Abstract

Ultrafast fiber lasers have been serving as an ideal playground for spreading the extensive industrial applications and exploring the optics nonlinear dynamics. Here, we report a bidirectional fiber laser scheme for validating the possibility of a multiplexed laser system, which is passively mode-locked by the nonlinear polarization rotation (NPR) technique. In particular, the proposed fiber laser consists of one main cavity and two counter-propagating branches with different dispersion distributions. Thus, different formation mechanisms are introduced into the lasing oscillator. Consequently, stable conventional solitons (CSs) and dissipative solitons (DSs) are respectively formed in the clockwise (CW) and counterclockwise (CCW) directions of the same lasing oscillator. Moreover, attributing to the strong birefringence filtering effect, the wavelength selection mechanism is induced. Through the proper management of intra-cavity birefringence, wideband wavelength tuning and switchable multi-wavelength operations are experimentally observed. The central wavelength of CS can be continuously tuned from 1560 nm to 1602 nm. Additionally, the evolution process of different multi-wavelength operations is also elucidated. Benefiting from this multiplexed laser scheme, bidirectional lasing oscillation, multi-state soliton emission, wavelength tuning and multi-wavelength operations are synchronously realized in a single laser cavity. To the best of our knowledge, it is the first time for such a multiplexed fiber laser has been reported. The results provide information for multifunctional ultrafast fiber laser system, which is potentially set for telecommunications, fiber sensing and optics signal processing, etc.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Graphene and nanotube mode-locked fiber laser emitting dissipative and conventional solitons

Yudong Cui and Xueming Liu
Opt. Express 21(16) 18969-18974 (2013)

Tunable and switchable multi-wavelength dissipative soliton generation in a graphene oxide mode-locked Yb-doped fiber laser

Shisheng Huang, Yonggang Wang, Peiguang Yan, Junqing Zhao, Huiquan Li, and Rongyong Lin
Opt. Express 22(10) 11417-11426 (2014)

Multi-wavelength dissipative soliton operation of an erbium-doped fiber laser

H. Zhang, D. Y. Tang, X. Wu, and L. M. Zhao
Opt. Express 17(15) 12692-12697 (2009)

References

  • View by:
  • |
  • |
  • |

  1. U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
    [Crossref] [PubMed]
  2. M. E. Fermann and T. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7(11), 868–874 (2013).
    [Crossref]
  3. K. Ozgören, B. Öktem, S. Yilmaz, F. Ö. Ilday, and K. Eken, “83 W, 3.1 MHz, square-shaped, 1 ns-pulsed all-fiber-integrated laser for micromachining,” Opt. Express 19(18), 17647–17652 (2011).
    [Crossref] [PubMed]
  4. B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
    [Crossref]
  5. M. Pang, W. He, X. Jiang, and P. St. J. Russell, “All-optical bit storage in a fibre laser by optomechanically bound states of solitons,” Nat. Photonics 10(7), 454–458 (2016).
    [Crossref]
  6. P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
    [Crossref]
  7. Y. Luo, L. Li, L. Zhao, Q. Sun, Z. Wu, Z. Xu, S. Fu, and D. Liu, “Dynamics of dissipative solitons in a high-repetition-rate normal-dispersion erbium-doped fiber laser,” IEEE Photonics J. 8(4), 1–7 (2016).
    [Crossref]
  8. L. M. Zhao, D. Y. Tang, and J. Wu, “Gain-guided soliton in a positive group-dispersion fiber laser,” Opt. Lett. 31(12), 1788–1790 (2006).
    [Crossref] [PubMed]
  9. W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77(2), 023814 (2008).
    [Crossref]
  10. Y. Luo, L. Li, D. Liu, Q. Sun, Z. Wu, Z. Xu, D. Tang, S. Fu, and L. Zhao, “Group velocity locked vector dissipative solitons in a high repetition rate fiber laser,” Opt. Express 24(16), 18718–18726 (2016).
    [Crossref] [PubMed]
  11. H. A. Haus and W. S. Wong, “Solitons in optical communications,” Rev. Mod. Phys. 68(2), 423–444 (1996).
    [Crossref]
  12. L. M. Zhao, D. Y. Tang, T. H. Cheng, and C. Lu, “Gain-guided solitons in dispersion-managed fiber lasers with large net cavity dispersion,” Opt. Lett. 31(20), 2957–2959 (2006).
    [Crossref] [PubMed]
  13. A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14(21), 10095–10100 (2006).
    [Crossref] [PubMed]
  14. D. Y. Tang, L. M. Zhao, G. Q. Xie, and L. J. Qian, “Coexistence and competition between different soliton-shaping mechanisms in a laser,” Phys. Rev. A 75(6), 063810 (2007).
    [Crossref]
  15. Y. Cui and X. Liu, “Graphene and nanotube mode-locked fiber laser emitting dissipative and conventional solitons,” Opt. Express 21(16), 18969–18974 (2013).
    [Crossref] [PubMed]
  16. B. Liu, Y. Luo, Y. Xiang, Z. Yan, Y. Qin, Q. Sun, and X. Tang, “Multiplexed mode-locked fiber laser emitting dissipative and conventional solitons,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2018), paper JTh2A.119.
  17. M. E. Fermann and I. Hartl, “Ultrafast fiber laser technology,” IEEE J. Sel. Top. Quantum Electron. 15(1), 191–206 (2009).
    [Crossref]
  18. S. Pan and C. Lou, “Stable multiwavelength dispersion-tuned actively mode-locked erbium-doped fiber ring laser using nonlinear polarization rotation,” IEEE Photonics Technol. Lett. 18(13), 1451–1453 (2006).
    [Crossref]
  19. J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser Photonics Rev. 2(4), 275–289 (2008).
    [Crossref]
  20. C. R. Giles, “Lightwave applications of fiber Bragg gratings,” J. Lightwave Technol. 15(8), 1391–1404 (1997).
    [Crossref]
  21. X. He, Z. B. Liu, and D. N. Wang, “Wavelength-tunable, passively mode-locked fiber laser based on graphene and chirped fiber Bragg grating,” Opt. Lett. 37(12), 2394–2396 (2012).
    [Crossref] [PubMed]
  22. X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3(1), 2718 (2013).
    [Crossref] [PubMed]
  23. C. Ouyang, P. Shum, H. Wang, S. N. Fu, X. Cheng, J. H. Wong, and X. Tian, “Wavelength-tunable high-energy all-normal-dispersion Yb-doped mode-locked all-fiber laser with a HiBi fiber Sagnac loop filter,” IEEE J. Quantum Electron. 47(2), 198–203 (2011).
    [Crossref]
  24. Y. Xiang, Y. Luo, B. Liu, Z. Yan, Q. Sun, and D. Liu, “Observation of wavelength tuning and bound states in fiber lasers,” Sci. Rep. 8(1), 6049 (2018).
    [Crossref] [PubMed]
  25. H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, B. Lin, and S. C. Tjin, “Compact graphene mode-locked wavelength-tunable erbium-doped fiber lasers: from all anomalous dispersion to all normal dispersion,” Laser Phys. Lett. 7(8), 591–596 (2010).
    [Crossref]
  26. H. Zhang, D. Y. Tang, R. J. Knize, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
    [Crossref]
  27. H. Zhang, D. Y. Tang, X. Wu, and L. M. Zhao, “Multi-wavelength dissipative soliton operation of an erbium-doped fiber laser,” Opt. Express 17(15), 12692–12697 (2009).
    [Crossref] [PubMed]
  28. S. Huang, Y. Wang, P. Yan, J. Zhao, H. Li, and R. Lin, “Tunable and switchable multi-wavelength dissipative soliton generation in a graphene oxide mode-locked Yb-doped fiber laser,” Opt. Express 22(10), 11417–11426 (2014).
    [Crossref] [PubMed]
  29. A. Komarov, H. Leblond, and F. Sanchez, “Multistability and hysteresis phenomena in passively mode-locked fiber lasers,” Phys. Rev. A 71(5), 053809 (2005).
    [Crossref]
  30. J. Peng, L. Zhan, S. Luo, and Q. Shen, “Passive harmonic mode-locking of dissipative solitons in a normal-dispersion Er-doped fiber laser,” J. Lightwave Technol. 31(16), 3009–3014 (2013).
    [Crossref]
  31. W. S. Man, H. Y. Tam, M. S. Demokan, P. K. A. Wai, and D. Y. Tang, “Mechanism of intrinsic wavelength tuning and sideband asymmetry in a passively mode-locked soliton fiber ring laser,” J. Opt. Soc. Am. B 17(1), 28–33 (2000).
    [Crossref]
  32. J. L. Luo, Y. Q. Ge, D. Y. Tang, S. M. Zhang, D. Y. Shen, and L. M. Zhao, “Mechanism of spectrum moving, narrowing, broadening, and wavelength switching of dissipative solitons in all-normal-dispersion Yb-fiber lasers,” IEEE Photonics J. 6(1), 1–8 (2014).
    [Crossref]
  33. J. L. Luo, L. Li, Y. Q. Ge, X. X. Jin, D. Y. Tang, D. Y. Shen, S. M. Zhang, and L. M. Zhao, “L-band femtosecond fiber laser mode locked by nonlinear polarization rotation,” IEEE Photonics Technol. Lett. 26(24), 2438–2441 (2014).
    [Crossref]
  34. A. S. Gouveia-Neto, M. E. Faldon, A. S. B. Sombra, P. G. J. Wigley, and J. R. Taylor, “Subpicosecond-pulse generation through cross-phase-modulation-induced modulational instability in optical fibers,” Opt. Lett. 13(10), 901–903 (1988).
    [Crossref] [PubMed]
  35. Z. C. Luo, A. P. Luo, W. C. Xu, J. R. Liu, and H. S. Yin, “Modulation instability induced by cross-phase modulation in a dual-wavelength dispersion-managed soliton fiber laser,” Appl. Phys. B 100(4), 811–820 (2010).
    [Crossref]
  36. Y. Du and X. Shu, “Continuous-wave-induced resonant spectral sidebands in soliton fiber lasers,” Opt. Lett. 43(2), 263–266 (2018).
    [Crossref] [PubMed]
  37. Z. Lv, H. Teng, R. Wang, L. Wang, J. Wang, and Z. Wei, “Tunable triple-wavelength mode-locked ytterbium fiber laser with birefringence filter,” Appl. Phys. B 121(1), 1–6 (2015).
    [Crossref]
  38. A. Chong, W. H. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ,” Opt. Lett. 32(16), 2408–2410 (2007).
    [Crossref] [PubMed]
  39. Z. Wu, S. Fu, C. Chen, M. Tang, P. Shum, and D. Liu, “Dual-state dissipative solitons from an all-normal-dispersion erbium-doped fiber laser: continuous wavelength tuning and multi-wavelength emission,” Opt. Lett. 40(12), 2684–2687 (2015).
    [Crossref] [PubMed]

