Abstract

We report on the monolithic integration of a new class of reflown silica microtoroid resonators with silicon nanowaveguides fabricated on top of the silica film. Connectivity with other silicon photonics devices is enabled by inversion of the toroid geometry, defined by etching a circular opening rather than a disk in an undercut silica membrane. Intrinsic quality factors of up to 2 million are achieved and several avenues of process improvement are identified that can help attain the higher quality factors (> 108) that are possible in reflown microtoroids. Moreover, due to the microtoroid being formed by standard microfabrication and post-processing by local laser induced heating, these devices are in principle compatible with monolithic co-fabrication with other electro-optic components.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Free ultra-high-Q microtoroid: a tool for designing photonic devices

Mani Hossein-Zadeh and Kerry J. Vahala
Opt. Express 15(1) 166-175 (2007)

High-Q silicon nitride microresonators exhibiting low-power frequency comb initiation

Yi Xuan, Yang Liu, Leo T. Varghese, Andrew J. Metcalf, Xiaoxiao Xue, Pei-Hsun Wang, Kyunghun Han, Jose A. Jaramillo-Villegas, Abdullah Al Noman, Cong Wang, Sangsik Kim, Min Teng, Yun Jo Lee, Ben Niu, Li Fan, Jian Wang, Daniel E. Leaird, Andrew M. Weiner, and Minghao Qi
Optica 3(11) 1171-1180 (2016)

High bandwidth on-chip capacitive tuning of microtoroid resonators

Christopher G. Baker, Christiaan Bekker, David L. McAuslan, Eoin Sheridan, and Warwick P. Bowen
Opt. Express 24(18) 20400-20412 (2016)

References

  • View by:
  • |
  • |
  • |

  1. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
    [Crossref] [PubMed]
  2. P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107(6), 063901 (2011).
    [Crossref] [PubMed]
  3. J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
    [Crossref] [PubMed]
  4. I. Coddington, W. Swann, and N. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82(4), 043817 (2010).
    [Crossref]
  5. A. M. Zolot, F. R. Giorgetta, E. Baumann, J. W. Nicholson, W. C. Swann, I. Coddington, and N. R. Newbury, “Direct-comb molecular spectroscopy with accurate, resolved comb teeth over 43 THz,” Opt. Lett. 37(4), 638–640 (2012).
    [Crossref] [PubMed]
  6. F. Dell’Olio, T. Tatoli, C. Ciminelli, and M. N. Armenise, “Recent advances in miniaturized optical gyroscopes,” J. Eur. Opt. Soc. Rapid Publ. 9, 14013 (2014).
    [Crossref]
  7. M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quant. Electron. 16(3), 654–661 (2010).
    [Crossref]
  8. J. Witzens and M. Hochberg, “Optical detection of target molecule induced aggregation of nanoparticles by means of high-Q resonators,” Opt. Express 19(8), 7034–7061 (2011).
    [Crossref] [PubMed]
  9. Y. Zhao, Q. Wang, F. Meng, Y. Lin, S. Wang, Y. Li, B. Lin, S. Cao, J. Cao, Z. Fang, T. Li, and E. Zang, “High-finesse cavity external optical feedback DFB laser with hertz relative linewidth,” Opt. Lett. 37(22), 4729–4731 (2012).
    [Crossref] [PubMed]
  10. W. Lewoczko-Adamczyk, C. Pyrlik, J. Häger, S. Schwertfeger, A. Wicht, A. Peters, G. Erbert, and G. Tränkle, “Ultra-narrow linewidth DFB-laser with optical feedback from a monolithic confocal Fabry-Perot cavity,” Opt. Express 23(8), 9705–9709 (2015).
    [Crossref] [PubMed]
  11. W. Yoshiki, Y. Honda, T. Tetsumoto, K. Furusawa, N. Sekine, and T. Tanabe, “All-optical tunable buffering with coupled ultra-high Q whispering gallery mode microcavities,” Sci. Rep. 7(1), 10688 (2017).
    [Crossref] [PubMed]
  12. K. Wörhoff, R. G. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform,” Adv. Opt. Technol. 4(2), 189–207 (2015).
  13. A. Coillet, R. Henriet, K. Phan Huy, M. Jacquot, L. Furfaro, I. Balakireva, L. Larger, and Y. K. Chembo, “Microwave photonics systems based on whispering-gallery-mode resonators,” J. Vis. Exp. 78(78), e50423 (2013).
    [Crossref] [PubMed]
  14. I. S. Grudinin, N. Yu, and L. Maleki, “Generation of optical frequency combs with a CaF2 resonator,” Opt. Lett. 34(7), 878–880 (2009).
    [Crossref] [PubMed]
  15. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
    [Crossref] [PubMed]
  16. X. Zhang and A. M. Armani, “Silica microtoroid resonator sensor with monolithically integrated waveguides,” Opt. Express 21(20), 23592–23603 (2013).
    [Crossref] [PubMed]
  17. J. Yao, D. Leuenberger, M.-C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated MEMS tunable coupler,” IEEE J. Sel. Top. Quant. Electron. 13(2), 202–208 (2007).
    [Crossref]
  18. M. Soltani, S. Yegnanarayanan, and A. Adibi, “Ultra-high Q planar silicon microdisk resonators for chip-scale silicon photonics,” Opt. Express 15(8), 4694–4704 (2007).
    [Crossref] [PubMed]
  19. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
    [Crossref]
  20. L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
    [Crossref]
  21. M. H. P. Pfeiffer, A. Kordts, V. Brasch, M. Zervas, M. Geiselmann, J. D. Jost, and T. J. Kippenberg, “Photonic damascene process for integrated high-Q microresonator based nonlinear photonics,” Optica 3(1), 20–25 (2016).
    [Crossref]
  22. D. T. Spencer, J. F. Bauters, M. J. R. Heck, and J. E. Bowers, “Integrated waveguide coupled Si3N4 resonators in the ultrahigh-Q regime,” Optica 1(3), 153–157 (2014).
    [Crossref]
  23. X. Ji, F. A. S. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, and M. Lipson, “Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold,” Optica 4(6), 619–624 (2017).
    [Crossref]
  24. W. D. Sacher, Y. Huang, G.-Q. Lo, and J. K. S. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platforms and devices,” J. Lightwave Technol. 33(4), 901–910 (2015).
    [Crossref]
  25. K. Y. Yang, D. Y. Oh, S. H. Lee, Q.-F. Yang, X. Yi, B. Shen, H. Wang, and K. Vahala, “Bridging ultrahigh-Q devices and photonic circuits,” Nat. Photonics 12(5), 297–302 (2018).
    [Crossref]
  26. P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photonics Technol. Lett. 16(5), 1328–1330 (2004).
    [Crossref]
  27. A. K. Paul, A. K. Dimri, and R. P. Bajpai, “Plasma etch models based on different plasma chemistry for micro-electro-mechanical-systems application,” Vacuum 68(2), 191–196 (2002).
    [Crossref]
  28. M. Sheik-Bahae and H. S. Kwok, “Controlled CO2 laser melting of silicon,” J. Appl. Phys. 63(2), 518–524 (1988).
    [Crossref]
  29. A. D. McLachlan and F. P. Meyer, “Temperature dependence of the extinction coefficient of fused silica for CO(2) laser wavelengths,” Appl. Opt. 26(9), 1728–1731 (1987).
    [Crossref] [PubMed]
  30. T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Fabrication and coupling to planar high-Q silica disk microcavities,” Appl. Phys. Lett. 83(4), 797–799 (2003).
    [Crossref]
  31. A. Schließer, Cavity Optomechanics and Optical Frequency Comb Generation with Silica Whispering-Gallery-Mode Microresonators (Dissertation, LMU München, 2009).
  32. M. Pu, L. Liu, H. Ou, K. Yvind, and J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283(19), 3678–3682 (2010).
    [Crossref]
  33. C. Kopp, S. Barnabé, B. Ben Bakir, J.-M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: On-CMOS integration, Fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quant. Electron. 17(3), 498–509 (2011).
    [Crossref]
  34. T. J. Kippenberg, Nonlinear Optics in Ultra-high-Q Whispering-Gallery Optical Microcavities (Dissertation, California Institute of Technology, 2004).
  35. J. Richter, M. P. Nezhad, and J. Witzens, “Monolithically integrated waveguide-coupled silica microtoroids,” in Proc.2015Opto-Electronics and Communications Conference (OECC).
    [Crossref]
  36. D. B. Leviton and B. J. Frey, “Temperature-dependent absolute refractive index measurements of synthetic fused silica,” arXiv:0805.0091 (2008).
  37. D. G. Rabus, Integrated Ring Resonators (Springer-Verlag Berlin Heidelberg, 2007), Chap. 2.
  38. J. Witzens, “Integrated microtoroids monolithically coupled with integrated waveguides,” US Patent 9268086B2 filed Aug. 2013.
  39. D. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express 19(11), 10940–10949 (2011).
    [Crossref] [PubMed]
  40. Y. Xiong, D.-X. Xu, J. H. Schmid, P. Cheben, S. Janz, and W. N. Ye, “Robust silicon waveguide polarization rotator with an amorphous silicon overlayer,” Photon. J. 6(2), 2200308 (2014).

