Abstract

Absorption lines of atmospheric vapor commonly appear in terahertz (THz) spectra measured in a humid air environment. However, these effects are generally undesirable because they may mask critical spectroscopic information. Here, a self-adaptive method is demonstrated for effectively identifying and eliminating atmospheric vapor noise from THz spectra of an all-fiber THz system with the Hilbert-Huang transform. The THz signal was decomposed into eight components in different time scales called the intrinsic mode functions and the interference of atmospheric vapor was accurately isolated. A series of experiments confirmed the effectiveness and strong self-adaptiveness of the proposed system in vapor noise elimination.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Numerical method based on transfer function for eliminating water vapor noise from terahertz spectra

Y. Huang, P. Sun, Z. Zhang, and C. Jin
Appl. Opt. 56(20) 5698-5704 (2017)

Mean estimation empirical mode decomposition method for terahertz time-domain spectroscopy de-noising

Xiaoli Qiao, Xinming Zhang, Jiaojiao Ren, Dandan Zhang, Guohua Cao, and Lijuan Li
Appl. Opt. 56(25) 7138-7145 (2017)

Single shot fringe pattern phase demodulation using Hilbert-Huang transform aided by the principal component analysis

Maciej Trusiak, Łukasz Służewski, and Krzysztof Patorski
Opt. Express 24(4) 4221-4238 (2016)

References

  • View by:
  • |
  • |
  • |

  1. H. Zhang, S. Sfarra, A. Osman, K. Szielasko, C. Stumm, M. Genest, and X. P. V. Maldague, “An infrared-induced terahertz imaging modality for foreign object detection in a lightweight honeycomb structure,” IEEE Trans. Ind. Informatics 1–8 (2018).
  2. A. Woldegeorgis, T. Kurihara, B. Beleites, J. Bossert, R. Grosse, G. G. Paulus, F. Ronneberger, and A. Gopal, “THz induced nonlinear effects in materials at intensities above 26 GW/cm2,” J. Infrared Millim. Terahertz Waves 39(7), 667–680 (2018).
    [Crossref]
  3. H. Zhang, S. Sfarra, K. Saluja, J. Peeters, J. Fleuret, Y. Duan, H. Fernandes, N. Avdelidis, C. Ibarra-Castanedo, and X. Maldague, “Non-destructive investigation of paintings on canvas by continuous wave terahertz imaging and flash thermography,” J. Nondestruct. Eval. 36(2), 34 (2017).
    [Crossref]
  4. K. Ahi, S. Shahbazmohamadi, and N. Asadizanjani, “Quality control and authentication of packaged integrated circuits using enhanced-spatial-resolution terahertz time-domain spectroscopy and imaging,” Opt. Lasers Eng. 104, 274–284 (2018).
    [Crossref]
  5. M. M. U. Rahman, Q. H. Abbasi, N. Chopra, K. Qaraqe, and A. Alomainy, “Physical layer authentication in nano networks at terahertz frequencies for biomedical applications,” IEEE Access 5(99), 7808–7815 (2017).
    [Crossref]
  6. K. Ahi, “A method and system for enhancing the resolution of terahertz imaging,” Measurement, (2018). In Press.
  7. I. N. Dolganova, K. I. Zaytsev, S. O. Yurchenko, V. E. Karasik, and V. V. Tuchin, “The role of scattering in quasi-ordered structures for terahertz imaging: local order can increase an image quality,” IEEE Trans. Terahertz Sci. Technol. 8(4), 403–409 (2018).
    [Crossref]
  8. K. Ahi, “Mathematical modeling of THz point spread function and simulation of THz imaging systems,” IEEE Trans. Terahertz Sci. Technol. 7(6), 747–754 (2017).
    [Crossref]
  9. K. Ahi and M. Anwar, “Modeling of terahertz images based on x-ray images: A novel approach for verification of terahertz images and identification of objects with fine details beyond terahertz resolution,” Proc. SPIE 9856, 985610 (2016).
    [Crossref]
  10. H. Zhang, M. Genest, H. Fernandes, J. Fleuret, and X. Maldague, “Numerical and experimental analyses for natural and non-natural impacted composites via thermographic inspection, ultrasonic C-scan and terahertz imaging,” Proc. SPIE 10214, 102140I (2018).
  11. D. Bigourd, A. Cuisset, F. Hindle, S. Matton, E. Fertein, R. Bocquet, and G. Mouret, “Detection and quantification of multiple molecular species in mainstream cigarette smoke by continuous-wave terahertz spectroscopy,” Opt. Lett. 31(15), 2356–2358 (2006).
    [Crossref] [PubMed]
  12. T. Globus, D. Woolard, T. W. Crowe, T. Khromova, B. Gelmont, and J. Hesler, “Terahertz Fourier transform characterization of biological materials in a liquid phases,” J. Phys. D Appl. Phys. 39(15), 3405 (2006).
    [Crossref]
  13. P. Y. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X.-C. Zhang, “A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy,” J. Appl. Phys. 89(4), 2357–2359 (2001).
    [Crossref]
  14. M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped 65 fs Kerr-lens mode-locked Yb3+:Lu2O3 and nondoped Y2O3 combined ceramic laser,” Opt. Lett. 33(12), 1380–1382 (2008).
    [Crossref] [PubMed]
  15. J. Chen, Y. Chen, H. Zhao, G. J. Bastiaans, and X.-C. Zhang, “Absorption coefficients of selected explosives and related compounds in the range of 0.1-2.8 THz,” Opt. Express 15(19), 12060–12067 (2007).
    [Crossref] [PubMed]
  16. M. R. Leahy-Hoppa, M. J. Fitch, X. Zheng, L. M. Hayden, and R. Osiander, “Wideband terahertz spectroscopy of explosives,” Chem. Phys. Lett. 434(4–6), 227–230 (2005).
  17. K. Ahi, “Review of GaN-based devices for terahertz operation,” Opt. Eng. 56(9), 90901 (2017).
    [Crossref]
  18. K. Ahi and M. Anwar, “A survey on GaN-based devices for terahertz photonics,” Proc. SPIE 9957, 99570A (2016).
    [Crossref]
  19. M. van Exter, C. Fattinger, and D. Grischkowsky, “Terahertz time-domain spectroscopy of water vapor,” Opt. Lett. 14(20), 1128–1130 (1989).
    [Crossref] [PubMed]
  20. Y. Yang, A. Shutler, and D. Grischkowsky, “Measurement of the transmission of the atmosphere from 0.2 to 2 THz,” Opt. Express 19(9), 8830–8838 (2011).
    [Crossref] [PubMed]
  21. H. Harde, R. A. Cheville, and D. Grischkowsky, “Terahertz studies of collision-broadened rotational lines,” J. Phys. Chem. A 101(20), 3646–3660 (1997).
    [Crossref]
  22. D. Grischkowsky, S. Keiding, M. van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7(10), 2006–2015 (1990).
    [Crossref]
  23. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications–explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
    [Crossref]
  24. W. Withayachumnankul and M. Naftaly, “Fundamentals of measurement in terahertz time-domain spectroscopy,” J. Infrared Millim. Terahertz Waves 35(8), 610–637 (2014).
    [Crossref]
  25. M. Naftaly and R. E. Miles, “A method for removing etalon oscillations from THz time-domain spectra,” Opt. Commun. 280(2), 291–295 (2007).
    [Crossref]
  26. P. U. Jepsen and B. M. Fischer, “Dynamic range in terahertz time-domain transmission and reflection spectroscopy,” Opt. Lett. 30(1), 29–31 (2005).
    [Crossref] [PubMed]
  27. J. Xu, T. Yuan, S. Mickan, and X.-C. Zhang, “Limit of spectral resolution in terahertz time-domain spectroscopy,” Chin. Phys. Lett. 20(8), 1266–1268 (2003).
    [Crossref]
  28. W. Withayachumnankul, B. M. Fischer, H. Lin, and D. Abbott, “Uncertainty in terahertz time-domain spectroscopy measurement,” J. Opt. Soc. Am. B 25(6), 1059–1072 (2008).
    [Crossref]
  29. S. G. Kong and D. H. Wu, “Signal restoration from atmospheric degradation in terahertz spectroscopy,” J. Appl. Phys. 103(11), 113105 (2008).
    [Crossref]
  30. Y. Wang, Z. Zhao, Z. Chen, Y. Zhang, L. Zhang, and K. Kang, “Suppression of spectral interferences due to water-vapor rotational transitions in terahertz time-domain spectroscopy,” Opt. Lett. 33(12), 1354–1356 (2008).
    [Crossref] [PubMed]
  31. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. Flaud, A. Perrin, C. Camy-peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
    [Crossref]
  32. Y. Huang, P. Sun, Z. Zhang, and C. Jin, “Numerical method based on transfer function for eliminating water vapor noise from terahertz spectra,” Appl. Opt. 56(20), 5698–5704 (2017).
    [Crossref] [PubMed]
  33. B. Sartorius, H. Roehle, H. Künzel, J. Böttcher, M. Schlak, D. Stanze, H. Venghaus, and M. Schell, “All-fiber terahertz time-domain spectrometer operating at 1.5 µm telecom wavelengths,” Opt. Express 16(13), 9565–9570 (2008).
    [Crossref] [PubMed]
  34. G. R. Kim, T. I. Jeon, and D. Grischkowsky, “910-m propagation of THz ps pulses through the Atmosphere,” Opt. Express 25(21), 25422–25434 (2017).
    [Crossref] [PubMed]
  35. N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. Lond. A 454(1971), 903–995 (1998).
    [Crossref]
  36. K. Patorski, M. Trusiak, and T. Tkaczyk, “Optically-sectioned two-shot structured illumination microscopy with Hilbert-Huang processing,” Opt. Express 22(8), 9517–9527 (2014).
    [Crossref] [PubMed]
  37. M. Trusiak, V. Mico, J. Garcia, and K. Patorski, “Quantitative phase imaging by single-shot Hilbert-Huang phase microscopy,” Opt. Lett. 41(18), 4344–4347 (2016).
    [Crossref] [PubMed]
  38. J. B. Camp, J. K. Cannizzo, and K. Numata, “Application of the Hilbert-Huang transform to the search for gravitational waves,” Phys. Rev. D Part. Fields Gravit. Cosmol. 75(6), 61101 (2007).
    [Crossref]
  39. S. Amar, M. Bahich, H. Dalimi, E. M. Barj, and M. Afifi, “Digital carrier superposition by Hilbert-Huang transform for optical phase recovery in speckle shearing interferometry,” Opt. Eng. 54(1), 13101–13107 (2015).
    [Crossref]
  40. M. Trusiak and K. Patorski, “Two-shot fringe pattern phase-amplitude demodulation using Gram-Schmidt orthonormalization with Hilbert-Huang pre-filtering,” Opt. Express 23(4), 4672–4690 (2015).
    [Crossref] [PubMed]
  41. P. Flandrin, G. Rilling, and P. Gonçalvés, “Empirical mode decomposition as a filter bank,” IEEE Signal Process. Lett. 11(2), 112–114 (2004).
    [Crossref]
  42. S. Wietzke, C. Jansen, M. Reuter, T. Jung, D. Kraft, S. Chatterjee, B. M. Fischer, and M. Koch, “Terahertz spectroscopy on polymers: A review of morphological studies,” J. Mol. Struct. 1006(1–3), 41–51 (2011).
    [Crossref]
  43. M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy: A new tool for the study of glasses in the far infrared,” J. Non-Cryst. Solids 351(40-42), 3341–3346 (2005).
    [Crossref]
  44. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
    [Crossref] [PubMed]
  45. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
    [Crossref] [PubMed]
  46. H. Cui, X. Zhang, P. Yang, J. Su, X. Y. Wei, and Y. Guo, “Spectral characteristic of single layer graphene via terahertz time domain spectroscopy,” Optik (Stuttg.) 126(14), 1362–1365 (2015).
    [Crossref]

