Abstract

Feeble light leakage in a dark state of conventional optically isotropic liquid crystal (OILC) device has a strong impact on the contrast ratio of a liquid crystal (LC) device. In order to overcome such intrinsic problem, we proposed an OILC in which the LC directors inside droplets are twisted by introducing chirality. The light leakage is effectively suppressed by matching the refractive indices between LC and polymer matrix; consequently, we achieved a high contrast ratio, 1:1401. Interestingly, the on-state transmittance is enhanced by ~49% compared to conventional OILC. The response time was also improved and the hysteresis was suppressed to be negligible. The improved electro-optic performances of the proposed OILC device would give diverse applications in upcoming flexible display and various photonic devices.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fast switchable field-induced optical birefringence in highly transparent polymer-liquid crystal composite

Young Jin Lim, Jeong Hwan Yoon, Hyesun Yoo, Seong Min Song, Ramesh Manda, Srinivas Pagidi, Myong-Hoon Lee, Jae-Min Myoung, and Seung Hee Lee
Opt. Mater. Express 8(12) 3698-3707 (2018)

Fast-switching optically isotropic liquid crystal nano-droplets with improved depolarization and Kerr effect by doping high k nanoparticles

Byeonggon Kim, Hyun Gyu Kim, Gyu-Yeop Shim, Ji-Sub Park, Kyung-Il Joo, Dong-Jin Lee, Joun-Ho Lee, Ji-Ho Baek, Byeong Koo Kim, Yoonseuk Choi, and Hak-Rin Kim
Appl. Opt. 57(2) 119-129 (2018)

Helical pitch dependence of the electro-optic characteristics in polymer/cholesteric liquid crystal nanocomposites

Hoekyung Kim, Junji Kobashi, Yasutaka Maeda, Hiroyuki Yoshida, and Masanori Ozaki
Opt. Mater. Express 6(4) 1138-1145 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. S. Kim, Y. J. Lim, S. Yoon, S. W. Kang, S. H. Lee, M. Kim, and S. T. Wu, “A controllable viewing angle LCD with an optically isotropic liquid crystal,” J. Phys. D Appl. Phys. 43(14), 145502 (2010).
    [Crossref]
  2. S. W. Choi, S. I. Yamamoto, T. Iwata, and H. Kikuchi, “Optically isotropic liquid crystal composite incorporating in-plane electric field geometry,” J. Phys. D Appl. Phys. 42(11), 112002 (2009).
    [Crossref]
  3. B. Bahadur, Liquid crystals: applications and uses. (World Scientific, 1990), Vol. 1.
  4. N. H. Park, S. C. Noh, P. Nayek, M. H. Lee, M. S. Kim, L. C. Chien, J. H. Lee, B. K. Kim, and S. H. Lee, “Optically isotropic liquid crystal mixtures and their application to high performance liquid crystal devices,” Liq. Cryst. 42(4), 530–536 (2015).
    [Crossref]
  5. L. Rao, Z. Ge, S. T. Wu, and S. H. Lee, “Low voltage blue-phase liquid crystal displays,” Appl. Phys. Lett. 95(23), 231101 (2009).
    [Crossref]
  6. Y. C. Yang and D. K. Yan, “Electro-optic Kerr effect in polymer-stabilized isotropic liquid crystals,” Appl. Phys. Lett. 98(2), 023502 (2011).
    [Crossref]
  7. H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
    [Crossref] [PubMed]
  8. F. Castles, F. V. Day, S. M. Morris, D. H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications,” Nat. Mater. 11(7), 599–603 (2012).
    [Crossref] [PubMed]
  9. H. Choi, H. Higuchi, and H. Kikuch, “Fast electro-optic switching in liquid crystal blue phase II,” Appl. Phys. Lett. 98(13), 131905 (2011).
    [Crossref]
  10. Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro‐optic Kerr effect in nanostructured chiral liquid‐crystal composites over a wide temperature range,” Adv. Mater. 17(19), 2311–2315 (2005).
    [Crossref]
  11. S. Aya, K. V. Le, F. Araoka, K. Ishikawa, and H. Takezoe, “Nanosize-induced optically isotropic nematic phase,” Jpn. J. Appl. Phys. 50(5R), 051703 (2011).
    [Crossref]
  12. J. L. West, “Phase separation of liquid crystals in polymers,” Mol. Cryst. Liq. Cryst. Inc. Nonlinear Opt. 157(1), 427–441 (1988).
    [Crossref]
  13. R. S. Justice, D. W. Schaefer, R. A. Vaia, D. W. Tomlin, and T. J. Bunning, “Interface morphology and phase separation in polymer-dispersed liquid crystal composites,” Poly. 46(12), 4465–4473 (2005).
    [Crossref]
  14. S. Matsumoto, M. Houlbert, T. Hayashi, and K. I. Kubodera, “Fine droplets of liquid crystals in a transparent polymer and their response to an electric field,” Appl. Phys. Lett. 69(8), 1044–1046 (1996).
    [Crossref]
  15. S. J. Shin, N. H. Cho, Y. J. Lim, P. Nayek, S. H. Lee, S. H. Hong, H. J. Lee, and S. T. Shin, “Optically isotropic liquid crystal mixture showing high contrast ratio and fast response time,” IMID Digest. 139–140 (2011).
  16. Z. J. Lu and D. K. Yang, “Effect of chiral dopant on the performance of polymer dispersed liquid crystal light valve,” Appl. Phys. Lett. 65(4), 505–507 (1994).
    [Crossref]
  17. J. H. Yu, H. S. Chen, P. J. Chen, K. H. Song, S. C. Noh, J. M. Lee, H. Ren, Y. H. Lin, and S. H. Lee, “Electrically tunable microlens arrays based on polarization-independent optical phase of nano liquid crystal droplets dispersed in polymer matrix,” Opt. Express 23(13), 17337–17344 (2015).
    [Crossref] [PubMed]
  18. C. M. Chang, Y. H. Lin, V. Reshetnyak, C. H. Park, R. Manda, and S. H. Lee, “Origins of Kerr phase and orientational phase in polymer-dispersed liquid crystals,” Opt. Express 25(17), 19807–19821 (2017).
    [Crossref] [PubMed]
  19. R. Manda, S. Pagidi, S. S. Bhattacharyya, C. H. Park, Y. J. Lim, J. S. Gwag, and S. H. Lee, “Fast response and transparent optically isotropic liquid crystal diffraction grating,” Opt. Express 25(20), 24033–24043 (2017).
    [Crossref] [PubMed]
  20. G. P. Montgomery, J. L. West, and W. Tamura-Lis, “Light scattering from polymer-dispersed liquid crystal film: droplet size effects,” J. Appl. Phys. 69(3), 1605–16012 (1991).
    [Crossref]
  21. J. Niziol, R. Weglowski, S. J. Klosowicz, A. Majchrowski, P. Rakus, A. Wojciechowski, I. V. Kityk, S. Tkaczyk, and E. Gondek, “Kerr modulators based on polymer-dispersed liquid crystal complexes,” J. Mater. Sci. Mater. Electron. 21(10), 1020–1023 (2010).
    [Crossref]
  22. J. Kerr, “A new relation between electricity and light: Dielectrified media birefringent,” J. Sci. 50(332), 337–348 (1875).
  23. J. Yan, L. Rao, M. Jiao, Y. Li, H. C. Cheng, and S. T. Wu, “Polymer-stabilized optically isotropic liquid crystals for next-generation display and photonics applications,” J. Mater. Chem. 21(22), 7870–7877 (2011).
    [Crossref]
  24. P. R. Gerber, “Electro-optical effects of a small-pitch blue-phase system,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 116(3–4), 197–206 (1985).
    [Crossref]
  25. M. R. Wilson and D. J. Earl, “Calculating the helical twisting power of chiral dopants,” J. Mater. Chem. 11(11), 2672–2677 (2001).
    [Crossref]
  26. S. Zumer and J. W. Doane, “Light scattering from a small nematic droplet,” Phys. Rev. A Gen. Phys. 34(4), 3373–3386 (1986).
    [Crossref] [PubMed]
  27. R. B. Meyer, “Effects of electric and magnetic fields on the structure of cholesteric liquid crystals,” Appl. Phys. Lett. 12(9), 281–282 (1968).
    [Crossref]
  28. M. Oh‐e and K. Kondo, “Response mechanism of nematic liquid crystals using the in‐plane switching mode,” Appl. Phys. Lett. 69(5), 623–625 (1996).
    [Crossref]
  29. R. Manda, S. Pagidi, M. S. Kim, C. H. Park, H. S. Yoo, K. Sandeep, Y. J. Lim, and S. H. Lee, “Effect of monomer concentration and functionality on electro-optical properties of polymer-stabilised optically isotropic liquid crystals,” Liq. Cryst. 45(5), 736–745 (2018).
    [Crossref]
  30. N. H. Cho, P. Nayek, J. J. Lee, Y. J. Lim, J. H. Lee, S. H. Lee, H. S. Park, J. H. Lee, and H. S. Kim, “High-performance, in-plane switching liquid crystal device utilizing an optically isotropic liquid crystal blend of nanostructured liquid crystal droplets in a polymer matrix,” Mater. Lett. 153, 136–139 (2015).
    [Crossref]