2018 (1)

K. Y. Yang, D. Y. Oh, S. H. Lee, Q.-F. Yang, X. Yi, B. Shen, H. Wang, and K. Vahala, “Bridging ultrahigh-Q devices and photonic circuits,” Nat. Photonics 12(5), 297–302 (2018).
[Crossref]

2017 (2)

W. Yoshiki, Y. Honda, T. Tetsumoto, K. Furusawa, N. Sekine, and T. Tanabe, “All-optical tunable buffering with coupled ultra-high Q whispering gallery mode microcavities,” Sci. Rep. 7(1), 10688 (2017).
[Crossref] [PubMed]

X. Ji, F. A. S. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, and M. Lipson, “Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold,” Optica 4(6), 619–624 (2017).
[Crossref]

2016 (1)

2015 (3)

2014 (4)

D. T. Spencer, J. F. Bauters, M. J. R. Heck, and J. E. Bowers, “Integrated waveguide coupled Si3N4 resonators in the ultrahigh-Q regime,” Optica 1(3), 153–157 (2014).
[Crossref]

Y. Xiong, D.-X. Xu, J. H. Schmid, P. Cheben, S. Janz, and W. N. Ye, “Robust silicon waveguide polarization rotator with an amorphous silicon overlayer,” Photon. J. 6(2), 2200308 (2014).

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

F. Dell’Olio, T. Tatoli, C. Ciminelli, and M. N. Armenise, “Recent advances in miniaturized optical gyroscopes,” J. Eur. Opt. Soc. Rapid Publ. 9, 14013 (2014).
[Crossref]

2013 (2)

A. Coillet, R. Henriet, K. Phan Huy, M. Jacquot, L. Furfaro, I. Balakireva, L. Larger, and Y. K. Chembo, “Microwave photonics systems based on whispering-gallery-mode resonators,” J. Vis. Exp. 78(78), e50423 (2013).
[Crossref] [PubMed]

X. Zhang and A. M. Armani, “Silica microtoroid resonator sensor with monolithically integrated waveguides,” Opt. Express 21(20), 23592–23603 (2013).
[Crossref] [PubMed]

2012 (2)

2011 (4)

J. Witzens and M. Hochberg, “Optical detection of target molecule induced aggregation of nanoparticles by means of high-Q resonators,” Opt. Express 19(8), 7034–7061 (2011).
[Crossref] [PubMed]

D. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express 19(11), 10940–10949 (2011).
[Crossref] [PubMed]

C. Kopp, S. Barnabé, B. Ben Bakir, J.-M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: On-CMOS integration, Fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quant. Electron. 17(3), 498–509 (2011).
[Crossref]

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107(6), 063901 (2011).
[Crossref] [PubMed]

2010 (5)

I. Coddington, W. Swann, and N. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82(4), 043817 (2010).
[Crossref]

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quant. Electron. 16(3), 654–661 (2010).
[Crossref]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[Crossref]

M. Pu, L. Liu, H. Ou, K. Yvind, and J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283(19), 3678–3682 (2010).
[Crossref]

2009 (1)

2007 (3)

M. Soltani, S. Yegnanarayanan, and A. Adibi, “Ultra-high Q planar silicon microdisk resonators for chip-scale silicon photonics,” Opt. Express 15(8), 4694–4704 (2007).
[Crossref] [PubMed]