2018 (4)

A. Woldegeorgis, T. Kurihara, B. Beleites, J. Bossert, R. Grosse, G. G. Paulus, F. Ronneberger, and A. Gopal, “THz induced nonlinear effects in materials at intensities above 26 GW/cm2,” J. Infrared Millim. Terahertz Waves 39(7), 667–680 (2018).
[Crossref]

K. Ahi, S. Shahbazmohamadi, and N. Asadizanjani, “Quality control and authentication of packaged integrated circuits using enhanced-spatial-resolution terahertz time-domain spectroscopy and imaging,” Opt. Lasers Eng. 104, 274–284 (2018).
[Crossref]

I. N. Dolganova, K. I. Zaytsev, S. O. Yurchenko, V. E. Karasik, and V. V. Tuchin, “The role of scattering in quasi-ordered structures for terahertz imaging: local order can increase an image quality,” IEEE Trans. Terahertz Sci. Technol. 8(4), 403–409 (2018).
[Crossref]

H. Zhang, M. Genest, H. Fernandes, J. Fleuret, and X. Maldague, “Numerical and experimental analyses for natural and non-natural impacted composites via thermographic inspection, ultrasonic C-scan and terahertz imaging,” Proc. SPIE 10214, 102140I (2018).

2017 (6)

K. Ahi, “Mathematical modeling of THz point spread function and simulation of THz imaging systems,” IEEE Trans. Terahertz Sci. Technol. 7(6), 747–754 (2017).
[Crossref]

M. M. U. Rahman, Q. H. Abbasi, N. Chopra, K. Qaraqe, and A. Alomainy, “Physical layer authentication in nano networks at terahertz frequencies for biomedical applications,” IEEE Access 5(99), 7808–7815 (2017).
[Crossref]

H. Zhang, S. Sfarra, K. Saluja, J. Peeters, J. Fleuret, Y. Duan, H. Fernandes, N. Avdelidis, C. Ibarra-Castanedo, and X. Maldague, “Non-destructive investigation of paintings on canvas by continuous wave terahertz imaging and flash thermography,” J. Nondestruct. Eval. 36(2), 34 (2017).
[Crossref]

K. Ahi, “Review of GaN-based devices for terahertz operation,” Opt. Eng. 56(9), 90901 (2017).
[Crossref]

Y. Huang, P. Sun, Z. Zhang, and C. Jin, “Numerical method based on transfer function for eliminating water vapor noise from terahertz spectra,” Appl. Opt. 56(20), 5698–5704 (2017).
[Crossref] [PubMed]

G. R. Kim, T. I. Jeon, and D. Grischkowsky, “910-m propagation of THz ps pulses through the Atmosphere,” Opt. Express 25(21), 25422–25434 (2017).
[Crossref] [PubMed]

2016 (3)

M. Trusiak, V. Mico, J. Garcia, and K. Patorski, “Quantitative phase imaging by single-shot Hilbert-Huang phase microscopy,” Opt. Lett. 41(18), 4344–4347 (2016).
[Crossref] [PubMed]

K. Ahi and M. Anwar, “A survey on GaN-based devices for terahertz photonics,” Proc. SPIE 9957, 99570A (2016).
[Crossref]

K. Ahi and M. Anwar, “Modeling of terahertz images based on x-ray images: A novel approach for verification of terahertz images and identification of objects with fine details beyond terahertz resolution,” Proc. SPIE 9856, 985610 (2016).
[Crossref]

2015 (3)

S. Amar, M. Bahich, H. Dalimi, E. M. Barj, and M. Afifi, “Digital carrier superposition by Hilbert-Huang transform for optical phase recovery in speckle shearing interferometry,” Opt. Eng. 54(1), 13101–13107 (2015).
[Crossref]

H. Cui, X. Zhang, P. Yang, J. Su, X. Y. Wei, and Y. Guo, “Spectral characteristic of single layer graphene via terahertz time domain spectroscopy,” Optik (Stuttg.) 126(14), 1362–1365 (2015).
[Crossref]

M. Trusiak and K. Patorski, “Two-shot fringe pattern phase-amplitude demodulation using Gram-Schmidt orthonormalization with Hilbert-Huang pre-filtering,” Opt. Express 23(4), 4672–4690 (2015).
[Crossref] [PubMed]