2018 (2)

Y. Xiang, Y. Luo, B. Liu, Z. Yan, Q. Sun, and D. Liu, “Observation of wavelength tuning and bound states in fiber lasers,” Sci. Rep. 8(1), 6049 (2018).
[Crossref] [PubMed]

Y. Du and X. Shu, “Continuous-wave-induced resonant spectral sidebands in soliton fiber lasers,” Opt. Lett. 43(2), 263–266 (2018).
[Crossref] [PubMed]

2016 (3)

M. Pang, W. He, X. Jiang, and P. St. J. Russell, “All-optical bit storage in a fibre laser by optomechanically bound states of solitons,” Nat. Photonics 10(7), 454–458 (2016).
[Crossref]

Y. Luo, L. Li, L. Zhao, Q. Sun, Z. Wu, Z. Xu, S. Fu, and D. Liu, “Dynamics of dissipative solitons in a high-repetition-rate normal-dispersion erbium-doped fiber laser,” IEEE Photonics J. 8(4), 1–7 (2016).
[Crossref]

Y. Luo, L. Li, D. Liu, Q. Sun, Z. Wu, Z. Xu, D. Tang, S. Fu, and L. Zhao, “Group velocity locked vector dissipative solitons in a high repetition rate fiber laser,” Opt. Express 24(16), 18718–18726 (2016).
[Crossref] [PubMed]

2015 (2)

Z. Lv, H. Teng, R. Wang, L. Wang, J. Wang, and Z. Wei, “Tunable triple-wavelength mode-locked ytterbium fiber laser with birefringence filter,” Appl. Phys. B 121(1), 1–6 (2015).
[Crossref]

Z. Wu, S. Fu, C. Chen, M. Tang, P. Shum, and D. Liu, “Dual-state dissipative solitons from an all-normal-dispersion erbium-doped fiber laser: continuous wavelength tuning and multi-wavelength emission,” Opt. Lett. 40(12), 2684–2687 (2015).
[Crossref] [PubMed]

2014 (3)

S. Huang, Y. Wang, P. Yan, J. Zhao, H. Li, and R. Lin, “Tunable and switchable multi-wavelength dissipative soliton generation in a graphene oxide mode-locked Yb-doped fiber laser,” Opt. Express 22(10), 11417–11426 (2014).
[Crossref] [PubMed]