J. Yao, D. Leuenberger, M.-C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated MEMS tunable coupler,” IEEE J. Sel. Top. Quant. Electron. 13(2), 202–208 (2007).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

2004 (1)

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photonics Technol. Lett. 16(5), 1328–1330 (2004).
[Crossref]

2003 (2)

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Fabrication and coupling to planar high-Q silica disk microcavities,” Appl. Phys. Lett. 83(4), 797–799 (2003).
[Crossref]

2002 (1)

A. K. Paul, A. K. Dimri, and R. P. Bajpai, “Plasma etch models based on different plasma chemistry for micro-electro-mechanical-systems application,” Vacuum 68(2), 191–196 (2002).
[Crossref]

1988 (1)

M. Sheik-Bahae and H. S. Kwok, “Controlled CO2 laser melting of silicon,” J. Appl. Phys. 63(2), 518–524 (1988).
[Crossref]

1987 (1)

Adibi, A.

Arcizet, O.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Armani, A. M.

Armani, D. K.

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Fabrication and coupling to planar high-Q silica disk microcavities,” Appl. Phys. Lett. 83(4), 797–799 (2003).
[Crossref]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

Armenise, M. N.

F. Dell’Olio, T. Tatoli, C. Ciminelli, and M. N. Armenise, “Recent advances in miniaturized optical gyroscopes,” J. Eur. Opt. Soc. Rapid Publ. 9, 14013 (2014).
[Crossref]

Baehr-Jones, T.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quant. Electron. 16(3), 654–661 (2010).
[Crossref]

Baets, R.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photonics Technol. Lett. 16(5), 1328–1330 (2004).
[Crossref]

Bailey, R. C.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quant. Electron. 16(3), 654–661 (2010).
[Crossref]

Bajpai, R. P.

A. K. Paul, A. K. Dimri, and R. P. Bajpai, “Plasma etch models based on different plasma chemistry for micro-electro-mechanical-systems application,” Vacuum 68(2), 191–196 (2002).
[Crossref]

Balakireva, I.

A. Coillet, R. Henriet, K. Phan Huy, M. Jacquot, L. Furfaro, I. Balakireva, L. Larger, and Y. K. Chembo, “Microwave photonics systems based on whispering-gallery-mode resonators,” J. Vis. Exp. 78(78), e50423 (2013).
[Crossref] [PubMed]

Barbosa, F. A. S.

Barnabé, S.

C. Kopp, S. Barnabé, B. Ben Bakir, J.-M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: On-CMOS integration, Fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quant. Electron. 17(3), 498–509 (2011).
[Crossref]

Baumann, E.

Bauters, J. F.

Beckx, S.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photonics Technol. Lett. 16(5), 1328–1330 (2004).
[Crossref]

Ben Bakir, B.

C. Kopp, S. Barnabé, B. Ben Bakir, J.-M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: On-CMOS integration, Fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quant. Electron. 17(3), 498–509 (2011).
[Crossref]

Bienstman, P.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photonics Technol. Lett. 16(5), 1328–1330 (2004).
[Crossref]

Bogaerts, W.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photonics Technol. Lett. 16(5), 1328–1330 (2004).
[Crossref]

Bowers, J. E.

Brasch, V.

M. H. P. Pfeiffer, A. Kordts, V. Brasch, M. Zervas, M. Geiselmann, J. D. Jost, and T. J. Kippenberg, “Photonic damascene process for integrated high-Q microresonator based nonlinear photonics,” Optica 3(1), 20–25 (2016).
[Crossref]

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

Bryant, A.

Cao, J.

Cao, S.

Cardenas, J.

Cheben, P.

Y. Xiong, D.-X. Xu, J. H. Schmid, P. Cheben, S. Janz, and W. N. Ye, “Robust silicon waveguide polarization rotator with an amorphous silicon overlayer,” Photon. J. 6(2), 2200308 (2014).

Chembo, Y. K.

A. Coillet, R. Henriet, K. Phan Huy, M. Jacquot, L. Furfaro, I. Balakireva, L. Larger, and Y. K. Chembo, “Microwave photonics systems based on whispering-gallery-mode resonators,” J. Vis. Exp. 78(78), e50423 (2013).
[Crossref] [PubMed]

Chu, S.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[Crossref]

Ciminelli, C.

F. Dell’Olio, T. Tatoli, C. Ciminelli, and M. N. Armenise, “Recent advances in miniaturized optical gyroscopes,” J. Eur. Opt. Soc. Rapid Publ. 9, 14013 (2014).
[Crossref]

Coddington, I.

Coillet, A.

A. Coillet, R. Henriet, K. Phan Huy, M. Jacquot, L. Furfaro, I. Balakireva, L. Larger, and Y. K. Chembo, “Microwave photonics systems based on whispering-gallery-mode resonators,” J. Vis. Exp. 78(78), e50423 (2013).
[Crossref] [PubMed]

Dai, D.

Del’Haye, P.

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107(6), 063901 (2011).
[Crossref] [PubMed]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Dell’Olio, F.

F. Dell’Olio, T. Tatoli, C. Ciminelli, and M. N. Armenise, “Recent advances in miniaturized optical gyroscopes,” J. Eur. Opt. Soc. Rapid Publ. 9, 14013 (2014).
[Crossref]

Dimri, A. K.

A. K. Paul, A. K. Dimri, and R. P. Bajpai, “Plasma etch models based on different plasma chemistry for micro-electro-mechanical-systems application,” Vacuum 68(2), 191–196 (2002).
[Crossref]

Duchesne, D.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[Crossref]

Dumon, P.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photonics Technol. Lett. 16(5), 1328–1330 (2004).
[Crossref]

Dutt, A.

Erbert, G.

Fang, Z.

Fedeli, J.-M.

C. Kopp, S. Barnabé, B. Ben Bakir, J.-M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: On-CMOS integration, Fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quant. Electron. 17(3), 498–509 (2011).
[Crossref]

Ferrera, M.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[Crossref]

Foster, M. A.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Freude, W.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

Furfaro, L.