2014 (2)

K. Patorski, M. Trusiak, and T. Tkaczyk, “Optically-sectioned two-shot structured illumination microscopy with Hilbert-Huang processing,” Opt. Express 22(8), 9517–9527 (2014).
[Crossref] [PubMed]

W. Withayachumnankul and M. Naftaly, “Fundamentals of measurement in terahertz time-domain spectroscopy,” J. Infrared Millim. Terahertz Waves 35(8), 610–637 (2014).
[Crossref]

2011 (2)

S. Wietzke, C. Jansen, M. Reuter, T. Jung, D. Kraft, S. Chatterjee, B. M. Fischer, and M. Koch, “Terahertz spectroscopy on polymers: A review of morphological studies,” J. Mol. Struct. 1006(1–3), 41–51 (2011).
[Crossref]

Y. Yang, A. Shutler, and D. Grischkowsky, “Measurement of the transmission of the atmosphere from 0.2 to 2 THz,” Opt. Express 19(9), 8830–8838 (2011).
[Crossref] [PubMed]

2009 (1)

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

2008 (5)

2007 (3)

M. Naftaly and R. E. Miles, “A method for removing etalon oscillations from THz time-domain spectra,” Opt. Commun. 280(2), 291–295 (2007).
[Crossref]

J. B. Camp, J. K. Cannizzo, and K. Numata, “Application of the Hilbert-Huang transform to the search for gravitational waves,” Phys. Rev. D Part. Fields Gravit. Cosmol. 75(6), 61101 (2007).
[Crossref]

J. Chen, Y. Chen, H. Zhao, G. J. Bastiaans, and X.-C. Zhang, “Absorption coefficients of selected explosives and related compounds in the range of 0.1-2.8 THz,” Opt. Express 15(19), 12060–12067 (2007).
[Crossref] [PubMed]

2006 (3)

D. Bigourd, A. Cuisset, F. Hindle, S. Matton, E. Fertein, R. Bocquet, and G. Mouret, “Detection and quantification of multiple molecular species in mainstream cigarette smoke by continuous-wave terahertz spectroscopy,” Opt. Lett. 31(15), 2356–2358 (2006).
[Crossref] [PubMed]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

T. Globus, D. Woolard, T. W. Crowe, T. Khromova, B. Gelmont, and J. Hesler, “Terahertz Fourier transform characterization of biological materials in a liquid phases,” J. Phys. D Appl. Phys. 39(15), 3405 (2006).
[Crossref]

2005 (4)

M. R. Leahy-Hoppa, M. J. Fitch, X. Zheng, L. M. Hayden, and R. Osiander, “Wideband terahertz spectroscopy of explosives,” Chem. Phys. Lett. 434(4–6), 227–230 (2005).

M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy: A new tool for the study of glasses in the far infrared,” J. Non-Cryst. Solids 351(40-42), 3341–3346 (2005).
[Crossref]

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications–explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

P. U. Jepsen and B. M. Fischer, “Dynamic range in terahertz time-domain transmission and reflection spectroscopy,” Opt. Lett. 30(1), 29–31 (2005).
[Crossref] [PubMed]

2004 (1)

P. Flandrin, G. Rilling, and P. Gonçalvés, “Empirical mode decomposition as a filter bank,” IEEE Signal Process. Lett. 11(2), 112–114 (2004).
[Crossref]

2003 (1)

J. Xu, T. Yuan, S. Mickan, and X.-C. Zhang, “Limit of spectral resolution in terahertz time-domain spectroscopy,” Chin. Phys. Lett. 20(8), 1266–1268 (2003).
[Crossref]

2001 (1)

P. Y. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X.-C. Zhang, “A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy,” J. Appl. Phys. 89(4), 2357–2359 (2001).
[Crossref]

1998 (2)

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. Flaud, A. Perrin, C. Camy-peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. Lond. A 454(1971), 903–995 (1998).
[Crossref]

1997 (1)

H. Harde, R. A. Cheville, and D. Grischkowsky, “Terahertz studies of collision-broadened rotational lines,” J. Phys. Chem. A 101(20), 3646–3660 (1997).
[Crossref]

1990 (1)

1989 (1)

Abbasi, Q. H.

M. M. U. Rahman, Q. H. Abbasi, N. Chopra, K. Qaraqe, and A. Alomainy, “Physical layer authentication in nano networks at terahertz frequencies for biomedical applications,” IEEE Access 5(99), 7808–7815 (2017).
[Crossref]

Abbott, D.

Afifi, M.

S. Amar, M. Bahich, H. Dalimi, E. M. Barj, and M. Afifi, “Digital carrier superposition by Hilbert-Huang transform for optical phase recovery in speckle shearing interferometry,” Opt. Eng. 54(1), 13101–13107 (2015).
[Crossref]

Ahi, K.

K. Ahi, S. Shahbazmohamadi, and N. Asadizanjani, “Quality control and authentication of packaged integrated circuits using enhanced-spatial-resolution terahertz time-domain spectroscopy and imaging,” Opt. Lasers Eng. 104, 274–284 (2018).
[Crossref]

K. Ahi, “Mathematical modeling of THz point spread function and simulation of THz imaging systems,” IEEE Trans. Terahertz Sci. Technol. 7(6), 747–754 (2017).
[Crossref]

K. Ahi, “Review of GaN-based devices for terahertz operation,” Opt. Eng. 56(9), 90901 (2017).
[Crossref]

K. Ahi and M. Anwar, “A survey on GaN-based devices for terahertz photonics,” Proc. SPIE 9957, 99570A (2016).
[Crossref]

K. Ahi and M. Anwar, “Modeling of terahertz images based on x-ray images: A novel approach for verification of terahertz images and identification of objects with fine details beyond terahertz resolution,” Proc. SPIE 9856, 985610 (2016).
[Crossref]

K. Ahi, “A method and system for enhancing the resolution of terahertz imaging,” Measurement, (2018). In Press.

Alomainy, A.

M. M. U. Rahman, Q. H. Abbasi, N. Chopra, K. Qaraqe, and A. Alomainy, “Physical layer authentication in nano networks at terahertz frequencies for biomedical applications,” IEEE Access 5(99), 7808–7815 (2017).
[Crossref]

Amar, S.

S. Amar, M. Bahich, H. Dalimi, E. M. Barj, and M. Afifi, “Digital carrier superposition by Hilbert-Huang transform for optical phase recovery in speckle shearing interferometry,” Opt. Eng. 54(1), 13101–13107 (2015).
[Crossref]

An, J.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Anwar, M.

K. Ahi and M. Anwar, “Modeling of terahertz images based on x-ray images: A novel approach for verification of terahertz images and identification of objects with fine details beyond terahertz resolution,” Proc. SPIE 9856, 985610 (2016).
[Crossref]

K. Ahi and M. Anwar, “A survey on GaN-based devices for terahertz photonics,” Proc. SPIE 9957, 99570A (2016).
[Crossref]

Asadizanjani, N.

K. Ahi, S. Shahbazmohamadi, and N. Asadizanjani, “Quality control and authentication of packaged integrated circuits using enhanced-spatial-resolution terahertz time-domain spectroscopy and imaging,” Opt. Lasers Eng. 104, 274–284 (2018).
[Crossref]

Avdelidis, N.

H. Zhang, S. Sfarra, K. Saluja, J. Peeters, J. Fleuret, Y. Duan, H. Fernandes, N. Avdelidis, C. Ibarra-Castanedo, and X. Maldague, “Non-destructive investigation of paintings on canvas by continuous wave terahertz imaging and flash thermography,” J. Nondestruct. Eval. 36(2), 34 (2017).
[Crossref]

Bahich, M.

S. Amar, M. Bahich, H. Dalimi, E. M. Barj, and M. Afifi, “Digital carrier superposition by Hilbert-Huang transform for optical phase recovery in speckle shearing interferometry,” Opt. Eng. 54(1), 13101–13107 (2015).
[Crossref]

Banerjee, S. K.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Barat, R.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications–explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Barj, E. M.

