (2015).
[Crossref]

J. Opt. Soc. Am. A (3)

Laser Photonics Rev. (1)

L. Turquet, J.-P. Kakko, X. Zang, L. Naskali, L. Karvonen, H. Jiang, T. Huhtio, E. Kauppinen, H. Lipsanen, M. Kauranen, and G. Bautista, “Tailorable second-harmonic generation from an individual nanowire using spatially phase-shaped beams,” Laser Photonics Rev. 11(1), 1600175 (2017).
[Crossref]

Nano Lett. (4)

G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams,” Nano Lett. 12(6), 3207–3212 (2012).
[Crossref] [PubMed]

G. Bautista, C. Dreser, X. Zang, D. P. Kern, M. Kauranen, and M. Fleischer, “Collective effects in second-harmonic generation from plasmonic oligomers,” Nano Lett. 18(4), 2571–2580 (2018).
[Crossref] [PubMed]

J.-P. Kakko, T. Haggrén, V. Dhaka, T. Huhtio, A. Peltonen, H. Jiang, E. Kauppinen, and H. Lipsanen, “Fabrication of dual-type nanowire arrays on a single substrate,” Nano Lett. 15(3), 1679–1683 (2015).
[Crossref] [PubMed]

G. Bautista, J. Mäkitalo, Y. Chen, V. Dhaka, M. Grasso, L. Karvonen, H. Jiang, M. J. Huttunen, T. Huhtio, H. Lipsanen, and M. Kauranen, “Second-harmonic generation imaging of semiconductor nanowires with focused vector beams,” Nano Lett. 15(3), 1564–1569 (2015).
[Crossref] [PubMed]

Nat. Photonics (3)

T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, “Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams,” Nat. Photonics 8(1), 23–27 (2014).
[Crossref]

F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics 4(11), 780–785 (2010).
[Crossref]

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[Crossref]

Nature (1)

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[Crossref] [PubMed]

Opt. Commun. (2)

Z. Nie, G. Shi, X. Zhang, Y. Wang, and Y. Song, “Generation of super-resolution longitudinally polarized beam with ultra-long depth of focus using radially polarized hollow Gaussian beam,” Opt. Commun. 331, 87–93 (2014).
[Crossref]

T. Grosjean and D. Courjon, “Smallest focal spots,” Opt. Commun. 272(2), 314–319 (2007).
[Crossref]

Opt. Express (15)

M. Ornigotti and A. Aiello, “Radially and azimuthally polarized nonparaxial Bessel beams made simple,” Opt. Express 21(13), 15530–15537 (2013).
[Crossref] [PubMed]

L. Turquet, J.-P. J.-P. Kakko, H. Jiang, T. J. T. J. Isotalo, T. Huhtio, T. Niemi, E. Kauppinen, H. Lipsanen, M. Kauranen, and G. Bautista, “Nonlinear imaging of nanostructures using beams with binary phase modulation,” Opt. Express 25(9), 10441–10448 (2017).
[Crossref] [PubMed]

G. Bautista, J.-P. Kakko, V. Dhaka, X. Zang, L. Karvonen, H. Jiang, E. Kauppinen, H. Lipsanen, and M. Kauranen, “Nonlinear microscopy using cylindrical vector beams: Applications to three-dimensional imaging of nanostructures,” Opt. Express 25(11), 12463–12468 (2017).
[Crossref] [PubMed]

E. Yew and C. Sheppard, “Effects of axial field components on second harmonic generation microscopy,” Opt. Express 14(3), 1167–1174 (2006).
[Crossref] [PubMed]

O. Brzobohatý, T. Cizmár, and P. Zemánek, “High quality quasi-Bessel beam generated by round-tip axicon,” Opt. Express 16(17), 12688–12700 (2008).
[Crossref] [PubMed]

T. Čižmár and K. Dholakia, “Tunable Bessel light modes: engineering the axial propagation,” Opt. Express 17(18), 15558–15570 (2009).
[Crossref] [PubMed]

Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12(15), 3377–3382 (2004).
[Crossref] [PubMed]

Y. Zhang and J. Bai, “Improving the recording ability of a near-field optical storage system by higher-order radially polarized beams,” Opt. Express 17(5), 3698–3706 (2009).
[Crossref] [PubMed]

K. Kitamura, K. Sakai, and S. Noda, “Sub-wavelength focal spot with long depth of focus generated by radially polarized, narrow-width annular beam,” Opt. Express 18(5), 4518–4525 (2010).
[Crossref] [PubMed]

J. Wang, W. Chen, and Q. Zhan, “Engineering of high purity ultra-long optical needle field through reversing the electric dipole array radiation,” Opt. Express 18(21), 21965–21972 (2010).
[Crossref] [PubMed]

T. Grosjean and D. Courjon, “Photopolymers as vectorial sensors of the electric field,” Opt. Express 14(6), 2203–2210 (2006).
[Crossref] [PubMed]