2018 (1)

R. Manda, S. Pagidi, M. S. Kim, C. H. Park, H. S. Yoo, K. Sandeep, Y. J. Lim, and S. H. Lee, “Effect of monomer concentration and functionality on electro-optical properties of polymer-stabilised optically isotropic liquid crystals,” Liq. Cryst. 45(5), 736–745 (2018).
[Crossref]

2017 (2)

2015 (3)

N. H. Cho, P. Nayek, J. J. Lee, Y. J. Lim, J. H. Lee, S. H. Lee, H. S. Park, J. H. Lee, and H. S. Kim, “High-performance, in-plane switching liquid crystal device utilizing an optically isotropic liquid crystal blend of nanostructured liquid crystal droplets in a polymer matrix,” Mater. Lett. 153, 136–139 (2015).
[Crossref]

J. H. Yu, H. S. Chen, P. J. Chen, K. H. Song, S. C. Noh, J. M. Lee, H. Ren, Y. H. Lin, and S. H. Lee, “Electrically tunable microlens arrays based on polarization-independent optical phase of nano liquid crystal droplets dispersed in polymer matrix,” Opt. Express 23(13), 17337–17344 (2015).
[Crossref] [PubMed]

N. H. Park, S. C. Noh, P. Nayek, M. H. Lee, M. S. Kim, L. C. Chien, J. H. Lee, B. K. Kim, and S. H. Lee, “Optically isotropic liquid crystal mixtures and their application to high performance liquid crystal devices,” Liq. Cryst. 42(4), 530–536 (2015).
[Crossref]

2012 (1)

F. Castles, F. V. Day, S. M. Morris, D. H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications,” Nat. Mater. 11(7), 599–603 (2012).
[Crossref] [PubMed]

2011 (4)

H. Choi, H. Higuchi, and H. Kikuch, “Fast electro-optic switching in liquid crystal blue phase II,” Appl. Phys. Lett. 98(13), 131905 (2011).
[Crossref]

Y. C. Yang and D. K. Yan, “Electro-optic Kerr effect in polymer-stabilized isotropic liquid crystals,” Appl. Phys. Lett. 98(2), 023502 (2011).
[Crossref]

S. Aya, K. V. Le, F. Araoka, K. Ishikawa, and H. Takezoe, “Nanosize-induced optically isotropic nematic phase,” Jpn. J. Appl. Phys. 50(5R), 051703 (2011).
[Crossref]

J. Yan, L. Rao, M. Jiao, Y. Li, H. C. Cheng, and S. T. Wu, “Polymer-stabilized optically isotropic liquid crystals for next-generation display and photonics applications,” J. Mater. Chem. 21(22), 7870–7877 (2011).
[Crossref]

2010 (2)

J. Niziol, R. Weglowski, S. J. Klosowicz, A. Majchrowski, P. Rakus, A. Wojciechowski, I. V. Kityk, S. Tkaczyk, and E. Gondek, “Kerr modulators based on polymer-dispersed liquid crystal complexes,” J. Mater. Sci. Mater. Electron. 21(10), 1020–1023 (2010).
[Crossref]

M. S. Kim, Y. J. Lim, S. Yoon, S. W. Kang, S. H. Lee, M. Kim, and S. T. Wu, “A controllable viewing angle LCD with an optically isotropic liquid crystal,” J. Phys. D Appl. Phys. 43(14), 145502 (2010).
[Crossref]

2009 (2)

S. W. Choi, S. I. Yamamoto, T. Iwata, and H. Kikuchi, “Optically isotropic liquid crystal composite incorporating in-plane electric field geometry,” J. Phys. D Appl. Phys. 42(11), 112002 (2009).
[Crossref]

L. Rao, Z. Ge, S. T. Wu, and S. H. Lee, “Low voltage blue-phase liquid crystal displays,” Appl. Phys. Lett. 95(23), 231101 (2009).
[Crossref]

2005 (2)

Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro‐optic Kerr effect in nanostructured chiral liquid‐crystal composites over a wide temperature range,” Adv. Mater. 17(19), 2311–2315 (2005).
[Crossref]

R. S. Justice, D. W. Schaefer, R. A. Vaia, D. W. Tomlin, and T. J. Bunning, “Interface morphology and phase separation in polymer-dispersed liquid crystal composites,” Poly. 46(12), 4465–4473 (2005).
[Crossref]

2002 (1)

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[Crossref] [PubMed]

2001 (1)

M. R. Wilson and D. J. Earl, “Calculating the helical twisting power of chiral dopants,” J. Mater. Chem. 11(11), 2672–2677 (2001).
[Crossref]

1996 (2)

M. Oh‐e and K. Kondo, “Response mechanism of nematic liquid crystals using the in‐plane switching mode,” Appl. Phys. Lett. 69(5), 623–625 (1996).
[Crossref]

S. Matsumoto, M. Houlbert, T. Hayashi, and K. I. Kubodera, “Fine droplets of liquid crystals in a transparent polymer and their response to an electric field,” Appl. Phys. Lett. 69(8), 1044–1046 (1996).
[Crossref]