A. Coillet, R. Henriet, K. Phan Huy, M. Jacquot, L. Furfaro, I. Balakireva, L. Larger, and Y. K. Chembo, “Microwave photonics systems based on whispering-gallery-mode resonators,” J. Vis. Exp. 78(78), e50423 (2013).
[Crossref] [PubMed]

Furusawa, K.

W. Yoshiki, Y. Honda, T. Tetsumoto, K. Furusawa, N. Sekine, and T. Tanabe, “All-optical tunable buffering with coupled ultra-high Q whispering gallery mode microcavities,” Sci. Rep. 7(1), 10688 (2017).
[Crossref] [PubMed]

Gaeta, A. L.

X. Ji, F. A. S. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, and M. Lipson, “Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold,” Optica 4(6), 619–624 (2017).
[Crossref]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Gavartin, E.

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107(6), 063901 (2011).
[Crossref] [PubMed]

Geiselmann, M.

Giorgetta, F. R.

Gleeson, M. A.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quant. Electron. 16(3), 654–661 (2010).
[Crossref]

Gondarenko, A.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Gorodetsky, M. L.

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107(6), 063901 (2011).
[Crossref] [PubMed]

Grudinin, I. S.

Gunn, L. C.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quant. Electron. 16(3), 654–661 (2010).
[Crossref]

Gunn, W. G.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quant. Electron. 16(3), 654–661 (2010).
[Crossref]

Häger, J.

Hartinger, K.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

Heck, M. J. R.

Heideman, R. G.

K. Wörhoff, R. G. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform,” Adv. Opt. Technol. 4(2), 189–207 (2015).

Henriet, R.

A. Coillet, R. Henriet, K. Phan Huy, M. Jacquot, L. Furfaro, I. Balakireva, L. Larger, and Y. K. Chembo, “Microwave photonics systems based on whispering-gallery-mode resonators,” J. Vis. Exp. 78(78), e50423 (2013).
[Crossref] [PubMed]

Herr, T.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107(6), 063901 (2011).
[Crossref] [PubMed]

Hillerkuss, D.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

Hochberg, M.

J. Witzens and M. Hochberg, “Optical detection of target molecule induced aggregation of nanoparticles by means of high-Q resonators,” Opt. Express 19(8), 7034–7061 (2011).
[Crossref] [PubMed]

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quant. Electron. 16(3), 654–661 (2010).
[Crossref]

Hoekman, M.

K. Wörhoff, R. G. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform,” Adv. Opt. Technol. 4(2), 189–207 (2015).

Holzwarth, R.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107(6), 063901 (2011).
[Crossref] [PubMed]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Honda, Y.

W. Yoshiki, Y. Honda, T. Tetsumoto, K. Furusawa, N. Sekine, and T. Tanabe, “All-optical tunable buffering with coupled ultra-high Q whispering gallery mode microcavities,” Sci. Rep. 7(1), 10688 (2017).
[Crossref] [PubMed]

Huang, Y.

Hvam, J. M.

M. Pu, L. Liu, H. Ou, K. Yvind, and J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283(19), 3678–3682 (2010).
[Crossref]

Iqbal, M.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quant. Electron. 16(3), 654–661 (2010).
[Crossref]

Jacquot, M.

A. Coillet, R. Henriet, K. Phan Huy, M. Jacquot, L. Furfaro, I. Balakireva, L. Larger, and Y. K. Chembo, “Microwave photonics systems based on whispering-gallery-mode resonators,” J. Vis. Exp. 78(78), e50423 (2013).
[Crossref] [PubMed]

Janz, S.

Y. Xiong, D.-X. Xu, J. H. Schmid, P. Cheben, S. Janz, and W. N. Ye, “Robust silicon waveguide polarization rotator with an amorphous silicon overlayer,” Photon. J. 6(2), 2200308 (2014).

Ji, X.

Jost, J. D.

Kippenberg, T. J.

M. H. P. Pfeiffer, A. Kordts, V. Brasch, M. Zervas, M. Geiselmann, J. D. Jost, and T. J. Kippenberg, “Photonic damascene process for integrated high-Q microresonator based nonlinear photonics,” Optica 3(1), 20–25 (2016).
[Crossref]

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107(6), 063901 (2011).
[Crossref] [PubMed]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Fabrication and coupling to planar high-Q silica disk microcavities,” Appl. Phys. Lett. 83(4), 797–799 (2003).
[Crossref]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

Koos, C.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

Kopp, C.

C. Kopp, S. Barnabé, B. Ben Bakir, J.-M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: On-CMOS integration, Fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quant. Electron. 17(3), 498–509 (2011).
[Crossref]

Kordts, A.

Kwok, H. S.

M. Sheik-Bahae and H. S. Kwok, “Controlled CO2 laser melting of silicon,” J. Appl. Phys. 63(2), 518–524 (1988).
[Crossref]

Larger, L.

A. Coillet, R. Henriet, K. Phan Huy, M. Jacquot, L. Furfaro, I. Balakireva, L. Larger, and Y. K. Chembo, “Microwave photonics systems based on whispering-gallery-mode resonators,” J. Vis. Exp. 78(78), e50423 (2013).
[Crossref] [PubMed]

Lauermann, M.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

Lee, M.-C. M.

J. Yao, D. Leuenberger, M.-C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated MEMS tunable coupler,” IEEE J. Sel. Top. Quant. Electron. 13(2), 202–208 (2007).
[Crossref]

Lee, S. H.

K. Y. Yang, D. Y. Oh, S. H. Lee, Q.-F. Yang, X. Yi, B. Shen, H. Wang, and K. Vahala, “Bridging ultrahigh-Q devices and photonic circuits,” Nat. Photonics 12(5), 297–302 (2018).
[Crossref]

Leinse, A.

K. Wörhoff, R. G. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform,” Adv. Opt. Technol. 4(2), 189–207 (2015).

Leuenberger, D.

J. Yao, D. Leuenberger, M.-C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated MEMS tunable coupler,” IEEE J. Sel. Top. Quant. Electron. 13(2), 202–208 (2007).
[Crossref]

Leuthold, J.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

Levy, J. S.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Lewoczko-Adamczyk, W.

Li, J.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

Li, T.

Li, Y.

Lin, B.

Lin, Y.

Lipson, M.

X. Ji, F. A. S. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, and M. Lipson, “Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold,” Optica 4(6), 619–624 (2017).
[Crossref]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Little, B. E.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[Crossref]

Liu, L.