J. L. Luo, Y. Q. Ge, D. Y. Tang, S. M. Zhang, D. Y. Shen, and L. M. Zhao, “Mechanism of spectrum moving, narrowing, broadening, and wavelength switching of dissipative solitons in all-normal-dispersion Yb-fiber lasers,” IEEE Photonics J. 6(1), 1–8 (2014).
[Crossref]

J. L. Luo, L. Li, Y. Q. Ge, X. X. Jin, D. Y. Tang, D. Y. Shen, S. M. Zhang, and L. M. Zhao, “L-band femtosecond fiber laser mode locked by nonlinear polarization rotation,” IEEE Photonics Technol. Lett. 26(24), 2438–2441 (2014).
[Crossref]

2013 (5)

J. Peng, L. Zhan, S. Luo, and Q. Shen, “Passive harmonic mode-locking of dissipative solitons in a normal-dispersion Er-doped fiber laser,” J. Lightwave Technol. 31(16), 3009–3014 (2013).
[Crossref]

X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3(1), 2718 (2013).
[Crossref] [PubMed]

Y. Cui and X. Liu, “Graphene and nanotube mode-locked fiber laser emitting dissipative and conventional solitons,” Opt. Express 21(16), 18969–18974 (2013).
[Crossref] [PubMed]

M. E. Fermann and T. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7(11), 868–874 (2013).
[Crossref]

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

2012 (2)

2011 (2)

C. Ouyang, P. Shum, H. Wang, S. N. Fu, X. Cheng, J. H. Wong, and X. Tian, “Wavelength-tunable high-energy all-normal-dispersion Yb-doped mode-locked all-fiber laser with a HiBi fiber Sagnac loop filter,” IEEE J. Quantum Electron. 47(2), 198–203 (2011).
[Crossref]

K. Ozgören, B. Öktem, S. Yilmaz, F. Ö. Ilday, and K. Eken, “83 W, 3.1 MHz, square-shaped, 1 ns-pulsed all-fiber-integrated laser for micromachining,” Opt. Express 19(18), 17647–17652 (2011).
[Crossref] [PubMed]

2010 (3)

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, B. Lin, and S. C. Tjin, “Compact graphene mode-locked wavelength-tunable erbium-doped fiber lasers: from all anomalous dispersion to all normal dispersion,” Laser Phys. Lett. 7(8), 591–596 (2010).
[Crossref]

H. Zhang, D. Y. Tang, R. J. Knize, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
[Crossref]

Z. C. Luo, A. P. Luo, W. C. Xu, J. R. Liu, and H. S. Yin, “Modulation instability induced by cross-phase modulation in a dual-wavelength dispersion-managed soliton fiber laser,” Appl. Phys. B 100(4), 811–820 (2010).
[Crossref]

2009 (2)

2008 (2)

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77(2), 023814 (2008).
[Crossref]

J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser Photonics Rev. 2(4), 275–289 (2008).
[Crossref]

2007 (2)

D. Y. Tang, L. M. Zhao, G. Q. Xie, and L. J. Qian, “Coexistence and competition between different soliton-shaping mechanisms in a laser,” Phys. Rev. A 75(6), 063810 (2007).
[Crossref]

A. Chong, W. H. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ,” Opt. Lett. 32(16), 2408–2410 (2007).
[Crossref] [PubMed]

2006 (4)

2005 (1)

A. Komarov, H. Leblond, and F. Sanchez, “Multistability and hysteresis phenomena in passively mode-locked fiber lasers,” Phys. Rev. A 71(5), 053809 (2005).
[Crossref]

2003 (1)

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
[Crossref] [PubMed]

2000 (1)

1997 (1)

C. R. Giles, “Lightwave applications of fiber Bragg gratings,” J. Lightwave Technol. 15(8), 1391–1404 (1997).
[Crossref]

1996 (1)

H. A. Haus and W. S. Wong, “Solitons in optical communications,” Rev. Mod. Phys. 68(2), 423–444 (1996).
[Crossref]

1988 (1)

Akhmediev, N.

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

Bao, Q. L.

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, B. Lin, and S. C. Tjin, “Compact graphene mode-locked wavelength-tunable erbium-doped fiber lasers: from all anomalous dispersion to all normal dispersion,” Laser Phys. Lett. 7(8), 591–596 (2010).
[Crossref]

H. Zhang, D. Y. Tang, R. J. Knize, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
[Crossref]

Buckley, J.

Canning, J.

J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser Photonics Rev. 2(4), 275–289 (2008).
[Crossref]

Chen, C.

Cheng, T. H.

Cheng, X.

C. Ouyang, P. Shum, H. Wang, S. N. Fu, X. Cheng, J. H. Wong, and X. Tian, “Wavelength-tunable high-energy all-normal-dispersion Yb-doped mode-locked all-fiber laser with a HiBi fiber Sagnac loop filter,” IEEE J. Quantum Electron. 47(2), 198–203 (2011).
[Crossref]

Chong, A.

Cui, Y.

X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3(1), 2718 (2013).
[Crossref] [PubMed]

Y. Cui and X. Liu, “Graphene and nanotube mode-locked fiber laser emitting dissipative and conventional solitons,” Opt. Express 21(16), 18969–18974 (2013).
[Crossref] [PubMed]

Demokan, M. S.

Du, Y.

Eken, K.

Erdogan, M.

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Faldon, M. E.

Fermann, M. E.

M. E. Fermann and T. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7(11), 868–874 (2013).
[Crossref]

M. E. Fermann and I. Hartl, “Ultrafast fiber laser technology,” IEEE J. Sel. Top. Quantum Electron. 15(1), 191–206 (2009).
[Crossref]

Fu, S.

Fu, S. N.

C. Ouyang, P. Shum, H. Wang, S. N. Fu, X. Cheng, J. H. Wong, and X. Tian, “Wavelength-tunable high-energy all-normal-dispersion Yb-doped mode-locked all-fiber laser with a HiBi fiber Sagnac loop filter,” IEEE J. Quantum Electron. 47(2), 198–203 (2011).
[Crossref]

Ge, Y. Q.

J. L. Luo, Y. Q. Ge, D. Y. Tang, S. M. Zhang, D. Y. Shen, and L. M. Zhao, “Mechanism of spectrum moving, narrowing, broadening, and wavelength switching of dissipative solitons in all-normal-dispersion Yb-fiber lasers,” IEEE Photonics J. 6(1), 1–8 (2014).
[Crossref]

J. L. Luo, L. Li, Y. Q. Ge, X. X. Jin, D. Y. Tang, D. Y. Shen, S. M. Zhang, and L. M. Zhao, “L-band femtosecond fiber laser mode locked by nonlinear polarization rotation,” IEEE Photonics Technol. Lett. 26(24), 2438–2441 (2014).
[Crossref]

Giles, C. R.