1994 (1)

Z. J. Lu and D. K. Yang, “Effect of chiral dopant on the performance of polymer dispersed liquid crystal light valve,” Appl. Phys. Lett. 65(4), 505–507 (1994).
[Crossref]

1991 (1)

G. P. Montgomery, J. L. West, and W. Tamura-Lis, “Light scattering from polymer-dispersed liquid crystal film: droplet size effects,” J. Appl. Phys. 69(3), 1605–16012 (1991).
[Crossref]

1988 (1)

J. L. West, “Phase separation of liquid crystals in polymers,” Mol. Cryst. Liq. Cryst. Inc. Nonlinear Opt. 157(1), 427–441 (1988).
[Crossref]

1986 (1)

S. Zumer and J. W. Doane, “Light scattering from a small nematic droplet,” Phys. Rev. A Gen. Phys. 34(4), 3373–3386 (1986).
[Crossref] [PubMed]

1985 (1)

P. R. Gerber, “Electro-optical effects of a small-pitch blue-phase system,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 116(3–4), 197–206 (1985).
[Crossref]

1968 (1)

R. B. Meyer, “Effects of electric and magnetic fields on the structure of cholesteric liquid crystals,” Appl. Phys. Lett. 12(9), 281–282 (1968).
[Crossref]

1875 (1)

J. Kerr, “A new relation between electricity and light: Dielectrified media birefringent,” J. Sci. 50(332), 337–348 (1875).

Araoka, F.

S. Aya, K. V. Le, F. Araoka, K. Ishikawa, and H. Takezoe, “Nanosize-induced optically isotropic nematic phase,” Jpn. J. Appl. Phys. 50(5R), 051703 (2011).
[Crossref]

Aya, S.

S. Aya, K. V. Le, F. Araoka, K. Ishikawa, and H. Takezoe, “Nanosize-induced optically isotropic nematic phase,” Jpn. J. Appl. Phys. 50(5R), 051703 (2011).
[Crossref]

Bhattacharyya, S. S.

Bunning, T. J.

R. S. Justice, D. W. Schaefer, R. A. Vaia, D. W. Tomlin, and T. J. Bunning, “Interface morphology and phase separation in polymer-dispersed liquid crystal composites,” Poly. 46(12), 4465–4473 (2005).
[Crossref]

Castles, F.

F. Castles, F. V. Day, S. M. Morris, D. H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications,” Nat. Mater. 11(7), 599–603 (2012).
[Crossref] [PubMed]

Chang, C. M.

Chen, H. S.

Chen, P. J.

Cheng, H. C.

J. Yan, L. Rao, M. Jiao, Y. Li, H. C. Cheng, and S. T. Wu, “Polymer-stabilized optically isotropic liquid crystals for next-generation display and photonics applications,” J. Mater. Chem. 21(22), 7870–7877 (2011).
[Crossref]

Chien, L. C.

N. H. Park, S. C. Noh, P. Nayek, M. H. Lee, M. S. Kim, L. C. Chien, J. H. Lee, B. K. Kim, and S. H. Lee, “Optically isotropic liquid crystal mixtures and their application to high performance liquid crystal devices,” Liq. Cryst. 42(4), 530–536 (2015).
[Crossref]

Cho, N. H.

N. H. Cho, P. Nayek, J. J. Lee, Y. J. Lim, J. H. Lee, S. H. Lee, H. S. Park, J. H. Lee, and H. S. Kim, “High-performance, in-plane switching liquid crystal device utilizing an optically isotropic liquid crystal blend of nanostructured liquid crystal droplets in a polymer matrix,” Mater. Lett. 153, 136–139 (2015).
[Crossref]

Choi, H.

H. Choi, H. Higuchi, and H. Kikuch, “Fast electro-optic switching in liquid crystal blue phase II,” Appl. Phys. Lett. 98(13), 131905 (2011).
[Crossref]

Choi, S. S.

F. Castles, F. V. Day, S. M. Morris, D. H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications,” Nat. Mater. 11(7), 599–603 (2012).
[Crossref] [PubMed]

Choi, S. W.

S. W. Choi, S. I. Yamamoto, T. Iwata, and H. Kikuchi, “Optically isotropic liquid crystal composite incorporating in-plane electric field geometry,” J. Phys. D Appl. Phys. 42(11), 112002 (2009).
[Crossref]

Coles, H. J.

F. Castles, F. V. Day, S. M. Morris, D. H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications,” Nat. Mater. 11(7), 599–603 (2012).
[Crossref] [PubMed]

Day, F. V.

F. Castles, F. V. Day, S. M. Morris, D. H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications,” Nat. Mater. 11(7), 599–603 (2012).
[Crossref] [PubMed]

Doane, J. W.

S. Zumer and J. W. Doane, “Light scattering from a small nematic droplet,” Phys. Rev. A Gen. Phys. 34(4), 3373–3386 (1986).
[Crossref] [PubMed]

Earl, D. J.

M. R. Wilson and D. J. Earl, “Calculating the helical twisting power of chiral dopants,” J. Mater. Chem. 11(11), 2672–2677 (2001).
[Crossref]

Friend, R. H.

F. Castles, F. V. Day, S. M. Morris, D. H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications,” Nat. Mater. 11(7), 599–603 (2012).
[Crossref] [PubMed]

Gardiner, D. J.

F. Castles, F. V. Day, S. M. Morris, D. H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications,” Nat. Mater. 11(7), 599–603 (2012).
[Crossref] [PubMed]

Ge, Z.

L. Rao, Z. Ge, S. T. Wu, and S. H. Lee, “Low voltage blue-phase liquid crystal displays,” Appl. Phys. Lett. 95(23), 231101 (2009).
[Crossref]

Gerber, P. R.

P. R. Gerber, “Electro-optical effects of a small-pitch blue-phase system,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 116(3–4), 197–206 (1985).
[Crossref]

Gondek, E.

J. Niziol, R. Weglowski, S. J. Klosowicz, A. Majchrowski, P. Rakus, A. Wojciechowski, I. V. Kityk, S. Tkaczyk, and E. Gondek, “Kerr modulators based on polymer-dispersed liquid crystal complexes,” J. Mater. Sci. Mater. Electron. 21(10), 1020–1023 (2010).
[Crossref]

Gwag, J. S.

Hands, P. J.

F. Castles, F. V. Day, S. M. Morris, D. H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications,” Nat. Mater. 11(7), 599–603 (2012).
[Crossref] [PubMed]

Haseba, Y.

Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro‐optic Kerr effect in nanostructured chiral liquid‐crystal composites over a wide temperature range,” Adv. Mater. 17(19), 2311–2315 (2005).
[Crossref]

Hayashi, T.

S. Matsumoto, M. Houlbert, T. Hayashi, and K. I. Kubodera, “Fine droplets of liquid crystals in a transparent polymer and their response to an electric field,” Appl. Phys. Lett. 69(8), 1044–1046 (1996).
[Crossref]

Higuchi, H.

