Abstract

A novel optical thermometry is put forward, based on the cooperation of temperature-induced red shift of the charge transfer band (CTB) edge of the vanadates and thermal population of the thermally coupled energy levels (TCELs). Particularly, temperature-dependent CTB of Sm3+ (Er3+) doped LuVO4 was investigated from 300 to 480 K. Then, under the excitation of 360 nm at which the excitation efficiency enhances with temperature due to the temperature induced red shift of the CTB edge, temperature-dependent emissions of the TCELs of Sm3+ and Er3+ were investigated. The results indicate that the emission from the upper-level in the TCELs exhibits a dramatic increase, along with the increase of temperature. High relative sensitivity of 4304/T2 was obtained, which is remarkably superior to the previous reported sensors, using the temperature-dependent fluorescence intensity ratio of TCELs. This suggests that the proposed strategy is a promising candidate for highly sensitive optical thermometry.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Thermometry strategy developed based on fluorescence contrast driven by varying excitations in codoped LiNbO3

Siwei Long, Shaopeng Lin, Decai Ma, Yunzhong Zhu, Huashan Li, and Biao Wang
Photon. Res. 8(2) 135-142 (2020)

Influence of excitation power and doping concentration on the upconversion emission and optical temperature sensing behavior of Er3+: BaGd2(MoO4)4 phosphors

Ruoshan Lei, Degang Deng, Xin Liu, Feifei Huang, Huanping Wang, Shilong Zhao, and Shiqing Xu
Opt. Mater. Express 8(10) 3023-3035 (2018)

Upconversion luminescence of Ba3La(PO4)3:Yb3+-Er3+/Tm3+ phosphors for optimal temperature sensing

Jiafeng Cao, Jia Zhang, and Xiaowei Li
Appl. Opt. 57(6) 1345-1350 (2018)

References

  • View by:
  • |
  • |
  • |

  1. X. D. Wang, O. S. Wolfbeis, and R. J. Meier, “Luminescent probes and sensors for temperature,” Chem. Soc. Rev. 42(19), 7834–7869 (2013).
    [Crossref] [PubMed]
  2. D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4(15), 4301–4326 (2012).
    [Crossref] [PubMed]
  3. X. Zhu, W. Feng, J. Chang, Y. W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
    [Crossref] [PubMed]
  4. C. Xu, Y. Huang, Y. Lin, J. Huang, X. Gong, Z. Luo, and Y. Chen, “Real-time measurement of temperature distribution inside a gain medium of a diode-pumped Er3+/Yb3+ 1.55 μm laser,” Opt. Lett. 42(17), 3383–3386 (2017).
    [Crossref] [PubMed]
  5. S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
    [Crossref]
  6. L. Li, Y. Zhou, F. Qin, Y. Zheng, H. Zhao, and Z. Zhang, “Modified calculation method of relative sensitivity for fluorescence intensity ratio thermometry,” Opt. Lett. 42(23), 4837–4840 (2017).
    [Crossref] [PubMed]
  7. S. Zhou, X. Wei, X. Li, Y. Chen, C. Duan, and M. Yin, “Temperature sensing based on the cooperation of Eu3+ and Nd3+ in Y2O3 nanoparticles,” Sens. Actuators B Chem. 246, 352–357 (2017).
    [Crossref]
  8. X. Tian, X. Wei, Y. Chen, C. Duan, and M. Yin, “Temperature sensor based on ladder-level assisted thermal coupling and thermal-enhanced luminescence in NaYF4: Nd3+,” Opt. Express 22(24), 30333–30345 (2014).
    [Crossref] [PubMed]
  9. A. M. Kaczmarek, Y. Y. Liu, C. Wang, B. Laforce, L. Vincze, P. Van Der Voort, and R. Van Deun, “Grafting of a Eu3+-tfac complex on to a Tb3+-metal organic framework for use as a ratiometric thermometer,” Dalton Trans. 46(37), 12717–12723 (2017).
    [Crossref] [PubMed]
  10. D. Chen, M. Xu, S. Liu, and X. Li, “Eu2+/Eu3+ dual-emitting glass ceramic for self-calibrated optical thermometry,” Sens. Actuators B Chem. 246, 756–760 (2017).
    [Crossref]
  11. Y. Cui, R. Song, J. Yu, M. Liu, Z. Wang, C. Wu, Y. Yang, Z. Wang, B. Chen, and G. Qian, “Dual-Emitting MOF⊃Dye Composite for Ratiometric Temperature Sensing,” Adv. Mater. 27(8), 1420–1425 (2015).
    [Crossref] [PubMed]
  12. F. Huang and D. Chen, “Synthesis of Mn2+:Zn2SiO4-Eu3+:Gd2O3 nanocomposites for highly sensitive optical thermometry through the synergistic luminescence from lanthanide-transition metal ions,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(21), 5176–5182 (2017).
    [Crossref]
  13. D. Chen, S. Liu, Z. Wan, and Z. Ji, “EuF3/Ga2O3 Dual-Phase Nanostructural Glass Ceramics with Eu2+/Cr3+ Dual-Activator Luminescence for Self-Calibrated Optical Thermometry,” J. Phys. Chem. C 120(38), 21858–21865 (2016).
    [Crossref]
  14. Y. Gao, F. Huang, H. Lin, J. Zhou, J. Xu, and Y. Wang, “A Novel Optical Thermometry Strategy Based on Diverse Thermal Response from Two Intervalence Charge Transfer States,” Adv. Funct. Mater. 26(18), 3139–3145 (2016).
    [Crossref]
  15. R. Shi, L. Lin, P. Dorenbos, and H. Liang, “Development of a potential optical thermometric material through photoluminescence of Pr3+ in La2MgTiO6,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(41), 10737–10745 (2017).
    [Crossref]
  16. S. Zhou, X. Li, X. Wei, C. Duan, and M. Yin, “A new mechanism for temperature sensing based on the thermal population of 7F2 state in Eu3+,” Sens. Actuators B Chem. 231, 641–645 (2016).
    [Crossref]
  17. J. Cai, L. Zhao, F. Hu, X. Wei, Y. Chen, M. Yin, and C.-K. Duan, “Temperature Sensing Using Thermal Population of Low-Lying Energy Levels with (Sm0.01Gd0.99)VO4,” Inorg. Chem. 56(7), 4039–4046 (2017).
    [Crossref] [PubMed]
  18. J. Rocha, C. D. Brites, and L. D. Carlos, “Lanthanide Organic Framework Luminescent Thermometers,” Chemistry 22(42), 14782–14795 (2016).
    [Crossref] [PubMed]
  19. D. Chen, W. Xu, S. Yuan, X. Li, and J. Zhong, “Ln3+-Sensitized Mn4+ near-infrared upconverting luminescence and dual-modal temperature sensing,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(37), 9619–9628 (2017).
    [Crossref]
  20. X. Zhang, Y. Huang, and M. Gong, “Dual-emitting Ce3+, Tb3+ co-doped LaOBr phosphor: Luminescence, energy transfer and ratiometric temperature sensing,” Chem. Eng. J. 307, 291–299 (2017).
    [Crossref]
  21. S. Zhou, C. Duan, and S. Han, “A novel strategy for thermometry based on the temperature-induced red shift of the charge transfer band edge,” Dalton Trans. 47(5), 1599–1603 (2018).
    [Crossref] [PubMed]
  22. S. Zhou, C. Duan, and M. Wang, “Origin of the temperature-induced redshift of the charge transfer band of GdVO4,” Opt. Lett. 42(22), 4703–4706 (2017).
    [Crossref] [PubMed]
  23. M. G. Nikolić, D. J. Jovanović, V. Đorđević, Ž. Antić, R. M. Krsmanović, and M. D. Dramićanin, “Thermographic properties of Sm3+-doped GdVO4 phosphor,” Phys. Scr. T 149, 014063 (2012).
    [Crossref]
  24. L. R. Đačanin, S. R. Lukić-Petrović, D. M. Petrović, M. G. Nikolić, and M. D. Dramićanin, “Temperature quenching of luminescence emission in Eu3+- and Sm3+-doped YNbO4 powders,” J. Lumin. 151, 82–87 (2014).
    [Crossref]