M. Pu, L. Liu, H. Ou, K. Yvind, and J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283(19), 3678–3682 (2010).
[Crossref]

Lo, G.-Q.

Luyssaert, B.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photonics Technol. Lett. 16(5), 1328–1330 (2004).
[Crossref]

Maleki, L.

McLachlan, A. D.

Meng, F.

Meyer, F. P.

Morandotti, R.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[Crossref]

Moss, D. J.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[Crossref]

Newbury, N.

I. Coddington, W. Swann, and N. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82(4), 043817 (2010).
[Crossref]

Newbury, N. R.

Nezhad, M. P.

J. Richter, M. P. Nezhad, and J. Witzens, “Monolithically integrated waveguide-coupled silica microtoroids,” in Proc.2015Opto-Electronics and Communications Conference (OECC).
[Crossref]

Nicholson, J. W.

Oh, D. Y.

K. Y. Yang, D. Y. Oh, S. H. Lee, Q.-F. Yang, X. Yi, B. Shen, H. Wang, and K. Vahala, “Bridging ultrahigh-Q devices and photonic circuits,” Nat. Photonics 12(5), 297–302 (2018).
[Crossref]

Okawachi, Y.

Orobtchouk, R.

C. Kopp, S. Barnabé, B. Ben Bakir, J.-M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: On-CMOS integration, Fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quant. Electron. 17(3), 498–509 (2011).
[Crossref]

Ou, H.

M. Pu, L. Liu, H. Ou, K. Yvind, and J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283(19), 3678–3682 (2010).
[Crossref]

Paul, A. K.

A. K. Paul, A. K. Dimri, and R. P. Bajpai, “Plasma etch models based on different plasma chemistry for micro-electro-mechanical-systems application,” Vacuum 68(2), 191–196 (2002).
[Crossref]

Peters, A.

Pfeiffer, M. H. P.

Pfeifle, J.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

Phan Huy, K.

A. Coillet, R. Henriet, K. Phan Huy, M. Jacquot, L. Furfaro, I. Balakireva, L. Larger, and Y. K. Chembo, “Microwave photonics systems based on whispering-gallery-mode resonators,” J. Vis. Exp. 78(78), e50423 (2013).
[Crossref] [PubMed]

Poon, J. K. S.

Porte, H.

C. Kopp, S. Barnabé, B. Ben Bakir, J.-M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: On-CMOS integration, Fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quant. Electron. 17(3), 498–509 (2011).
[Crossref]

Pu, M.

M. Pu, L. Liu, H. Ou, K. Yvind, and J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283(19), 3678–3682 (2010).
[Crossref]

Pyrlik, C.

Razzari, L.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[Crossref]

Richter, J.

J. Richter, M. P. Nezhad, and J. Witzens, “Monolithically integrated waveguide-coupled silica microtoroids,” in Proc.2015Opto-Electronics and Communications Conference (OECC).
[Crossref]

Roberts, S. P.

Sacher, W. D.

Schindler, P.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

Schliesser, A.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Schmid, J. H.

Y. Xiong, D.-X. Xu, J. H. Schmid, P. Cheben, S. Janz, and W. N. Ye, “Robust silicon waveguide polarization rotator with an amorphous silicon overlayer,” Photon. J. 6(2), 2200308 (2014).

Schmogrow, R.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

Schrank, F.

C. Kopp, S. Barnabé, B. Ben Bakir, J.-M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: On-CMOS integration, Fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quant. Electron. 17(3), 498–509 (2011).
[Crossref]

Schwertfeger, S.

Sekine, N.

W. Yoshiki, Y. Honda, T. Tetsumoto, K. Furusawa, N. Sekine, and T. Tanabe, “All-optical tunable buffering with coupled ultra-high Q whispering gallery mode microcavities,” Sci. Rep. 7(1), 10688 (2017).
[Crossref] [PubMed]

Sheik-Bahae, M.

M. Sheik-Bahae and H. S. Kwok, “Controlled CO2 laser melting of silicon,” J. Appl. Phys. 63(2), 518–524 (1988).
[Crossref]

Shen, B.

K. Y. Yang, D. Y. Oh, S. H. Lee, Q.-F. Yang, X. Yi, B. Shen, H. Wang, and K. Vahala, “Bridging ultrahigh-Q devices and photonic circuits,” Nat. Photonics 12(5), 297–302 (2018).
[Crossref]

Soltani, M.

Spaugh, B.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quant. Electron. 16(3), 654–661 (2010).
[Crossref]

Spencer, D. T.

Spillane, S. M.

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Fabrication and coupling to planar high-Q silica disk microcavities,” Appl. Phys. Lett. 83(4), 797–799 (2003).
[Crossref]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

Swann, W.

I. Coddington, W. Swann, and N. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82(4), 043817 (2010).
[Crossref]

Swann, W. C.

Taillaert, D.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photonics Technol. Lett. 16(5), 1328–1330 (2004).
[Crossref]

Tanabe, T.

W. Yoshiki, Y. Honda, T. Tetsumoto, K. Furusawa, N. Sekine, and T. Tanabe, “All-optical tunable buffering with coupled ultra-high Q whispering gallery mode microcavities,” Sci. Rep. 7(1), 10688 (2017).
[Crossref] [PubMed]

Tatoli, T.

F. Dell’Olio, T. Tatoli, C. Ciminelli, and M. N. Armenise, “Recent advances in miniaturized optical gyroscopes,” J. Eur. Opt. Soc. Rapid Publ. 9, 14013 (2014).
[Crossref]

Tekin, T.

C. Kopp, S. Barnabé, B. Ben Bakir, J.-M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: On-CMOS integration, Fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quant. Electron. 17(3), 498–509 (2011).
[Crossref]

Tetsumoto, T.

W. Yoshiki, Y. Honda, T. Tetsumoto, K. Furusawa, N. Sekine, and T. Tanabe, “All-optical tunable buffering with coupled ultra-high Q whispering gallery mode microcavities,” Sci. Rep. 7(1), 10688 (2017).
[Crossref] [PubMed]

Tränkle, G.

Turner-Foster, A. C.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Tybor, F.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quant. Electron. 16(3), 654–661 (2010).
[Crossref]

Vahala, K.