H. Choi, H. Higuchi, and H. Kikuch, “Fast electro-optic switching in liquid crystal blue phase II,” Appl. Phys. Lett. 98(13), 131905 (2011).
[Crossref]

Hisakado, Y.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[Crossref] [PubMed]

Houlbert, M.

S. Matsumoto, M. Houlbert, T. Hayashi, and K. I. Kubodera, “Fine droplets of liquid crystals in a transparent polymer and their response to an electric field,” Appl. Phys. Lett. 69(8), 1044–1046 (1996).
[Crossref]

Ishikawa, K.

S. Aya, K. V. Le, F. Araoka, K. Ishikawa, and H. Takezoe, “Nanosize-induced optically isotropic nematic phase,” Jpn. J. Appl. Phys. 50(5R), 051703 (2011).
[Crossref]

Iwata, T.

S. W. Choi, S. I. Yamamoto, T. Iwata, and H. Kikuchi, “Optically isotropic liquid crystal composite incorporating in-plane electric field geometry,” J. Phys. D Appl. Phys. 42(11), 112002 (2009).
[Crossref]

Jiao, M.

J. Yan, L. Rao, M. Jiao, Y. Li, H. C. Cheng, and S. T. Wu, “Polymer-stabilized optically isotropic liquid crystals for next-generation display and photonics applications,” J. Mater. Chem. 21(22), 7870–7877 (2011).
[Crossref]

Justice, R. S.

R. S. Justice, D. W. Schaefer, R. A. Vaia, D. W. Tomlin, and T. J. Bunning, “Interface morphology and phase separation in polymer-dispersed liquid crystal composites,” Poly. 46(12), 4465–4473 (2005).
[Crossref]

Kajiyama, T.

Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro‐optic Kerr effect in nanostructured chiral liquid‐crystal composites over a wide temperature range,” Adv. Mater. 17(19), 2311–2315 (2005).
[Crossref]

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[Crossref] [PubMed]

Kang, S. W.

M. S. Kim, Y. J. Lim, S. Yoon, S. W. Kang, S. H. Lee, M. Kim, and S. T. Wu, “A controllable viewing angle LCD with an optically isotropic liquid crystal,” J. Phys. D Appl. Phys. 43(14), 145502 (2010).
[Crossref]

Kerr, J.

J. Kerr, “A new relation between electricity and light: Dielectrified media birefringent,” J. Sci. 50(332), 337–348 (1875).

Kikuch, H.

H. Choi, H. Higuchi, and H. Kikuch, “Fast electro-optic switching in liquid crystal blue phase II,” Appl. Phys. Lett. 98(13), 131905 (2011).
[Crossref]

Kikuchi, H.

S. W. Choi, S. I. Yamamoto, T. Iwata, and H. Kikuchi, “Optically isotropic liquid crystal composite incorporating in-plane electric field geometry,” J. Phys. D Appl. Phys. 42(11), 112002 (2009).
[Crossref]

Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro‐optic Kerr effect in nanostructured chiral liquid‐crystal composites over a wide temperature range,” Adv. Mater. 17(19), 2311–2315 (2005).
[Crossref]

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[Crossref] [PubMed]

Kim, B. K.

N. H. Park, S. C. Noh, P. Nayek, M. H. Lee, M. S. Kim, L. C. Chien, J. H. Lee, B. K. Kim, and S. H. Lee, “Optically isotropic liquid crystal mixtures and their application to high performance liquid crystal devices,” Liq. Cryst. 42(4), 530–536 (2015).
[Crossref]

Kim, H. S.

N. H. Cho, P. Nayek, J. J. Lee, Y. J. Lim, J. H. Lee, S. H. Lee, H. S. Park, J. H. Lee, and H. S. Kim, “High-performance, in-plane switching liquid crystal device utilizing an optically isotropic liquid crystal blend of nanostructured liquid crystal droplets in a polymer matrix,” Mater. Lett. 153, 136–139 (2015).
[Crossref]

Kim, M.

M. S. Kim, Y. J. Lim, S. Yoon, S. W. Kang, S. H. Lee, M. Kim, and S. T. Wu, “A controllable viewing angle LCD with an optically isotropic liquid crystal,” J. Phys. D Appl. Phys. 43(14), 145502 (2010).
[Crossref]

Kim, M. S.

R. Manda, S. Pagidi, M. S. Kim, C. H. Park, H. S. Yoo, K. Sandeep, Y. J. Lim, and S. H. Lee, “Effect of monomer concentration and functionality on electro-optical properties of polymer-stabilised optically isotropic liquid crystals,” Liq. Cryst. 45(5), 736–745 (2018).
[Crossref]

N. H. Park, S. C. Noh, P. Nayek, M. H. Lee, M. S. Kim, L. C. Chien, J. H. Lee, B. K. Kim, and S. H. Lee, “Optically isotropic liquid crystal mixtures and their application to high performance liquid crystal devices,” Liq. Cryst. 42(4), 530–536 (2015).
[Crossref]

M. S. Kim, Y. J. Lim, S. Yoon, S. W. Kang, S. H. Lee, M. Kim, and S. T. Wu, “A controllable viewing angle LCD with an optically isotropic liquid crystal,” J. Phys. D Appl. Phys. 43(14), 145502 (2010).
[Crossref]

Kityk, I. V.

J. Niziol, R. Weglowski, S. J. Klosowicz, A. Majchrowski, P. Rakus, A. Wojciechowski, I. V. Kityk, S. Tkaczyk, and E. Gondek, “Kerr modulators based on polymer-dispersed liquid crystal complexes,” J. Mater. Sci. Mater. Electron. 21(10), 1020–1023 (2010).
[Crossref]

Klosowicz, S. J.

J. Niziol, R. Weglowski, S. J. Klosowicz, A. Majchrowski, P. Rakus, A. Wojciechowski, I. V. Kityk, S. Tkaczyk, and E. Gondek, “Kerr modulators based on polymer-dispersed liquid crystal complexes,” J. Mater. Sci. Mater. Electron. 21(10), 1020–1023 (2010).
[Crossref]

Ko, D. H.

F. Castles, F. V. Day, S. M. Morris, D. H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications,” Nat. Mater. 11(7), 599–603 (2012).
[Crossref] [PubMed]

Kondo, K.

M. Oh‐e and K. Kondo, “Response mechanism of nematic liquid crystals using the in‐plane switching mode,” Appl. Phys. Lett. 69(5), 623–625 (1996).
[Crossref]

Kubodera, K. I.

S. Matsumoto, M. Houlbert, T. Hayashi, and K. I. Kubodera, “Fine droplets of liquid crystals in a transparent polymer and their response to an electric field,” Appl. Phys. Lett. 69(8), 1044–1046 (1996).
[Crossref]

Le, K. V.

S. Aya, K. V. Le, F. Araoka, K. Ishikawa, and H. Takezoe, “Nanosize-induced optically isotropic nematic phase,” Jpn. J. Appl. Phys. 50(5R), 051703 (2011).
[Crossref]

Lee, J. H.