2018 (1)

S. Zhou, C. Duan, and S. Han, “A novel strategy for thermometry based on the temperature-induced red shift of the charge transfer band edge,” Dalton Trans. 47(5), 1599–1603 (2018).
[Crossref] [PubMed]

2017 (11)

S. Zhou, C. Duan, and M. Wang, “Origin of the temperature-induced redshift of the charge transfer band of GdVO4,” Opt. Lett. 42(22), 4703–4706 (2017).
[Crossref] [PubMed]

C. Xu, Y. Huang, Y. Lin, J. Huang, X. Gong, Z. Luo, and Y. Chen, “Real-time measurement of temperature distribution inside a gain medium of a diode-pumped Er3+/Yb3+ 1.55 μm laser,” Opt. Lett. 42(17), 3383–3386 (2017).
[Crossref] [PubMed]

L. Li, Y. Zhou, F. Qin, Y. Zheng, H. Zhao, and Z. Zhang, “Modified calculation method of relative sensitivity for fluorescence intensity ratio thermometry,” Opt. Lett. 42(23), 4837–4840 (2017).
[Crossref] [PubMed]

S. Zhou, X. Wei, X. Li, Y. Chen, C. Duan, and M. Yin, “Temperature sensing based on the cooperation of Eu3+ and Nd3+ in Y2O3 nanoparticles,” Sens. Actuators B Chem. 246, 352–357 (2017).
[Crossref]

A. M. Kaczmarek, Y. Y. Liu, C. Wang, B. Laforce, L. Vincze, P. Van Der Voort, and R. Van Deun, “Grafting of a Eu3+-tfac complex on to a Tb3+-metal organic framework for use as a ratiometric thermometer,” Dalton Trans. 46(37), 12717–12723 (2017).
[Crossref] [PubMed]

D. Chen, M. Xu, S. Liu, and X. Li, “Eu2+/Eu3+ dual-emitting glass ceramic for self-calibrated optical thermometry,” Sens. Actuators B Chem. 246, 756–760 (2017).
[Crossref]

F. Huang and D. Chen, “Synthesis of Mn2+:Zn2SiO4-Eu3+:Gd2O3 nanocomposites for highly sensitive optical thermometry through the synergistic luminescence from lanthanide-transition metal ions,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(21), 5176–5182 (2017).
[Crossref]

R. Shi, L. Lin, P. Dorenbos, and H. Liang, “Development of a potential optical thermometric material through photoluminescence of Pr3+ in La2MgTiO6,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(41), 10737–10745 (2017).
[Crossref]

J. Cai, L. Zhao, F. Hu, X. Wei, Y. Chen, M. Yin, and C.-K. Duan, “Temperature Sensing Using Thermal Population of Low-Lying Energy Levels with (Sm0.01Gd0.99)VO4,” Inorg. Chem. 56(7), 4039–4046 (2017).
[Crossref] [PubMed]

D. Chen, W. Xu, S. Yuan, X. Li, and J. Zhong, “Ln3+-Sensitized Mn4+ near-infrared upconverting luminescence and dual-modal temperature sensing,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(37), 9619–9628 (2017).
[Crossref]

X. Zhang, Y. Huang, and M. Gong, “Dual-emitting Ce3+, Tb3+ co-doped LaOBr phosphor: Luminescence, energy transfer and ratiometric temperature sensing,” Chem. Eng. J. 307, 291–299 (2017).
[Crossref]

2016 (5)

J. Rocha, C. D. Brites, and L. D. Carlos, “Lanthanide Organic Framework Luminescent Thermometers,” Chemistry 22(42), 14782–14795 (2016).
[Crossref] [PubMed]

S. Zhou, X. Li, X. Wei, C. Duan, and M. Yin, “A new mechanism for temperature sensing based on the thermal population of 7F2 state in Eu3+,” Sens. Actuators B Chem. 231, 641–645 (2016).
[Crossref]

D. Chen, S. Liu, Z. Wan, and Z. Ji, “EuF3/Ga2O3 Dual-Phase Nanostructural Glass Ceramics with Eu2+/Cr3+ Dual-Activator Luminescence for Self-Calibrated Optical Thermometry,” J. Phys. Chem. C 120(38), 21858–21865 (2016).
[Crossref]

Y. Gao, F. Huang, H. Lin, J. Zhou, J. Xu, and Y. Wang, “A Novel Optical Thermometry Strategy Based on Diverse Thermal Response from Two Intervalence Charge Transfer States,” Adv. Funct. Mater. 26(18), 3139–3145 (2016).
[Crossref]