K. Y. Yang, D. Y. Oh, S. H. Lee, Q.-F. Yang, X. Yi, B. Shen, H. Wang, and K. Vahala, “Bridging ultrahigh-Q devices and photonic circuits,” Nat. Photonics 12(5), 297–302 (2018).
[Crossref]

Vahala, K. J.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Fabrication and coupling to planar high-Q silica disk microcavities,” Appl. Phys. Lett. 83(4), 797–799 (2003).
[Crossref]

Van Campenhout, J.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photonics Technol. Lett. 16(5), 1328–1330 (2004).
[Crossref]

Van Thourhout, D.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photonics Technol. Lett. 16(5), 1328–1330 (2004).
[Crossref]

Wang, H.

K. Y. Yang, D. Y. Oh, S. H. Lee, Q.-F. Yang, X. Yi, B. Shen, H. Wang, and K. Vahala, “Bridging ultrahigh-Q devices and photonic circuits,” Nat. Photonics 12(5), 297–302 (2018).
[Crossref]

Wang, Q.

Wang, S.

Wegner, D.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

Weimann, C.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

Wiaux, V.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photonics Technol. Lett. 16(5), 1328–1330 (2004).
[Crossref]

Wicht, A.

Wilken, T.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Witzens, J.

J. Witzens and M. Hochberg, “Optical detection of target molecule induced aggregation of nanoparticles by means of high-Q resonators,” Opt. Express 19(8), 7034–7061 (2011).
[Crossref] [PubMed]

J. Richter, M. P. Nezhad, and J. Witzens, “Monolithically integrated waveguide-coupled silica microtoroids,” in Proc.2015Opto-Electronics and Communications Conference (OECC).
[Crossref]

Wörhoff, K.

K. Wörhoff, R. G. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform,” Adv. Opt. Technol. 4(2), 189–207 (2015).

Wouters, J.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photonics Technol. Lett. 16(5), 1328–1330 (2004).
[Crossref]

Wu, M. C.

J. Yao, D. Leuenberger, M.-C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated MEMS tunable coupler,” IEEE J. Sel. Top. Quant. Electron. 13(2), 202–208 (2007).
[Crossref]

Xiong, Y.

Y. Xiong, D.-X. Xu, J. H. Schmid, P. Cheben, S. Janz, and W. N. Ye, “Robust silicon waveguide polarization rotator with an amorphous silicon overlayer,” Photon. J. 6(2), 2200308 (2014).

Xu, D.-X.

Y. Xiong, D.-X. Xu, J. H. Schmid, P. Cheben, S. Janz, and W. N. Ye, “Robust silicon waveguide polarization rotator with an amorphous silicon overlayer,” Photon. J. 6(2), 2200308 (2014).

Yang, K. Y.

K. Y. Yang, D. Y. Oh, S. H. Lee, Q.-F. Yang, X. Yi, B. Shen, H. Wang, and K. Vahala, “Bridging ultrahigh-Q devices and photonic circuits,” Nat. Photonics 12(5), 297–302 (2018).
[Crossref]

Yang, Q.-F.

K. Y. Yang, D. Y. Oh, S. H. Lee, Q.-F. Yang, X. Yi, B. Shen, H. Wang, and K. Vahala, “Bridging ultrahigh-Q devices and photonic circuits,” Nat. Photonics 12(5), 297–302 (2018).
[Crossref]

Yao, J.

J. Yao, D. Leuenberger, M.-C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated MEMS tunable coupler,” IEEE J. Sel. Top. Quant. Electron. 13(2), 202–208 (2007).
[Crossref]

Ye, W. N.

Y. Xiong, D.-X. Xu, J. H. Schmid, P. Cheben, S. Janz, and W. N. Ye, “Robust silicon waveguide polarization rotator with an amorphous silicon overlayer,” Photon. J. 6(2), 2200308 (2014).

Yegnanarayanan, S.

Yi, X.

K. Y. Yang, D. Y. Oh, S. H. Lee, Q.-F. Yang, X. Yi, B. Shen, H. Wang, and K. Vahala, “Bridging ultrahigh-Q devices and photonic circuits,” Nat. Photonics 12(5), 297–302 (2018).
[Crossref]

Yoshiki, W.

W. Yoshiki, Y. Honda, T. Tetsumoto, K. Furusawa, N. Sekine, and T. Tanabe, “All-optical tunable buffering with coupled ultra-high Q whispering gallery mode microcavities,” Sci. Rep. 7(1), 10688 (2017).
[Crossref] [PubMed]

Yu, N.

Yu, Y.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

Yvind, K.

M. Pu, L. Liu, H. Ou, K. Yvind, and J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283(19), 3678–3682 (2010).
[Crossref]

Zang, E.

Zervas, M.

Zhang, X.

Zhao, Y.

Zimmermann, L.

C. Kopp, S. Barnabé, B. Ben Bakir, J.-M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: On-CMOS integration, Fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quant. Electron. 17(3), 498–509 (2011).
[Crossref]

Zolot, A. M.

Adv. Opt. Technol. (1)

K. Wörhoff, R. G. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform,” Adv. Opt. Technol. 4(2), 189–207 (2015).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Fabrication and coupling to planar high-Q silica disk microcavities,” Appl. Phys. Lett. 83(4), 797–799 (2003).
[Crossref]

IEEE J. Sel. Top. Quant. Electron. (3)

C. Kopp, S. Barnabé, B. Ben Bakir, J.-M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: On-CMOS integration, Fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quant. Electron. 17(3), 498–509 (2011).
[Crossref]

J. Yao, D. Leuenberger, M.-C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated MEMS tunable coupler,” IEEE J. Sel. Top. Quant. Electron. 13(2), 202–208 (2007).
[Crossref]

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quant. Electron. 16(3), 654–661 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (1)

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photonics Technol. Lett. 16(5), 1328–1330 (2004).
[Crossref]

J. Appl. Phys. (1)

M. Sheik-Bahae and H. S. Kwok, “Controlled CO2 laser melting of silicon,” J. Appl. Phys. 63(2), 518–524 (1988).
[Crossref]

J. Eur. Opt. Soc. Rapid Publ. (1)

F. Dell’Olio, T. Tatoli, C. Ciminelli, and M. N. Armenise, “Recent advances in miniaturized optical gyroscopes,” J. Eur. Opt. Soc. Rapid Publ. 9, 14013 (2014).
[Crossref]