S. Amar, M. Bahich, H. Dalimi, E. M. Barj, and M. Afifi, “Digital carrier superposition by Hilbert-Huang transform for optical phase recovery in speckle shearing interferometry,” Opt. Eng. 54(1), 13101–13107 (2015).
[Crossref]

Bastiaans, G. J.

Beleites, B.

A. Woldegeorgis, T. Kurihara, B. Beleites, J. Bossert, R. Grosse, G. G. Paulus, F. Ronneberger, and A. Gopal, “THz induced nonlinear effects in materials at intensities above 26 GW/cm2,” J. Infrared Millim. Terahertz Waves 39(7), 667–680 (2018).
[Crossref]

Bigourd, D.

Bocquet, R.

Bossert, J.

A. Woldegeorgis, T. Kurihara, B. Beleites, J. Bossert, R. Grosse, G. G. Paulus, F. Ronneberger, and A. Gopal, “THz induced nonlinear effects in materials at intensities above 26 GW/cm2,” J. Infrared Millim. Terahertz Waves 39(7), 667–680 (2018).
[Crossref]

Böttcher, J.

Brown, L. R.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. Flaud, A. Perrin, C. Camy-peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Cai, W.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Camp, J. B.

J. B. Camp, J. K. Cannizzo, and K. Numata, “Application of the Hilbert-Huang transform to the search for gravitational waves,” Phys. Rev. D Part. Fields Gravit. Cosmol. 75(6), 61101 (2007).
[Crossref]

Camy-peyret, C.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. Flaud, A. Perrin, C. Camy-peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Cannizzo, J. K.

J. B. Camp, J. K. Cannizzo, and K. Numata, “Application of the Hilbert-Huang transform to the search for gravitational waves,” Phys. Rev. D Part. Fields Gravit. Cosmol. 75(6), 61101 (2007).
[Crossref]

Casiraghi, C.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Chance, K. V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. Flaud, A. Perrin, C. Camy-peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Chatterjee, S.

S. Wietzke, C. Jansen, M. Reuter, T. Jung, D. Kraft, S. Chatterjee, B. M. Fischer, and M. Koch, “Terahertz spectroscopy on polymers: A review of morphological studies,” J. Mol. Struct. 1006(1–3), 41–51 (2011).
[Crossref]

Chen, J.

Chen, Y.

Chen, Z.

Cheville, R. A.

H. Harde, R. A. Cheville, and D. Grischkowsky, “Terahertz studies of collision-broadened rotational lines,” J. Phys. Chem. A 101(20), 3646–3660 (1997).
[Crossref]

Chopra, N.

M. M. U. Rahman, Q. H. Abbasi, N. Chopra, K. Qaraqe, and A. Alomainy, “Physical layer authentication in nano networks at terahertz frequencies for biomedical applications,” IEEE Access 5(99), 7808–7815 (2017).
[Crossref]

Colombo, L.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Crowe, T. W.

T. Globus, D. Woolard, T. W. Crowe, T. Khromova, B. Gelmont, and J. Hesler, “Terahertz Fourier transform characterization of biological materials in a liquid phases,” J. Phys. D Appl. Phys. 39(15), 3405 (2006).
[Crossref]

Cui, H.

H. Cui, X. Zhang, P. Yang, J. Su, X. Y. Wei, and Y. Guo, “Spectral characteristic of single layer graphene via terahertz time domain spectroscopy,” Optik (Stuttg.) 126(14), 1362–1365 (2015).
[Crossref]

Cuisset, A.

Dalimi, H.

S. Amar, M. Bahich, H. Dalimi, E. M. Barj, and M. Afifi, “Digital carrier superposition by Hilbert-Huang transform for optical phase recovery in speckle shearing interferometry,” Opt. Eng. 54(1), 13101–13107 (2015).
[Crossref]

Dana, V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. Flaud, A. Perrin, C. Camy-peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Dolganova, I. N.

I. N. Dolganova, K. I. Zaytsev, S. O. Yurchenko, V. E. Karasik, and V. V. Tuchin, “The role of scattering in quasi-ordered structures for terahertz imaging: local order can increase an image quality,” IEEE Trans. Terahertz Sci. Technol. 8(4), 403–409 (2018).
[Crossref]

Duan, Y.

H. Zhang, S. Sfarra, K. Saluja, J. Peeters, J. Fleuret, Y. Duan, H. Fernandes, N. Avdelidis, C. Ibarra-Castanedo, and X. Maldague, “Non-destructive investigation of paintings on canvas by continuous wave terahertz imaging and flash thermography,” J. Nondestruct. Eval. 36(2), 34 (2017).
[Crossref]

Edwards, D. P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. Flaud, A. Perrin, C. Camy-peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Fattinger, C.

Federici, J. F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications–explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Fernandes, H.

H. Zhang, M. Genest, H. Fernandes, J. Fleuret, and X. Maldague, “Numerical and experimental analyses for natural and non-natural impacted composites via thermographic inspection, ultrasonic C-scan and terahertz imaging,” Proc. SPIE 10214, 102140I (2018).

H. Zhang, S. Sfarra, K. Saluja, J. Peeters, J. Fleuret, Y. Duan, H. Fernandes, N. Avdelidis, C. Ibarra-Castanedo, and X. Maldague, “Non-destructive investigation of paintings on canvas by continuous wave terahertz imaging and flash thermography,” J. Nondestruct. Eval. 36(2), 34 (2017).
[Crossref]

Ferrari, A. C.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Fertein, E.

Fischer, B. M.

Fitch, M. J.

M. R. Leahy-Hoppa, M. J. Fitch, X. Zheng, L. M. Hayden, and R. Osiander, “Wideband terahertz spectroscopy of explosives,” Chem. Phys. Lett. 434(4–6), 227–230 (2005).

Flandrin, P.

P. Flandrin, G. Rilling, and P. Gonçalvés, “Empirical mode decomposition as a filter bank,” IEEE Signal Process. Lett. 11(2), 112–114 (2004).
[Crossref]

Flaud, J.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. Flaud, A. Perrin, C. Camy-peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Fleuret, J.

H. Zhang, M. Genest, H. Fernandes, J. Fleuret, and X. Maldague, “Numerical and experimental analyses for natural and non-natural impacted composites via thermographic inspection, ultrasonic C-scan and terahertz imaging,” Proc. SPIE 10214, 102140I (2018).

H. Zhang, S. Sfarra, K. Saluja, J. Peeters, J. Fleuret, Y. Duan, H. Fernandes, N. Avdelidis, C. Ibarra-Castanedo, and X. Maldague, “Non-destructive investigation of paintings on canvas by continuous wave terahertz imaging and flash thermography,” J. Nondestruct. Eval. 36(2), 34 (2017).
[Crossref]

Gamache, R. R.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. Flaud, A. Perrin, C. Camy-peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Garcia, J.

Gary, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications–explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Geim, A. K.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Gelmont, B.

T. Globus, D. Woolard, T. W. Crowe, T. Khromova, B. Gelmont, and J. Hesler, “Terahertz Fourier transform characterization of biological materials in a liquid phases,” J. Phys. D Appl. Phys. 39(15), 3405 (2006).
[Crossref]

Genest, M.

H. Zhang, M. Genest, H. Fernandes, J. Fleuret, and X. Maldague, “Numerical and experimental analyses for natural and non-natural impacted composites via thermographic inspection, ultrasonic C-scan and terahertz imaging,” Proc. SPIE 10214, 102140I (2018).

Globus, T.

T. Globus, D. Woolard, T. W. Crowe, T. Khromova, B. Gelmont, and J. Hesler, “Terahertz Fourier transform characterization of biological materials in a liquid phases,” J. Phys. D Appl. Phys. 39(15), 3405 (2006).
[Crossref]

Goldman, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. Flaud, A. Perrin, C. Camy-peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Gonçalvés, P.