N. H. Park, S. C. Noh, P. Nayek, M. H. Lee, M. S. Kim, L. C. Chien, J. H. Lee, B. K. Kim, and S. H. Lee, “Optically isotropic liquid crystal mixtures and their application to high performance liquid crystal devices,” Liq. Cryst. 42(4), 530–536 (2015).
[Crossref]

N. H. Cho, P. Nayek, J. J. Lee, Y. J. Lim, J. H. Lee, S. H. Lee, H. S. Park, J. H. Lee, and H. S. Kim, “High-performance, in-plane switching liquid crystal device utilizing an optically isotropic liquid crystal blend of nanostructured liquid crystal droplets in a polymer matrix,” Mater. Lett. 153, 136–139 (2015).
[Crossref]

N. H. Cho, P. Nayek, J. J. Lee, Y. J. Lim, J. H. Lee, S. H. Lee, H. S. Park, J. H. Lee, and H. S. Kim, “High-performance, in-plane switching liquid crystal device utilizing an optically isotropic liquid crystal blend of nanostructured liquid crystal droplets in a polymer matrix,” Mater. Lett. 153, 136–139 (2015).
[Crossref]

Lee, J. J.

N. H. Cho, P. Nayek, J. J. Lee, Y. J. Lim, J. H. Lee, S. H. Lee, H. S. Park, J. H. Lee, and H. S. Kim, “High-performance, in-plane switching liquid crystal device utilizing an optically isotropic liquid crystal blend of nanostructured liquid crystal droplets in a polymer matrix,” Mater. Lett. 153, 136–139 (2015).
[Crossref]

Lee, J. M.

Lee, M. H.

N. H. Park, S. C. Noh, P. Nayek, M. H. Lee, M. S. Kim, L. C. Chien, J. H. Lee, B. K. Kim, and S. H. Lee, “Optically isotropic liquid crystal mixtures and their application to high performance liquid crystal devices,” Liq. Cryst. 42(4), 530–536 (2015).
[Crossref]

Lee, S. H.

R. Manda, S. Pagidi, M. S. Kim, C. H. Park, H. S. Yoo, K. Sandeep, Y. J. Lim, and S. H. Lee, “Effect of monomer concentration and functionality on electro-optical properties of polymer-stabilised optically isotropic liquid crystals,” Liq. Cryst. 45(5), 736–745 (2018).
[Crossref]

C. M. Chang, Y. H. Lin, V. Reshetnyak, C. H. Park, R. Manda, and S. H. Lee, “Origins of Kerr phase and orientational phase in polymer-dispersed liquid crystals,” Opt. Express 25(17), 19807–19821 (2017).
[Crossref] [PubMed]

R. Manda, S. Pagidi, S. S. Bhattacharyya, C. H. Park, Y. J. Lim, J. S. Gwag, and S. H. Lee, “Fast response and transparent optically isotropic liquid crystal diffraction grating,” Opt. Express 25(20), 24033–24043 (2017).
[Crossref] [PubMed]

J. H. Yu, H. S. Chen, P. J. Chen, K. H. Song, S. C. Noh, J. M. Lee, H. Ren, Y. H. Lin, and S. H. Lee, “Electrically tunable microlens arrays based on polarization-independent optical phase of nano liquid crystal droplets dispersed in polymer matrix,” Opt. Express 23(13), 17337–17344 (2015).
[Crossref] [PubMed]

N. H. Cho, P. Nayek, J. J. Lee, Y. J. Lim, J. H. Lee, S. H. Lee, H. S. Park, J. H. Lee, and H. S. Kim, “High-performance, in-plane switching liquid crystal device utilizing an optically isotropic liquid crystal blend of nanostructured liquid crystal droplets in a polymer matrix,” Mater. Lett. 153, 136–139 (2015).
[Crossref]

N. H. Park, S. C. Noh, P. Nayek, M. H. Lee, M. S. Kim, L. C. Chien, J. H. Lee, B. K. Kim, and S. H. Lee, “Optically isotropic liquid crystal mixtures and their application to high performance liquid crystal devices,” Liq. Cryst. 42(4), 530–536 (2015).
[Crossref]

M. S. Kim, Y. J. Lim, S. Yoon, S. W. Kang, S. H. Lee, M. Kim, and S. T. Wu, “A controllable viewing angle LCD with an optically isotropic liquid crystal,” J. Phys. D Appl. Phys. 43(14), 145502 (2010).
[Crossref]

L. Rao, Z. Ge, S. T. Wu, and S. H. Lee, “Low voltage blue-phase liquid crystal displays,” Appl. Phys. Lett. 95(23), 231101 (2009).
[Crossref]

Li, Y.

J. Yan, L. Rao, M. Jiao, Y. Li, H. C. Cheng, and S. T. Wu, “Polymer-stabilized optically isotropic liquid crystals for next-generation display and photonics applications,” J. Mater. Chem. 21(22), 7870–7877 (2011).
[Crossref]

Lim, Y. J.

R. Manda, S. Pagidi, M. S. Kim, C. H. Park, H. S. Yoo, K. Sandeep, Y. J. Lim, and S. H. Lee, “Effect of monomer concentration and functionality on electro-optical properties of polymer-stabilised optically isotropic liquid crystals,” Liq. Cryst. 45(5), 736–745 (2018).
[Crossref]

R. Manda, S. Pagidi, S. S. Bhattacharyya, C. H. Park, Y. J. Lim, J. S. Gwag, and S. H. Lee, “Fast response and transparent optically isotropic liquid crystal diffraction grating,” Opt. Express 25(20), 24033–24043 (2017).
[Crossref] [PubMed]

N. H. Cho, P. Nayek, J. J. Lee, Y. J. Lim, J. H. Lee, S. H. Lee, H. S. Park, J. H. Lee, and H. S. Kim, “High-performance, in-plane switching liquid crystal device utilizing an optically isotropic liquid crystal blend of nanostructured liquid crystal droplets in a polymer matrix,” Mater. Lett. 153, 136–139 (2015).
[Crossref]

M. S. Kim, Y. J. Lim, S. Yoon, S. W. Kang, S. H. Lee, M. Kim, and S. T. Wu, “A controllable viewing angle LCD with an optically isotropic liquid crystal,” J. Phys. D Appl. Phys. 43(14), 145502 (2010).
[Crossref]

Lin, Y. H.

Lu, Z. J.

Z. J. Lu and D. K. Yang, “Effect of chiral dopant on the performance of polymer dispersed liquid crystal light valve,” Appl. Phys. Lett. 65(4), 505–507 (1994).
[Crossref]

Majchrowski, A.

J. Niziol, R. Weglowski, S. J. Klosowicz, A. Majchrowski, P. Rakus, A. Wojciechowski, I. V. Kityk, S. Tkaczyk, and E. Gondek, “Kerr modulators based on polymer-dispersed liquid crystal complexes,” J. Mater. Sci. Mater. Electron. 21(10), 1020–1023 (2010).
[Crossref]

Manda, R.

Matsumoto, S.

S. Matsumoto, M. Houlbert, T. Hayashi, and K. I. Kubodera, “Fine droplets of liquid crystals in a transparent polymer and their response to an electric field,” Appl. Phys. Lett. 69(8), 1044–1046 (1996).
[Crossref]

Meyer, R. B.

R. B. Meyer, “Effects of electric and magnetic fields on the structure of cholesteric liquid crystals,” Appl. Phys. Lett. 12(9), 281–282 (1968).
[Crossref]

Montgomery, G. P.