C. R. Giles, “Lightwave applications of fiber Bragg gratings,” J. Lightwave Technol. 15(8), 1391–1404 (1997).
[Crossref]

Gouveia-Neto, A. S.

Grelu, P.

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

Han, D.

X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3(1), 2718 (2013).
[Crossref] [PubMed]

Hartl, I.

M. E. Fermann and I. Hartl, “Ultrafast fiber laser technology,” IEEE J. Sel. Top. Quantum Electron. 15(1), 191–206 (2009).
[Crossref]

Hartl, T.

M. E. Fermann and T. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7(11), 868–874 (2013).
[Crossref]

Haus, H. A.

H. A. Haus and W. S. Wong, “Solitons in optical communications,” Rev. Mod. Phys. 68(2), 423–444 (1996).
[Crossref]

He, W.

M. Pang, W. He, X. Jiang, and P. St. J. Russell, “All-optical bit storage in a fibre laser by optomechanically bound states of solitons,” Nat. Photonics 10(7), 454–458 (2016).
[Crossref]

He, X.

Huang, S.

Ilday, F. Ö.

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

K. Ozgören, B. Öktem, S. Yilmaz, F. Ö. Ilday, and K. Eken, “83 W, 3.1 MHz, square-shaped, 1 ns-pulsed all-fiber-integrated laser for micromachining,” Opt. Express 19(18), 17647–17652 (2011).
[Crossref] [PubMed]

Ilday, S.

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Jiang, X.

M. Pang, W. He, X. Jiang, and P. St. J. Russell, “All-optical bit storage in a fibre laser by optomechanically bound states of solitons,” Nat. Photonics 10(7), 454–458 (2016).
[Crossref]

Jin, X. X.

J. L. Luo, L. Li, Y. Q. Ge, X. X. Jin, D. Y. Tang, D. Y. Shen, S. M. Zhang, and L. M. Zhao, “L-band femtosecond fiber laser mode locked by nonlinear polarization rotation,” IEEE Photonics Technol. Lett. 26(24), 2438–2441 (2014).
[Crossref]

Kalaycioglu, H.

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Keller, U.

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
[Crossref] [PubMed]

Knize, R. J.

H. Zhang, D. Y. Tang, R. J. Knize, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
[Crossref]

Komarov, A.

A. Komarov, H. Leblond, and F. Sanchez, “Multistability and hysteresis phenomena in passively mode-locked fiber lasers,” Phys. Rev. A 71(5), 053809 (2005).
[Crossref]

Leblond, H.

A. Komarov, H. Leblond, and F. Sanchez, “Multistability and hysteresis phenomena in passively mode-locked fiber lasers,” Phys. Rev. A 71(5), 053809 (2005).
[Crossref]

Li, H.

Li, L.

Y. Luo, L. Li, D. Liu, Q. Sun, Z. Wu, Z. Xu, D. Tang, S. Fu, and L. Zhao, “Group velocity locked vector dissipative solitons in a high repetition rate fiber laser,” Opt. Express 24(16), 18718–18726 (2016).
[Crossref] [PubMed]

Y. Luo, L. Li, L. Zhao, Q. Sun, Z. Wu, Z. Xu, S. Fu, and D. Liu, “Dynamics of dissipative solitons in a high-repetition-rate normal-dispersion erbium-doped fiber laser,” IEEE Photonics J. 8(4), 1–7 (2016).
[Crossref]

J. L. Luo, L. Li, Y. Q. Ge, X. X. Jin, D. Y. Tang, D. Y. Shen, S. M. Zhang, and L. M. Zhao, “L-band femtosecond fiber laser mode locked by nonlinear polarization rotation,” IEEE Photonics Technol. Lett. 26(24), 2438–2441 (2014).
[Crossref]

Lin, B.

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, B. Lin, and S. C. Tjin, “Compact graphene mode-locked wavelength-tunable erbium-doped fiber lasers: from all anomalous dispersion to all normal dispersion,” Laser Phys. Lett. 7(8), 591–596 (2010).
[Crossref]

Lin, R.

Liu, B.

Y. Xiang, Y. Luo, B. Liu, Z. Yan, Q. Sun, and D. Liu, “Observation of wavelength tuning and bound states in fiber lasers,” Sci. Rep. 8(1), 6049 (2018).
[Crossref] [PubMed]

Liu, D.

Y. Xiang, Y. Luo, B. Liu, Z. Yan, Q. Sun, and D. Liu, “Observation of wavelength tuning and bound states in fiber lasers,” Sci. Rep. 8(1), 6049 (2018).
[Crossref] [PubMed]

Y. Luo, L. Li, L. Zhao, Q. Sun, Z. Wu, Z. Xu, S. Fu, and D. Liu, “Dynamics of dissipative solitons in a high-repetition-rate normal-dispersion erbium-doped fiber laser,” IEEE Photonics J. 8(4), 1–7 (2016).
[Crossref]

Y. Luo, L. Li, D. Liu, Q. Sun, Z. Wu, Z. Xu, D. Tang, S. Fu, and L. Zhao, “Group velocity locked vector dissipative solitons in a high repetition rate fiber laser,” Opt. Express 24(16), 18718–18726 (2016).
[Crossref] [PubMed]

Z. Wu, S. Fu, C. Chen, M. Tang, P. Shum, and D. Liu, “Dual-state dissipative solitons from an all-normal-dispersion erbium-doped fiber laser: continuous wavelength tuning and multi-wavelength emission,” Opt. Lett. 40(12), 2684–2687 (2015).
[Crossref] [PubMed]

Liu, J. R.

Z. C. Luo, A. P. Luo, W. C. Xu, J. R. Liu, and H. S. Yin, “Modulation instability induced by cross-phase modulation in a dual-wavelength dispersion-managed soliton fiber laser,” Appl. Phys. B 100(4), 811–820 (2010).
[Crossref]

Liu, X.

X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3(1), 2718 (2013).
[Crossref] [PubMed]

Y. Cui and X. Liu, “Graphene and nanotube mode-locked fiber laser emitting dissipative and conventional solitons,” Opt. Express 21(16), 18969–18974 (2013).
[Crossref] [PubMed]

Liu, Z. B.

Loh, K. P.

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, B. Lin, and S. C. Tjin, “Compact graphene mode-locked wavelength-tunable erbium-doped fiber lasers: from all anomalous dispersion to all normal dispersion,” Laser Phys. Lett. 7(8), 591–596 (2010).
[Crossref]

H. Zhang, D. Y. Tang, R. J. Knize, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
[Crossref]

Lou, C.