X. Zhu, W. Feng, J. Chang, Y. W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
[Crossref] [PubMed]

2015 (1)

Y. Cui, R. Song, J. Yu, M. Liu, Z. Wang, C. Wu, Y. Yang, Z. Wang, B. Chen, and G. Qian, “Dual-Emitting MOF⊃Dye Composite for Ratiometric Temperature Sensing,” Adv. Mater. 27(8), 1420–1425 (2015).
[Crossref] [PubMed]

2014 (2)

X. Tian, X. Wei, Y. Chen, C. Duan, and M. Yin, “Temperature sensor based on ladder-level assisted thermal coupling and thermal-enhanced luminescence in NaYF4: Nd3+,” Opt. Express 22(24), 30333–30345 (2014).
[Crossref] [PubMed]

L. R. Đačanin, S. R. Lukić-Petrović, D. M. Petrović, M. G. Nikolić, and M. D. Dramićanin, “Temperature quenching of luminescence emission in Eu3+- and Sm3+-doped YNbO4 powders,” J. Lumin. 151, 82–87 (2014).
[Crossref]

2013 (1)

X. D. Wang, O. S. Wolfbeis, and R. J. Meier, “Luminescent probes and sensors for temperature,” Chem. Soc. Rev. 42(19), 7834–7869 (2013).
[Crossref] [PubMed]

2012 (2)

D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4(15), 4301–4326 (2012).
[Crossref] [PubMed]

M. G. Nikolić, D. J. Jovanović, V. Đorđević, Ž. Antić, R. M. Krsmanović, and M. D. Dramićanin, “Thermographic properties of Sm3+-doped GdVO4 phosphor,” Phys. Scr. T 149, 014063 (2012).
[Crossref]

2003 (1)

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[Crossref]

Antic, Ž.

M. G. Nikolić, D. J. Jovanović, V. Đorđević, Ž. Antić, R. M. Krsmanović, and M. D. Dramićanin, “Thermographic properties of Sm3+-doped GdVO4 phosphor,” Phys. Scr. T 149, 014063 (2012).
[Crossref]

Baxter, G. W.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[Crossref]

Brites, C. D.

J. Rocha, C. D. Brites, and L. D. Carlos, “Lanthanide Organic Framework Luminescent Thermometers,” Chemistry 22(42), 14782–14795 (2016).
[Crossref] [PubMed]

Cai, J.

J. Cai, L. Zhao, F. Hu, X. Wei, Y. Chen, M. Yin, and C.-K. Duan, “Temperature Sensing Using Thermal Population of Low-Lying Energy Levels with (Sm0.01Gd0.99)VO4,” Inorg. Chem. 56(7), 4039–4046 (2017).
[Crossref] [PubMed]

Carlos, L. D.

J. Rocha, C. D. Brites, and L. D. Carlos, “Lanthanide Organic Framework Luminescent Thermometers,” Chemistry 22(42), 14782–14795 (2016).
[Crossref] [PubMed]

Chang, J.

X. Zhu, W. Feng, J. Chang, Y. W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
[Crossref] [PubMed]

Chen, B.

Y. Cui, R. Song, J. Yu, M. Liu, Z. Wang, C. Wu, Y. Yang, Z. Wang, B. Chen, and G. Qian, “Dual-Emitting MOF⊃Dye Composite for Ratiometric Temperature Sensing,” Adv. Mater. 27(8), 1420–1425 (2015).
[Crossref] [PubMed]

Chen, D.

F. Huang and D. Chen, “Synthesis of Mn2+:Zn2SiO4-Eu3+:Gd2O3 nanocomposites for highly sensitive optical thermometry through the synergistic luminescence from lanthanide-transition metal ions,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(21), 5176–5182 (2017).
[Crossref]

D. Chen, M. Xu, S. Liu, and X. Li, “Eu2+/Eu3+ dual-emitting glass ceramic for self-calibrated optical thermometry,” Sens. Actuators B Chem. 246, 756–760 (2017).
[Crossref]

D. Chen, W. Xu, S. Yuan, X. Li, and J. Zhong, “Ln3+-Sensitized Mn4+ near-infrared upconverting luminescence and dual-modal temperature sensing,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(37), 9619–9628 (2017).
[Crossref]

D. Chen, S. Liu, Z. Wan, and Z. Ji, “EuF3/Ga2O3 Dual-Phase Nanostructural Glass Ceramics with Eu2+/Cr3+ Dual-Activator Luminescence for Self-Calibrated Optical Thermometry,” J. Phys. Chem. C 120(38), 21858–21865 (2016).
[Crossref]

Chen, M.

X. Zhu, W. Feng, J. Chang, Y. W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
[Crossref] [PubMed]

Chen, Y.

C. Xu, Y. Huang, Y. Lin, J. Huang, X. Gong, Z. Luo, and Y. Chen, “Real-time measurement of temperature distribution inside a gain medium of a diode-pumped Er3+/Yb3+ 1.55 μm laser,” Opt. Lett. 42(17), 3383–3386 (2017).
[Crossref] [PubMed]

S. Zhou, X. Wei, X. Li, Y. Chen, C. Duan, and M. Yin, “Temperature sensing based on the cooperation of Eu3+ and Nd3+ in Y2O3 nanoparticles,” Sens. Actuators B Chem. 246, 352–357 (2017).
[Crossref]

J. Cai, L. Zhao, F. Hu, X. Wei, Y. Chen, M. Yin, and C.-K. Duan, “Temperature Sensing Using Thermal Population of Low-Lying Energy Levels with (Sm0.01Gd0.99)VO4,” Inorg. Chem. 56(7), 4039–4046 (2017).
[Crossref] [PubMed]

X. Tian, X. Wei, Y. Chen, C. Duan, and M. Yin, “Temperature sensor based on ladder-level assisted thermal coupling and thermal-enhanced luminescence in NaYF4: Nd3+,” Opt. Express 22(24), 30333–30345 (2014).
[Crossref] [PubMed]

Collins, S. F.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[Crossref]

Cui, Y.

Y. Cui, R. Song, J. Yu, M. Liu, Z. Wang, C. Wu, Y. Yang, Z. Wang, B. Chen, and G. Qian, “Dual-Emitting MOF⊃Dye Composite for Ratiometric Temperature Sensing,” Adv. Mater. 27(8), 1420–1425 (2015).
[Crossref] [PubMed]

Ðacanin, L. R.