P. Flandrin, G. Rilling, and P. Gonçalvés, “Empirical mode decomposition as a filter bank,” IEEE Signal Process. Lett. 11(2), 112–114 (2004).
[Crossref]

Gopal, A.

A. Woldegeorgis, T. Kurihara, B. Beleites, J. Bossert, R. Grosse, G. G. Paulus, F. Ronneberger, and A. Gopal, “THz induced nonlinear effects in materials at intensities above 26 GW/cm2,” J. Infrared Millim. Terahertz Waves 39(7), 667–680 (2018).
[Crossref]

Grischkowsky, D.

Grosse, R.

A. Woldegeorgis, T. Kurihara, B. Beleites, J. Bossert, R. Grosse, G. G. Paulus, F. Ronneberger, and A. Gopal, “THz induced nonlinear effects in materials at intensities above 26 GW/cm2,” J. Infrared Millim. Terahertz Waves 39(7), 667–680 (2018).
[Crossref]

Guo, Y.

H. Cui, X. Zhang, P. Yang, J. Su, X. Y. Wei, and Y. Guo, “Spectral characteristic of single layer graphene via terahertz time domain spectroscopy,” Optik (Stuttg.) 126(14), 1362–1365 (2015).
[Crossref]

Han, P. Y.

P. Y. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X.-C. Zhang, “A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy,” J. Appl. Phys. 89(4), 2357–2359 (2001).
[Crossref]

Harde, H.

H. Harde, R. A. Cheville, and D. Grischkowsky, “Terahertz studies of collision-broadened rotational lines,” J. Phys. Chem. A 101(20), 3646–3660 (1997).
[Crossref]

Hayden, L. M.

M. R. Leahy-Hoppa, M. J. Fitch, X. Zheng, L. M. Hayden, and R. Osiander, “Wideband terahertz spectroscopy of explosives,” Chem. Phys. Lett. 434(4–6), 227–230 (2005).

Hesler, J.

T. Globus, D. Woolard, T. W. Crowe, T. Khromova, B. Gelmont, and J. Hesler, “Terahertz Fourier transform characterization of biological materials in a liquid phases,” J. Phys. D Appl. Phys. 39(15), 3405 (2006).
[Crossref]

Hindle, F.

Hosokawa, S.

Huang, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications–explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Huang, N. E.

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. Lond. A 454(1971), 903–995 (1998).
[Crossref]

Huang, Y.

Ibarra-Castanedo, C.

H. Zhang, S. Sfarra, K. Saluja, J. Peeters, J. Fleuret, Y. Duan, H. Fernandes, N. Avdelidis, C. Ibarra-Castanedo, and X. Maldague, “Non-destructive investigation of paintings on canvas by continuous wave terahertz imaging and flash thermography,” J. Nondestruct. Eval. 36(2), 34 (2017).
[Crossref]

Jansen, C.

S. Wietzke, C. Jansen, M. Reuter, T. Jung, D. Kraft, S. Chatterjee, B. M. Fischer, and M. Koch, “Terahertz spectroscopy on polymers: A review of morphological studies,” J. Mol. Struct. 1006(1–3), 41–51 (2011).
[Crossref]

Jeon, T. I.

Jepsen, P. U.

Jiang, D.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Jin, C.

Jucks, K. W.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. Flaud, A. Perrin, C. Camy-peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Jung, I.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Jung, T.

S. Wietzke, C. Jansen, M. Reuter, T. Jung, D. Kraft, S. Chatterjee, B. M. Fischer, and M. Koch, “Terahertz spectroscopy on polymers: A review of morphological studies,” J. Mol. Struct. 1006(1–3), 41–51 (2011).
[Crossref]

Kaminskii, A. A.

Kang, K.

Karasik, V. E.

I. N. Dolganova, K. I. Zaytsev, S. O. Yurchenko, V. E. Karasik, and V. V. Tuchin, “The role of scattering in quasi-ordered structures for terahertz imaging: local order can increase an image quality,” IEEE Trans. Terahertz Sci. Technol. 8(4), 403–409 (2018).
[Crossref]

Keiding, S.

Kersting, R.

P. Y. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X.-C. Zhang, “A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy,” J. Appl. Phys. 89(4), 2357–2359 (2001).
[Crossref]

Khromova, T.

T. Globus, D. Woolard, T. W. Crowe, T. Khromova, B. Gelmont, and J. Hesler, “Terahertz Fourier transform characterization of biological materials in a liquid phases,” J. Phys. D Appl. Phys. 39(15), 3405 (2006).
[Crossref]

Kim, G. R.

Kim, S.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Koch, M.

S. Wietzke, C. Jansen, M. Reuter, T. Jung, D. Kraft, S. Chatterjee, B. M. Fischer, and M. Koch, “Terahertz spectroscopy on polymers: A review of morphological studies,” J. Mol. Struct. 1006(1–3), 41–51 (2011).
[Crossref]

Kong, S. G.

S. G. Kong and D. H. Wu, “Signal restoration from atmospheric degradation in terahertz spectroscopy,” J. Appl. Phys. 103(11), 113105 (2008).
[Crossref]

Kono, S.

P. Y. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X.-C. Zhang, “A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy,” J. Appl. Phys. 89(4), 2357–2359 (2001).
[Crossref]

Kraft, D.

S. Wietzke, C. Jansen, M. Reuter, T. Jung, D. Kraft, S. Chatterjee, B. M. Fischer, and M. Koch, “Terahertz spectroscopy on polymers: A review of morphological studies,” J. Mol. Struct. 1006(1–3), 41–51 (2011).
[Crossref]

Künzel, H.

Kurihara, T.

A. Woldegeorgis, T. Kurihara, B. Beleites, J. Bossert, R. Grosse, G. G. Paulus, F. Ronneberger, and A. Gopal, “THz induced nonlinear effects in materials at intensities above 26 GW/cm2,” J. Infrared Millim. Terahertz Waves 39(7), 667–680 (2018).
[Crossref]

Lazzeri, M.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Leahy-Hoppa, M. R.

M. R. Leahy-Hoppa, M. J. Fitch, X. Zheng, L. M. Hayden, and R. Osiander, “Wideband terahertz spectroscopy of explosives,” Chem. Phys. Lett. 434(4–6), 227–230 (2005).

Li, X.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Lin, H.

Liu, H. H.

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. Lond. A 454(1971), 903–995 (1998).
[Crossref]

Long, S. R.

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. Lond. A 454(1971), 903–995 (1998).
[Crossref]

Maldague, X.

H. Zhang, M. Genest, H. Fernandes, J. Fleuret, and X. Maldague, “Numerical and experimental analyses for natural and non-natural impacted composites via thermographic inspection, ultrasonic C-scan and terahertz imaging,” Proc. SPIE 10214, 102140I (2018).

H. Zhang, S. Sfarra, K. Saluja, J. Peeters, J. Fleuret, Y. Duan, H. Fernandes, N. Avdelidis, C. Ibarra-Castanedo, and X. Maldague, “Non-destructive investigation of paintings on canvas by continuous wave terahertz imaging and flash thermography,” J. Nondestruct. Eval. 36(2), 34 (2017).
[Crossref]

Mandin, J. Y.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. Flaud, A. Perrin, C. Camy-peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Massie, S. T.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. Flaud, A. Perrin, C. Camy-peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Matton, S.

Mauri, F.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Mccann, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. Flaud, A. Perrin, C. Camy-peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Meyer, J. C.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Mickan, S.

J. Xu, T. Yuan, S. Mickan, and X.-C. Zhang, “Limit of spectral resolution in terahertz time-domain spectroscopy,” Chin. Phys. Lett. 20(8), 1266–1268 (2003).
[Crossref]

Mico, V.

Miles, R. E.

M. Naftaly and R. E. Miles, “A method for removing etalon oscillations from THz time-domain spectra,” Opt. Commun. 280(2), 291–295 (2007).
[Crossref]

M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy: A new tool for the study of glasses in the far infrared,” J. Non-Cryst. Solids 351(40-42), 3341–3346 (2005).
[Crossref]

Mouret, G.

Naftaly, M.