J. Lightwave Technol. (1)

J. Vis. Exp. (1)

A. Coillet, R. Henriet, K. Phan Huy, M. Jacquot, L. Furfaro, I. Balakireva, L. Larger, and Y. K. Chembo, “Microwave photonics systems based on whispering-gallery-mode resonators,” J. Vis. Exp. 78(78), e50423 (2013).
[Crossref] [PubMed]

Nat. Photonics (4)

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

K. Y. Yang, D. Y. Oh, S. H. Lee, Q.-F. Yang, X. Yi, B. Shen, H. Wang, and K. Vahala, “Bridging ultrahigh-Q devices and photonic circuits,” Nat. Photonics 12(5), 297–302 (2018).
[Crossref]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[Crossref]

Nature (2)

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

Opt. Commun. (1)

M. Pu, L. Liu, H. Ou, K. Yvind, and J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283(19), 3678–3682 (2010).
[Crossref]

Opt. Express (5)

Opt. Lett. (3)

Optica (3)

Photon. J. (1)

Y. Xiong, D.-X. Xu, J. H. Schmid, P. Cheben, S. Janz, and W. N. Ye, “Robust silicon waveguide polarization rotator with an amorphous silicon overlayer,” Photon. J. 6(2), 2200308 (2014).

Phys. Rev. A (1)

I. Coddington, W. Swann, and N. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82(4), 043817 (2010).
[Crossref]

Phys. Rev. Lett. (1)

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107(6), 063901 (2011).
[Crossref] [PubMed]

Sci. Rep. (1)

W. Yoshiki, Y. Honda, T. Tetsumoto, K. Furusawa, N. Sekine, and T. Tanabe, “All-optical tunable buffering with coupled ultra-high Q whispering gallery mode microcavities,” Sci. Rep. 7(1), 10688 (2017).
[Crossref] [PubMed]

Vacuum (1)

A. K. Paul, A. K. Dimri, and R. P. Bajpai, “Plasma etch models based on different plasma chemistry for micro-electro-mechanical-systems application,” Vacuum 68(2), 191–196 (2002).
[Crossref]

Other (6)

A. Schließer, Cavity Optomechanics and Optical Frequency Comb Generation with Silica Whispering-Gallery-Mode Microresonators (Dissertation, LMU München, 2009).

T. J. Kippenberg, Nonlinear Optics in Ultra-high-Q Whispering-Gallery Optical Microcavities (Dissertation, California Institute of Technology, 2004).

J. Richter, M. P. Nezhad, and J. Witzens, “Monolithically integrated waveguide-coupled silica microtoroids,” in Proc.2015Opto-Electronics and Communications Conference (OECC).
[Crossref]

D. B. Leviton and B. J. Frey, “Temperature-dependent absolute refractive index measurements of synthetic fused silica,” arXiv:0805.0091 (2008).

D. G. Rabus, Integrated Ring Resonators (Springer-Verlag Berlin Heidelberg, 2007), Chap. 2.

J. Witzens, “Integrated microtoroids monolithically coupled with integrated waveguides,” US Patent 9268086B2 filed Aug. 2013.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (20)