S. Pan and C. Lou, “Stable multiwavelength dispersion-tuned actively mode-locked erbium-doped fiber ring laser using nonlinear polarization rotation,” IEEE Photonics Technol. Lett. 18(13), 1451–1453 (2006).
[Crossref]

Lu, C.

Lu, H.

X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3(1), 2718 (2013).
[Crossref] [PubMed]

Luo, A. P.

Z. C. Luo, A. P. Luo, W. C. Xu, J. R. Liu, and H. S. Yin, “Modulation instability induced by cross-phase modulation in a dual-wavelength dispersion-managed soliton fiber laser,” Appl. Phys. B 100(4), 811–820 (2010).
[Crossref]

Luo, J. L.

J. L. Luo, L. Li, Y. Q. Ge, X. X. Jin, D. Y. Tang, D. Y. Shen, S. M. Zhang, and L. M. Zhao, “L-band femtosecond fiber laser mode locked by nonlinear polarization rotation,” IEEE Photonics Technol. Lett. 26(24), 2438–2441 (2014).
[Crossref]

J. L. Luo, Y. Q. Ge, D. Y. Tang, S. M. Zhang, D. Y. Shen, and L. M. Zhao, “Mechanism of spectrum moving, narrowing, broadening, and wavelength switching of dissipative solitons in all-normal-dispersion Yb-fiber lasers,” IEEE Photonics J. 6(1), 1–8 (2014).
[Crossref]

Luo, S.

Luo, Y.

Y. Xiang, Y. Luo, B. Liu, Z. Yan, Q. Sun, and D. Liu, “Observation of wavelength tuning and bound states in fiber lasers,” Sci. Rep. 8(1), 6049 (2018).
[Crossref] [PubMed]

Y. Luo, L. Li, L. Zhao, Q. Sun, Z. Wu, Z. Xu, S. Fu, and D. Liu, “Dynamics of dissipative solitons in a high-repetition-rate normal-dispersion erbium-doped fiber laser,” IEEE Photonics J. 8(4), 1–7 (2016).
[Crossref]

Y. Luo, L. Li, D. Liu, Q. Sun, Z. Wu, Z. Xu, D. Tang, S. Fu, and L. Zhao, “Group velocity locked vector dissipative solitons in a high repetition rate fiber laser,” Opt. Express 24(16), 18718–18726 (2016).
[Crossref] [PubMed]

Luo, Z. C.

Z. C. Luo, A. P. Luo, W. C. Xu, J. R. Liu, and H. S. Yin, “Modulation instability induced by cross-phase modulation in a dual-wavelength dispersion-managed soliton fiber laser,” Appl. Phys. B 100(4), 811–820 (2010).
[Crossref]

Lv, Z.

Z. Lv, H. Teng, R. Wang, L. Wang, J. Wang, and Z. Wei, “Tunable triple-wavelength mode-locked ytterbium fiber laser with birefringence filter,” Appl. Phys. B 121(1), 1–6 (2015).
[Crossref]

Man, W. S.

Mao, D.

X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3(1), 2718 (2013).
[Crossref] [PubMed]

Öktem, B.

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

K. Ozgören, B. Öktem, S. Yilmaz, F. Ö. Ilday, and K. Eken, “83 W, 3.1 MHz, square-shaped, 1 ns-pulsed all-fiber-integrated laser for micromachining,” Opt. Express 19(18), 17647–17652 (2011).
[Crossref] [PubMed]

Ouyang, C.

C. Ouyang, P. Shum, H. Wang, S. N. Fu, X. Cheng, J. H. Wong, and X. Tian, “Wavelength-tunable high-energy all-normal-dispersion Yb-doped mode-locked all-fiber laser with a HiBi fiber Sagnac loop filter,” IEEE J. Quantum Electron. 47(2), 198–203 (2011).
[Crossref]

Ozgören, K.

Pan, S.

S. Pan and C. Lou, “Stable multiwavelength dispersion-tuned actively mode-locked erbium-doped fiber ring laser using nonlinear polarization rotation,” IEEE Photonics Technol. Lett. 18(13), 1451–1453 (2006).
[Crossref]

Pang, M.

M. Pang, W. He, X. Jiang, and P. St. J. Russell, “All-optical bit storage in a fibre laser by optomechanically bound states of solitons,” Nat. Photonics 10(7), 454–458 (2016).
[Crossref]

Pavlov, I.

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Peng, J.

Qian, L. J.

D. Y. Tang, L. M. Zhao, G. Q. Xie, and L. J. Qian, “Coexistence and competition between different soliton-shaping mechanisms in a laser,” Phys. Rev. A 75(6), 063810 (2007).
[Crossref]

Renninger, W.

Renninger, W. H.

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77(2), 023814 (2008).
[Crossref]

A. Chong, W. H. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ,” Opt. Lett. 32(16), 2408–2410 (2007).
[Crossref] [PubMed]

Russell, P. St. J.

M. Pang, W. He, X. Jiang, and P. St. J. Russell, “All-optical bit storage in a fibre laser by optomechanically bound states of solitons,” Nat. Photonics 10(7), 454–458 (2016).
[Crossref]

Rybak, A.

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Sanchez, F.

A. Komarov, H. Leblond, and F. Sanchez, “Multistability and hysteresis phenomena in passively mode-locked fiber lasers,” Phys. Rev. A 71(5), 053809 (2005).
[Crossref]

Shen, D. Y.

J. L. Luo, Y. Q. Ge, D. Y. Tang, S. M. Zhang, D. Y. Shen, and L. M. Zhao, “Mechanism of spectrum moving, narrowing, broadening, and wavelength switching of dissipative solitons in all-normal-dispersion Yb-fiber lasers,” IEEE Photonics J. 6(1), 1–8 (2014).
[Crossref]

J. L. Luo, L. Li, Y. Q. Ge, X. X. Jin, D. Y. Tang, D. Y. Shen, S. M. Zhang, and L. M. Zhao, “L-band femtosecond fiber laser mode locked by nonlinear polarization rotation,” IEEE Photonics Technol. Lett. 26(24), 2438–2441 (2014).
[Crossref]

Shen, Q.

Shu, X.

Shum, P.

Z. Wu, S. Fu, C. Chen, M. Tang, P. Shum, and D. Liu, “Dual-state dissipative solitons from an all-normal-dispersion erbium-doped fiber laser: continuous wavelength tuning and multi-wavelength emission,” Opt. Lett. 40(12), 2684–2687 (2015).
[Crossref] [PubMed]

C. Ouyang, P. Shum, H. Wang, S. N. Fu, X. Cheng, J. H. Wong, and X. Tian, “Wavelength-tunable high-energy all-normal-dispersion Yb-doped mode-locked all-fiber laser with a HiBi fiber Sagnac loop filter,” IEEE J. Quantum Electron. 47(2), 198–203 (2011).
[Crossref]

Sombra, A. S. B.