W. Withayachumnankul and M. Naftaly, “Fundamentals of measurement in terahertz time-domain spectroscopy,” J. Infrared Millim. Terahertz Waves 35(8), 610–637 (2014).
[Crossref]

M. Naftaly and R. E. Miles, “A method for removing etalon oscillations from THz time-domain spectra,” Opt. Commun. 280(2), 291–295 (2007).
[Crossref]

M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy: A new tool for the study of glasses in the far infrared,” J. Non-Cryst. Solids 351(40-42), 3341–3346 (2005).
[Crossref]

Nah, J.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Nemtchinov, V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. Flaud, A. Perrin, C. Camy-peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Novoselov, K. S.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Numata, K.

J. B. Camp, J. K. Cannizzo, and K. Numata, “Application of the Hilbert-Huang transform to the search for gravitational waves,” Phys. Rev. D Part. Fields Gravit. Cosmol. 75(6), 61101 (2007).
[Crossref]

Oliveira, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications–explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Osiander, R.

M. R. Leahy-Hoppa, M. J. Fitch, X. Zheng, L. M. Hayden, and R. Osiander, “Wideband terahertz spectroscopy of explosives,” Chem. Phys. Lett. 434(4–6), 227–230 (2005).

Patorski, K.

Paulus, G. G.

A. Woldegeorgis, T. Kurihara, B. Beleites, J. Bossert, R. Grosse, G. G. Paulus, F. Ronneberger, and A. Gopal, “THz induced nonlinear effects in materials at intensities above 26 GW/cm2,” J. Infrared Millim. Terahertz Waves 39(7), 667–680 (2018).
[Crossref]

Peeters, J.

H. Zhang, S. Sfarra, K. Saluja, J. Peeters, J. Fleuret, Y. Duan, H. Fernandes, N. Avdelidis, C. Ibarra-Castanedo, and X. Maldague, “Non-destructive investigation of paintings on canvas by continuous wave terahertz imaging and flash thermography,” J. Nondestruct. Eval. 36(2), 34 (2017).
[Crossref]

Perrin, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. Flaud, A. Perrin, C. Camy-peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Piner, R.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Piscanec, S.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Qaraqe, K.

M. M. U. Rahman, Q. H. Abbasi, N. Chopra, K. Qaraqe, and A. Alomainy, “Physical layer authentication in nano networks at terahertz frequencies for biomedical applications,” IEEE Access 5(99), 7808–7815 (2017).
[Crossref]

Rahman, M. M. U.

M. M. U. Rahman, Q. H. Abbasi, N. Chopra, K. Qaraqe, and A. Alomainy, “Physical layer authentication in nano networks at terahertz frequencies for biomedical applications,” IEEE Access 5(99), 7808–7815 (2017).
[Crossref]

Reuter, M.

S. Wietzke, C. Jansen, M. Reuter, T. Jung, D. Kraft, S. Chatterjee, B. M. Fischer, and M. Koch, “Terahertz spectroscopy on polymers: A review of morphological studies,” J. Mol. Struct. 1006(1–3), 41–51 (2011).
[Crossref]

Rilling, G.

P. Flandrin, G. Rilling, and P. Gonçalvés, “Empirical mode decomposition as a filter bank,” IEEE Signal Process. Lett. 11(2), 112–114 (2004).
[Crossref]

Rinsland, C. P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. Flaud, A. Perrin, C. Camy-peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Roehle, H.

Ronneberger, F.

A. Woldegeorgis, T. Kurihara, B. Beleites, J. Bossert, R. Grosse, G. G. Paulus, F. Ronneberger, and A. Gopal, “THz induced nonlinear effects in materials at intensities above 26 GW/cm2,” J. Infrared Millim. Terahertz Waves 39(7), 667–680 (2018).
[Crossref]

Roth, S.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Rothman, L. S.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. Flaud, A. Perrin, C. Camy-peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Ruoff, R. S.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Saluja, K.

H. Zhang, S. Sfarra, K. Saluja, J. Peeters, J. Fleuret, Y. Duan, H. Fernandes, N. Avdelidis, C. Ibarra-Castanedo, and X. Maldague, “Non-destructive investigation of paintings on canvas by continuous wave terahertz imaging and flash thermography,” J. Nondestruct. Eval. 36(2), 34 (2017).
[Crossref]

Sartorius, B.

Scardaci, V.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Schell, M.

Schlak, M.

Schroeder, J.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. Flaud, A. Perrin, C. Camy-peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Schulkin, B.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications–explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Sfarra, S.

H. Zhang, S. Sfarra, K. Saluja, J. Peeters, J. Fleuret, Y. Duan, H. Fernandes, N. Avdelidis, C. Ibarra-Castanedo, and X. Maldague, “Non-destructive investigation of paintings on canvas by continuous wave terahertz imaging and flash thermography,” J. Nondestruct. Eval. 36(2), 34 (2017).
[Crossref]

Shahbazmohamadi, S.

K. Ahi, S. Shahbazmohamadi, and N. Asadizanjani, “Quality control and authentication of packaged integrated circuits using enhanced-spatial-resolution terahertz time-domain spectroscopy and imaging,” Opt. Lasers Eng. 104, 274–284 (2018).
[Crossref]

Shen, Z.

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. Lond. A 454(1971), 903–995 (1998).
[Crossref]

Shih, H. H.

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. Lond. A 454(1971), 903–995 (1998).
[Crossref]

Shirakawa, A.

Shutler, A.

Stanze, D.

Su, J.

H. Cui, X. Zhang, P. Yang, J. Su, X. Y. Wei, and Y. Guo, “Spectral characteristic of single layer graphene via terahertz time domain spectroscopy,” Optik (Stuttg.) 126(14), 1362–1365 (2015).
[Crossref]

Sun, P.

Tani, M.

P. Y. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X.-C. Zhang, “A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy,” J. Appl. Phys. 89(4), 2357–2359 (2001).
[Crossref]

Tkaczyk, T.

Tokurakawa, M.

Trusiak, M.

Tuchin, V. V.

I. N. Dolganova, K. I. Zaytsev, S. O. Yurchenko, V. E. Karasik, and V. V. Tuchin, “The role of scattering in quasi-ordered structures for terahertz imaging: local order can increase an image quality,” IEEE Trans. Terahertz Sci. Technol. 8(4), 403–409 (2018).
[Crossref]

Tung, C. C.

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. Lond. A 454(1971), 903–995 (1998).
[Crossref]

Tutuc, E.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Ueda, K.

Usami, M.

P. Y. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X.-C. Zhang, “A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy,” J. Appl. Phys. 89(4), 2357–2359 (2001).
[Crossref]

van Exter, M.

Varanasi, P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. Flaud, A. Perrin, C. Camy-peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Velamakanni, A.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Venghaus, H.

Wang, Y.

Wattson, R. B.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. Flaud, A. Perrin, C. Camy-peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Wei, X. Y.

H. Cui, X. Zhang, P. Yang, J. Su, X. Y. Wei, and Y. Guo, “Spectral characteristic of single layer graphene via terahertz time domain spectroscopy,” Optik (Stuttg.) 126(14), 1362–1365 (2015).
[Crossref]

Wietzke, S.

S. Wietzke, C. Jansen, M. Reuter, T. Jung, D. Kraft, S. Chatterjee, B. M. Fischer, and M. Koch, “Terahertz spectroscopy on polymers: A review of morphological studies,” J. Mol. Struct. 1006(1–3), 41–51 (2011).
[Crossref]

Withayachumnankul, W.

W. Withayachumnankul and M. Naftaly, “Fundamentals of measurement in terahertz time-domain spectroscopy,” J. Infrared Millim. Terahertz Waves 35(8), 610–637 (2014).
[Crossref]

W. Withayachumnankul, B. M. Fischer, H. Lin, and D. Abbott, “Uncertainty in terahertz time-domain spectroscopy measurement,” J. Opt. Soc. Am. B 25(6), 1059–1072 (2008).
[Crossref]

Woldegeorgis, A.