L. R. Đačanin, S. R. Lukić-Petrović, D. M. Petrović, M. G. Nikolić, and M. D. Dramićanin, “Temperature quenching of luminescence emission in Eu3+- and Sm3+-doped YNbO4 powders,” J. Lumin. 151, 82–87 (2014).
[Crossref]

Ðordevic, V.

M. G. Nikolić, D. J. Jovanović, V. Đorđević, Ž. Antić, R. M. Krsmanović, and M. D. Dramićanin, “Thermographic properties of Sm3+-doped GdVO4 phosphor,” Phys. Scr. T 149, 014063 (2012).
[Crossref]

Dorenbos, P.

R. Shi, L. Lin, P. Dorenbos, and H. Liang, “Development of a potential optical thermometric material through photoluminescence of Pr3+ in La2MgTiO6,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(41), 10737–10745 (2017).
[Crossref]

Dramicanin, M. D.

L. R. Đačanin, S. R. Lukić-Petrović, D. M. Petrović, M. G. Nikolić, and M. D. Dramićanin, “Temperature quenching of luminescence emission in Eu3+- and Sm3+-doped YNbO4 powders,” J. Lumin. 151, 82–87 (2014).
[Crossref]

M. G. Nikolić, D. J. Jovanović, V. Đorđević, Ž. Antić, R. M. Krsmanović, and M. D. Dramićanin, “Thermographic properties of Sm3+-doped GdVO4 phosphor,” Phys. Scr. T 149, 014063 (2012).
[Crossref]

Duan, C.

S. Zhou, C. Duan, and S. Han, “A novel strategy for thermometry based on the temperature-induced red shift of the charge transfer band edge,” Dalton Trans. 47(5), 1599–1603 (2018).
[Crossref] [PubMed]

S. Zhou, C. Duan, and M. Wang, “Origin of the temperature-induced redshift of the charge transfer band of GdVO4,” Opt. Lett. 42(22), 4703–4706 (2017).
[Crossref] [PubMed]

S. Zhou, X. Wei, X. Li, Y. Chen, C. Duan, and M. Yin, “Temperature sensing based on the cooperation of Eu3+ and Nd3+ in Y2O3 nanoparticles,” Sens. Actuators B Chem. 246, 352–357 (2017).
[Crossref]

S. Zhou, X. Li, X. Wei, C. Duan, and M. Yin, “A new mechanism for temperature sensing based on the thermal population of 7F2 state in Eu3+,” Sens. Actuators B Chem. 231, 641–645 (2016).
[Crossref]

X. Tian, X. Wei, Y. Chen, C. Duan, and M. Yin, “Temperature sensor based on ladder-level assisted thermal coupling and thermal-enhanced luminescence in NaYF4: Nd3+,” Opt. Express 22(24), 30333–30345 (2014).
[Crossref] [PubMed]

Duan, C.-K.

J. Cai, L. Zhao, F. Hu, X. Wei, Y. Chen, M. Yin, and C.-K. Duan, “Temperature Sensing Using Thermal Population of Low-Lying Energy Levels with (Sm0.01Gd0.99)VO4,” Inorg. Chem. 56(7), 4039–4046 (2017).
[Crossref] [PubMed]

Feng, W.

X. Zhu, W. Feng, J. Chang, Y. W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
[Crossref] [PubMed]

Gao, Y.

Y. Gao, F. Huang, H. Lin, J. Zhou, J. Xu, and Y. Wang, “A Novel Optical Thermometry Strategy Based on Diverse Thermal Response from Two Intervalence Charge Transfer States,” Adv. Funct. Mater. 26(18), 3139–3145 (2016).
[Crossref]

Gong, M.

X. Zhang, Y. Huang, and M. Gong, “Dual-emitting Ce3+, Tb3+ co-doped LaOBr phosphor: Luminescence, energy transfer and ratiometric temperature sensing,” Chem. Eng. J. 307, 291–299 (2017).
[Crossref]

Gong, X.

Han, S.

S. Zhou, C. Duan, and S. Han, “A novel strategy for thermometry based on the temperature-induced red shift of the charge transfer band edge,” Dalton Trans. 47(5), 1599–1603 (2018).
[Crossref] [PubMed]

Hu, F.

J. Cai, L. Zhao, F. Hu, X. Wei, Y. Chen, M. Yin, and C.-K. Duan, “Temperature Sensing Using Thermal Population of Low-Lying Energy Levels with (Sm0.01Gd0.99)VO4,” Inorg. Chem. 56(7), 4039–4046 (2017).
[Crossref] [PubMed]

Huang, F.

F. Huang and D. Chen, “Synthesis of Mn2+:Zn2SiO4-Eu3+:Gd2O3 nanocomposites for highly sensitive optical thermometry through the synergistic luminescence from lanthanide-transition metal ions,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(21), 5176–5182 (2017).
[Crossref]

Y. Gao, F. Huang, H. Lin, J. Zhou, J. Xu, and Y. Wang, “A Novel Optical Thermometry Strategy Based on Diverse Thermal Response from Two Intervalence Charge Transfer States,” Adv. Funct. Mater. 26(18), 3139–3145 (2016).
[Crossref]

Huang, J.

Huang, Y.

C. Xu, Y. Huang, Y. Lin, J. Huang, X. Gong, Z. Luo, and Y. Chen, “Real-time measurement of temperature distribution inside a gain medium of a diode-pumped Er3+/Yb3+ 1.55 μm laser,” Opt. Lett. 42(17), 3383–3386 (2017).
[Crossref] [PubMed]

X. Zhang, Y. Huang, and M. Gong, “Dual-emitting Ce3+, Tb3+ co-doped LaOBr phosphor: Luminescence, energy transfer and ratiometric temperature sensing,” Chem. Eng. J. 307, 291–299 (2017).
[Crossref]

Jaque, D.

D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4(15), 4301–4326 (2012).
[Crossref] [PubMed]

Ji, Z.

D. Chen, S. Liu, Z. Wan, and Z. Ji, “EuF3/Ga2O3 Dual-Phase Nanostructural Glass Ceramics with Eu2+/Cr3+ Dual-Activator Luminescence for Self-Calibrated Optical Thermometry,” J. Phys. Chem. C 120(38), 21858–21865 (2016).
[Crossref]

Jovanovic, D. J.