G. P. Montgomery, J. L. West, and W. Tamura-Lis, “Light scattering from polymer-dispersed liquid crystal film: droplet size effects,” J. Appl. Phys. 69(3), 1605–16012 (1991).
[Crossref]

Morris, S. M.

F. Castles, F. V. Day, S. M. Morris, D. H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications,” Nat. Mater. 11(7), 599–603 (2012).
[Crossref] [PubMed]

Nagamura, T.

Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro‐optic Kerr effect in nanostructured chiral liquid‐crystal composites over a wide temperature range,” Adv. Mater. 17(19), 2311–2315 (2005).
[Crossref]

Nayek, P.

N. H. Park, S. C. Noh, P. Nayek, M. H. Lee, M. S. Kim, L. C. Chien, J. H. Lee, B. K. Kim, and S. H. Lee, “Optically isotropic liquid crystal mixtures and their application to high performance liquid crystal devices,” Liq. Cryst. 42(4), 530–536 (2015).
[Crossref]

N. H. Cho, P. Nayek, J. J. Lee, Y. J. Lim, J. H. Lee, S. H. Lee, H. S. Park, J. H. Lee, and H. S. Kim, “High-performance, in-plane switching liquid crystal device utilizing an optically isotropic liquid crystal blend of nanostructured liquid crystal droplets in a polymer matrix,” Mater. Lett. 153, 136–139 (2015).
[Crossref]

Niziol, J.

J. Niziol, R. Weglowski, S. J. Klosowicz, A. Majchrowski, P. Rakus, A. Wojciechowski, I. V. Kityk, S. Tkaczyk, and E. Gondek, “Kerr modulators based on polymer-dispersed liquid crystal complexes,” J. Mater. Sci. Mater. Electron. 21(10), 1020–1023 (2010).
[Crossref]

Noh, S. C.

N. H. Park, S. C. Noh, P. Nayek, M. H. Lee, M. S. Kim, L. C. Chien, J. H. Lee, B. K. Kim, and S. H. Lee, “Optically isotropic liquid crystal mixtures and their application to high performance liquid crystal devices,” Liq. Cryst. 42(4), 530–536 (2015).
[Crossref]

J. H. Yu, H. S. Chen, P. J. Chen, K. H. Song, S. C. Noh, J. M. Lee, H. Ren, Y. H. Lin, and S. H. Lee, “Electrically tunable microlens arrays based on polarization-independent optical phase of nano liquid crystal droplets dispersed in polymer matrix,” Opt. Express 23(13), 17337–17344 (2015).
[Crossref] [PubMed]

Nosheen, S.

F. Castles, F. V. Day, S. M. Morris, D. H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications,” Nat. Mater. 11(7), 599–603 (2012).
[Crossref] [PubMed]

Oh-e, M.

M. Oh‐e and K. Kondo, “Response mechanism of nematic liquid crystals using the in‐plane switching mode,” Appl. Phys. Lett. 69(5), 623–625 (1996).
[Crossref]

Pagidi, S.

R. Manda, S. Pagidi, M. S. Kim, C. H. Park, H. S. Yoo, K. Sandeep, Y. J. Lim, and S. H. Lee, “Effect of monomer concentration and functionality on electro-optical properties of polymer-stabilised optically isotropic liquid crystals,” Liq. Cryst. 45(5), 736–745 (2018).
[Crossref]

R. Manda, S. Pagidi, S. S. Bhattacharyya, C. H. Park, Y. J. Lim, J. S. Gwag, and S. H. Lee, “Fast response and transparent optically isotropic liquid crystal diffraction grating,” Opt. Express 25(20), 24033–24043 (2017).
[Crossref] [PubMed]

Park, C. H.

Park, H. S.

N. H. Cho, P. Nayek, J. J. Lee, Y. J. Lim, J. H. Lee, S. H. Lee, H. S. Park, J. H. Lee, and H. S. Kim, “High-performance, in-plane switching liquid crystal device utilizing an optically isotropic liquid crystal blend of nanostructured liquid crystal droplets in a polymer matrix,” Mater. Lett. 153, 136–139 (2015).
[Crossref]

Park, N. H.

N. H. Park, S. C. Noh, P. Nayek, M. H. Lee, M. S. Kim, L. C. Chien, J. H. Lee, B. K. Kim, and S. H. Lee, “Optically isotropic liquid crystal mixtures and their application to high performance liquid crystal devices,” Liq. Cryst. 42(4), 530–536 (2015).
[Crossref]

Qasim, M. M.

F. Castles, F. V. Day, S. M. Morris, D. H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications,” Nat. Mater. 11(7), 599–603 (2012).
[Crossref] [PubMed]

Rakus, P.

J. Niziol, R. Weglowski, S. J. Klosowicz, A. Majchrowski, P. Rakus, A. Wojciechowski, I. V. Kityk, S. Tkaczyk, and E. Gondek, “Kerr modulators based on polymer-dispersed liquid crystal complexes,” J. Mater. Sci. Mater. Electron. 21(10), 1020–1023 (2010).
[Crossref]

Rao, L.

J. Yan, L. Rao, M. Jiao, Y. Li, H. C. Cheng, and S. T. Wu, “Polymer-stabilized optically isotropic liquid crystals for next-generation display and photonics applications,” J. Mater. Chem. 21(22), 7870–7877 (2011).
[Crossref]

L. Rao, Z. Ge, S. T. Wu, and S. H. Lee, “Low voltage blue-phase liquid crystal displays,” Appl. Phys. Lett. 95(23), 231101 (2009).
[Crossref]

Ren, H.

Reshetnyak, V.

Sandeep, K.

R. Manda, S. Pagidi, M. S. Kim, C. H. Park, H. S. Yoo, K. Sandeep, Y. J. Lim, and S. H. Lee, “Effect of monomer concentration and functionality on electro-optical properties of polymer-stabilised optically isotropic liquid crystals,” Liq. Cryst. 45(5), 736–745 (2018).
[Crossref]

Schaefer, D. W.

R. S. Justice, D. W. Schaefer, R. A. Vaia, D. W. Tomlin, and T. J. Bunning, “Interface morphology and phase separation in polymer-dispersed liquid crystal composites,” Poly. 46(12), 4465–4473 (2005).
[Crossref]

Song, K. H.

Takezoe, H.

S. Aya, K. V. Le, F. Araoka, K. Ishikawa, and H. Takezoe, “Nanosize-induced optically isotropic nematic phase,” Jpn. J. Appl. Phys. 50(5R), 051703 (2011).
[Crossref]

Tamura-Lis, W.

G. P. Montgomery, J. L. West, and W. Tamura-Lis, “Light scattering from polymer-dispersed liquid crystal film: droplet size effects,” J. Appl. Phys. 69(3), 1605–16012 (1991).
[Crossref]

Tkaczyk, S.

J. Niziol, R. Weglowski, S. J. Klosowicz, A. Majchrowski, P. Rakus, A. Wojciechowski, I. V. Kityk, S. Tkaczyk, and E. Gondek, “Kerr modulators based on polymer-dispersed liquid crystal complexes,” J. Mater. Sci. Mater. Electron. 21(10), 1020–1023 (2010).
[Crossref]

Tomlin, D. W.