K. Youngworth and T. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000).
[Crossref] [PubMed]

Q. Zhan and J. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express 10(7), 324–331 (2002).
[Crossref] [PubMed]

H. Dehez, A. April, and M. Piché, “Needles of longitudinally polarized light: guidelines for minimum spot size and tunable axial extent,” Opt. Express 20(14), 14891–14905 (2012).
[Crossref] [PubMed]

D. N. Schimpf, W. P. Putnam, M. D. W. Grogan, S. Ramachandran, and F. X. Kärtner, “Radially polarized Bessel-Gauss beams: decentered Gaussian beam analysis and experimental verification,” Opt. Express 21(15), 18469–18483 (2013).
[Crossref] [PubMed]

Opt. Laser Technol. (1)

K. B. Rajesh, N. V. Suresh, P. M. Anbarasan, K. Gokulakrishnan, and G. Mahadevan, “Tight focusing of double ring shaped radially polarized beam with high NA lens axicon,” Opt. Laser Technol. 43(7), 1037–1040 (2011).
[Crossref]

Opt. Lett. (7)

Phys. Rev. A (1)

G. Wu, F. Wang, and Y. Cai, “Generation and self-healing of a radially polarized Bessel-Gauss beam,” Phys. Rev. A 89(4), 043807 (2014).
[Crossref]

Phys. Rev. Lett. (2)

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

J. Durnin, J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[Crossref] [PubMed]

Proc. R. Soc. Lond. A Math. Phys. Sci. (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[Crossref]

Prog. Opt. (1)

T. G. Brown, “Unconventional polarization states: beam propagation, focusing, and imaging,” Prog. Opt. 56, 81–129 (2011).
[Crossref]

Sci. Rep. (1)

N. Vuillemin, P. Mahou, D. Débarre, T. Gacoin, P.-L. Tharaux, M.-C. Schanne-Klein, W. Supatto, and E. Beaurepaire, “Efficient second-harmonic imaging of collagen in histological slides using Bessel beam excitation,” Sci. Rep. 6(1), 29863 (2016).
[Crossref] [PubMed]

Other (1)

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic diagram of the optical microscopy setup. HWP1/2: half-wave plate, PBS: polarizing beamsplitter, BD: beam dump, M: mirror, SF: spatial filtering, MC: mode converter, BE: beam expander, RFL: relay formation lenses, DF: dichroic filter, MO: microscope objective (NA = 0.8, 50 × ), PZ: piezo-stage scanner, S: sample mounted on a glass slide, F: filter, PMT: photo-multiplier tube. The full red line represents the path of the fundamental laser beam; the dashed turquoise line represents the path of the SHG signals collected in epi-detection.
Fig. 2
Fig. 2 Experimental beam profiles of the generated thin annular RPBG and APBG beams. The beams appear at the back focal plane of the microscope objective. The beam profiles were recorded using a beam profiler without and with an analyzer at different orientations (see double-headed yellow arrows).
Fig. 3
Fig. 3 3D SHG intensity maps acquired from GaAs nanowires excited by the respective vector beams. (a,c) Transverse and (b,d) longitudinal scanning maps of GaAs nanowires using (a,b) RP and (c,d) RPBG beams. The dashed yellow lines in the transverse scanning maps represents the plane along which the longitudinal scans were performed. The relative SHG signal levels for these data sets are shown.
Fig. 4
Fig. 4 3D SHG intensity maps acquired using GaAs nanowires excited by the respective vector beams. (a,c) Transverse and (b,d) longitudinal scanning maps of GaAs nanowires using AP doughnut and APBG beams. The dashed yellow line represents the plane along which the longitudinal scans were performed. The relative SHG signal levels for these data sets are shown, with Fig. 3 as reference.
Fig. 5
Fig. 5 Comparison of SHG maps acquired using respective vector beams. Longitudinal scanning maps of three nanowires over a 7 × 50 μm range of the piezo-stage scanner, using (a) RPBG and (b) APBG beams. The relative SHG signal levels for these data sets are shown, with Fig. 3 as reference.
Fig. 6
Fig. 6 Calculated focal fields of the RP, RPBG, AP and APBG vector beams. Focal field distributions of a tightly focused a) RP beam, b) RPBG beam, c) AP beam, and d) APBG beam in the (x,y,z = 0) and (x,y = 0,z) planes for an excitation wavelength of 1060 nm and for a focusing angle of 45° in air. |ET| represents the transverse electric field component and |EZ| represents the longitudinal electric field component. Both longitudinal (x,y = 0,z) and transverse (x,y,z = 0) planes are shown. Simulations were run over a 5.5 × 50 μm area for the longitudinal plane and over a 2 × 2 μm2 for the transverse plane. The relative electric field amplitudes between |ET| and |EZ| are shown for each vector beam.
Fig. 7
Fig. 7 Robustness of the longitudinally-polarized optical needles created at the focal region. Longitudinal SHG intensity maps using three nanowires excited by the quarter- or half-blocked RPBG beam. The scanning maps cover a 7 × 15 μm area. The relative SHG signal levels for these data sets are shown, with Fig. 3 as reference.

Metrics