M. G. Nikolić, D. J. Jovanović, V. Đorđević, Ž. Antić, R. M. Krsmanović, and M. D. Dramićanin, “Thermographic properties of Sm3+-doped GdVO4 phosphor,” Phys. Scr. T 149, 014063 (2012).
[Crossref]

Kaczmarek, A. M.

A. M. Kaczmarek, Y. Y. Liu, C. Wang, B. Laforce, L. Vincze, P. Van Der Voort, and R. Van Deun, “Grafting of a Eu3+-tfac complex on to a Tb3+-metal organic framework for use as a ratiometric thermometer,” Dalton Trans. 46(37), 12717–12723 (2017).
[Crossref] [PubMed]

Krsmanovic, R. M.

M. G. Nikolić, D. J. Jovanović, V. Đorđević, Ž. Antić, R. M. Krsmanović, and M. D. Dramićanin, “Thermographic properties of Sm3+-doped GdVO4 phosphor,” Phys. Scr. T 149, 014063 (2012).
[Crossref]

Laforce, B.

A. M. Kaczmarek, Y. Y. Liu, C. Wang, B. Laforce, L. Vincze, P. Van Der Voort, and R. Van Deun, “Grafting of a Eu3+-tfac complex on to a Tb3+-metal organic framework for use as a ratiometric thermometer,” Dalton Trans. 46(37), 12717–12723 (2017).
[Crossref] [PubMed]

Li, F.

X. Zhu, W. Feng, J. Chang, Y. W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
[Crossref] [PubMed]

Li, J.

X. Zhu, W. Feng, J. Chang, Y. W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
[Crossref] [PubMed]

Li, L.

Li, X.

S. Zhou, X. Wei, X. Li, Y. Chen, C. Duan, and M. Yin, “Temperature sensing based on the cooperation of Eu3+ and Nd3+ in Y2O3 nanoparticles,” Sens. Actuators B Chem. 246, 352–357 (2017).
[Crossref]

D. Chen, M. Xu, S. Liu, and X. Li, “Eu2+/Eu3+ dual-emitting glass ceramic for self-calibrated optical thermometry,” Sens. Actuators B Chem. 246, 756–760 (2017).
[Crossref]

D. Chen, W. Xu, S. Yuan, X. Li, and J. Zhong, “Ln3+-Sensitized Mn4+ near-infrared upconverting luminescence and dual-modal temperature sensing,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(37), 9619–9628 (2017).
[Crossref]

S. Zhou, X. Li, X. Wei, C. Duan, and M. Yin, “A new mechanism for temperature sensing based on the thermal population of 7F2 state in Eu3+,” Sens. Actuators B Chem. 231, 641–645 (2016).
[Crossref]

Liang, H.

R. Shi, L. Lin, P. Dorenbos, and H. Liang, “Development of a potential optical thermometric material through photoluminescence of Pr3+ in La2MgTiO6,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(41), 10737–10745 (2017).
[Crossref]

Lin, H.

Y. Gao, F. Huang, H. Lin, J. Zhou, J. Xu, and Y. Wang, “A Novel Optical Thermometry Strategy Based on Diverse Thermal Response from Two Intervalence Charge Transfer States,” Adv. Funct. Mater. 26(18), 3139–3145 (2016).
[Crossref]

Lin, L.

R. Shi, L. Lin, P. Dorenbos, and H. Liang, “Development of a potential optical thermometric material through photoluminescence of Pr3+ in La2MgTiO6,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(41), 10737–10745 (2017).
[Crossref]

Lin, Y.

Liu, M.

Y. Cui, R. Song, J. Yu, M. Liu, Z. Wang, C. Wu, Y. Yang, Z. Wang, B. Chen, and G. Qian, “Dual-Emitting MOF⊃Dye Composite for Ratiometric Temperature Sensing,” Adv. Mater. 27(8), 1420–1425 (2015).
[Crossref] [PubMed]

Liu, S.

D. Chen, M. Xu, S. Liu, and X. Li, “Eu2+/Eu3+ dual-emitting glass ceramic for self-calibrated optical thermometry,” Sens. Actuators B Chem. 246, 756–760 (2017).
[Crossref]

D. Chen, S. Liu, Z. Wan, and Z. Ji, “EuF3/Ga2O3 Dual-Phase Nanostructural Glass Ceramics with Eu2+/Cr3+ Dual-Activator Luminescence for Self-Calibrated Optical Thermometry,” J. Phys. Chem. C 120(38), 21858–21865 (2016).
[Crossref]

Liu, Y. Y.

A. M. Kaczmarek, Y. Y. Liu, C. Wang, B. Laforce, L. Vincze, P. Van Der Voort, and R. Van Deun, “Grafting of a Eu3+-tfac complex on to a Tb3+-metal organic framework for use as a ratiometric thermometer,” Dalton Trans. 46(37), 12717–12723 (2017).
[Crossref] [PubMed]

Lukic-Petrovic, S. R.

L. R. Đačanin, S. R. Lukić-Petrović, D. M. Petrović, M. G. Nikolić, and M. D. Dramićanin, “Temperature quenching of luminescence emission in Eu3+- and Sm3+-doped YNbO4 powders,” J. Lumin. 151, 82–87 (2014).
[Crossref]

Luo, Z.

Meier, R. J.

X. D. Wang, O. S. Wolfbeis, and R. J. Meier, “Luminescent probes and sensors for temperature,” Chem. Soc. Rev. 42(19), 7834–7869 (2013).
[Crossref] [PubMed]

Nikolic, M. G.

L. R. Đačanin, S. R. Lukić-Petrović, D. M. Petrović, M. G. Nikolić, and M. D. Dramićanin, “Temperature quenching of luminescence emission in Eu3+- and Sm3+-doped YNbO4 powders,” J. Lumin. 151, 82–87 (2014).
[Crossref]

M. G. Nikolić, D. J. Jovanović, V. Đorđević, Ž. Antić, R. M. Krsmanović, and M. D. Dramićanin, “Thermographic properties of Sm3+-doped GdVO4 phosphor,” Phys. Scr. T 149, 014063 (2012).
[Crossref]

Petrovic, D. M.

L. R. Đačanin, S. R. Lukić-Petrović, D. M. Petrović, M. G. Nikolić, and M. D. Dramićanin, “Temperature quenching of luminescence emission in Eu3+- and Sm3+-doped YNbO4 powders,” J. Lumin. 151, 82–87 (2014).
[Crossref]

Qian, G.