R. S. Justice, D. W. Schaefer, R. A. Vaia, D. W. Tomlin, and T. J. Bunning, “Interface morphology and phase separation in polymer-dispersed liquid crystal composites,” Poly. 46(12), 4465–4473 (2005).
[Crossref]

Vaia, R. A.

R. S. Justice, D. W. Schaefer, R. A. Vaia, D. W. Tomlin, and T. J. Bunning, “Interface morphology and phase separation in polymer-dispersed liquid crystal composites,” Poly. 46(12), 4465–4473 (2005).
[Crossref]

Weglowski, R.

J. Niziol, R. Weglowski, S. J. Klosowicz, A. Majchrowski, P. Rakus, A. Wojciechowski, I. V. Kityk, S. Tkaczyk, and E. Gondek, “Kerr modulators based on polymer-dispersed liquid crystal complexes,” J. Mater. Sci. Mater. Electron. 21(10), 1020–1023 (2010).
[Crossref]

West, J. L.

G. P. Montgomery, J. L. West, and W. Tamura-Lis, “Light scattering from polymer-dispersed liquid crystal film: droplet size effects,” J. Appl. Phys. 69(3), 1605–16012 (1991).
[Crossref]

J. L. West, “Phase separation of liquid crystals in polymers,” Mol. Cryst. Liq. Cryst. Inc. Nonlinear Opt. 157(1), 427–441 (1988).
[Crossref]

Wilson, M. R.

M. R. Wilson and D. J. Earl, “Calculating the helical twisting power of chiral dopants,” J. Mater. Chem. 11(11), 2672–2677 (2001).
[Crossref]

Wojciechowski, A.

J. Niziol, R. Weglowski, S. J. Klosowicz, A. Majchrowski, P. Rakus, A. Wojciechowski, I. V. Kityk, S. Tkaczyk, and E. Gondek, “Kerr modulators based on polymer-dispersed liquid crystal complexes,” J. Mater. Sci. Mater. Electron. 21(10), 1020–1023 (2010).
[Crossref]

Wu, S. T.

J. Yan, L. Rao, M. Jiao, Y. Li, H. C. Cheng, and S. T. Wu, “Polymer-stabilized optically isotropic liquid crystals for next-generation display and photonics applications,” J. Mater. Chem. 21(22), 7870–7877 (2011).
[Crossref]

M. S. Kim, Y. J. Lim, S. Yoon, S. W. Kang, S. H. Lee, M. Kim, and S. T. Wu, “A controllable viewing angle LCD with an optically isotropic liquid crystal,” J. Phys. D Appl. Phys. 43(14), 145502 (2010).
[Crossref]

L. Rao, Z. Ge, S. T. Wu, and S. H. Lee, “Low voltage blue-phase liquid crystal displays,” Appl. Phys. Lett. 95(23), 231101 (2009).
[Crossref]

Yamamoto, S. I.

S. W. Choi, S. I. Yamamoto, T. Iwata, and H. Kikuchi, “Optically isotropic liquid crystal composite incorporating in-plane electric field geometry,” J. Phys. D Appl. Phys. 42(11), 112002 (2009).
[Crossref]

Yan, D. K.

Y. C. Yang and D. K. Yan, “Electro-optic Kerr effect in polymer-stabilized isotropic liquid crystals,” Appl. Phys. Lett. 98(2), 023502 (2011).
[Crossref]

Yan, J.

J. Yan, L. Rao, M. Jiao, Y. Li, H. C. Cheng, and S. T. Wu, “Polymer-stabilized optically isotropic liquid crystals for next-generation display and photonics applications,” J. Mater. Chem. 21(22), 7870–7877 (2011).
[Crossref]

Yang, D. K.

Z. J. Lu and D. K. Yang, “Effect of chiral dopant on the performance of polymer dispersed liquid crystal light valve,” Appl. Phys. Lett. 65(4), 505–507 (1994).
[Crossref]

Yang, H.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[Crossref] [PubMed]

Yang, Y. C.

Y. C. Yang and D. K. Yan, “Electro-optic Kerr effect in polymer-stabilized isotropic liquid crystals,” Appl. Phys. Lett. 98(2), 023502 (2011).
[Crossref]

Yokota, M.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[Crossref] [PubMed]

Yoo, H. S.

R. Manda, S. Pagidi, M. S. Kim, C. H. Park, H. S. Yoo, K. Sandeep, Y. J. Lim, and S. H. Lee, “Effect of monomer concentration and functionality on electro-optical properties of polymer-stabilised optically isotropic liquid crystals,” Liq. Cryst. 45(5), 736–745 (2018).
[Crossref]

Yoon, S.

M. S. Kim, Y. J. Lim, S. Yoon, S. W. Kang, S. H. Lee, M. Kim, and S. T. Wu, “A controllable viewing angle LCD with an optically isotropic liquid crystal,” J. Phys. D Appl. Phys. 43(14), 145502 (2010).
[Crossref]

Yu, J. H.

Zumer, S.

S. Zumer and J. W. Doane, “Light scattering from a small nematic droplet,” Phys. Rev. A Gen. Phys. 34(4), 3373–3386 (1986).
[Crossref] [PubMed]

Adv. Mater. (1)

Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro‐optic Kerr effect in nanostructured chiral liquid‐crystal composites over a wide temperature range,” Adv. Mater. 17(19), 2311–2315 (2005).
[Crossref]

Appl. Phys. Lett. (7)

Z. J. Lu and D. K. Yang, “Effect of chiral dopant on the performance of polymer dispersed liquid crystal light valve,” Appl. Phys. Lett. 65(4), 505–507 (1994).
[Crossref]

L. Rao, Z. Ge, S. T. Wu, and S. H. Lee, “Low voltage blue-phase liquid crystal displays,” Appl. Phys. Lett. 95(23), 231101 (2009).
[Crossref]

Y. C. Yang and D. K. Yan, “Electro-optic Kerr effect in polymer-stabilized isotropic liquid crystals,” Appl. Phys. Lett. 98(2), 023502 (2011).
[Crossref]

H. Choi, H. Higuchi, and H. Kikuch, “Fast electro-optic switching in liquid crystal blue phase II,” Appl. Phys. Lett. 98(13), 131905 (2011).
[Crossref]

S. Matsumoto, M. Houlbert, T. Hayashi, and K. I. Kubodera, “Fine droplets of liquid crystals in a transparent polymer and their response to an electric field,” Appl. Phys. Lett. 69(8), 1044–1046 (1996).
[Crossref]

R. B. Meyer, “Effects of electric and magnetic fields on the structure of cholesteric liquid crystals,” Appl. Phys. Lett. 12(9), 281–282 (1968).
[Crossref]

M. Oh‐e and K. Kondo, “Response mechanism of nematic liquid crystals using the in‐plane switching mode,” Appl. Phys. Lett. 69(5), 623–625 (1996).
[Crossref]