A. Woldegeorgis, T. Kurihara, B. Beleites, J. Bossert, R. Grosse, G. G. Paulus, F. Ronneberger, and A. Gopal, “THz induced nonlinear effects in materials at intensities above 26 GW/cm2,” J. Infrared Millim. Terahertz Waves 39(7), 667–680 (2018).
[Crossref]

Woolard, D.

T. Globus, D. Woolard, T. W. Crowe, T. Khromova, B. Gelmont, and J. Hesler, “Terahertz Fourier transform characterization of biological materials in a liquid phases,” J. Phys. D Appl. Phys. 39(15), 3405 (2006).
[Crossref]

Wu, D. H.

S. G. Kong and D. H. Wu, “Signal restoration from atmospheric degradation in terahertz spectroscopy,” J. Appl. Phys. 103(11), 113105 (2008).
[Crossref]

Wu, M. C.

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. Lond. A 454(1971), 903–995 (1998).
[Crossref]

Xu, J.

J. Xu, T. Yuan, S. Mickan, and X.-C. Zhang, “Limit of spectral resolution in terahertz time-domain spectroscopy,” Chin. Phys. Lett. 20(8), 1266–1268 (2003).
[Crossref]

Yagi, H.

Yanagitani, T.

Yang, D.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Yang, P.

H. Cui, X. Zhang, P. Yang, J. Su, X. Y. Wei, and Y. Guo, “Spectral characteristic of single layer graphene via terahertz time domain spectroscopy,” Optik (Stuttg.) 126(14), 1362–1365 (2015).
[Crossref]

Yang, Y.

Yen, N. C.

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. Lond. A 454(1971), 903–995 (1998).
[Crossref]

Yoshino, K.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. Flaud, A. Perrin, C. Camy-peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Yuan, T.

J. Xu, T. Yuan, S. Mickan, and X.-C. Zhang, “Limit of spectral resolution in terahertz time-domain spectroscopy,” Chin. Phys. Lett. 20(8), 1266–1268 (2003).
[Crossref]

Yurchenko, S. O.

I. N. Dolganova, K. I. Zaytsev, S. O. Yurchenko, V. E. Karasik, and V. V. Tuchin, “The role of scattering in quasi-ordered structures for terahertz imaging: local order can increase an image quality,” IEEE Trans. Terahertz Sci. Technol. 8(4), 403–409 (2018).
[Crossref]

Zaytsev, K. I.

I. N. Dolganova, K. I. Zaytsev, S. O. Yurchenko, V. E. Karasik, and V. V. Tuchin, “The role of scattering in quasi-ordered structures for terahertz imaging: local order can increase an image quality,” IEEE Trans. Terahertz Sci. Technol. 8(4), 403–409 (2018).
[Crossref]

Zhang, H.

H. Zhang, M. Genest, H. Fernandes, J. Fleuret, and X. Maldague, “Numerical and experimental analyses for natural and non-natural impacted composites via thermographic inspection, ultrasonic C-scan and terahertz imaging,” Proc. SPIE 10214, 102140I (2018).

H. Zhang, S. Sfarra, K. Saluja, J. Peeters, J. Fleuret, Y. Duan, H. Fernandes, N. Avdelidis, C. Ibarra-Castanedo, and X. Maldague, “Non-destructive investigation of paintings on canvas by continuous wave terahertz imaging and flash thermography,” J. Nondestruct. Eval. 36(2), 34 (2017).
[Crossref]

Zhang, L.

Zhang, X.

H. Cui, X. Zhang, P. Yang, J. Su, X. Y. Wei, and Y. Guo, “Spectral characteristic of single layer graphene via terahertz time domain spectroscopy,” Optik (Stuttg.) 126(14), 1362–1365 (2015).
[Crossref]

Zhang, X.-C.

J. Chen, Y. Chen, H. Zhao, G. J. Bastiaans, and X.-C. Zhang, “Absorption coefficients of selected explosives and related compounds in the range of 0.1-2.8 THz,” Opt. Express 15(19), 12060–12067 (2007).
[Crossref] [PubMed]

J. Xu, T. Yuan, S. Mickan, and X.-C. Zhang, “Limit of spectral resolution in terahertz time-domain spectroscopy,” Chin. Phys. Lett. 20(8), 1266–1268 (2003).
[Crossref]

P. Y. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X.-C. Zhang, “A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy,” J. Appl. Phys. 89(4), 2357–2359 (2001).
[Crossref]

Zhang, Y.

Zhang, Z.

Zhao, H.

Zhao, Z.

Zheng, Q.

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. Lond. A 454(1971), 903–995 (1998).
[Crossref]

Zheng, X.

M. R. Leahy-Hoppa, M. J. Fitch, X. Zheng, L. M. Hayden, and R. Osiander, “Wideband terahertz spectroscopy of explosives,” Chem. Phys. Lett. 434(4–6), 227–230 (2005).

Zimdars, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications–explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Appl. Opt. (1)

Chem. Phys. Lett. (1)

M. R. Leahy-Hoppa, M. J. Fitch, X. Zheng, L. M. Hayden, and R. Osiander, “Wideband terahertz spectroscopy of explosives,” Chem. Phys. Lett. 434(4–6), 227–230 (2005).

Chin. Phys. Lett. (1)

J. Xu, T. Yuan, S. Mickan, and X.-C. Zhang, “Limit of spectral resolution in terahertz time-domain spectroscopy,” Chin. Phys. Lett. 20(8), 1266–1268 (2003).
[Crossref]

IEEE Access (1)

M. M. U. Rahman, Q. H. Abbasi, N. Chopra, K. Qaraqe, and A. Alomainy, “Physical layer authentication in nano networks at terahertz frequencies for biomedical applications,” IEEE Access 5(99), 7808–7815 (2017).
[Crossref]

IEEE Signal Process. Lett. (1)

P. Flandrin, G. Rilling, and P. Gonçalvés, “Empirical mode decomposition as a filter bank,” IEEE Signal Process. Lett. 11(2), 112–114 (2004).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (2)

I. N. Dolganova, K. I. Zaytsev, S. O. Yurchenko, V. E. Karasik, and V. V. Tuchin, “The role of scattering in quasi-ordered structures for terahertz imaging: local order can increase an image quality,” IEEE Trans. Terahertz Sci. Technol. 8(4), 403–409 (2018).
[Crossref]

K. Ahi, “Mathematical modeling of THz point spread function and simulation of THz imaging systems,” IEEE Trans. Terahertz Sci. Technol. 7(6), 747–754 (2017).
[Crossref]

J. Appl. Phys. (2)

P. Y. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X.-C. Zhang, “A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy,” J. Appl. Phys. 89(4), 2357–2359 (2001).
[Crossref]

S. G. Kong and D. H. Wu, “Signal restoration from atmospheric degradation in terahertz spectroscopy,” J. Appl. Phys. 103(11), 113105 (2008).
[Crossref]

J. Infrared Millim. Terahertz Waves (2)

W. Withayachumnankul and M. Naftaly, “Fundamentals of measurement in terahertz time-domain spectroscopy,” J. Infrared Millim. Terahertz Waves 35(8), 610–637 (2014).
[Crossref]

A. Woldegeorgis, T. Kurihara, B. Beleites, J. Bossert, R. Grosse, G. G. Paulus, F. Ronneberger, and A. Gopal, “THz induced nonlinear effects in materials at intensities above 26 GW/cm2,” J. Infrared Millim. Terahertz Waves 39(7), 667–680 (2018).
[Crossref]

J. Mol. Struct. (1)

S. Wietzke, C. Jansen, M. Reuter, T. Jung, D. Kraft, S. Chatterjee, B. M. Fischer, and M. Koch, “Terahertz spectroscopy on polymers: A review of morphological studies,” J. Mol. Struct. 1006(1–3), 41–51 (2011).
[Crossref]

J. Non-Cryst. Solids (1)

M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy: A new tool for the study of glasses in the far infrared,” J. Non-Cryst. Solids 351(40-42), 3341–3346 (2005).
[Crossref]