Y. Cui, R. Song, J. Yu, M. Liu, Z. Wang, C. Wu, Y. Yang, Z. Wang, B. Chen, and G. Qian, “Dual-Emitting MOF⊃Dye Composite for Ratiometric Temperature Sensing,” Adv. Mater. 27(8), 1420–1425 (2015).
[Crossref] [PubMed]

Qin, F.

Rocha, J.

J. Rocha, C. D. Brites, and L. D. Carlos, “Lanthanide Organic Framework Luminescent Thermometers,” Chemistry 22(42), 14782–14795 (2016).
[Crossref] [PubMed]

Shi, R.

R. Shi, L. Lin, P. Dorenbos, and H. Liang, “Development of a potential optical thermometric material through photoluminescence of Pr3+ in La2MgTiO6,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(41), 10737–10745 (2017).
[Crossref]

Song, R.

Y. Cui, R. Song, J. Yu, M. Liu, Z. Wang, C. Wu, Y. Yang, Z. Wang, B. Chen, and G. Qian, “Dual-Emitting MOF⊃Dye Composite for Ratiometric Temperature Sensing,” Adv. Mater. 27(8), 1420–1425 (2015).
[Crossref] [PubMed]

Sun, Y.

X. Zhu, W. Feng, J. Chang, Y. W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
[Crossref] [PubMed]

Tan, Y. W.

X. Zhu, W. Feng, J. Chang, Y. W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
[Crossref] [PubMed]

Tian, X.

Van Der Voort, P.

A. M. Kaczmarek, Y. Y. Liu, C. Wang, B. Laforce, L. Vincze, P. Van Der Voort, and R. Van Deun, “Grafting of a Eu3+-tfac complex on to a Tb3+-metal organic framework for use as a ratiometric thermometer,” Dalton Trans. 46(37), 12717–12723 (2017).
[Crossref] [PubMed]

Van Deun, R.

A. M. Kaczmarek, Y. Y. Liu, C. Wang, B. Laforce, L. Vincze, P. Van Der Voort, and R. Van Deun, “Grafting of a Eu3+-tfac complex on to a Tb3+-metal organic framework for use as a ratiometric thermometer,” Dalton Trans. 46(37), 12717–12723 (2017).
[Crossref] [PubMed]

Vetrone, F.

D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4(15), 4301–4326 (2012).
[Crossref] [PubMed]

Vincze, L.

A. M. Kaczmarek, Y. Y. Liu, C. Wang, B. Laforce, L. Vincze, P. Van Der Voort, and R. Van Deun, “Grafting of a Eu3+-tfac complex on to a Tb3+-metal organic framework for use as a ratiometric thermometer,” Dalton Trans. 46(37), 12717–12723 (2017).
[Crossref] [PubMed]

Wade, S. A.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[Crossref]

Wan, Z.

D. Chen, S. Liu, Z. Wan, and Z. Ji, “EuF3/Ga2O3 Dual-Phase Nanostructural Glass Ceramics with Eu2+/Cr3+ Dual-Activator Luminescence for Self-Calibrated Optical Thermometry,” J. Phys. Chem. C 120(38), 21858–21865 (2016).
[Crossref]

Wang, C.

A. M. Kaczmarek, Y. Y. Liu, C. Wang, B. Laforce, L. Vincze, P. Van Der Voort, and R. Van Deun, “Grafting of a Eu3+-tfac complex on to a Tb3+-metal organic framework for use as a ratiometric thermometer,” Dalton Trans. 46(37), 12717–12723 (2017).
[Crossref] [PubMed]

Wang, M.

Wang, X. D.

X. D. Wang, O. S. Wolfbeis, and R. J. Meier, “Luminescent probes and sensors for temperature,” Chem. Soc. Rev. 42(19), 7834–7869 (2013).
[Crossref] [PubMed]

Wang, Y.

Y. Gao, F. Huang, H. Lin, J. Zhou, J. Xu, and Y. Wang, “A Novel Optical Thermometry Strategy Based on Diverse Thermal Response from Two Intervalence Charge Transfer States,” Adv. Funct. Mater. 26(18), 3139–3145 (2016).
[Crossref]

Wang, Z.

Y. Cui, R. Song, J. Yu, M. Liu, Z. Wang, C. Wu, Y. Yang, Z. Wang, B. Chen, and G. Qian, “Dual-Emitting MOF⊃Dye Composite for Ratiometric Temperature Sensing,” Adv. Mater. 27(8), 1420–1425 (2015).
[Crossref] [PubMed]

Y. Cui, R. Song, J. Yu, M. Liu, Z. Wang, C. Wu, Y. Yang, Z. Wang, B. Chen, and G. Qian, “Dual-Emitting MOF⊃Dye Composite for Ratiometric Temperature Sensing,” Adv. Mater. 27(8), 1420–1425 (2015).
[Crossref] [PubMed]

Wei, X.

S. Zhou, X. Wei, X. Li, Y. Chen, C. Duan, and M. Yin, “Temperature sensing based on the cooperation of Eu3+ and Nd3+ in Y2O3 nanoparticles,” Sens. Actuators B Chem. 246, 352–357 (2017).
[Crossref]

J. Cai, L. Zhao, F. Hu, X. Wei, Y. Chen, M. Yin, and C.-K. Duan, “Temperature Sensing Using Thermal Population of Low-Lying Energy Levels with (Sm0.01Gd0.99)VO4,” Inorg. Chem. 56(7), 4039–4046 (2017).
[Crossref] [PubMed]

S. Zhou, X. Li, X. Wei, C. Duan, and M. Yin, “A new mechanism for temperature sensing based on the thermal population of 7F2 state in Eu3+,” Sens. Actuators B Chem. 231, 641–645 (2016).
[Crossref]

X. Tian, X. Wei, Y. Chen, C. Duan, and M. Yin, “Temperature sensor based on ladder-level assisted thermal coupling and thermal-enhanced luminescence in NaYF4: Nd3+,” Opt. Express 22(24), 30333–30345 (2014).
[Crossref] [PubMed]

Wolfbeis, O. S.

X. D. Wang, O. S. Wolfbeis, and R. J. Meier, “Luminescent probes and sensors for temperature,” Chem. Soc. Rev. 42(19), 7834–7869 (2013).
[Crossref] [PubMed]

Wu, C.