Sun, Q.

Y. Xiang, Y. Luo, B. Liu, Z. Yan, Q. Sun, and D. Liu, “Observation of wavelength tuning and bound states in fiber lasers,” Sci. Rep. 8(1), 6049 (2018).
[Crossref] [PubMed]

Y. Luo, L. Li, L. Zhao, Q. Sun, Z. Wu, Z. Xu, S. Fu, and D. Liu, “Dynamics of dissipative solitons in a high-repetition-rate normal-dispersion erbium-doped fiber laser,” IEEE Photonics J. 8(4), 1–7 (2016).
[Crossref]

Y. Luo, L. Li, D. Liu, Q. Sun, Z. Wu, Z. Xu, D. Tang, S. Fu, and L. Zhao, “Group velocity locked vector dissipative solitons in a high repetition rate fiber laser,” Opt. Express 24(16), 18718–18726 (2016).
[Crossref] [PubMed]

Sun, Z.

X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3(1), 2718 (2013).
[Crossref] [PubMed]

Tam, H. Y.

Tang, D.

Tang, D. Y.

J. L. Luo, L. Li, Y. Q. Ge, X. X. Jin, D. Y. Tang, D. Y. Shen, S. M. Zhang, and L. M. Zhao, “L-band femtosecond fiber laser mode locked by nonlinear polarization rotation,” IEEE Photonics Technol. Lett. 26(24), 2438–2441 (2014).
[Crossref]

J. L. Luo, Y. Q. Ge, D. Y. Tang, S. M. Zhang, D. Y. Shen, and L. M. Zhao, “Mechanism of spectrum moving, narrowing, broadening, and wavelength switching of dissipative solitons in all-normal-dispersion Yb-fiber lasers,” IEEE Photonics J. 6(1), 1–8 (2014).
[Crossref]

H. Zhang, D. Y. Tang, R. J. Knize, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
[Crossref]

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, B. Lin, and S. C. Tjin, “Compact graphene mode-locked wavelength-tunable erbium-doped fiber lasers: from all anomalous dispersion to all normal dispersion,” Laser Phys. Lett. 7(8), 591–596 (2010).
[Crossref]

H. Zhang, D. Y. Tang, X. Wu, and L. M. Zhao, “Multi-wavelength dissipative soliton operation of an erbium-doped fiber laser,” Opt. Express 17(15), 12692–12697 (2009).
[Crossref] [PubMed]

D. Y. Tang, L. M. Zhao, G. Q. Xie, and L. J. Qian, “Coexistence and competition between different soliton-shaping mechanisms in a laser,” Phys. Rev. A 75(6), 063810 (2007).
[Crossref]

L. M. Zhao, D. Y. Tang, T. H. Cheng, and C. Lu, “Gain-guided solitons in dispersion-managed fiber lasers with large net cavity dispersion,” Opt. Lett. 31(20), 2957–2959 (2006).
[Crossref] [PubMed]

L. M. Zhao, D. Y. Tang, and J. Wu, “Gain-guided soliton in a positive group-dispersion fiber laser,” Opt. Lett. 31(12), 1788–1790 (2006).
[Crossref] [PubMed]

W. S. Man, H. Y. Tam, M. S. Demokan, P. K. A. Wai, and D. Y. Tang, “Mechanism of intrinsic wavelength tuning and sideband asymmetry in a passively mode-locked soliton fiber ring laser,” J. Opt. Soc. Am. B 17(1), 28–33 (2000).
[Crossref]

Tang, M.

Taylor, J. R.

Teng, H.

Z. Lv, H. Teng, R. Wang, L. Wang, J. Wang, and Z. Wei, “Tunable triple-wavelength mode-locked ytterbium fiber laser with birefringence filter,” Appl. Phys. B 121(1), 1–6 (2015).
[Crossref]

Tian, X.

C. Ouyang, P. Shum, H. Wang, S. N. Fu, X. Cheng, J. H. Wong, and X. Tian, “Wavelength-tunable high-energy all-normal-dispersion Yb-doped mode-locked all-fiber laser with a HiBi fiber Sagnac loop filter,” IEEE J. Quantum Electron. 47(2), 198–203 (2011).
[Crossref]

Tjin, S. C.

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, B. Lin, and S. C. Tjin, “Compact graphene mode-locked wavelength-tunable erbium-doped fiber lasers: from all anomalous dispersion to all normal dispersion,” Laser Phys. Lett. 7(8), 591–596 (2010).
[Crossref]

Wai, P. K. A.

Wang, D. N.

Wang, F.

X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3(1), 2718 (2013).
[Crossref] [PubMed]

Wang, H.

C. Ouyang, P. Shum, H. Wang, S. N. Fu, X. Cheng, J. H. Wong, and X. Tian, “Wavelength-tunable high-energy all-normal-dispersion Yb-doped mode-locked all-fiber laser with a HiBi fiber Sagnac loop filter,” IEEE J. Quantum Electron. 47(2), 198–203 (2011).
[Crossref]

Wang, J.

Z. Lv, H. Teng, R. Wang, L. Wang, J. Wang, and Z. Wei, “Tunable triple-wavelength mode-locked ytterbium fiber laser with birefringence filter,” Appl. Phys. B 121(1), 1–6 (2015).
[Crossref]

Wang, L.

Z. Lv, H. Teng, R. Wang, L. Wang, J. Wang, and Z. Wei, “Tunable triple-wavelength mode-locked ytterbium fiber laser with birefringence filter,” Appl. Phys. B 121(1), 1–6 (2015).
[Crossref]

Wang, R.

Z. Lv, H. Teng, R. Wang, L. Wang, J. Wang, and Z. Wei, “Tunable triple-wavelength mode-locked ytterbium fiber laser with birefringence filter,” Appl. Phys. B 121(1), 1–6 (2015).
[Crossref]

Wang, Y.

Wei, Z.

Z. Lv, H. Teng, R. Wang, L. Wang, J. Wang, and Z. Wei, “Tunable triple-wavelength mode-locked ytterbium fiber laser with birefringence filter,” Appl. Phys. B 121(1), 1–6 (2015).
[Crossref]

Wigley, P. G. J.

Wise, F.

Wise, F. W.

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77(2), 023814 (2008).
[Crossref]

A. Chong, W. H. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ,” Opt. Lett. 32(16), 2408–2410 (2007).
[Crossref] [PubMed]

Wong, J. H.