J. Appl. Phys. (1)

G. P. Montgomery, J. L. West, and W. Tamura-Lis, “Light scattering from polymer-dispersed liquid crystal film: droplet size effects,” J. Appl. Phys. 69(3), 1605–16012 (1991).
[Crossref]

J. Mater. Chem. (2)

J. Yan, L. Rao, M. Jiao, Y. Li, H. C. Cheng, and S. T. Wu, “Polymer-stabilized optically isotropic liquid crystals for next-generation display and photonics applications,” J. Mater. Chem. 21(22), 7870–7877 (2011).
[Crossref]

M. R. Wilson and D. J. Earl, “Calculating the helical twisting power of chiral dopants,” J. Mater. Chem. 11(11), 2672–2677 (2001).
[Crossref]

J. Mater. Sci. Mater. Electron. (1)

J. Niziol, R. Weglowski, S. J. Klosowicz, A. Majchrowski, P. Rakus, A. Wojciechowski, I. V. Kityk, S. Tkaczyk, and E. Gondek, “Kerr modulators based on polymer-dispersed liquid crystal complexes,” J. Mater. Sci. Mater. Electron. 21(10), 1020–1023 (2010).
[Crossref]

J. Phys. D Appl. Phys. (2)

M. S. Kim, Y. J. Lim, S. Yoon, S. W. Kang, S. H. Lee, M. Kim, and S. T. Wu, “A controllable viewing angle LCD with an optically isotropic liquid crystal,” J. Phys. D Appl. Phys. 43(14), 145502 (2010).
[Crossref]

S. W. Choi, S. I. Yamamoto, T. Iwata, and H. Kikuchi, “Optically isotropic liquid crystal composite incorporating in-plane electric field geometry,” J. Phys. D Appl. Phys. 42(11), 112002 (2009).
[Crossref]

J. Sci. (1)

J. Kerr, “A new relation between electricity and light: Dielectrified media birefringent,” J. Sci. 50(332), 337–348 (1875).

Jpn. J. Appl. Phys. (1)

S. Aya, K. V. Le, F. Araoka, K. Ishikawa, and H. Takezoe, “Nanosize-induced optically isotropic nematic phase,” Jpn. J. Appl. Phys. 50(5R), 051703 (2011).
[Crossref]

Liq. Cryst. (2)

N. H. Park, S. C. Noh, P. Nayek, M. H. Lee, M. S. Kim, L. C. Chien, J. H. Lee, B. K. Kim, and S. H. Lee, “Optically isotropic liquid crystal mixtures and their application to high performance liquid crystal devices,” Liq. Cryst. 42(4), 530–536 (2015).
[Crossref]

R. Manda, S. Pagidi, M. S. Kim, C. H. Park, H. S. Yoo, K. Sandeep, Y. J. Lim, and S. H. Lee, “Effect of monomer concentration and functionality on electro-optical properties of polymer-stabilised optically isotropic liquid crystals,” Liq. Cryst. 45(5), 736–745 (2018).
[Crossref]

Mater. Lett. (1)

N. H. Cho, P. Nayek, J. J. Lee, Y. J. Lim, J. H. Lee, S. H. Lee, H. S. Park, J. H. Lee, and H. S. Kim, “High-performance, in-plane switching liquid crystal device utilizing an optically isotropic liquid crystal blend of nanostructured liquid crystal droplets in a polymer matrix,” Mater. Lett. 153, 136–139 (2015).
[Crossref]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (1)

P. R. Gerber, “Electro-optical effects of a small-pitch blue-phase system,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 116(3–4), 197–206 (1985).
[Crossref]

Mol. Cryst. Liq. Cryst. Inc. Nonlinear Opt. (1)

J. L. West, “Phase separation of liquid crystals in polymers,” Mol. Cryst. Liq. Cryst. Inc. Nonlinear Opt. 157(1), 427–441 (1988).
[Crossref]

Nat. Mater. (2)

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[Crossref] [PubMed]

F. Castles, F. V. Day, S. M. Morris, D. H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications,” Nat. Mater. 11(7), 599–603 (2012).
[Crossref] [PubMed]

Opt. Express (3)

Phys. Rev. A Gen. Phys. (1)

S. Zumer and J. W. Doane, “Light scattering from a small nematic droplet,” Phys. Rev. A Gen. Phys. 34(4), 3373–3386 (1986).
[Crossref] [PubMed]

Poly. (1)

R. S. Justice, D. W. Schaefer, R. A. Vaia, D. W. Tomlin, and T. J. Bunning, “Interface morphology and phase separation in polymer-dispersed liquid crystal composites,” Poly. 46(12), 4465–4473 (2005).
[Crossref]

Other (2)

B. Bahadur, Liquid crystals: applications and uses. (World Scientific, 1990), Vol. 1.

S. J. Shin, N. H. Cho, Y. J. Lim, P. Nayek, S. H. Lee, S. H. Hong, H. J. Lee, and S. T. Shin, “Optically isotropic liquid crystal mixture showing high contrast ratio and fast response time,” IMID Digest. 139–140 (2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic diagram of the IPS cell with randomly oriented LC droplets in the (a) conventional-OILC phase, and (b) proposed twisted-OILC at field-OFF state. The bipolar LC and twisted LC orientation inside the droplets in conventional-OILC and twisted-OILC is shown in insert, respectively.
Fig. 2
Fig. 2 (a) POM images and (b) voltage dependent transmittance, of 1 μm pitch length sample (P3) taken under crossed polarizers as a function of UV curing intensity. The scale bar in each POM images equals to 20 μm. The number on each POM image represents the black state.
Fig. 3
Fig. 3 (a) The wavelength dependent transmittance of prepares OILC samples measured by using UV-Visible spectroscopy, (b) The photographic images of cells.
Fig. 4
Fig. 4 The voltage-dependent transmittance curves of prepared samples. The solid lines indicate increasing of voltage and dotted lines indicates decreasing the voltage.
Fig. 5
Fig. 5 The POM images of prepared sample at voltage-on and voltage-off states taken under crossed polarisers condition. The indicated scale bar equals to 100 μm. The crossed arrows represent orientation of polarizer and analyzer.
Fig. 6
Fig. 6 The helical pitch length dependent light leakage and the contrast ratio measured under crossed polarizers.
Fig. 7
Fig. 7 The response times of the helical pitch length dependent samples measured with a maximum applied voltage of 80 Vrms.
Fig. 8
Fig. 8 (a) FE-SEM micro-images of the conventional-OILC, and (b) its size distribution with Gaussian fit. (c) and (d) are polymer micro-structure of twisted-OILCs with the helical pitch of 1.5 µm and 0.3 µm, respectively.

Tables (2)

Tables Icon

Table 1 The OILC mixtures as a function of the various concentrations of chiral dopant

Tables Icon

Table 2 The threshold voltage (Vth), hysteresis (H) and the change in transmittance as a function of pitch length.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

σ avg | m1 | 2 Γ 4 R 6 ,
Δ n ind =Δ n s { 1exp[ ( E E s ) 2 ] },
P= 1 HTP×c ,
V th = d π 2 P ( k 22 ε o Δε ) 1 2 ,
H( % )= Δ V T50% V T100% ×100,
τ off γ 1 R '2 k eff π 2 ,

Metrics