Y. Cui, R. Song, J. Yu, M. Liu, Z. Wang, C. Wu, Y. Yang, Z. Wang, B. Chen, and G. Qian, “Dual-Emitting MOF⊃Dye Composite for Ratiometric Temperature Sensing,” Adv. Mater. 27(8), 1420–1425 (2015).
[Crossref] [PubMed]

Xu, C.

Xu, J.

Y. Gao, F. Huang, H. Lin, J. Zhou, J. Xu, and Y. Wang, “A Novel Optical Thermometry Strategy Based on Diverse Thermal Response from Two Intervalence Charge Transfer States,” Adv. Funct. Mater. 26(18), 3139–3145 (2016).
[Crossref]

Xu, M.

D. Chen, M. Xu, S. Liu, and X. Li, “Eu2+/Eu3+ dual-emitting glass ceramic for self-calibrated optical thermometry,” Sens. Actuators B Chem. 246, 756–760 (2017).
[Crossref]

Xu, W.

D. Chen, W. Xu, S. Yuan, X. Li, and J. Zhong, “Ln3+-Sensitized Mn4+ near-infrared upconverting luminescence and dual-modal temperature sensing,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(37), 9619–9628 (2017).
[Crossref]

Yang, Y.

Y. Cui, R. Song, J. Yu, M. Liu, Z. Wang, C. Wu, Y. Yang, Z. Wang, B. Chen, and G. Qian, “Dual-Emitting MOF⊃Dye Composite for Ratiometric Temperature Sensing,” Adv. Mater. 27(8), 1420–1425 (2015).
[Crossref] [PubMed]

Yin, M.

S. Zhou, X. Wei, X. Li, Y. Chen, C. Duan, and M. Yin, “Temperature sensing based on the cooperation of Eu3+ and Nd3+ in Y2O3 nanoparticles,” Sens. Actuators B Chem. 246, 352–357 (2017).
[Crossref]

J. Cai, L. Zhao, F. Hu, X. Wei, Y. Chen, M. Yin, and C.-K. Duan, “Temperature Sensing Using Thermal Population of Low-Lying Energy Levels with (Sm0.01Gd0.99)VO4,” Inorg. Chem. 56(7), 4039–4046 (2017).
[Crossref] [PubMed]

S. Zhou, X. Li, X. Wei, C. Duan, and M. Yin, “A new mechanism for temperature sensing based on the thermal population of 7F2 state in Eu3+,” Sens. Actuators B Chem. 231, 641–645 (2016).
[Crossref]

X. Tian, X. Wei, Y. Chen, C. Duan, and M. Yin, “Temperature sensor based on ladder-level assisted thermal coupling and thermal-enhanced luminescence in NaYF4: Nd3+,” Opt. Express 22(24), 30333–30345 (2014).
[Crossref] [PubMed]

Yu, J.

Y. Cui, R. Song, J. Yu, M. Liu, Z. Wang, C. Wu, Y. Yang, Z. Wang, B. Chen, and G. Qian, “Dual-Emitting MOF⊃Dye Composite for Ratiometric Temperature Sensing,” Adv. Mater. 27(8), 1420–1425 (2015).
[Crossref] [PubMed]

Yuan, S.

D. Chen, W. Xu, S. Yuan, X. Li, and J. Zhong, “Ln3+-Sensitized Mn4+ near-infrared upconverting luminescence and dual-modal temperature sensing,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(37), 9619–9628 (2017).
[Crossref]

Zhang, X.

X. Zhang, Y. Huang, and M. Gong, “Dual-emitting Ce3+, Tb3+ co-doped LaOBr phosphor: Luminescence, energy transfer and ratiometric temperature sensing,” Chem. Eng. J. 307, 291–299 (2017).
[Crossref]

Zhang, Z.

Zhao, H.

Zhao, L.

J. Cai, L. Zhao, F. Hu, X. Wei, Y. Chen, M. Yin, and C.-K. Duan, “Temperature Sensing Using Thermal Population of Low-Lying Energy Levels with (Sm0.01Gd0.99)VO4,” Inorg. Chem. 56(7), 4039–4046 (2017).
[Crossref] [PubMed]

Zheng, Y.

Zhong, J.

D. Chen, W. Xu, S. Yuan, X. Li, and J. Zhong, “Ln3+-Sensitized Mn4+ near-infrared upconverting luminescence and dual-modal temperature sensing,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(37), 9619–9628 (2017).
[Crossref]

Zhou, J.

Y. Gao, F. Huang, H. Lin, J. Zhou, J. Xu, and Y. Wang, “A Novel Optical Thermometry Strategy Based on Diverse Thermal Response from Two Intervalence Charge Transfer States,” Adv. Funct. Mater. 26(18), 3139–3145 (2016).
[Crossref]

Zhou, S.

S. Zhou, C. Duan, and S. Han, “A novel strategy for thermometry based on the temperature-induced red shift of the charge transfer band edge,” Dalton Trans. 47(5), 1599–1603 (2018).
[Crossref] [PubMed]

S. Zhou, C. Duan, and M. Wang, “Origin of the temperature-induced redshift of the charge transfer band of GdVO4,” Opt. Lett. 42(22), 4703–4706 (2017).
[Crossref] [PubMed]

S. Zhou, X. Wei, X. Li, Y. Chen, C. Duan, and M. Yin, “Temperature sensing based on the cooperation of Eu3+ and Nd3+ in Y2O3 nanoparticles,” Sens. Actuators B Chem. 246, 352–357 (2017).
[Crossref]

S. Zhou, X. Li, X. Wei, C. Duan, and M. Yin, “A new mechanism for temperature sensing based on the thermal population of 7F2 state in Eu3+,” Sens. Actuators B Chem. 231, 641–645 (2016).
[Crossref]

Zhou, Y.

Zhu, X.