C. Ouyang, P. Shum, H. Wang, S. N. Fu, X. Cheng, J. H. Wong, and X. Tian, “Wavelength-tunable high-energy all-normal-dispersion Yb-doped mode-locked all-fiber laser with a HiBi fiber Sagnac loop filter,” IEEE J. Quantum Electron. 47(2), 198–203 (2011).
[Crossref]

Wong, W. S.

H. A. Haus and W. S. Wong, “Solitons in optical communications,” Rev. Mod. Phys. 68(2), 423–444 (1996).
[Crossref]

Wu, J.

Wu, X.

Wu, Z.

Xiang, Y.

Y. Xiang, Y. Luo, B. Liu, Z. Yan, Q. Sun, and D. Liu, “Observation of wavelength tuning and bound states in fiber lasers,” Sci. Rep. 8(1), 6049 (2018).
[Crossref] [PubMed]

Xie, G. Q.

D. Y. Tang, L. M. Zhao, G. Q. Xie, and L. J. Qian, “Coexistence and competition between different soliton-shaping mechanisms in a laser,” Phys. Rev. A 75(6), 063810 (2007).
[Crossref]

Xu, W. C.

Z. C. Luo, A. P. Luo, W. C. Xu, J. R. Liu, and H. S. Yin, “Modulation instability induced by cross-phase modulation in a dual-wavelength dispersion-managed soliton fiber laser,” Appl. Phys. B 100(4), 811–820 (2010).
[Crossref]

Xu, Z.

Y. Luo, L. Li, L. Zhao, Q. Sun, Z. Wu, Z. Xu, S. Fu, and D. Liu, “Dynamics of dissipative solitons in a high-repetition-rate normal-dispersion erbium-doped fiber laser,” IEEE Photonics J. 8(4), 1–7 (2016).
[Crossref]

Y. Luo, L. Li, D. Liu, Q. Sun, Z. Wu, Z. Xu, D. Tang, S. Fu, and L. Zhao, “Group velocity locked vector dissipative solitons in a high repetition rate fiber laser,” Opt. Express 24(16), 18718–18726 (2016).
[Crossref] [PubMed]

Yan, P.

Yan, Z.

Y. Xiang, Y. Luo, B. Liu, Z. Yan, Q. Sun, and D. Liu, “Observation of wavelength tuning and bound states in fiber lasers,” Sci. Rep. 8(1), 6049 (2018).
[Crossref] [PubMed]

Yavas, S.

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Yilmaz, S.

Yin, H. S.

Z. C. Luo, A. P. Luo, W. C. Xu, J. R. Liu, and H. S. Yin, “Modulation instability induced by cross-phase modulation in a dual-wavelength dispersion-managed soliton fiber laser,” Appl. Phys. B 100(4), 811–820 (2010).
[Crossref]

Zeng, C.

X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3(1), 2718 (2013).
[Crossref] [PubMed]

Zhan, L.

Zhang, H.

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, B. Lin, and S. C. Tjin, “Compact graphene mode-locked wavelength-tunable erbium-doped fiber lasers: from all anomalous dispersion to all normal dispersion,” Laser Phys. Lett. 7(8), 591–596 (2010).
[Crossref]

H. Zhang, D. Y. Tang, R. J. Knize, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
[Crossref]

H. Zhang, D. Y. Tang, X. Wu, and L. M. Zhao, “Multi-wavelength dissipative soliton operation of an erbium-doped fiber laser,” Opt. Express 17(15), 12692–12697 (2009).
[Crossref] [PubMed]

Zhang, S. M.

J. L. Luo, L. Li, Y. Q. Ge, X. X. Jin, D. Y. Tang, D. Y. Shen, S. M. Zhang, and L. M. Zhao, “L-band femtosecond fiber laser mode locked by nonlinear polarization rotation,” IEEE Photonics Technol. Lett. 26(24), 2438–2441 (2014).
[Crossref]

J. L. Luo, Y. Q. Ge, D. Y. Tang, S. M. Zhang, D. Y. Shen, and L. M. Zhao, “Mechanism of spectrum moving, narrowing, broadening, and wavelength switching of dissipative solitons in all-normal-dispersion Yb-fiber lasers,” IEEE Photonics J. 6(1), 1–8 (2014).
[Crossref]

Zhao, J.

Zhao, L.

Y. Luo, L. Li, L. Zhao, Q. Sun, Z. Wu, Z. Xu, S. Fu, and D. Liu, “Dynamics of dissipative solitons in a high-repetition-rate normal-dispersion erbium-doped fiber laser,” IEEE Photonics J. 8(4), 1–7 (2016).
[Crossref]

Y. Luo, L. Li, D. Liu, Q. Sun, Z. Wu, Z. Xu, D. Tang, S. Fu, and L. Zhao, “Group velocity locked vector dissipative solitons in a high repetition rate fiber laser,” Opt. Express 24(16), 18718–18726 (2016).
[Crossref] [PubMed]

Zhao, L. M.

J. L. Luo, L. Li, Y. Q. Ge, X. X. Jin, D. Y. Tang, D. Y. Shen, S. M. Zhang, and L. M. Zhao, “L-band femtosecond fiber laser mode locked by nonlinear polarization rotation,” IEEE Photonics Technol. Lett. 26(24), 2438–2441 (2014).
[Crossref]

J. L. Luo, Y. Q. Ge, D. Y. Tang, S. M. Zhang, D. Y. Shen, and L. M. Zhao, “Mechanism of spectrum moving, narrowing, broadening, and wavelength switching of dissipative solitons in all-normal-dispersion Yb-fiber lasers,” IEEE Photonics J. 6(1), 1–8 (2014).
[Crossref]

H. Zhang, D. Y. Tang, R. J. Knize, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
[Crossref]

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, B. Lin, and S. C. Tjin, “Compact graphene mode-locked wavelength-tunable erbium-doped fiber lasers: from all anomalous dispersion to all normal dispersion,” Laser Phys. Lett. 7(8), 591–596 (2010).
[Crossref]

H. Zhang, D. Y. Tang, X. Wu, and L. M. Zhao, “Multi-wavelength dissipative soliton operation of an erbium-doped fiber laser,” Opt. Express 17(15), 12692–12697 (2009).
[Crossref] [PubMed]

D. Y. Tang, L. M. Zhao, G. Q. Xie, and L. J. Qian, “Coexistence and competition between different soliton-shaping mechanisms in a laser,” Phys. Rev. A 75(6), 063810 (2007).
[Crossref]

L. M. Zhao, D. Y. Tang, T. H. Cheng, and C. Lu, “Gain-guided solitons in dispersion-managed fiber lasers with large net cavity dispersion,” Opt. Lett. 31(20), 2957–2959 (2006).
[Crossref] [PubMed]