J. Nondestruct. Eval. (1)

H. Zhang, S. Sfarra, K. Saluja, J. Peeters, J. Fleuret, Y. Duan, H. Fernandes, N. Avdelidis, C. Ibarra-Castanedo, and X. Maldague, “Non-destructive investigation of paintings on canvas by continuous wave terahertz imaging and flash thermography,” J. Nondestruct. Eval. 36(2), 34 (2017).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. A (1)

H. Harde, R. A. Cheville, and D. Grischkowsky, “Terahertz studies of collision-broadened rotational lines,” J. Phys. Chem. A 101(20), 3646–3660 (1997).
[Crossref]

J. Phys. D Appl. Phys. (1)

T. Globus, D. Woolard, T. W. Crowe, T. Khromova, B. Gelmont, and J. Hesler, “Terahertz Fourier transform characterization of biological materials in a liquid phases,” J. Phys. D Appl. Phys. 39(15), 3405 (2006).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (1)

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. Flaud, A. Perrin, C. Camy-peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 665–710 (1998).
[Crossref]

Opt. Commun. (1)

M. Naftaly and R. E. Miles, “A method for removing etalon oscillations from THz time-domain spectra,” Opt. Commun. 280(2), 291–295 (2007).
[Crossref]

Opt. Eng. (2)

K. Ahi, “Review of GaN-based devices for terahertz operation,” Opt. Eng. 56(9), 90901 (2017).
[Crossref]

S. Amar, M. Bahich, H. Dalimi, E. M. Barj, and M. Afifi, “Digital carrier superposition by Hilbert-Huang transform for optical phase recovery in speckle shearing interferometry,” Opt. Eng. 54(1), 13101–13107 (2015).
[Crossref]

Opt. Express (6)

Opt. Lasers Eng. (1)

K. Ahi, S. Shahbazmohamadi, and N. Asadizanjani, “Quality control and authentication of packaged integrated circuits using enhanced-spatial-resolution terahertz time-domain spectroscopy and imaging,” Opt. Lasers Eng. 104, 274–284 (2018).
[Crossref]

Opt. Lett. (6)

Optik (Stuttg.) (1)

H. Cui, X. Zhang, P. Yang, J. Su, X. Y. Wei, and Y. Guo, “Spectral characteristic of single layer graphene via terahertz time domain spectroscopy,” Optik (Stuttg.) 126(14), 1362–1365 (2015).
[Crossref]

Phys. Rev. D Part. Fields Gravit. Cosmol. (1)

J. B. Camp, J. K. Cannizzo, and K. Numata, “Application of the Hilbert-Huang transform to the search for gravitational waves,” Phys. Rev. D Part. Fields Gravit. Cosmol. 75(6), 61101 (2007).
[Crossref]

Phys. Rev. Lett. (1)

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Proc. R. Soc. Lond. A (1)

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. Lond. A 454(1971), 903–995 (1998).
[Crossref]

Proc. SPIE (3)

K. Ahi and M. Anwar, “Modeling of terahertz images based on x-ray images: A novel approach for verification of terahertz images and identification of objects with fine details beyond terahertz resolution,” Proc. SPIE 9856, 985610 (2016).
[Crossref]

H. Zhang, M. Genest, H. Fernandes, J. Fleuret, and X. Maldague, “Numerical and experimental analyses for natural and non-natural impacted composites via thermographic inspection, ultrasonic C-scan and terahertz imaging,” Proc. SPIE 10214, 102140I (2018).

K. Ahi and M. Anwar, “A survey on GaN-based devices for terahertz photonics,” Proc. SPIE 9957, 99570A (2016).
[Crossref]

Science (1)

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications–explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Other (2)

H. Zhang, S. Sfarra, A. Osman, K. Szielasko, C. Stumm, M. Genest, and X. P. V. Maldague, “An infrared-induced terahertz imaging modality for foreign object detection in a lightweight honeycomb structure,” IEEE Trans. Ind. Informatics 1–8 (2018).

K. Ahi, “A method and system for enhancing the resolution of terahertz imaging,” Measurement, (2018). In Press.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Schematic diagram of the optical fiber integrated THz-TDS in transmission mode.
Fig. 2
Fig. 2 THz time-domain pulses (lower left inset) and FFT spectra of relative humidity 4.3% – 70.4%. The absorption peaks of water vapor are clearly identified and the absorptions get more intense with the increasing relative humidity.
Fig. 3
Fig. 3 THz original time-domain signal of PTFE (black line) and its decomposed eight IMF components (red line) and residuals (green line).
Fig. 4
Fig. 4 THz time-domain waveforms (a) and their corresponding FFT spectra (b) of the PTFE. The original signals of the PTFE in the nitrogen and the air with RH 38.4% are respectively presented by the black dotted and blue dash-dot lines, so do their spectra. The Fourier spectra of IMF1 + IMF2 (the red solid line) and IMF1 + IMF2 + IMF3 (the green dashed line) demonstrate the elimination and identification of the water vapor, respectively.
Fig. 5
Fig. 5 THz time domain signal with RH 38.4% (a) and the corresponding FFT spectrum (b), where the black dotted line and the red solid line represent the air reference and the PTFE sample, respectively. Refractive index curve of PTFE is obtained in (c), where the black dotted, blue dashed, and red solid lines depict the frequency dependent refractive index for nitrogen, air humidity (RH 38.4%), and HHT algorithm, respectively.
Fig. 6
Fig. 6 THz time-domain waveforms (a) and their corresponding Fourier spectra (b) of PTFE sample in different ambient humidity of RH 4.3%, RH 13.2%, RH 51.2%, and RH 70.4%.
Fig. 7
Fig. 7 Fourier spectra of PTFE sample in different humidity: (a) RH 13.2%, (b) RH 51.2%, and (c) RH 70.4%. The original signal, IMF1 + IMF2, and IMF1 + IMF2 + IMF3 are denoted by the blue dash-dot, red solid, and green dashed lines, respectively. The time domain signals are depicted in the insects and the PTFE spectra in the nitrogen are also shown as reference.
Fig. 8
Fig. 8 THz time-domain waveforms (a) and their corresponding Fourier spectra (b) of PTFE sample with different scanning lengths (30 ps, 90 ps, and 140 ps).
Fig. 9
Fig. 9 The PTFE THz time-domain waveforms (insert) and corresponding FFT spectra analysis of different time windows (30ps (a), 90ps (b) and 140ps (c)), including pure nitrogen (black dotted line), original signal (blue dot-dashed line), IMF1 + IMF2 (red solid line), IMF1 + IMF2 + IMF3 (green dashed line).
Fig. 10
Fig. 10 (a) MG/PTFE sample and its Raman spectroscopy. (b) THz time-domain waveforms of MG/PTFE, IMF1 + IMF2 (red solid line), and IMF1 + IMF2 + IMF3 (green dash line). The original signals of the PTFE in the nitrogen and the air with RH 63.7% are respectively presented by the black dotted and blue dash-dot lines. (c–e) Data of tail oscillations (20 ps–50 ps) and (f) main pulse (4 ps–12 ps).
Fig. 11
Fig. 11 THz Fourier spectrum of MG/PTFE corresponding to the time domain signal. The original signals of the PTFE in the nitrogen and the air with RH 63.7% are respectively presented by the black dotted and blue dash-dot lines. The Fourier spectra of IMF1 + IMF2 (the red solid line) and IMF1 + IMF2 + IMF3 (the green dashed line) demonstrate the elimination and identification of the water vapor, respectively. Furthermore, the graphene is characterized by the absorption peak near 0.7 THz according to the red solid line.

Tables (2)

Tables Icon

Table 1 MSEs of the Signals through the Humid Air with and without the HHT.

Tables Icon

Table 2 MSEs of the signals obtained by different delay times.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

f ( t ) = i = 1 n x i ( t ) + r n ( t ) ,
x i ( t ) = h i k = h i ( k 1 ) m i k ,
h i 0 = f ( t ) p = 1 i 1 x p ( t )
n ( ω ) = 1 + c ω d Δ Φ ( ω ) ,
M S E = 1 m m ( y m y m ) 2 ,

Metrics