X. Zhu, W. Feng, J. Chang, Y. W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

Y. Gao, F. Huang, H. Lin, J. Zhou, J. Xu, and Y. Wang, “A Novel Optical Thermometry Strategy Based on Diverse Thermal Response from Two Intervalence Charge Transfer States,” Adv. Funct. Mater. 26(18), 3139–3145 (2016).
[Crossref]

Adv. Mater. (1)

Y. Cui, R. Song, J. Yu, M. Liu, Z. Wang, C. Wu, Y. Yang, Z. Wang, B. Chen, and G. Qian, “Dual-Emitting MOF⊃Dye Composite for Ratiometric Temperature Sensing,” Adv. Mater. 27(8), 1420–1425 (2015).
[Crossref] [PubMed]

Chem. Eng. J. (1)

X. Zhang, Y. Huang, and M. Gong, “Dual-emitting Ce3+, Tb3+ co-doped LaOBr phosphor: Luminescence, energy transfer and ratiometric temperature sensing,” Chem. Eng. J. 307, 291–299 (2017).
[Crossref]

Chem. Soc. Rev. (1)

X. D. Wang, O. S. Wolfbeis, and R. J. Meier, “Luminescent probes and sensors for temperature,” Chem. Soc. Rev. 42(19), 7834–7869 (2013).
[Crossref] [PubMed]

Chemistry (1)

J. Rocha, C. D. Brites, and L. D. Carlos, “Lanthanide Organic Framework Luminescent Thermometers,” Chemistry 22(42), 14782–14795 (2016).
[Crossref] [PubMed]

Dalton Trans. (2)

A. M. Kaczmarek, Y. Y. Liu, C. Wang, B. Laforce, L. Vincze, P. Van Der Voort, and R. Van Deun, “Grafting of a Eu3+-tfac complex on to a Tb3+-metal organic framework for use as a ratiometric thermometer,” Dalton Trans. 46(37), 12717–12723 (2017).
[Crossref] [PubMed]

S. Zhou, C. Duan, and S. Han, “A novel strategy for thermometry based on the temperature-induced red shift of the charge transfer band edge,” Dalton Trans. 47(5), 1599–1603 (2018).
[Crossref] [PubMed]

Inorg. Chem. (1)

J. Cai, L. Zhao, F. Hu, X. Wei, Y. Chen, M. Yin, and C.-K. Duan, “Temperature Sensing Using Thermal Population of Low-Lying Energy Levels with (Sm0.01Gd0.99)VO4,” Inorg. Chem. 56(7), 4039–4046 (2017).
[Crossref] [PubMed]

J. Appl. Phys. (1)

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[Crossref]

J. Lumin. (1)

L. R. Đačanin, S. R. Lukić-Petrović, D. M. Petrović, M. G. Nikolić, and M. D. Dramićanin, “Temperature quenching of luminescence emission in Eu3+- and Sm3+-doped YNbO4 powders,” J. Lumin. 151, 82–87 (2014).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (3)

D. Chen, W. Xu, S. Yuan, X. Li, and J. Zhong, “Ln3+-Sensitized Mn4+ near-infrared upconverting luminescence and dual-modal temperature sensing,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(37), 9619–9628 (2017).
[Crossref]

R. Shi, L. Lin, P. Dorenbos, and H. Liang, “Development of a potential optical thermometric material through photoluminescence of Pr3+ in La2MgTiO6,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(41), 10737–10745 (2017).
[Crossref]

F. Huang and D. Chen, “Synthesis of Mn2+:Zn2SiO4-Eu3+:Gd2O3 nanocomposites for highly sensitive optical thermometry through the synergistic luminescence from lanthanide-transition metal ions,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(21), 5176–5182 (2017).
[Crossref]

J. Phys. Chem. C (1)

D. Chen, S. Liu, Z. Wan, and Z. Ji, “EuF3/Ga2O3 Dual-Phase Nanostructural Glass Ceramics with Eu2+/Cr3+ Dual-Activator Luminescence for Self-Calibrated Optical Thermometry,” J. Phys. Chem. C 120(38), 21858–21865 (2016).
[Crossref]

Nanoscale (1)

D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4(15), 4301–4326 (2012).
[Crossref] [PubMed]

Nat. Commun. (1)

X. Zhu, W. Feng, J. Chang, Y. W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (3)

Phys. Scr. T (1)

M. G. Nikolić, D. J. Jovanović, V. Đorđević, Ž. Antić, R. M. Krsmanović, and M. D. Dramićanin, “Thermographic properties of Sm3+-doped GdVO4 phosphor,” Phys. Scr. T 149, 014063 (2012).
[Crossref]

Sens. Actuators B Chem. (3)

S. Zhou, X. Li, X. Wei, C. Duan, and M. Yin, “A new mechanism for temperature sensing based on the thermal population of 7F2 state in Eu3+,” Sens. Actuators B Chem. 231, 641–645 (2016).
[Crossref]

S. Zhou, X. Wei, X. Li, Y. Chen, C. Duan, and M. Yin, “Temperature sensing based on the cooperation of Eu3+ and Nd3+ in Y2O3 nanoparticles,” Sens. Actuators B Chem. 246, 352–357 (2017).
[Crossref]

D. Chen, M. Xu, S. Liu, and X. Li, “Eu2+/Eu3+ dual-emitting glass ceramic for self-calibrated optical thermometry,” Sens. Actuators B Chem. 246, 756–760 (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 XRD patterns of the as-prepared LuVO4:4% Sm3+ and LuVO4:2% Er3+ powder samples and the standard tetragonal LuVO4 diffraction data.
Fig. 2
Fig. 2 Excitation spectra (λem = 602 nm) of LuVO4:4% Sm3+ recorded at different temperatures from 300 to 480 K.
Fig. 3
Fig. 3 Emission spectra (λex = 360 nm) of LuVO4:4% Sm3+ recorded at different temperatures from 300 to 480 K.
Fig. 4
Fig. 4 Temperature dependences of the integrated intensities I520-545 and I550-679 originating from 4F3/2 and 4G5/2 of Sm3+, respectively.
Fig. 5
Fig. 5 (a) Excitation spectra (λem = 554 nm) and (b) emission spectra (λex = 360 nm) of LuVO4:2% Er3+ recorded at different temperatures from 300 to 480 K. (c) Temperature dependences of the integrated intensities I515-540 and I540-565 originating from 2H11/2 and 4S3/2 of Er3+, respectively. (d) Temperature dependent ratio of I515-540 to I540-565 for LuVO4:2% Er3+.
Fig. 6
Fig. 6 Temperature dependent fluorescence decay curves for (a) LuVO4:2% Er3+ (λem = 526 nm) and (b) LuVO4:4% Sm3+ (λem = 602 nm).
Fig. 7
Fig. 7 The obtained relative sensitivity SR in the investigated temperature range.

Metrics