L. M. Zhao, D. Y. Tang, and J. Wu, “Gain-guided soliton in a positive group-dispersion fiber laser,” Opt. Lett. 31(12), 1788–1790 (2006).
[Crossref] [PubMed]

Appl. Phys. B (2)

Z. C. Luo, A. P. Luo, W. C. Xu, J. R. Liu, and H. S. Yin, “Modulation instability induced by cross-phase modulation in a dual-wavelength dispersion-managed soliton fiber laser,” Appl. Phys. B 100(4), 811–820 (2010).
[Crossref]

Z. Lv, H. Teng, R. Wang, L. Wang, J. Wang, and Z. Wei, “Tunable triple-wavelength mode-locked ytterbium fiber laser with birefringence filter,” Appl. Phys. B 121(1), 1–6 (2015).
[Crossref]

Appl. Phys. Lett. (1)

H. Zhang, D. Y. Tang, R. J. Knize, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
[Crossref]

IEEE J. Quantum Electron. (1)

C. Ouyang, P. Shum, H. Wang, S. N. Fu, X. Cheng, J. H. Wong, and X. Tian, “Wavelength-tunable high-energy all-normal-dispersion Yb-doped mode-locked all-fiber laser with a HiBi fiber Sagnac loop filter,” IEEE J. Quantum Electron. 47(2), 198–203 (2011).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. E. Fermann and I. Hartl, “Ultrafast fiber laser technology,” IEEE J. Sel. Top. Quantum Electron. 15(1), 191–206 (2009).
[Crossref]

IEEE Photonics J. (2)

Y. Luo, L. Li, L. Zhao, Q. Sun, Z. Wu, Z. Xu, S. Fu, and D. Liu, “Dynamics of dissipative solitons in a high-repetition-rate normal-dispersion erbium-doped fiber laser,” IEEE Photonics J. 8(4), 1–7 (2016).
[Crossref]

J. L. Luo, Y. Q. Ge, D. Y. Tang, S. M. Zhang, D. Y. Shen, and L. M. Zhao, “Mechanism of spectrum moving, narrowing, broadening, and wavelength switching of dissipative solitons in all-normal-dispersion Yb-fiber lasers,” IEEE Photonics J. 6(1), 1–8 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (2)

J. L. Luo, L. Li, Y. Q. Ge, X. X. Jin, D. Y. Tang, D. Y. Shen, S. M. Zhang, and L. M. Zhao, “L-band femtosecond fiber laser mode locked by nonlinear polarization rotation,” IEEE Photonics Technol. Lett. 26(24), 2438–2441 (2014).
[Crossref]

S. Pan and C. Lou, “Stable multiwavelength dispersion-tuned actively mode-locked erbium-doped fiber ring laser using nonlinear polarization rotation,” IEEE Photonics Technol. Lett. 18(13), 1451–1453 (2006).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (1)

J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser Photonics Rev. 2(4), 275–289 (2008).
[Crossref]

Laser Phys. Lett. (1)

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, B. Lin, and S. C. Tjin, “Compact graphene mode-locked wavelength-tunable erbium-doped fiber lasers: from all anomalous dispersion to all normal dispersion,” Laser Phys. Lett. 7(8), 591–596 (2010).
[Crossref]

Nat. Photonics (4)

M. E. Fermann and T. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7(11), 868–874 (2013).
[Crossref]

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

M. Pang, W. He, X. Jiang, and P. St. J. Russell, “All-optical bit storage in a fibre laser by optomechanically bound states of solitons,” Nat. Photonics 10(7), 454–458 (2016).
[Crossref]

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

Nature (1)

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (7)

Phys. Rev. A (3)

D. Y. Tang, L. M. Zhao, G. Q. Xie, and L. J. Qian, “Coexistence and competition between different soliton-shaping mechanisms in a laser,” Phys. Rev. A 75(6), 063810 (2007).
[Crossref]

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77(2), 023814 (2008).
[Crossref]

A. Komarov, H. Leblond, and F. Sanchez, “Multistability and hysteresis phenomena in passively mode-locked fiber lasers,” Phys. Rev. A 71(5), 053809 (2005).
[Crossref]

Rev. Mod. Phys. (1)

H. A. Haus and W. S. Wong, “Solitons in optical communications,” Rev. Mod. Phys. 68(2), 423–444 (1996).
[Crossref]

Sci. Rep. (2)

X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3(1), 2718 (2013).
[Crossref] [PubMed]

Y. Xiang, Y. Luo, B. Liu, Z. Yan, Q. Sun, and D. Liu, “Observation of wavelength tuning and bound states in fiber lasers,” Sci. Rep. 8(1), 6049 (2018).
[Crossref] [PubMed]

Other (1)

B. Liu, Y. Luo, Y. Xiang, Z. Yan, Y. Qin, Q. Sun, and X. Tang, “Multiplexed mode-locked fiber laser emitting dissipative and conventional solitons,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2018), paper JTh2A.119.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic diagram of the bidirectional fiber ring laser.
Fig. 2
Fig. 2 Conventional solitons in clockwise direction (a) optical spectrum (b) autocorrelation trace (c) fundamental oscilloscope trace (d) fundamental RF spectrum in 5 kHz span, 1 Hz RBW (Inset: 1 GHz span, 1 kHz RBW).
Fig. 3
Fig. 3 Dissipative solitons in counter-clockwise direction (a) optical spectrum (b) autocorrelation trace of initial pulse (blue curve) and compressed pulse (red curve) (c) fundamental oscilloscope trace (d) fundamental RF spectrum in 5 kHz span, 1 Hz RBW (Inset: 1 GHz span, 1 kHz RBW).
Fig. 4
Fig. 4 Wavelength tuning process of conventional solitons (a) optical spectrum ranging from 1560 nm to 1602 nm (b) variation of 3-dB spectrum bandwidth (c) variation of pulse width.
Fig. 5
Fig. 5 Dual-wavelength mode-locked solitons (a) optical spectrum (b) oscilloscope trace (c) RF spectrum in 800 Hz span, 1 Hz RBW (d) optical intensity spectrum repeatedly scanned with 1-min interval for 150 min.
Fig. 6
Fig. 6 Quadruple-wavelength mode-locking operation (a) optical spectrum (b) breaking chart of RF spectrum.
Fig. 7
Fig. 7 Optical spectrums of different multi-wavelength mode-locking operations along with the wavelength switching process.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ λ = λ c 2 LB
Δt=LDΔλ=Δ( 1 f )= Δf f 2
Δf= Δt t 2 = LDΔλ t 2
1 λ 1 + 1 λ 4 = 1 λ 2 + 1 λ 3

Metrics