Fig. 1
Fig. 1 Overview of the inverted microtoroid reflow process. Schematic cross-section of undercut SOI-BOX layer and waveguide prior to (a) and after (b) thermal reflow with a CO2 laser. (c) Microscope top-view image of a melted microtoroid. (d) SEM cross-section image of a cleaved microtoroid.
Fig. 2
Fig. 2 3D rendering of the proposed waveguide coupled inverted microtoroid with (a) a cross-section through the device and (b) a top view. These renderings also show the geometry of the waveguide in the coupling region, which is tapered down upstream of the microtoroid after entering the undercut region and tapered back up downstream of the microtoroid before exiting the undercut region.
Fig. 3
Fig. 3 Comparison of TM0 ground-modes between (a) an inverted microtoroid and (b) a conventional microtoroid (from optical FEM mode-solves in cylindrical coordinates). The mode confinement towards the outer region of the inverted microtoroid’s circumference is weaker since the mode is pressed towards the suspended silica membrane. This effect becomes even more pronounced for thicker BOX layers, compare case 1) with 2).
Fig. 4
Fig. 4 (a) Simulated bending loss limited loaded quality factor for an inverted microtoroid for the TE0 (blue) and TM0 (red) modes as a function of the BOX thickness hBOX. The core radius rminor is implicitly varied according to Eq. (1). The parameter d1 is assumed to be 22 µm and d2 is assumed to be 5 µm. The solid lines correspond to a major radius of rmajor = 125 µm and the dashed lines to a major radius of rmajor = 150 µm. (b) Simulated optical leakage losses of the TE0 and TM0 ground modes of a 310 nm thick Si interconnect waveguide as a function of its width assuming an 800 nm BOX thickness. A 3D schematic of the unclad simulated waveguide is shown in the inset.
Fig. 5
Fig. 5 Higher order inverted microtoroid modes. (a) shows the TM10 mode with two horizontal lobes and (b) shows the TM01 mode with two vertical lodes. While the TM01 mode also has a lower effective index than the TM00 mode, its symmetry reduces coupling to the slab, so that it typically has comparable high Q-factors to the latter. Here, λ0 = 1.55 μm, rminor = 2.3 μm, rmajor = 145 μm, hBOX = 800 nm.
Fig. 6
Fig. 6 Summary of fabrication flow: 1) The chip is coated with Hydrogen Silsesquioxane (HSQ) resist and is patterned with EBL. Subsequently the pattern is transferred into the underlying silicon layer by dry etching. 2) The chip is spin-coated with AZ 5124E resist, and optical lithography is used to define circular openings (for microtoroid formation) and linear trenches (for dicing lanes). Subsequently, the pattern is transferred into the BOX by dry-etching. 3) The previously defined trenches and circles are undercut by isotropic dry-etching of the underlying silicon substrate. For further processing, the chip is protected with AZ 520D resist. 4) Finally, the chip is diced along its predefined dicing lanes and cleaned.
Fig. 7
Fig. 7 Wobbling of the undercut silica membrane in the absence of a stabilizing frame. (a) Top view taken with an optical microscope and (b) side view SEM image revealing wobbling with an amplitude of several µm.
Fig. 8
Fig. 8 Mechanical stabilization of the undercut membrane by means of a Si frame. (a) Extreme case of a membrane without a stabilizing frame cracking prior to reflow. (b) Intact membrane with much reduced wobbling by means of a stabilizing frame. (c) Detailed view showing the Si frame reaching 3 μm into the undercut region of the silica film (blue: non-undercut region with no Si frame, yellow: non-undercut region with Si frame, green: undercut region with Si frame, light mauve: undercut region without Si frame, deep mauve: etched away silica film).
Fig. 9
Fig. 9 Reflow results for waveguide coupled inverted silica microtoroids with (a) a straight coupler and (b) a weakly tapered gap coupler. In case of a straight coupler (a), the coupling section itself acts as a disturbance to the melting process and locally deforms the microtoroid. A weakly tapered gap coupler (b) on the other hand fits well to the natural shape of the microtoroid and results in a weakly tapered (adiabatic) deformation.
Fig. 10
Fig. 10 (a) Simulation of the effect of the Si-frame on heat sinking during microtoroid reflow. The cross-section shown in the inset is simulated in cylindrical coordinates. In the simulation setup, the microtoroid itself is designed as a heat source calibrated to result in the typical temperatures for high-purity silica reflow (~1650 °C). The distance d3 between the Si-frame and the toroid is varied and the simulation repeated for different values of the parameter Offset that would in practice result from fabrication tolerances (overlay between lithography steps and depth of undercut). It is apparent that even though a large span of Offset is considered, the curves remain quite clustered, pointing to the distance to the Si-frame as the main determining factor. (b) Microscope image of a fully fabricated device, with the inset showing in particular a small residual deformation in the toroid shape where the waveguide is routed away and the Si-frame thus interrupted.
Fig. 11
Fig. 11 Inversely tapered edge-coupler. (a) Top view SEM image of the edge-coupler. The edge-coupler tip is positioned on top of a freestanding silica membrane and recessed by a distance s from its edge. For avoiding cracking of the membrane, dedicated stabilizers are defined in the silicon device layer. (b) Zoomed image on the edge-coupler’s tip narrowing down to a width of about 90 nm. (c) 3D-schematic of the edge-coupler. (d) Schematic of a cross-section of the edge-coupler taken along its longitudinal direction.
Fig. 12
Fig. 12 Simulated optical power transfer between the Si bus waveguide and the inverted microtoroid as a function of the coupling length and wavelength based on super-mode modeling with help of FEM in cylindrical coordinates. (a) Schematic of the simulation setup. (b) Effective index of the uncoupled Si waveguide (solid blue) and microtoroid (dashed red) TM0 ground modes. The effective indices are crossing at a wavelength of λ ≈1572 nm. (c) Coupled symmetric and antisymmetric TM0 super-modes for two different wavelengths of λ0 = 1550 nm and 1572 nm. (d) Maximum possible power transfer as a function of the coupling length between waveguide and microtoroid for the two selected wavelengths.
Fig. 13
Fig. 13 Graph showing the waveguide-to-microtoroid gap required to obtain critical coupling as a function of the expected microtoroid quality factor. QL is the resulting loaded Q-factor, i.e., half the assumed intrinsic Q-factor assuming no excess coupling losses. Simulations were done with full 3D FDTD. The inset shows a schematic of the toroid and waveguide cross-section in the plane where the waveguide is closest to the toroid.
Fig. 14
Fig. 14 (a) Effective index neff of the coupling section waveguide as a function of its width. The inset shows a 3D schematic of coupling section waveguide. (b) SEM image of fabricated coupling section (width = 120 nm) with attached Si Frame.
Fig. 15
Fig. 15 FEM simulations of the loaded quality factor as limited by bending losses and evanescent losses to the stabilizing frame as a function of the distance d3 between the toroid center and the edge of the frame. (a) Schematic of the simulation setup. (b) Graph of the loaded quality factor as a function of the distance to the frame. Simulations are indicating that a distance above 3 µm is sufficient to provide a loaded quality factor of about 100 million, so that the simulated loss channels should then become negligible compared to excess coupler losses and fabrication related losses.
Fig. 16
Fig. 16 Transmission spectrum of an inverted silica microtoroid without stabilizing frame coupled to a straight Si waveguide at a temperature setpoint of 25 °C. (a) Raw data transmission spectrum (blue) as a function of wavelength λ0. The black arrows are indicating the positions of the high-Q resonances of interest. (b) Background corrected spectrum (blue) and fitted resonances (green). The inset shows a detailed view of a representative resonance.
Fig. 17
Fig. 17 (a) Group index ng of the inverted silica microtoroid coupled to a straight waveguide as a function of wavelength and temperature. (b) Temperature dependence of the group index ng as a function of wavelength λ0.
Fig. 18
Fig. 18 Measured quality factors QC (a) and QU (b) of the inverted silica microtoroid coupled to a straight waveguide for different temperatures (25 °C, 45 °C and 55 °C) as a function of wavelength λ0. The intrinsic quality factor QU is found to be on the order of 1.5 million.
Fig. 19
Fig. 19 (a) Transmission spectrum of the inverted silica microtoroid with weakly tapered gap coupler and stabilizing frame after the second local reflow. (b) Direct comparison of a selected resonance before and after the second local reflow. The background corrected data after the first reflow is fitted with a resonance at λres = 1615.71 nm with an extinction of 1.62 dB (solid red). The background corrected data after the second local reflow is fitted with a resonance at λres = 1615.59 nm with an extinction of 5.35 dB.
Fig. 20
Fig. 20 Semi-logarithmic plot of the intrinsic (QU) and coupling (QC) Q-factors of the inverted silica microtoroid with weakly tapered gap coupler and stabilizing frame after the first and the second reflow as a function of wavelength λ0. (a) shows the data after the second reflow across a wide wavelength range while (b) shows a comparison of the data before and after the second reflow in a restricted wavelength range. The quality-factors could not be reliably extracted over the entire wavelength range prior to the second reflow due to insufficient extinction.

Tables (1)

Tables Icon

Table 1 Etch process parameter

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

r minor = ( d 1 d 2 ) h BOX /π

Metrics